KR100973997B1 - Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby - Google Patents

Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby Download PDF

Info

Publication number
KR100973997B1
KR100973997B1 KR1020070104034A KR20070104034A KR100973997B1 KR 100973997 B1 KR100973997 B1 KR 100973997B1 KR 1020070104034 A KR1020070104034 A KR 1020070104034A KR 20070104034 A KR20070104034 A KR 20070104034A KR 100973997 B1 KR100973997 B1 KR 100973997B1
Authority
KR
South Korea
Prior art keywords
leu
val
glu
ifs2
arg
Prior art date
Application number
KR1020070104034A
Other languages
Korean (ko)
Other versions
KR20090038642A (en
Inventor
손수인
김율호
이장용
김선림
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020070104034A priority Critical patent/KR100973997B1/en
Publication of KR20090038642A publication Critical patent/KR20090038642A/en
Application granted granted Critical
Publication of KR100973997B1 publication Critical patent/KR100973997B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13136Isoflavonoid synthase (1.14.13.136)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 아이소플라본 합성효소를 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터 및 이를 이용한 형질전환체에 관한 것으로서, 보다 상세하게는 프로모터 및 이와 작동가능하게 연결된 서열번호 3의 아이소플라본 합성효소를 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터 및 이를 이용한 형질전환체에 관한 것이다. 본 발명의 재조합 벡터는 아이소플라본을 합성하지 않는 벼 등에서 아이소플라본 합성효소를 안정적으로 발현시킴으로써 아이소플라본의 합성을 가능하게 하여 종래의 형질전환체 보다 고농도의 아이소플라본을 함유하는 형질전환체를 제조할 수 있도록 하는 효과를 갖는다. 따라서 본 발명의 재조합 벡터는 유용물질인 아이소플라본을 생합성하는 새로운 품종의 형질전환 작물의 개발의 목적으로 사용할 수 있다.The present invention relates to a recombinant expression vector comprising a polynucleotide encoding an isoflavone synthase and a transformant using the same, and more particularly, to a promoter and an isoflavone synthetase of SEQ ID NO: 3 operably linked thereto. A recombinant expression vector comprising a polynucleotide and a transformant using the same. The recombinant vector of the present invention enables the synthesis of isoflavones by stably expressing isoflavone synthase in rice that does not synthesize isoflavones, thereby producing a transformant containing a higher concentration of isoflavones than a conventional transformant. It has the effect of making it possible. Therefore, the recombinant vector of the present invention can be used for the purpose of the development of a new breed of transgenic crops that biosynthesize the useful material isoflavones.

아이소플라본, 형질전환체, 아이소플라본 합성효소, 인트론 Isoflavones, transformants, isoflavone synthase, introns

Description

아이소플라본 합성효소를 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터 및 이를 이용한 형질전환체{Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby}Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby

본 발명은 아이소플라본 합성효소를 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터 및 이를 이용한 형질전환체에 관한 것으로서, 보다 상세하게는 프로모터 및 이와 작동가능하게 연결된 서열번호 3의 아이소플라본 합성효소를 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터 및 이를 이용한 형질전환체에 관한 것이다.The present invention relates to a recombinant expression vector comprising a polynucleotide encoding an isoflavone synthase and a transformant using the same, and more particularly, to a promoter and an isoflavone synthetase of SEQ ID NO: 3 operably linked thereto. A recombinant expression vector comprising a polynucleotide and a transformant using the same.

분자생물학적 기법이 발전함에 따라 유전공학적 방법에 의해 유용 대사 물질을 생성하거나 더 유용한 물질로 변경코자 하는 방법들이 발전해 왔다. 그 중, 식물을 매개체로 활용하는 식물 대사공학(plant metabolic engineering) 연구, 또는 비 식물유래 고부가 경구용 백신(edible vaccine) 및 의료용 단백질 등을 식물체에서 생산하는 식물 분자농업(plant molecular farming) 연구가 많이 이루어지고 있 으나, 여러 가지 기술적인 어려움으로 인해 구체적인 결과는 그다지 많지 않은 실정이다.As molecular biology techniques have evolved, methods have been developed to generate useful metabolites by genetic engineering methods or to change them into more useful substances. Among them, plant metabolic engineering using plants as a medium or plant molecular farming researches that produce non-plant-derived high value oral vaccines and medical proteins in plants Although much has been achieved, due to various technical difficulties, the specific results are not so many.

그러한 어려움 중 하나가 형질전환된 유전자의 발현이 제대로 이루어지지 않는 경우가 많다는 점이다. 이러한 발현의 저해는 유전자 수준의 발현의 저해, 발현된 단백질의 분해, 발현된 단백질의 기능 결실 등의 다양한 원인에 의해서 일어나는 데, 개개의 형질전환시 그 원인이 정확히 규명되지 않는 경우가 많아 이에 대한 해결책을 제시하기 어려운 실정이다.One such difficulty is that the expression of the transformed genes is often poor. Inhibition of such expression is caused by a variety of causes, such as inhibition of expression at the gene level, degradation of the expressed protein, loss of function of the expressed protein, and the cause of each transformation is not precisely identified. It is difficult to provide a solution.

더욱이, 콩에서 유래한 IFS1IFS2 유전자는 시토크롬 P450(cytochrome P450) 계열에 속하는 유전자로서, 이들 유전자가 암호화하는 단백질은 매우 불안정한 것으로 알려져 있다. 따라서 기존에 인트론을 포함하지 않은 이들 유전자를 이용, 형질전환을 수행한 예들, 즉 애기장대, 옥수수의 BMS (Black Mexican Sweer) 세포주, 담배 식물체 등에서 목적형질인 아이소플라본의 생성이 매우 적은 것으로 보고되었다(Yu et al., Plant Physiology 124:781-793, 2000). 더욱이, 식물의 시토크롬 P450들은 식물체에서의 희소성, 다수의 유사 단백질, 불안정성 등으로 인해 식물체에서 매우 분리하기 어려운 단백질로 알려져 있다(Akashi et al., Plant Physiology 121:821-828, 1999). 따라서 이들 유전자를 이용한 형질전환을 통해 목적형질을 얻기 위해서는 단백질의 분리를 통한 접근은 어려우며, 이들 유전자의 세포내에서의 안정적인 발현이 필수적인 실정이다.Moreover, IFS1 and IFS2 derived from soybeans Genes belong to the cytochrome P450 family, and the proteins encoded by these genes are known to be very unstable. Therefore, the production of target isoflavones has been reported to be very low in the examples that have been transformed using these genes that do not include introns, ie, Arabidopsis, corn BMS (Black Mexican Sweer) cell lines, and tobacco plants. (Yu et al., Plant Physiology 124: 781-793, 2000). Moreover, plant cytochrome P450s are known to be very difficult to isolate from plants due to their scarcity, many similar proteins, instability, etc. (Akashi et al., Plant Physiology 121: 821-828, 1999). Therefore, in order to obtain target traits through transformation using these genes, access through separation of proteins is difficult, and stable expression of these genes in cells is essential.

한편, 아이소플라본은 콩의 대표적인 생리활성 물질로서 콩을 비롯한 두과작물에서만 생성되며, 여성호르몬인 에스트라디올(Estradiol)과의 구조적, 기능적 유사성으로 인해 파이토에스트로젠(Phytoestrogen)이라 불리며, 골다공증, 월경증후군, 유방암, 심장질환, 전립선암에 대한 효과 외에도 혈전을 없애주는 등 강력한 항산화물질로 작용한다고 알려져 있다(Jung et al., Nat. Biotech.18: 208-212, 2000).On the other hand, isoflavone is a representative physiologically active substance of soybean and is produced only in soybean crops including soybeans. In addition to its effects on breast cancer, heart disease, and prostate cancer, it is known to act as a powerful antioxidant, such as eliminating blood clots (Jung et al., Nat. Biotech. 18: 208-212, 2000).

이에 본 발명자들은 아이소플라본을 합성하는 형질전환 식물체를 개발하기 위하여 연구한 결과, 콩에서 분리한 서열번호 1 및 서열번호 2의 IFS 유전자를 이용하는 경우 아이소플라본을 고농도로 합성하는 형질전환체를 제조할 수 있다는 점을 확인하여 본 발명을 완성하였다.Therefore, the present inventors have studied to develop a transgenic plant that synthesizes isoflavones. When using the IFS genes of SEQ ID NO: 1 and SEQ ID NO: 2 isolated from soybeans, the present inventors can prepare a transformant to synthesize isoflavones at a high concentration. It was confirmed that the present invention was completed.

따라서, 본 발명의 목적은 인트론을 포함하는 IFS2 유전자를 이용하여 아이소플라본을 생합성할 수 있는 식물 형질전환용 재조합 벡터 및 이를 이용한 형질전환체를 제공하는 것이다.Accordingly, an object of the present invention is to provide a recombinant vector for plant transformation capable of biosynthesizing isoflavones using the IFS2 gene including an intron and a transformant using the same.

상기와 같은 목적을 달성하기 위하여, 본 발명은 IFS2 유전자를 포함하는 식물 형질전환용 재조합 벡터를 이용한 형질전환 벼의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a transformed rice using a recombinant vector for plant transformation comprising the IFS2 gene.

본 발명의 다른 목적을 달성하기 위하여, IFS2 유전자를 포함하는 식물 형질전환용 재조합 벡터를 이용한 형질전환 벼에서 아이소플라본을 추출하는 것을 특징으로 하는 아이소플라본 제조방법을 제공한다.In order to achieve another object of the present invention, there is provided an isoflavone production method characterized in that the isoflavones are extracted from the transformed rice using a recombinant vector for plant transformation comprising the IFS2 gene.

이하 본 발명의 내용을 보다 상세히 설명하기로 한다.Hereinafter, the content of the present invention will be described in more detail.

본 발명의 재조합 벡터는 프로모터 및 이와 작동가능하게 연결된 서열번호 3의 폴리뉴클레오티드를 포함하는 것을 특징으로 한다.The recombinant vector of the present invention is characterized in that it comprises a promoter and a polynucleotide of SEQ ID NO: 3 operably linked thereto.

바람직하게 본 발명의 폴리뉴클레오티드는 서열번호 3으로 표시되는 염기서열로 이루어진 DNA 또는 RNA일 수 있다. 이 때, 본 발명의 폴리뉴클레오티드가 RNA인 경우 서열번호 3의 티민(T)는 우라실(U)로 대체하는 것으로 이해될 수 있다. 상기 폴리뉴클레오티드는 공지된 화학적 합성법에 의해서 제조될 수 있다. Preferably the polynucleotide of the present invention may be DNA or RNA consisting of the nucleotide sequence represented by SEQ ID NO: 3. In this case, when the polynucleotide of the present invention is RNA, thymine (T) of SEQ ID NO: 3 may be understood to be replaced by uracil (U). The polynucleotide can be prepared by known chemical synthesis.

상기 서열번호 3은 콩에서 분리된 아이소플라본 합성효소 유전자로서 IFS2 유전자이다. 콩에서 분리된 아이소플라본 합성효소 유전자는 두가지 동위체(isoform), 즉, IFS1과 IFS2가 있는데, IFS1 유전자는 콩 배발달 전시기에서 일정하게 발현되는 반면, IFS2 유전자는 아이소플라본 함량이 최고치가 되는 배발달 후기 과정으로 갈수록 발현량이 증가하는 양상을 보인다(Dhaubhadel Plant Physiol. 143: 326-338). 이는 두개 동위체의 아이소플라본 합성 효율 차이를 반영하는 것으로 생각되며, In vitro에서 효모(yeast) 발현 시스템을 이용한 두개 동위체의 아이소플라본 합성 효율을 조사한 결과 IFS1이 IFS2에 비해 두 배 정도 높은 수준으로 아이소플라본을 합성하는 것으로 알려져 있다(Jung et al., Nat. Biotech. 18: 208-212, 2000).SEQ ID NO: 3 is an IFS2 gene as an isoflavone synthase gene isolated from soybean. Isoflavone synthase genes isolated from soybeans have two isoforms, IFS1 and IFS2. IFS1 genes are constantly expressed in soybean developmental stages, while IFS2 genes have the highest isoflavone content. The expression level increases with the developmental stage (Dhaubhadel Plant Physiol. 143: 326-338). This is thought to reflect the difference in isoflavone synthesis efficiency of the two isotopes. In vitro , the isoflavone synthesis efficiency of the two isotopes using the yeast expression system showed that the IFS1 is twice as high as the isoflavone compared to the IFS2. It is known to synthesize (Jung et al., Nat. Biotech. 18: 208-212, 2000).

아이소플라본은 식물의 대부분의 2차 대사산물이 만들어지는 페닐프로파노이드 경로(phenylpropanoid pathway)로부터 생성되며, 페닐프로파노이드 경로의 중간기질인 나린제닌(naringenin)과 리퀴리티제닌(liquiritigenin)으로부터 아이소플라본 합성효소(isoflavone synthase)의 작용을 받아 아이소플라본인 제니스타 인(genistein)과 다이드제인(daidzein)이 각각 생성된다(Yu et al., Plant Physiology 124:781-793, 2000). 아이소플라본 합성효소의 작용은 두 단계로 일어나는데, 2S-플라논(2S-flavanone)이 아이소플라본 합성효소의 작용을 받아 2-히드록시아이소플라바논(2-hydroxyisoflavanone)이 되고 이어서 자발적이거나 또는 식물체내의 특정한 탈수화효소(dehydratase)에 의해 아이소플라본(isoflavone)이 만들어지게 된다(Yu et al., Plant Physiology 124:781-793, 2000).Isoflavones are produced from the phenylpropanoid pathway, where most of the plant's secondary metabolites are made, and from the intermediate substrates of the phenylpropanoid pathway, naringenin and liquiritigenin. Under the action of isoflavone synthase, isoflavones genistein and daidzein are produced respectively (Yu et al., Plant Physiology 124: 781-793, 2000). Isoflavone action of ileonaneunde synthase is a two-step process, non-2S- Plastic bar (2S-flavanone) are isometric receive the action of the flavone synthase 2-hydroxy-iso-flavanone (2-hydroxyisoflavanone) is then either voluntarily or plant Isoflavones are produced by specific dehydratases in the body (Yu et al., Plant Physiology 124: 781-793, 2000).

본 발명자들은 프로모터 및 이와 작동가능하게 연결된 IFS2 유전자를 암호화하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 이용하여 상기 효소들을 발현시킴으로서 벼에서 아이소플라본을 합성할 수 있도록 하였다. The inventors have expressed the enzymes using recombinant vectors comprising a promoter and a polynucleotide encoding the IFS2 gene operably linked thereto, thereby making it possible to synthesize isoflavones in rice.

본 발명의 재조합 벡터는 공지의 식물 형질전환용 벡터를 기본 벡터로 하여 제조될 수 있으며, 일반적인 이원 벡터(binary vector) 또는 코인테그레이션 벡터(cointegration vector)가 사용될 수 있다. 식물 형질전환시 널리 사용되는 바이너리 벡터의 종류는 매우 다양하며, 거의 모든 바이너리 벡터가 CAMBIA(Center for the Application of Molecular Biology to International Agriculture, GPO Box 3200, Canberra ACT2601, Australia)와 같은 국제센터 및 대학연구소에서 입수가능하며, 기본적인 바이너리 벡터의 골격은 Ti 플라스미드를 모체로 하여 유전자가 전달되는 좌측 및 우측경계 부위에 형질전환체 선별 표지 유전자, 프로모터, 전사종결부위 유전자 등을 다양하게 변형시켜 사용할 수 있다.The recombinant vector of the present invention can be prepared using a known plant transformation vector as a base vector, and a general binary vector or a cointegration vector can be used. A wide variety of binary vectors are widely used in plant transformation, and almost all binary vectors are international centers and university research institutes, such as the Center for the Application of Molecular Biology to International Agriculture, GPO Box 3200, Canberra ACT2601, Australia (CAMBIA). The basic binary vector skeleton can be used by variously modifying a transformant selection marker gene, a promoter, a transcription termination gene, and the like at the left and right boundary sites where the gene is delivered using the Ti plasmid as a parent.

본 발명에 따른 벡터는 식물 형질전환용 벡터이므로, 당업계에 알려진 다양한 식물체-기능적 프로모터가 사용될 수 있으며, 상기 서열번호 3의 폴리뉴클레오티드의 발현을 위해서 상기 폴리뉴클레오티드는 프로모터와 작동가능하게 연결된다. 상기 ‘프로모터’란 특정한 숙주 세포에서 작동 가능하게 연결된 핵산 서열의 발현을 조절하는 DNA 서열을 의미하며, ‘작동 가능하게 연결된다(operably linked)’는 것은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 말한다. 아울러, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 추가로 포함할 수 있다. Since the vector according to the present invention is a plant transformation vector, various plant-functional promoters known in the art may be used, and for the expression of the polynucleotide of SEQ ID NO: 3, the polynucleotide is operably linked with the promoter. The term 'promoter' refers to a DNA sequence that regulates the expression of a nucleic acid sequence operably linked in a particular host cell. 'Operably linked' means that one nucleic acid fragment is combined with another nucleic acid fragment. Its function or expression is affected by other nucleic acid fragments. In addition, it may further comprise any operator sequence for regulating transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation.

상기 프로모터로는 벼 종자에서 발현되는 것으로 알려진 시토크롬 c 유전자 유래 OsCc1 프로모터, 벼 배유특이발현 글로블린(globulin, Glb) 프로모터, 칼리플라워 모자이크 바이러스 (CaMV) 35S 프로모터, 피그워트 모자이크 바이러스 35S 프로모터, 슈가케인 바실리폼 바이러스 프로모터, 코메리나 옐로우 모틀 바이러스 프로모터, 리불로스-1,5-비스-포스페이트 카르복실라아제의 소단위(ssRUBISCO)로부터의 빛-유도성 프로모터, 쌀 사이토졸릭 트리오세포스페이트 이소머라아제(TPI) 프로모터, 아라비돕시스(Arabidopsis)로부터의 아데닌 포스포리보실트랜스퍼라아제 (APRT) 프로모터, 쌀 액틴 1 유전자 프로모터 및 만노핀 신타아제 및 옥토핀 신타아제 프로모터를 포함하며, 바람직하게는 시토크롬 c 유전자 유래 OsCc1 프로모터(Jang et al., Plant Physiol. 129: 1473-1481, 2002), 벼 배유특이발현 글로블 린(globulin, Glb) 프로모터(Qu & Takaiwa, Plant Biotech. J. 2: 113-125)이다.The promoters include the cytochrome c gene-derived OsCc1 promoter, rice globulin (Glb) promoter, cauliflower mosaic virus (CaMV) 35S promoter, pigwarm mosaic virus 35S promoter, and sugarcane basil that are known to be expressed in rice seeds. Reform Virus Promoter, Comerina Yellow Mottle Virus Promoter, Light-Induced Promoter from Subunit of Ribulose-1,5-bis-phosphate Carboxylase, ssRUBISCO, Rice Cytozolic Triophosphate Isomerase (TPI) Promoter, adenine phosphoribosyltransferase (APRT) promoter from Arabidopsis, a rice actin 1 gene promoter and a mannopin synthase and octopin synthase promoter, preferably an OsCc1 promoter derived from cytochrome c gene ( Jang et al., Plant Physiol. 129: 1473-1481, 2002) It is: (113-125 Qu & Takaiwa, Plant Biotech J. 2.) Type specific expression glow Evelyn (globulin, Glb) promoter.

또한, 상기 선별 표지 유전자는 항생제 저항성 유전자, 제초제 저항성 유전자, 대사관련 유전자, 발광 유전자, GFP(green fluorescence protein) 유전자, GUS(β-glucuronidase) 유전자, GAL(β-galactosidase) 유전자 등을 포함하지만 그것에 한정되는 것은 아니다. 구체적으로 제초제 저항성 bar 유전자, 네오마이신 포스포트랜스퍼라제 Ⅱ(NPT Ⅱ) 유전자, 하이그로마이신 포스포트랜스퍼라제 유전자, 포스피노트리신 아세틸트랜스퍼라제 유전자, 클로람페니콜 아세틸트랜스퍼라제 또는 다이하이드로폴레이트 환원효소 유전자 등이 사용될 수 있지만, 제초제 저항성 bar 유전자가 바람직하다. In addition, the selection marker genes include antibiotic resistance genes, herbicide resistance genes, metabolic genes, luminescent genes, GFP (green fluorescence protein) genes, GUS (β-glucuronidase) genes, GAL (β-galactosidase) genes, etc. It is not limited. Specifically herbicide resistant bar Gene, neomycin phosphotransferase II (NPT II) gene, hygromycin phosphotransferase gene, phosphinothricin acetyltransferase gene, chloramphenicol acetyltransferase or dihydrofolate reductase gene, etc. Herbicide resistant bar genes are preferred.

바람직하게는, 본 발명의 식물 형질전환용 벡터는 도 1에 개시된 개열지도를 가지는 벡터, 즉, pMJ-GB-IFS2 또는 pMJC-GGB-IFS2 벡터일 수 있다. 상기 벡터는 pSB11 벡터(Genbank Accession No. AB027256)를 기본 백본(backbone)으로 하여 시토크롬 c 유전자 유래 OsCc1 프로모터 또는 벼 배유특이발현 글로블린(globulin, Glb) 프로모터 및 감자 프로테아제 인히비터(protease inhibitor II, PinII)의 터미네이터 사이에 attB1서열; 서열번호 3의 IFS2 유전자; 및 attB2 서열이 순차적으로 연결된 구조물을 포함한다. Preferably, the vector for plant transformation of the present invention may be a vector having a cleavage map disclosed in FIG. 1, ie, a pMJ-GB- IFS2 or a pMJC-GGB- IFS2 vector. The vector is a pSB11 vector (Genbank Accession No. AB027256) as a backbone of the cytochrome c gene-derived OsCc1 promoter or rice endosperm globulin ( Glb ) promoter and potato protease inhibitor (Protease inhibitor II, PinII ) AttB1 sequence between terminators of; The IFS2 gene of SEQ ID NO: 3; And attB2 sequences in sequence.

상기의 당 분야에 공지된 분자생물학적 기법인 표준 재조합 DNA 및 분자 클로닝 기술은 다음 문헌에 기재되어 있다(Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1989; by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1984; and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience, 1987).Standard recombinant DNA and molecular cloning techniques, molecular biology techniques known in the art, are described in Sambrook, J., Fritsch, EF and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed. , Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1989; by Silhavy, TJ, Bennan, ML and Enquist, LW, Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1984; and by Ausubel, FM et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience, 1987).

한편, 본 발명의 일 실시예에서는 본 발명의 재조합 벡터를 아그로박테리움 아그로박테리움 투메파시언스 LBA4404에 형질전환시킨 다음 상기 형질전환된 아그로박테리움에 의해 식물 세포 내로 본 발명의 유전자가 도입되도록 하였다.Meanwhile, in one embodiment of the present invention, the recombinant vector of the present invention is transformed into Agrobacterium agrobacterium tumefaciens LBA4404 , and then the gene of the present invention is introduced into plant cells by the transformed Agrobacterium. It was.

따라서, 본 발명은 본 발명의 재조합 벡터로 형질전환된 세포를 제공한다. 형질전환된 세포로는 아그로박테리움속 미생물(Agrobacterium spp.), 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵 숙주 세포, 진균(예를 들어, 아스퍼질러스(Aspergillus)), 효모(예를 들어, 피키아 패스토리스(Pichia pastoris), 사카로마이세스 세르비지애(Saccharomyces cerevisiae), 쉬조사카로마 세스(Schizosaccharomyces), 뉴로스포라 크라사(Neurospora crassa) 등과 같은 하등 진핵세포, 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래의 세포일 수 있으나 이에 제한되지는 않으며, 바람직하게는 아그로박테리움 투메파시엔스 (Agrobacterium tumefacience) 또는 아그로박테리움 라이조게네스(Agrobacterium rhizogenes) 일 수 있다.Thus, the present invention provides cells transformed with the recombinant vector of the present invention. The transformed cells include Agrobacterium spp. And Escherichia. coli), Bacillus subtilis (Bacillus subtilis), Streptomyces (Streptomyces), Pseudomonas (Pseudomonas), Proteus Mira Billy's (Proteus prokaryotic host cells such as mirabilis ) or Staphylococcus , fungi (eg Aspergillus ), yeast (eg Pichia Pastries ( Pichia pastoris), saccharide as MY processes Sergio non jiae (Saccharomyces cerevisiae), investigating car break in Rome Seth (Schizosaccharomyces), Castello La Neuro Chrysler Corporation (Neurospora It may be a cell derived from higher eukaryotes, including lower eukaryotic cells such as crassa ), insect cells, plant cells, mammals, etc., but is not limited thereto, and preferably Agrobacterium tumefaciens ( Agrobacterium) tumefacience ) or Agrobacterium lyzogenes rhizogenes ).

본 발명은 또한, 상기 벡터가 도입되고, 아이소플라본을 합성하는 형질전환 식물 세포를 제공한다. The present invention also provides a transgenic plant cell into which the vector is introduced and synthesizes isoflavones.

형질전환 식물 세포의 제조는 벡터를 식물에 도입하는 당분야에 공지된 형질전환 방법을 사용할 수 있다. 예를 들면, 이에 한정되지는 않으나 아그로박테리움 속(Agrobacterium spp.) 미생물을 이용한 형질전환, 입자 총 충격법 (particle gun bombardment), 실리콘 탄화물 위스커(Silicon carbide whiskers), 초음파 처리(sonication), 전기천공법(electroporation) 및 PEG(Polyethylenglyco l)에 의한 침전법을 사용할 수 있다. 바람직하게는, 아그로박테리움-매개 형질전환법을 이용할 수 있으며, 문헌에 예시된 방법을 사용할 수 있다(Horsch et al., Science 227:1229-1231, 1985). 예를 들면 벼에 대한 아그로박테리움-매개 형질전환법은 당업계의 문헌 등에 공지되어 있다(An et al., EMBO J., 4:227-288,1985).The preparation of the transformed plant cells may use transformation methods known in the art for introducing vectors into plants. For example, but not limited to, Agrobacterium spp.) Microbial transformation, particle gun bombardment, Silicon carbide whiskers, sonication, electroporation and precipitation by PEG (Polyethylenglycol) Can be used. Preferably, Agrobacterium-mediated transformation can be used, and the methods exemplified in the literature can be used (Horsch et al., Science 227: 1229-1231, 1985). For example, Agrobacterium-mediated transformation methods for rice are known in the art and the like (An et al., EMBO J., 4: 227-288,1985).

상기 식물세포는 통상적인 방법에 따라 배양되어 액체 배양물, 캘러스, 원형 질 배양물이 될 수 있으며, 분화되어 식물의 조직 또는 식물이 될 수 있다. 즉, 본 발명의 재조합 벡터가 도입된 형질전환 세포들은 당업계에 공지된 표준 기술을 사용하여 캘러스 유도, 발근 및 토양 순화와 같은 과정을 거쳐 식물체로 재분화시킬 수 있으며, 꺾꽂이, 접붙이기 등과 같은 무성번식방법 및 종자를 이용하여 유성번식방법에 의해 생산할 수 있다.The plant cells may be cultured according to a conventional method to be liquid cultures, callus, plasma cultures, and may be differentiated to be plant tissues or plants. That is, the transformed cells into which the recombinant vector of the present invention is introduced can be re-differentiated into plants through processes such as callus induction, rooting, and soil purification using standard techniques known in the art, and asexual, such as folding and grafting. It can be produced by the planetary breeding method using the breeding method and the seed.

식물세포의 배양은 식물의 일부를 모체로부터 분리하여 적당한 조건 아래에서 무균적으로 배양하여 생육시키는 것으로 조직 절편의 액체 배양, 조직 절편의 캘러스 배양, 원형질체 배양 등 당업자에게 공지된 어떠한 방식의 것에 의할 수 있으며, 그 배양 조건 및 방법은 당업자에게 공지된 조건 및 방법에 의해 수행될 수 있다. Cultivation of plant cells may be carried out by any method known to those skilled in the art, such as separating a part of a plant from a mother and cultivating it aseptically under suitable conditions, such as liquid culture of tissue sections, callus culture of tissue sections, and protoplast culture. The culture conditions and methods may be carried out by conditions and methods known to those skilled in the art.

상기 배양된 식물세포를 식물로 분화시키는 것은 캘러스, 원형질체 형태의 배양된 식물세포를 적당한 조건아래에서 분화를 유도하여 식물의 조직 또는 식물로 분화시키는 것으로 그 분화 조건 및 방법은 당업자에게 공지된 조건 및 방법에 의해 수행될 수 있다. Differentiating the cultured plant cells into plants is to induce differentiation of cultured plant cells of callus, protoplast form under appropriate conditions to differentiate into plant tissues or plants. It may be carried out by the method.

따라서, 본 발명은 또한, 상기 벡터가 도입되고, 아이소플라본을 합성하는 형질전환 식물을 제공한다. Accordingly, the present invention also provides a transgenic plant into which the vector is introduced and synthesizes isoflavones.

이 때, 상기에서 식물이란 전체 식물(whole plant), 식물의 일부분, 캘러스, 식물 조직, 식물 세포 및 식물 종자를 모두 포함한다. 상기 본 발명에 따른 방법이 적용될 수 있는 식물체로는 단자엽 식물 또는 쌍자엽 식물이 포함된다. 상기 단자엽 식물의 예로는 이에 한정되지는 않으나, 벼, 밀, 보리, 죽순, 옥수수, 토란, 아스파라거스, 양파, 마늘, 파, 부추, 달래, 마 및 생강이 있다. 쌍자엽 식물의 예로는 이에 한정되지는 않으나, 애기장대, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 버즈풋 트레포일, 감자, 개구리밥, 들깨, 비둘기콩 및 완두가 있다.At this time, the plant as used herein includes the whole plant (whole plant), a part of the plant, callus, plant tissue, plant cells and plant seeds. Plants to which the method according to the present invention may be applied include monocotyledonous plants or dicotyledonous plants. Examples of the monocotyledonous plant include, but are not limited to, rice, wheat, barley, bamboo shoots, corn, taro, asparagus, onions, garlic, leeks, leeks, soothing, hemp and ginger. Examples of dicotyledonous plants include, but are not limited to, baby pole, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, beetroot, sweet potato, celery, carrot, buttercup, parsley, cabbage, cabbage, mustard, There are watermelons, melons, cucumbers, pumpkins, gourds, strawberries, soybeans, green beans, kidney beans, buzzfoot trefoils, potatoes, duckweed, perilla, pigeon beans, and peas.

본 발명의 일 실시예에서는 본 발명에 사용된 IFS1IFS2 유전자의 게놈 DNA를 분리하기 위해 아이소플라본 함량이 높은 것으로 알려진 신팔달콩 2호의 잎으로부터 게놈 DNA를 분리하고, PCR 방법에 의해 IFS1IFS2 유전자를 클로닝하였다.In exemplary embodiments, in order to remove the genomic DNA of the IFS1 and IFS2 gene used in this invention to remove the genomic DNA from sinpal dalkong second arc leaves are known to a high isoflavone content and, IFS1 and IFS2 gene by the PCR method of the present invention Was cloned.

본 발명의 다른 실시예에서는 클로닝된 IFS1IFS2 유전자를 pSB11 벡터에 도입하여 본 발명의 pMJC-GB-IFS1, pMJC-GB-IFS2, pMJC-GGB-IFS1 및 pMJC-GGB-IFS2를 제조하고, 이를 아그로박테리움 LBA4404 균주에 도입하였다.In another embodiment of the present invention, the cloned IFS1 and IFS2 genes are introduced into the pSB11 vector, thereby providing pMJC-GB- IFS1, pMJC-GB- IFS2 , pMJC-GGB- IFS1. And pMJC-GGB- IFS2 were prepared and introduced into the Agrobacterium LBA4404 strain.

본 발명의 또 다른 실시예에서는 상기 형질전환된 아그로박테리움 균주를 이 용하여 벼를 형질전환하여 아이소플라본을 합성하는 형질전환 벼를 제조하였다.In another embodiment of the present invention using the transformed Agrobacterium strain was transformed rice to prepare a transformed rice to synthesize isoflavones.

본 발명의 또 다른 실시예에서는 본 발명의 형질전환 벼에서 유전자 도입 여부, 발현 여부 및 아이소플라본의 합성 여부를 확인하였다. 그 결과 형질전환 벼 모두에서 각각 IFS1IFS2 유전자가 도입되어 발현되고 있음을 알 수 있었으며, 유전자 발현을 위해 OsCc1 프로모터를 사용한 형질전환 벼에서는 아이소플라본의 일종인 제니스타인의 합성이 없었으나, Glb 프로모터를 사용한 형질전환 벼에서는 그 정도의 차이는 있으나 제니스타인의 합성이 잘 이루어짐을 알 수 있었다. 특히, 형질전환된 개체에 따라 아이소플라본의 함량은 다소 차이가 있었으나, IFS2 유전자로 형질전환된 벼가 IFS1 유전자로 형질전환된 벼에 비해 합성되는 아이소플라본의 양이 더 많다는 것을 알 수 있었다. 이는 IFS2 유전자에 의해 발현되는 IFS2의 활성이 더 강하기 때문으로 생각된다. In another embodiment of the present invention it was confirmed whether the gene introduced in the transformed rice of the present invention, whether expression and synthesis of isoflavones. As a result, it was found that IFS1 and IFS2 genes were introduced and expressed in all of the transgenic rice, and in the transgenic rice using OsCc1 promoter for gene expression, there was no synthesis of Zenithine , a kind of isoflavone, but Glb promoter In the transgenic rice using the degree of difference, but the synthesis of Zenithine was found to be well made. In particular, the content of isoflavones was slightly different depending on the individual transformed, but IFS2 Genetically Modified Rice IFS1 It was found that the amount of isoflavones synthesized was higher than that of rice transformed with the gene. This is IFS2 It is considered that the activity of IFS2 expressed by the gene is stronger.

따라서, 본 발명은 아이소플라본 합성용 재조합 벡터를 제공한다. 본 발명의 재조합 벡터는 아이소플라본을 합성하지 않는 벼 등에서 아이소플라본 합성효소를 안정적으로 발현시킴으로써 아이소플라본의 합성을 가능하게 하여 종래의 형질전환체 보다 고농도의 아이소플라본을 함유하는 형질전환체를 제조할 수 있도록 한다.Accordingly, the present invention provides a recombinant vector for isoflavone synthesis. The recombinant vector of the present invention enables the synthesis of isoflavones by stably expressing isoflavone synthase in rice that does not synthesize isoflavones, thereby producing a transformant containing a higher concentration of isoflavones than a conventional transformant. To help.

이하. 본 발명을 실시예에 의해 상세히 설명한다.Below. The present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

<< 실시예Example 1>  1>

IFS1IFS1 and IFS2IFS2 유전자의  Gene 클로닝Cloning

본 발명에 사용된 IFS1IFS2 유전자의 게놈 DNA를 분리하기 위해 아이소플라본 함량이 높은 것으로 알려진 신팔달콩 2호의 잎으로부터 게놈 DNA를 CTAB 방법(Rogers & Benich, In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1-8, 1994)에 따라 분리하였다. 분리된 게놈 DNA 10 ng을 주형으로 하고, 각 프라이머 25 pM 및 최종 부피 50 μl의 PCR 반응액(1X f-Taq 완충액 (Solgent, Korea), 각 dNTP 50 μM, 1X 밴드 닥터 (Solgent, Korea), f-Taq DNA 폴리머라아제 1.5 유닛 (Solgent, Korea) 및 잔량의 이차증류수)을 이용하여 PCR을 수행하였다. 이 때, IFS1을 클로닝하기 위한 프라이머로는 서열번호 5(IFS1FOR: 5'-GTAATTAACCTCACTCAAACTCGG-3') 및 서열번호 6(IFS2 REV: 5'-GCAAACGAAGACAAATGGGAGATGATA-3')의 조합을 이용하였으며, IFS2 유전자를 클로닝하기 위한 프라이머로는 서열번호 7(IFS2FOR: AAAATT AGCCTCACAAAAGCAAAG-3') 및 서열번호 8(IFS2REV: 5'-GCAAACGAAGAC AAATGGGAGATGATA-3')의 조합을 이용하였다. PCR 조건은 94℃ 4분; 94℃ 15초, 55℃ 30초, 72℃ 60초의 30 싸이클(cycle); 및 72℃ 7분의 조건으로 수행하였다. In order to isolate genomic DNAs of IFS1 and IFS2 genes used in the present invention, genomic DNA was extracted from leaves of Sinpalludo No. 2 known to have high isoflavone content (Rogers & Benich, In: Gelvin SB, Schilperoort RA, Verma DPS ( eds) Plant Molecular Biology Manual.Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1-8, 1994). Using 10 ng of isolated genomic DNA as a template, 25 pM of each primer and 50 μl of final volume of PCR reaction solution (1 × f-Taq buffer (Solgent, Korea), 50 μM of each dNTP, 1 × band doctor (Solgent, Korea), PCR was performed using f-Taq DNA polymerase 1.5 units (Solgent, Korea) and residual secondary distilled water). At this time, as a primer for cloning IFS1 , a combination of SEQ ID NO: 5 (IFS1FOR: 5'-GTAATTAACCTCACTCAAACTCGG-3 ') and SEQ ID NO: 6 (IFS2 REV: 5'-GCAAACGAAGACAAATGGGAGATGATA-3') was used, and the IFS2 gene was used. As a primer for cloning, a combination of SEQ ID NO: 7 (IFS2FOR: AAAATT AGCCTCACAAAAGCAAAG-3 ') and SEQ ID NO: 8 (IFS2REV: 5'-GCAAACGAAGAC AAATGGGAGATGATA-3') was used. PCR conditions were 94 ° C. 4 minutes; 30 cycles of 94 ° C. 15 seconds, 55 ° C. 30 seconds, 72 ° C. 60 seconds; And 72 ° C. for 7 minutes.

증폭된 PCR 산물은 EtBr(ethidium bromide)이 첨가된 0.8% 아가로오스 겔(agarose gel)에서 전기영동한 다음 젤에서 회수하여 pGEM-T easy vector(Promega, USA)에 클로닝하여 염기서열을 분석하였다. The amplified PCR product was subjected to electrophoresis on 0.8% agarose gel to which EtBr (ethidium bromide) was added, and then recovered from the gel and cloned into pGEM-T easy vector (Promega, USA) for sequencing. .

그 결과, 서열번호 1의 염기서열 및 서열번호 2의 아미노산 서열을 가지고 있는 IFS1 유전자 및 서열번호 3의 염기서열 및 서열번호 4의 아미노산 서열을 가지고 있는 IFS2 유전자를 얻을 수 있었다. As a result, an IFS1 gene having a nucleotide sequence of SEQ ID NO: 1 and an amino acid sequence of SEQ ID NO: 2 and an IFS2 gene having a nucleotide sequence of SEQ ID NO: 3 and an amino acid sequence of SEQ ID NO: 4 were obtained.

클로닝된 IFS1 유전자와 IFS2 유전자를 기존에 NCBI에 등록된 서열과 비교 분석한 결과, 본 발명에서 클로닝한 IFS1 유전자의 염기서열과 아미노산 서열은 기존에 NCBI에 등록된 것(Nucleotide NCBI Accession No.: AF195798; Amino acid NCBI Accession No.: AAF45142)과 차이가 없었고, IFS2 유전자의 염기서열과 아미노산 서열은 기존에 NCBI에 등록된 것(Nucleotide NCBI Accession No.: AF195819; Amino acid NCBI Accession No.: AAF45143)과 각각 98.7% 및 98.1%의 상동성을 보였다. As a result of comparing and analyzing the cloned IFS1 gene and IFS2 gene with the sequence previously registered in NCBI, the nucleotide sequence and amino acid sequence of the cloned IFS1 gene in the present invention was previously registered in NCBI (Nucleotide NCBI Accession No .: AF195798 Amino acid NCBI Accession No .: AAF45142), and the nucleotide sequence and amino acid sequence of the IFS2 gene were previously registered in NCBI (Nucleotide NCBI Accession No .: AF195819; Amino acid NCBI Accession No .: AAF45143). The homology was 98.7% and 98.1%, respectively.

<< 실시예Example 2> 2>

형질전환을 위한 운반체의 제작 및 아그로박테리움에의 도입Construction of Carrier for Transformation and Introduction to Agrobacterium

본 발명을 위해 사용된 인트론을 포함하는 IFS1IFS2 유전자는 게이트웨이 시스템(Gateway system; Invitrogen, USA)을 이용하여 pSB11 벡터(Komari et al., Plant J. 10: 165-174, 1996)에 도입하였다. IFS1IFS2 유전자의 발현을 위해서 벼에서 분리한 종자 특이 발현 Glb 프로모터와 벼 종자에서 발현되는 것으로 알려진 cytochrome c 유전자 유래 OsCc1 프로모터가 사용되었다. IFS1 and IFS2 genes, including the introns used for the present invention, were constructed using pSB11 vectors (Komari et al. ) Using a gateway system (Invitrogen, USA). al ., Plant J. 10: 165-174, 1996). IFS1 and IFS2 For gene expression, seed-specific Glb promoters isolated from rice and OsCc1 promoters derived from cytochrome c genes known to be expressed in rice seeds were used.

유전자의 도입이 확인된 형질전환용 운반체는 OsCc1 프로모터 조절하의 것은 pMJC-GB-IFS1과 pMJC-GB-IFS2로, Glb 프로모터 조절하의 것은 pMJC-GGB-IFS1과 pMJC-GGB-IFS2로 명명하였다. 형질전환된 캘러스 및 식물체의 선발을 위해서는 CaMV 35S 프로모터에 의해 제어되는 bar (Bialaphos resistance) 유전자를 이용하였으며, 양쪽 보더(border) 안쪽으로 MAR (Matrix attachment region)를 추가하여 유전자의 안정적인 발현을 유도하였다. 상기 재조합된 식물 형질전환 운반체의 주요 유전자 배열은 도 1에 나타내었다. Transfection vehicle for switching the introduction of the genes identified are not under control by the promoter OsCc1 pMJC-GB- and IFS1 pMJC-GB- IFS2, it is under the control Glb promoter was named pMJC-GGB- IFS1 and pMJC-GGB- IFS2. Bar controlled by the CaMV 35S promoter for selection of transformed callus and plants (Bialaphos resistance) gene was used, and a matrix attachment region (MAR) was added inside both borders to induce stable expression of the gene. The major gene sequence of the recombinant plant transformation carrier is shown in FIG. 1.

제작된 형질전환용 바이너리 벡터들은 3계 교잡법(tri-parental mating)에 의해 아그로박테리움 LBA4404 균주에 도입하였으며, 재조합된 플라스미드가 포함된 아그로박테리움의 선발을 위해서 2종의 항생제인 스펙티노마이신(spectinomycin)과 테트라사이클린(tetracycline)을 사용하였다. 아그로박테리움 내로의 형질전환 여 부는 콜로니 PCR 방법으로 확인하였다. PCR 반응은 1X f-Taq 완충액(Solgent, Daejeon, Korea), 각 dNTP 50 μM, 1X 밴드 닥터(Solgent, Daejeon, Korea), f-Taq DNA 폴리머라아제 1.5 유닛(Solgent, Daejeon, Korea) 및 각 프라이머 25 pM을 첨가하고 멸균수로 최종 부피를 25 μl로 맞춘 PCR 반응액에 각각의 운반체가 형질전환된 콜로니의 일부를 팁으로 찍어 첨가하였다. PCR은 94℃ 4분; 94℃ 15초, 55℃ 30초, 72℃ 60초의 30 싸이클; 및 72℃ 7분의 조건으로 수행하였다. 증폭된 산물은 0.8% 아가로오스 겔(agarose gel)에서 전기영동하여 확인하였다.The transformed binary vectors were introduced into the Agrobacterium LBA4404 strain by tri-parental mating, and two antibiotics, spectinomycin, were selected for selection of Agrobacterium containing the recombinant plasmid. (spectinomycin) and tetracycline (tetracycline) were used. Transformation into Agrobacterium was confirmed by colony PCR. PCR reactions were performed with 1X f-Taq buffer (Solgent, Daejeon, Korea), 50 μM of each dNTP, 1X band doctor (Solgent, Daejeon, Korea), 1.5 units of f-Taq DNA polymerase (Solgent, Daejeon, Korea) and each 25 pM of primer was added and a portion of the colonies transformed with each carrier was added to the PCR reaction solution in which the final volume was adjusted to 25 μl with sterile water. PCR 94 min 4 min; 30 cycles of 94 ° C 15 seconds, 55 ° C 30 seconds, 72 ° C 60 seconds; And 72 ° C. for 7 minutes. The amplified product was confirmed by electrophoresis on 0.8% agarose gel.

그 결과, 도 2에서 보듯이, 선발된 10개의 콜로니(1 내지 10) 모두에서 사용한 프라이머의 기대 크기인 약 1.7 kb 위치에서 밴드를 나타내어 IFS1IFS2 유전자가 아그로박테리움에 안정적으로 형질전환된 것으로 확인되었다. 이러한 형질전환 아그로박테리움을 증식 후 벼의 형질전환에 이용하였다.As a result, as shown in FIG. 2, the bands were displayed at about 1.7 kb positions, which is the expected size of the primers used in all 10 selected colonies (1 to 10), indicating that the IFS1 and IFS2 genes were stably transformed into Agrobacterium. Confirmed. This transformed Agrobacterium was used for the transformation of rice after propagation.

<< 실시예Example 3> 3>

아이소플라본을Isoflavones 합성하는 형질전환 벼의 제조 Preparation of Transgenic Rice to Synthesize

<3-1> <3-1> 캘러스Callus 유도 및 선발 Judo and starters

공시품종으로는 일반미인 낙동벼와 유색미인 흑남벼를 사용하였다. 먼저, 종자 껍질을 제거한 현미를 70% 에탄올에 5분간 세척한 다음 50% 락스 용액으로 상온에서 15분씩 2회 정도 소독한 후 멸균수로 10회 이상 세척하여 멸균처리하였다. 멸 균된 종자는 2,4-D 2 mg/L가 포함된 2N6 배지(표 1 참조)에 약 15 내지 20개(90 × 20㎝ petridish)를 배 부분이 위로 향하게 치상한 다음 27℃ 암실에서 3-4주간 배양하여 캘러스를 유도하였다(도 3의 A). 유도된 캘러스 중에서 1-2 ㎜의 일정한 둥근 모양의 갈변화가 안된 양호한 상태의 캘러스를 선발하여 2N6 배지에서 3일간 증식시킨 다음 형질전환에 사용하였다.The varieties used were Nakdong rice, a beautiful rice, and Black Namb rice, a colored rice. First, the brown rice with the seed shells removed was washed for 5 minutes in 70% ethanol and then sterilized twice at room temperature for 15 minutes with 50% lacx solution and then sterilized by washing at least 10 times with sterile water. The sterilized seeds were inoculated with about 15 to 20 (90 × 20 cm petridish) in 2N6 medium containing 2,4-D 2 mg / L (see Table 1) with the belly up, followed by 3 Callus was induced by incubation for −4 weeks (FIG. 3A). Among the callus induced callus was selected in a good condition without the change of a constant round shape of 1-2 mm was grown in 2N6 medium for 3 days and used for transformation.

<3-2> 아그로박테리움의 배양 및 현탁액 준비<3-2> Agrobacterium culture and suspension preparation

4종의 재조합 플라스미드가 형질전환된 각각의 아그로박테리움을 AB-ST배지(표 1 참조)에 조밀하게 스트리킹(streaking)하여 28℃ 암조건에서 4 내지 5일간을 배양하였다. 배양이 끝난 아그로박테리움을 페트리접시(petri dish) 당 15 내지 20 ㎖ AAM 배지(표 1 참조)를 분주한 후 멸균된 루프를 이용하여 긁어내고 팰콘 튜브(falcon tube)로 옮겨 담았다. 그 다음 아그로박테리움이 잘 현탁될 수 있도록 수초 동안 볼텍싱(vortaxing)하였으며, 최종 접종 농도는 OD650㎚에서 1.5 내지 2.0이 되도록 하였다.Each Agrobacterium transformed with four recombinant plasmids was streaked streaked in AB-ST medium (see Table 1) and incubated for 4 to 5 days at 28 ° C dark conditions. The cultured Agrobacterium was dispensed with 15-20 ml AAM medium (see Table 1) per petri dish, scraped off using a sterile loop and transferred to a falcon tube. It was then vortaxed for several seconds so that Agrobacterium could be well suspended, and the final inoculation concentration was 1.5-2.0 at OD650 nm.

<3-3> 아그로박테리움 접종<3-3> Agrobacterium inoculation

3일간 증식된 캘러스를 빈 페트리 접시에 옮긴 후 15 내지 20 ml의 아그로박테리움 현탁액을 부어 약 20 내지 30분간 접종하였다. 접종 후에 멸균된 여과지가 들어있는 페트리 접시에 캘러스를 옮겨 남아 있는 아그로박테리움 현탁액을 제거한 후 공동배양배지에 치상하였다.Callus grown for 3 days was transferred to an empty Petri dish, and then inoculated with about 20 to 30 minutes by pouring 15-20 ml of Agrobacterium suspension. After inoculation, the callus was transferred to a petri dish containing sterilized filter paper to remove the remaining Agrobacterium suspension, which was then wound into a co-culture medium.

형질전환 단계별 배지 종류 및 조성Type and composition of medium for each stage of transformation 형질전환단계 Transformation stage 배 지Badge 조 성Furtherance 캘러스 유도
및 증식
Callus induction
And proliferation
2N62N6 N6 매크로(macro), 미세 염(micro salt), N6 비타민. 카사미노산(casamino acid) 300mg/L, 프롤린 500mg/L, 수크로오스 30g/L, 글루타민 500mg/L, 젤라이트 2.5g/L, 2.4-D 2mg/L, pH 5.8N6 macro, micro salts, N6 vitamins. Casamino acid 300mg / L, proline 500mg / L, sucrose 30g / L, glutamine 500mg / L, gelite 2.5g / L, 2.4-D 2mg / L, pH 5.8
아그로박테리움 배양Agrobacterium culture AB-STAB-ST AB 완충액, 염, 글루코오스 5g/L, 박토-아가(Bacto-agar) 15g/L, 스펙티노마이신(spectinomycine) 50mg/L, 테트라사이클린(tetracycline) 10mg/L, pH 7.0AB buffer, salt, glucose 5 g / L, Bacto-agar 15 g / L, spectinomycin 50 mg / L, tetratracycline 10 mg / L, pH 7.0 아그로박테리움 현탁 및 접종Agrobacterium Suspension and Inoculation AAMAAM AA 매크로, 미세 염, 아미노산 스탁(stock), MS 비타민, 철 스탁(stock), 카사미노산 500mg/L, 수크로오스 68.5g/L, 글루코오스 36g/L, 아세토시린곤(acetosyringone) 100uM/L, pH 5.8AA macro, micro salt, amino acid stock, MS vitamin, iron stock, casamino acid 500 mg / L, sucrose 68.5 g / L, glucose 36 g / L, acetosyringone 100 uM / L, pH 5.8 공동배양Co-culture 2N6-AS2N6-AS 2N6 배지, 아세토시린곤 100uM/L, 글루코오스 10g/L, 젤라이트 2.5g/L, 2.4-D 2mg/L, pH 5.22N6 medium, acetosyringone 100uM / L, glucose 10g / L, gelite 2.5g / L, 2.4-D 2mg / L, pH 5.2 1/2-2N6- AS-New1 / 2-2N6- AS-New 1/2-2N6 배지, 아세토시린곤 100uM/L, 글루코오스 10g/L, L-시스테인 10.5mg/L, 티오황산나트륨 1mM, 디티오트레이톨 1mM, 질산은 5mg/L, 젤라이트 3.0g/L, 2.4-D 2mg/L, pH 5.21 / 2-2N6 medium, acetosyringone 100uM / L, glucose 10g / L, L-cysteine 10.5mg / L, sodium thiosulfate 1mM, dithiothreitol 1mM, silver nitrate 5mg / L, gelite 3.0g / L, 2.4 -D 2 mg / L, pH 5.2 형질전환
캘러스 선발
Transformation
Callus starter
2N6-CP2N6-CP 2N6 배지, 세포탁심(cefotaxime) 250mg/L, L-포스피노트리신(L-phosphinotricine) 6mg/L, 젤라이트 2.5g/L, 2.4-D 2mg/L, pH 5.82N6 medium, 250 mg / L cefotaxime, 6 mg / L L-phosphinotricine, 2.5 g / L gelite, 2.4-D 2 mg / L, pH 5.8
재분화subdivision MSR-CPMSR-CP MS 매크로, 미세 염, MS 비타민, 세포탁심 250mg/L, NAA 1mg/L, 키네틴(Kinetine) 5mg/L, 소르비톨 30g/L, 말토오스 20g/L, L-포스피노트리신 3mg/L, 젤라이트 4g/L, pH 5.8MS macro, micro salts, MS vitamins, Cytotaxin 250 mg / L, NAA 1 mg / L, Kinetine 5 mg / L, Sorbitol 30 g / L, Maltose 20 g / L, L-phosphinothricin 3 mg / L, Zeolite 4 g / L, pH 5.8 뿌리 유도Root induction MS0MS0 MS 매크로 및 미세 염, MS 비타민, 수크로오스 30g/L, 젤라이트 2.5g/L, pH 5.8MS macro and micro salts, MS vitamin, sucrose 30 g / L, gelite 2.5 g / L, pH 5.8

캘러스 유도 및 식물체 재분화 배지의 성분 및 첨가량Components and Additions of Callus Induced and Plant Regeneration Media 캘러스 유도Callus induction 재분화subdivision N6(Chu) 배지N6 (Chu) Badge 첨가량Amount MS 배지MS badge 첨가량Amount N6 매크로 염
KNO3
(NH4)2SO4
KH2PO4
MgSO4
(또는 MgSO47H2O)
CaCl2
(또는 CaCl22H2O)
N6 macro salt
KNO 3
(NH 4 ) 2 SO 4
KH 2 PO 4
MgSO 4
(Or MgSO 4 7H 2 O)
CaCl 2
(Or CaCl 2 2H 2 O)

2.83g/l
463mg
400mg
90mg
(또는 185mg)
125.33mg
(또는 166mg)

2.83g / l
463 mg
400 mg
90 mg
(Or 185 mg)
125.33 mg
(Or 166 mg)
매크로 염
KNO3
NH4NO3
KH2PO4
MgSO4
CaCl2
Macro salt
KNO 3
NH 4 NO 3
KH 2 PO 4
MgSO 4
CaCl 2

1900 mg
1650 mg
170 mg
180.54 mg
332.02 mg

1900 mg
1650 mg
170 mg
180.54 mg
332.02 mg

(또는 FeNaEDTA)
iron
(Or FeNaEDTA)

36.70mg

36.70mg

FeNaEDTA
iron
FeNaEDTA

36.70 mg

36.70 mg
N6 미세 염
MnSO4H2O
ZnSO47H2O
H3BO3
KI

Na2MoO42H2
CuSO45H2O
CoCl2.6H2O
N6 Micro Salts
MnSO 4 H 2 O
ZnSO 4 7H 2 O
H 3 BO 3
KI

Na 2 MoO 4 2H 2
CuSO 4 5H 2 O
CoCl 2 .6H 2 O

3.3mg
1.5mg
1.6mg
0.8mg

-
-
-

3.3mg
1.5mg
1.6mg
0.8mg

-
-
-
미세 염
MnSO4H2O
ZnSO47H2O
H3BO3
KI

Na2MoO42H2
CuSO45H2O
(또는 CuSO4)
CoCl2.6H2O
Fine salt
MnSO 4 H 2 O
ZnSO 4 7H 2 O
H 3 BO 3
KI

Na 2 MoO 4 2H 2
CuSO 4 5H 2 O
(Or CuSO 4 )
CoCl 2 .6H 2 O

16.9 mg
8.6 mg
6.20mg
0.83mg

0.25 mg
0.025mg
또는 0.016mg
0.025mg

16.9 mg
8.6 mg
6.20mg
0.83 mg

0.25 mg
0.025mg
Or 0.016 mg
0.025mg
N6 비타민
니코틴산
티아민HCl
피리독신HCl
글리신
N6 Vitamins
Nicotinic acid
Thiamine HCl
Pyridoxine HCl
Glycine

0.5mg
0.1mg
0.5mg
2.0mg

0.5mg
0.1mg
0.5mg
2.0mg
비타민
니코틴산
티아민HCl
피리독신HCl
글리신
미오-이노시톨
vitamin
Nicotinic acid
Thiamine HCl
Pyridoxine HCl
Glycine
Myo-inositol

0.5mg
0.1mg
0.5mg
2.0mg
100mg

0.5mg
0.1mg
0.5mg
2.0mg
100mg

<3-4> 공동배양<3-4> Co-culture

공동배양에 사용한 배지는 목표 유전자의 식물 세포 내로의 도입을 향상시키고 형질전환된 세포의 생존율을 높이기 위하여 공동배양 배지조성 기본배지(2N6)의 함량을 1/2로 줄인 배지에 아그로박테리움과의 공동배양 과정에서 발생되는 식물 세포의 산화적 파괴를 최소화하기 위하여 3종의 항산화 화합물, 즉 L-시스테인 10.5 mg/L, 티오황산나트륨 1 mM, 디티오트레이톨 1 mM 등을 첨가하였으며, 아그로박테리움의 과도한 성장 및 에틸렌의 활성을 억제하기 위해 질산은 5 mg/L을 첨가하고, 질산은 첨가로 인하여 배지가 물러지는 현상을 방지하기 위해서 첨가되는 젤라이트의 양을 3.0 g/L로 높인 배지를 사용하였다.The medium used for the co-culture with Agrobacterium was reduced to 1/2 the content of the co-culture medium composition base medium (2N6) in order to improve the introduction of the target gene into the plant cells and increase the survival rate of the transformed cells. In order to minimize the oxidative destruction of plant cells generated during the coculture process, three antioxidant compounds, namely, 10.5 mg / L L-cysteine, 1 mM sodium thiosulfate, and 1 mM dithiothritol, were added. Agrobacterium To inhibit excessive growth and ethylene activity, 5 mg / L of silver nitrate was added, and a medium containing 3.0 g / L of the amount of added gelite was used to prevent the regression of the medium due to the addition of silver nitrate. .

접종된 캘러스는 공동배양 배지 위에 여과지(Watman #1) 1매를 덮고 그 위에다 둠으로써 접종된 세포의 안정성을 높였으며 공동배양 기간동안의 온도는 3℃ 정도의 차이로 변온 처리하였다. 공동배양 기간은 5일로 하였으며 이와 같은 방법 사용시 아그로박테리움의 과도한 성장으로 인한 피해는 관찰되지 않았다.Inoculated callus increased the stability of the inoculated cells by covering one sheet of filter paper (Watman # 1) on the co-culture medium and the temperature during the co-cultivation period was changed to about 3 ℃. The co-culture period was 5 days and no damage from overgrowth of Agrobacterium was observed with this method.

<3-5> 형질전환된 캘러스의 선발<3-5> Selection of Transformed Callus

공동배양 과정이 끝난 캘러스는 아그로박테리움을 제거하기 위해 세포탁심(cefotaxim) 250 mg/L이 포함된 용액으로 약 10회 이상 세척하였으며, 세척이 끝난 캘러스는 멸균된 여과지가 들어 있는 페트리 접시로 옮겨 담아 남아 있는 용액을 완전히 제거하였다. 이 과정을 마친 캘러스는 PPT(L-phosphinotricine, 6 mg/L)가 포함된 2N6-CP 배지(표 1 참조)에 옮겨 27℃ 암조건에서 3주 동안 배양하여 형질전환된 캘러스를 1차로 선발하였으며 선발된 캘러스는 동일 배지에 동일 조건으로 2주 동안 배양하여 2차 선발하였다 (도 3의 B). After the coculture process, callus was washed at least 10 times with a solution containing 250 mg / L of cefotaxim to remove Agrobacterium, and the washed callus was transferred to a Petri dish containing sterile filter paper. The remaining solution was completely removed. After this process, the callus was transferred to 2N6-CP medium containing PPT (L-phosphinotricine (6 mg / L) (see Table 1)) and cultured for 3 weeks at 27 ° C dark conditions to select transformed callus as the primary. The selected callus was secondarily selected by culturing for 2 weeks under the same conditions in the same medium (FIG. 3B).

<3-6> 형질전환된 캘러스로부터 재분화 식물체 유도<3-6> Induction of Regenerated Plants from Transformed Callus

선발된 캘러스는 PPT 3 mg/L, 세포탁심 250 mg/L, NAA(Naphthalene Acetic Acid) 1 mg/L, 키네틴 (Kinetine) 5 mg/L, 소르비톨 30g/L 및 말토오스 20g/L이 포함된 MSR-CP 배지 (표 1 참조)에 치상한 다음 25℃ 명조건에서 배양하여 형질전환식물체를 유도하였다(도 3의 C).Selected callus was 3 mg / L PPT, 250 mg / L Cytotaxin, 1 mg / L Naphthalene Acetic Acid (NAA), 5 mg / L Kinine (Kinetine), 30 g / L Sorbitol and 20 g / L Maltose Transgenic plants were induced by incubation in -CP medium (see Table 1) and then cultured in 25 ° C bright conditions (Fig. 3C).

<3-7> 뿌리 유도 및 순화<3-7> Root Induction and Purification

재분화식물체는 생장호르몬이 포함되지 않은 MS0 배지 (표 1 참조)에 옮겨 뿌리를 유도하였다. 뿌리가 유도된 식물체는 1000배 하이포닉스 수용액에 약 7 내지 10일간 침지하여 순화시켰으며 (도 3의 D), 순화된 식물체는 화분에 이식하고 온실에서 관리하였다 (도 3의 E 내지 도 3의 H).Replanted plants were transferred to MS0 medium without growth hormone (see Table 1) to induce roots. The root-derived plants were purified by immersion in a 1000-fold hypoxic aqueous solution for about 7 to 10 days (FIG. 3D), and the purified plants were transplanted into pots and managed in a greenhouse (FIG. 3E of FIG. 3). H).

<실시예 4><Example 4>

형질전환 벼의 유전자 도입 여부 및 발현량 분석Gene introduction and expression analysis of transgenic rice

<4-1> 형질전환체에 유전자의 도입 여부 확인<4-1> Confirmation of introduction of gene into transformant

형질전환체의 유전자 도입을 확인하기 위해 다음과 같이 PCR을 이용하여 DNA 수준에서의 유전자의 도입여부를 확인하였다. 각각의 형질전환체(TG1 내지 TG10)의 벼 잎으로부터 CTAB방법으로 DNA를 분리하였다.In order to confirm the introduction of the transformant gene was confirmed whether the introduction of the gene at the DNA level using the PCR as follows. DNA was isolated from the rice leaves of each transformant (TG1 to TG10) by CTAB method.

분리된 DNA를 주형으로 하고, IFS1 유전자에 대해서는 서열번호 5(IFS1FOR: 5'-GTAATTAACCTCACTCAAACTCGG-3') 및 서열번호 6(IFS2 REV : 5'-G CAAACGAAGACAAATGGGAGATGATA-3')의 조합을 프라이머로 하고, IFS2 유전자에 대해서는 서열번호 7(IFS2FOR: AAAATTAGCCTCACAAAA GCAAAG-3') 및 서열번호 8(IFS2REV: 5'-GCAAACGAAGACAAATGGGAGATG ATA-3')의 조합을 프라이머로 하여 PCR을 수행하였다. PCR은 94℃ 4분; 94℃ 15초, 55℃ 30초, 72℃ 60초의 30 싸이클(cycle); 및 72℃ 7분의 조건으로 수행하였다. 증폭된 PCR 산물은 아가로스 겔에서 전기영동하여 확인하였다.The isolated DNA was used as a template, and for the IFS1 gene, a combination of SEQ ID NO: 5 (IFS1FOR: 5'-GTAATTAACCTCACTCAAACTCGG-3 ') and SEQ ID NO: 6 (IFS2 REV: 5'-G CAAACGAAGACAAATGGGAGATGATA-3') was used as a primer. For the IFS2 gene, PCR was performed using a combination of SEQ ID NO: 7 (IFS2FOR: AAAATTAGCCTCACAAAA GCAAAG-3 ') and SEQ ID NO: 8 (IFS2REV: 5'-GCAAACGAAGACAAATGGGAGATG ATA-3') as a primer. PCR 94 min 4 min; 30 cycles of 94 ° C. 15 seconds, 55 ° C. 30 seconds, 72 ° C. 60 seconds; And 72 ° C. for 7 minutes. The amplified PCR product was confirmed by electrophoresis on agarose gel.

그 결과, 도 4A에서 보듯이, 형질전환체 모두에서 PCR 산물이 확인되어 각각 IFS1IFS2 유전자가 도입되었음을 확인하였다(도 4의 A 참조).As a result, as shown in Fig. 4A, PCR products were confirmed in all the transformants to confirm that IFS1 and IFS2 genes were introduced, respectively (see Fig. 4A).

<4-2> 형질전환체에서의 유전자 발현 확인<4-2> Confirmation of gene expression in transformants

각 형질전환체에서 IFS1IFS2 유전자의 발현량을 조사하기 위하여 다음과 같이 RT-PCR을 실시하였다. 각각의 형질전환체(TG1 내지 TG10)의 벼 잎으로부터 Trizol(Sigma-Aldrich, USA)을 사용, 제조회사의 방법을 따라 전체 RNA를 분리하였다.RT-PCR was performed to investigate the expression levels of IFS1 and IFS2 genes in each transformant. Total RNA was isolated from the rice leaves of each transformant (TG1 to TG10) using Trizol (Sigma-Aldrich, USA) following the manufacturer's method.

분리된 전체 RNA로부터 ProSTARTM First-Strand RT-PCR system (Stratagene, USA)을 사용, 제조회사의 방법대로 cDNA를 합성하고, 이를 주형으로 하고, IFS1 유전자에 대해서는 서열번호 5(IFS1FOR: 5'-GTAATTAACCTCACTC AAACTCGG-3') 및 서열번호 6(IFS2REV: 5'-GCAAACGAAGACAAATGGGAGA TGATA-3')의 조합을 프라이머로 하고, IFS2 유전자에 대해서는 서열번호 7(IFS2FOR: AAAATTAGCCTCACAAAA GCAAAG-3') 및 서열번호 8(IFS2REV: 5'-GCAAACGAAGACAAATGGGAGATG ATA-3')의 조합을 프라이머로 하여 PCR을 수행하였다. PCR은 94℃ 4분; 94℃ 15초, 55℃ 30초, 72℃ 60초의 30 싸이클(cycle); 및 72℃ 7분의 조건으로 수행하였다. 증폭된 PCR 산물은 아가로스 겔에서 전기영동하여 확인하였다. 증폭된 PCR 산물은 아가로스 겔에서 전기영동하여 확인하였다.Using the ProSTAR TM First-Strand RT-PCR system (Stratagene, USA) from the isolated whole RNA, cDNA was synthesized according to the manufacturer's method, which was used as a template, and IFS1. For the gene, a combination of SEQ ID NO: 5 (IFS1FOR: 5'-GTAATTAACCTCACTC AAACTCGG-3 ') and SEQ ID NO: 6 (IFS2REV: 5'-GCAAACGAAGACAAATGGGAGA TGATA-3') was used as a primer, and for IFS2 gene, SEQ ID NO: 7 (IFS2FOR : PCR was performed using a combination of AAAATTAGCCTCACAAAA GCAAAG-3 ') and SEQ ID NO: 8 (IFS2REV: 5'-GCAAACGAAGACAAATGGGAGATG ATA-3') as a primer. PCR 94 min 4 min; 30 cycles of 94 ° C. 15 seconds, 55 ° C. 30 seconds, 72 ° C. 60 seconds; And 72 ° C. for 7 minutes. The amplified PCR product was confirmed by electrophoresis on agarose gel. The amplified PCR product was confirmed by electrophoresis on agarose gel.

그 결과, 도 4B에서 보듯이, 형질전환체 모두에서 IFS1IFS2 유전자가 발현됨을 확인할 수 있었다 (도 4의 B 참조).As a result, as shown in Figure 4B, IFS1 and IFS2 in both transformants It was confirmed that the gene is expressed (see FIG. 4B).

<4-3> 형질전환체에 도입된 유전자의 <4-3> of the gene introduced into the transformant 카피수Copy number 확인 Confirm

형질전환체에 도입된 각각의 유전자의 카피수를 확인하기 위해 대조군 식물체(흑남벼 & 낙동벼)와 형질전환체(OsCc1 promoter와 Glb promoter 조절하의 유전자로 형질전환된 벼)를 이용하여 다음과 같이 서던블럿을 수행하였다. To identify the copy number of each gene introduced into the transformants, the control plants (Black and White Rice) and the transformants ( OsCc1 promoter and Southern blot was performed as follows using rice transformed with the gene under the control of the Glb promoter.

대조군 식물체 및 형질전환체의 벼 잎으로부터 게놈 DNA는 상기 실시예 <4-1>에서와 같이 분리하였다. 10 ug의 게놈 DNA를 OsCc1 promoter조절하의 형질전환체의 경우는 BamHI으로, Glb promoter 조절하의 형질전환체는 DraI으로 제한효소 처리하였다. 그런 다음 0.8% 젤에서 밤새 전기영동한 후, 나일론 멤브레인에 이전(transfer)시켰다. 탐침(probe)로는 32P로 표지한 IFS1IFS2 유전자를 사용하였다. Genomic DNA was isolated from the leaves of control plants and transformants as in Example <4-1>. For the 10 ug transgenic genomic DNA under the control of the promoter OsCc1 body with Bam HI, Glb promoter under the control transformant it was restricted enzymatic treatment with Dra I. It was then electrophoresed overnight in a 0.8% gel and then transferred to a nylon membrane. As probes, IFS1 and IFS2 genes labeled with 32 P were used.

그 결과, 도 4C에서 보듯이, 형질전환체에 IFS1IFS2 유전자가 주로 1 내지 3 카피수로 도입된 것을 알 수 있었다As a result, as shown in Figure 4C, it was found that the IFS1 and IFS2 genes were mainly introduced in 1 to 3 copies in the transformant.

<< 실시예Example 5> 5>

형질전환된 벼에서 In transformed rice 아이소플라본의Isoflavone 합성 확인 Synthetic Check

형질전환된 벼에서 아이소플라본의 일종인 제니스타인의 합성 여부 및 그 양을 다음과 같이 확인하였다. 벼 종자로부터 아이소플라본 함량 분석을 위해 액체질소로 벼 종자를 마쇄한 후 80%의 메탄올로 추출하였다. 이를 주사 필터(Acrodisc CR-PTFE 주사 필터)로 거른 다음, 아이소플라본의 배당체 형태를 가수분해하기 위해 3 ml의 1N HCl을 1 ml의 추출물에 첨가하여 95℃에서 2시간 동안 배양하였다. 그리고 이를 1 ml의 에틸 아세테이트(ethyl acetate)로 추출하였다.Synthesis of Zenithine, a kind of isoflavones, and its amount in the transformed rice were confirmed as follows. Rice seeds were ground with liquid nitrogen and then extracted with 80% methanol for isoflavone content analysis from rice seeds. This was filtered through an injection filter (Acrodisc CR-PTFE injection filter), and then 3 ml of 1N HCl was added to 1 ml of extract to hydrolyze the glycoside form of isoflavones and incubated at 95 ° C for 2 hours. And it was extracted with 1 ml of ethyl acetate.

상기 추출물은 HPLC(High-performance liquid chromatography)로 분석하였으며, HPLC 분석 조건으로 컬럼은 XTerra MS C18, 5 μm (150 x 2.1 mm)를 사용하였고, 용매로는 2%의 아세트산 수용액(2% acetic acid/in water, eluent A)와 0.5%의 아세트산 물-아세토니트릴 혼합액(0.5% acetic acid/in water and acetonitrile(50:50, v/v), eluent B)를 사용하였으며, 0.2 ml/min의 유속으로, 스펙트럼은 UV 200에서 450 nm 파장에서 측정하였다. 샘플을 2 μl를 주입하였다. 제니스타인 피크는 표준시료의 UV 스펙트럼, 잔존 시간을 기준으로 동정하였다. 아이소플라본(제니스타인)의 함량은 시그마사(Sigma, USA)의 표준시약을 구입하여 HPLC에 주입하여 표준물질의 면적을 구한 후 시료의 추출물을 주입하여 얻어진 면적의 비율로 아이소플라본의 함량(/g)을 산출하였다(Kim et al., J. Agric. Food Chem. 54: 10003-10010, 2006). The extract was analyzed by high-performance liquid chromatography (HPLC), and HPLC analysis conditions were performed using XTerra MS C18, 5 μm (150 × 2.1 mm), and 2% acetic acid solution (2% acetic acid) as solvent. / in water, eluent A) and 0.5% acetic acid / acetonitrile mixture (0.5% acetic acid / in water and acetonitrile (50:50, v / v), eluent B) and flow rate of 0.2 ml / min The spectrum was measured at 450 nm wavelength at UV 200. 2 μl of the sample was injected. Zenithstein peaks were identified based on the UV spectrum of the standard sample and the remaining time. The content of isoflavones (zenithstein) is obtained by injecting standard reagents from Sigma, USA, and injecting into HPLC to obtain the area of the standard material, and then extracting the sample extract. g) (Kim et al., J. Agric. Food Chem. 54: 10003-10010, 2006).

또한 종자에서 생합성된 아이소플라본 제니스타인의 분자량 확인을 위하여 HPLC/MS 분석을 실시하였다. 분석기기로는 ZMD 4000 (Micromass, UK)을 이용하였으며, 분무 가스로는 질소를 사용하였다. 원료 온도 (source temperature)는 150℃, 분해 온도(desolvation temperature)의 온도는 250℃로 하였으며, 증폭시의 전압은 650V로 하여 제니스타인에 해당하는 270.9 m/z 값을 갖는 이온을 모니터링하였다. 제니스타인의 확인은 표준시료의 UV 스펙트럼, 잔존 시간과 m/z 값을 기준으로 동정하였다. In addition, HPLC / MS analysis was performed to confirm the molecular weight of the biosynthesized isoflavone Zenithine. ZMD 4000 (Micromass, UK) was used as an analyzer and nitrogen was used as a spraying gas. The source temperature was 150 ° C., the decomposition temperature was 250 ° C., and the amplification voltage was 650 V to monitor ions having a 270.9 m / z value corresponding to Zenithsteine. Zenithstein was identified on the basis of the UV spectra, retention time and m / z values of the standard samples.

그 결과, 도 5에서 보듯이, 대조군인 흑남벼의 경우 제니스타인과 같은 아이소플라본이 합성되지 않았다(도 5A). 아울러, OsCc1 프로모터 조절하에 IFS1을 발현시키는 벼 형질전환체인 TG 9-1계통에서도 제니스타인 같은 아이소플라본은 검출되지 않았다(도 5B). 하지만, Glb 프로모터 조절하의 IFS2 유전자를 발현시키는 흑남벼 형질전환체 47-3-1 계통에서는 제니스타인 표준시료의 리텐션 타임(retention time)과 일치하는 시간대에서 아이소플라본 제니스타인이 검출되어 아이소플라본이 합성됨을 알 수 있었다(도 5C). 이를 대상으로 HPLC/MS 분석을 한 결과 도 5D에서 보듯이 아이소플라본 제니스타인에 해당하는 피크 (peak)의 m/z 값이 나타냄을 알 수 있었다.As a result, as shown in Figure 5, in the case of black rice paddy control isoflavones such as Zenithine was not synthesized (Fig. 5A). In addition, under OsCc1 promoter control Isoflavones such as Zenithine were not detected in the TG 9-1 line, which is a rice transformant expressing IFS1 (FIG. 5B). However, isoflavone zenithine was detected in the 47-3-1 strain of the Black and White Rice Transformant expressing the IFS2 gene under Glb promoter control at a time coinciding with the retention time of Zenithine standard sample. It can be seen that the synthesis (Fig. 5C). As a result of HPLC / MS analysis, as shown in FIG. 5D, it was found that the m / z value of the peak corresponding to isoflavone Zenithsteine was shown.

아울러, 모든 형질전환체 계통을 대상으로 아이소플라본을 합성하는 계통을 확인하고, 이의 합성량을 산출한 결과, 표 3에서 보듯이, 대조군으로 사용한 흑남벼 및 낙동벼의 경우 아이소플라본을 함유하지 않았으나, 본 발명의 형질전환체는 아이소플라본의 함유함을 알 수 있었다. 형질전환된 개체에 따라 아이소플라본의 함량은 다소 차이가 있었으나, IFS2 유전자로 형질전환된 벼가 IFS1 유전자로 형질전환된 벼에 비해 합성되는 아이소플라본의 양이 더 많다는 것을 알 수 있었다. 이는 IFS2 유전자에 의해 발현되는 IFS2의 활성이 더 강하기 때문으로 생각된다.In addition, as a result of confirming the system for synthesizing isoflavones for all the transformant lines and calculating the amount of synthesis thereof, as shown in Table 3, black and white rice used as a control did not contain isoflavones, The transformant of the present invention was found to contain isoflavones. The content of isoflavones differed according to the transformed individuals, but IFS2 Genetically Modified Rice IFS1 It was found that the amount of isoflavones synthesized was higher than that of rice transformed with the gene. This is IFS2 It is considered that the activity of IFS2 expressed by the gene is stronger.

유전자gene 계통system 아이소플라본 (μg/g)Isoflavones (μg / g) 흑남벼Black rice concon 00 IFS1IFS1 7-1-17-1-1 10.3 10.3 7-2-17-2-1 10.3 10.3 13-5-113-5-1 10.3 10.3 14-4-114-4-1 6.2 6.2 16-4-116-4-1 4.1 4.1 18-4-118-4-1 12.4 12.4 18-4-618-4-6 14.4 14.4 24-4-124-4-1 14.4 14.4 32-4-132-4-1 10.3 10.3 IFS2IFS2 5-2-15-2-1 24.7 24.7 17-4-117-4-1 24.7 24.7 18-4-118-4-1 20.6 20.6 31-4-131-4-1 22.6 22.6 40-4-140-4-1 4.1 4.1 41-4-141-4-1 24.7 24.7 47-3-147-3-1 37.1 37.1 56-3-156-3-1 24.7 24.7 68-4-168-4-1 18.5 18.5 73-4-173-4-1 4.1 4.1 76-3-176-3-1 16.5 16.5 낙동벼Nakdong Rice concon 0.0 0.0 IFS1IFS1 8-3-18-3-1 14.4 14.4 5-4-15-4-1 6.2 6.2 13-3-113-3-1 2.1 2.1 20-3-120-3-1 6.2 6.2 20-4-120-4-1 6.2 6.2 25-3-125-3-1 4.1 4.1 IFS2IFS2 4-4-14-4-1 6.2 6.2 21-3-121-3-1 4.1 4.1 27-4-127-4-1 10.29 10.29

이상 살펴본 바와 같이, 본 발명의 재조합 벡터는 아이소플라본을 합성하지 않는 벼 등에서 아이소플라본 합성효소를 안정적으로 발현시킴으로써 아이소플라본의 합성을 가능하게 하여 종래의 형질전환체 보다 고농도의 아이소플라본을 함유하는 형질전환체를 제조할 수 있도록 하는 효과를 갖는다. 따라서 본 발명의 재조합 벡터는 유용물질인 아이소플라본을 생합성하는 새로운 품종의 형질전환 작물의 개발의 목적으로 사용할 수 있다.As described above, the recombinant vector of the present invention enables the synthesis of isoflavones by stably expressing isoflavone synthase in rice which does not synthesize isoflavones, thereby transforming the isoflavone containing a higher concentration than the conventional transformants. It has the effect of being able to manufacture a converter. Therefore, the recombinant vector of the present invention can be used for the purpose of the development of a new breed of transgenic crops that biosynthesize the useful material isoflavones.

도 1은 본 발명의 재조합 벡터의 개열지도를 나타낸 것이다.(LB (left border), RB (Right border), Glb (Glb promoter), OsCc1(Cytochrome c promoter), IFS1 또는 IFS2 (IFS1 또는 IFS2 gene), TPinll (Pin-Ⅱ terminator), P35S (CaMV 35S promoter), TNos (Nos terminator), bar (bar coding region), MAR (Matrix attachment region)Figure 1 shows a cleavage map of the recombinant vector of the present invention. (LB (left border), RB (Right border), Glb ( Glb promoter), OsCc1 (Cytochrome c promoter), IFS1 Or IFS2 ( IFS1 or IFS2 gene), TPinll (Pin-II terminator), P35S (CaMV 35S promoter), TNos (Nos terminator), bar ( bar coding region), MAR (Matrix attachment region)

도 2는 본 발명의 재조합 벡터로 형질전환된 아그로박테리움 투메파시엔스 LBA4404에 대하여 형질전환 여부를 콜로니 PCR로 확인한 것이다.(M : size marker, lane 1 내지 5 : A(IFS1/GB/LBA4404), B(IFS2/GB/LBA4404), C(IFS1/GGB/LBA4404), D(IFS2/GGB/LBA4404), lane 6 내지 10 : A(IFS2cDNA/GB/LBA4404), B(IFS2gDNA/GB/LBA4404), C(IFS2cDNA/GB/LBA4404), D(IFS2cDNA/GB/LBA4404))2 is confirmed by the colony PCR for transforming the Agrobacterium tumefaciens LBA4404 transformed with the recombinant vector of the present invention. (M: size marker, lane 1 to 5: A (IFS1 / GB / LBA4404 ) , B (IFS2 / GB / LBA4404 ), C (IFS1 / GGB / LBA4404 ), D (IFS2 / GGB / LBA4404 ), lanes 6 to 10: A (IFS2cDNA / GB / LBA4404 ), B (IFS2gDNA / GB / LBA4404 ) , C (IFS2cDNA / GB / LBA4404 ), D (IFS2cDNA / GB / LBA4404 ))

도 3은 벼 형질전환 과정을 나타낸 것이다.(A : 벼 종자를 이용한 캘러스 유도 과정, B : 형질전환된 캘러스의 선발과정, C : 선발된 캘러스의 재분화과정, D : 선발과정을 거쳐 재분화된 식물체의 순화과정, E 및 F : Glb 프로모터 조절하의 IFS1IFS2로 형질전환된 낙동벼, G 및 H : Glb 프로모터 조절하의 IFS1IFS2로 형질전환된 흑남벼)Figure 3 shows the transformation process of rice (A: callus induction process using rice seeds, B: selection process of transformed callus, C: regeneration process of the selected callus, D: regeneration process through selection process) Purification process of Nakdong rice transformed with IFS1 and IFS2 under the control of E and F: Glb promoter, and black rice transformed with IFS1 and IFS2 under the control of G and H: Glb promoter)

도 4는 IFS1IFS2 유전자가 도입된 형질전환 벼의 형질전환 및 발현여부를 PCR(A), RT-PCR(B) 및 서던블랏 분석(C)으로 확인한 것이다.(TG1 내지 TG10 : 각각의 형질전환체 번호)4 shows the transformation and expression of transgenic rice into which IFS1 and IFS2 genes are introduced by PCR (A), RT-PCR (B) and Southern blot analysis (C). (TG1 to TG10: respective traits) Conversion number)

도 5는 대조구과 형질전환 벼에서 아이소플라본 제니스타인의 LC/MS로 분석 한 것이다.Figure 5 is analyzed by LC / MS of isoflavone Zenithine in control and transformed rice.

<110> Republic of Korea <120> Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby <130> P07-0100 <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 1904 <212> DNA <213> Glycine max <220> <221> 5'UTR <222> (1)..(60) <220> <221> 3'UTR <222> (1761)..(1904) <220> <221> intron <222> (961)..(1096) <400> 1 aacctcactc aaactcggga tcacagaaac caacaacagt tcttgcactg aggtttcacg 60 atgttgctgg aacttgcact tggtttgttt gtgttagctt tgtttctgca cttgcgtccc 120 acaccaagtg caaaatcaaa agcacttcgc cacctcccaa accctccaag cccaaagcct 180 cgtcttccct tcattggcca ccttcacctc ttaaaagata aacttctcca ctatgcactc 240 atcgatctct ccaaaaagca tggcccctta ttctctctct ccttcggctc catgccaacc 300 gtcgttgcct ccacccctga gttgttcaag ctcttcctcc aaacccacga ggcaacttcc 360 ttcaacacaa ggttccaaac ctctgccata agacgcctca cttacgacaa ctctgtggcc 420 atggttccat tcggacctta ctggaagttc gtgaggaagc tcatcatgaa cgaccttctc 480 aacgccacca ccgtcaacaa gctcaggcct ttgaggaccc aacagatccg caagttcctt 540 agggttatgg cccaaagcgc agaggcccag aagccccttg acgtcaccga ggagcttctc 600 aaatggacca acagcaccat ctccatgatg atgctcggcg aggctgagga gatcagagac 660 atcgctcgcg aggttcttaa gatcttcggc gaatacagcc tcactgactt catctggcct 720 ttgaagtatc tcaaggttgg aaagtatgag aagaggattg atgacatctt gaacaagttc 780 gaccctgtcg ttgaaagggt catcaagaag cgccgtgaga tcgtcagaag gagaaagaac 840 ggagaagttg ttgagggcga ggccagcggc gtcttcctcg acactttgct tgaattcgct 900 gaggacgaga ccatggagat caaaattacc aaggagcaaa tcaagggcct tgttgtcgac 960 agtttcctgc ttcattcatt gatcgaaata tgcagtattt tgttaacaag agatcgagaa 1020 ttgacattta tatattcatg tggtggcaat taattaacgg tacgcattct taatcgatat 1080 tgtgtatgtg caggactttt tctctgcagg gacagattcc acagcggtgg caacagagtg 1140 ggcattggca gagctcatca acaatcccag ggtgttgcaa aaggctcgtg aggaggtcta 1200 cagtgttgtg ggcaaagata gactcgttga cgaagttgac actcaaaacc ttccttacat 1260 tagggccatt gtgaaggaga cattccgaat gcacccacca ctcccagtgg tcaaaagaaa 1320 gtgcacagaa gagtgtgaga ttaatgggta tgtgatccca gagggagcat tggttctttt 1380 caatgtttgg caagtaggaa gggaccccaa atactgggac agaccatcag aattccgtcc 1440 cgagaggttc ttagaaactg gtgctgaagg ggaagcaggg cctcttgatc ttaggggcca 1500 gcatttccaa ctcctcccat ttgggtctgg gaggagaatg tgccctggtg tcaatttggc 1560 tacttcagga atggcaacac ttcttgcatc tcttatccaa tgctttgacc tgcaagtgct 1620 gggccctcaa ggacaaatat tgaaaggtga tgatgccaaa gttagcatgg aagagagagc 1680 tggcctcaca gttccaaggg cacatagtct cgtttgtgtt ccacttgcaa ggatcggcgt 1740 tgcatctaaa ctcctttctt aattaagata atcatcatat acaatagtag tgtcttgcca 1800 tcgcagttgc tttttatgta ttcataatca tcatttcaat aaggtgtgac tggtacttaa 1860 tcaagtaatt aaggttacat acatgcaaaa aaaaaaaaaa aaaa 1904 <210> 2 <211> 521 <212> PRT <213> Glycine max <400> 2 Met Leu Leu Glu Leu Ala Leu Gly Leu Phe Val Leu Ala Leu Phe Leu 1 5 10 15 His Leu Arg Pro Thr Pro Ser Ala Lys Ser Lys Ala Leu Arg His Leu 20 25 30 Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu 35 40 45 His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser 50 55 60 Lys Lys His Gly Pro Leu Phe Ser Leu Ser Phe Gly Ser Met Pro Thr 65 70 75 80 Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His 85 90 95 Glu Ala Thr Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Arg Arg 100 105 110 Leu Thr Tyr Asp Asn Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp 115 120 125 Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr 130 135 140 Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe Leu 145 150 155 160 Arg Val Met Ala Gln Ser Ala Glu Ala Gln Lys Pro Leu Asp Val Thr 165 170 175 Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met Met Leu 180 185 190 Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys Ile 195 200 205 Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys Tyr Leu 210 215 220 Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile Leu Asn Lys Phe 225 230 235 240 Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg Arg Glu Ile Val Arg 245 250 255 Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu Ala Ser Gly Val Phe 260 265 270 Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu Ile Lys 275 280 285 Ile Thr Lys Glu Gln Ile Lys Gly Leu Val Val Asp Phe Phe Ser Ala 290 295 300 Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp Ala Leu Ala Glu Leu 305 310 315 320 Ile Asn Asn Pro Arg Val Leu Gln Lys Ala Arg Glu Glu Val Tyr Ser 325 330 335 Val Val Gly Lys Asp Arg Leu Val Asp Glu Val Asp Thr Gln Asn Leu 340 345 350 Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg Met His Pro Pro 355 360 365 Leu Pro Val Val Lys Arg Lys Cys Thr Glu Glu Cys Glu Ile Asn Gly 370 375 380 Tyr Val Ile Pro Glu Gly Ala Leu Val Leu Phe Asn Val Trp Gln Val 385 390 395 400 Gly Arg Asp Pro Lys Tyr Trp Asp Arg Pro Ser Glu Phe Arg Pro Glu 405 410 415 Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu Ala Gly Pro Leu Asp Leu 420 425 430 Arg Gly Gln His Phe Gln Leu Leu Pro Phe Gly Ser Gly Arg Arg Met 435 440 445 Cys Pro Gly Val Asn Leu Ala Thr Ser Gly Met Ala Thr Leu Leu Ala 450 455 460 Ser Leu Ile Gln Cys Phe Asp Leu Gln Val Leu Gly Pro Gln Gly Gln 465 470 475 480 Ile Leu Lys Gly Asp Asp Ala Lys Val Ser Met Glu Glu Arg Ala Gly 485 490 495 Leu Thr Val Pro Arg Ala His Ser Leu Val Cys Val Pro Leu Ala Arg 500 505 510 Ile Gly Val Ala Ser Lys Leu Leu Ser 515 520 <210> 3 <211> 1949 <212> DNA <213> Glycine max <220> <221> 5'UTR <222> (1)..(48) <220> <221> 3'UTR <222> (1766)..(1949) <220> <221> intron <222> (961)..(1096) <400> 3 attagcctca caaaagcaaa gatcaaacaa accaaggacg agaacacgat gttgcttgaa 60 cttgcacttg gtttattggt tttggctctg tttctgcact tgcgtcccac acccactgca 120 aaatcaaaag cacttcgcca actcccaaac ccaccaagcc caaagcctcg tcttcccttc 180 ataggacacc ttcatctctt aaaagacaaa cttctccact acgcactcat cgacctctcc 240 aaaaaacatg gtcccttatt ctctctctac tttggctcca tgccaaccgt tgttgcctcc 300 acaccagaat tgttcaagct cttcctccaa acgcacgagg caacttcctt caactcaagg 360 ttccaaacct cagccataag acgcctcacc tatgatagct cagtggccat ggttcccttc 420 ggaccttact ggaagttcgt gaggaagctc atcatgaacg accttctcaa cgccaccact 480 gtaaacaagt tgaggccttt gaggacccaa cagatccgca agttccttag ggttatggcc 540 caaggcgcag aggcacagaa gccccttgac ttgaccgagg agcttctgaa atggaccaac 600 agcaccatct ccatgatgat gctcggcgag gctgaggaga tcagagacat cgctcgcgag 660 gttcttaaga tctttggcga atacagcctc actgacttca tctggccatt gaagcatctc 720 aaggttggaa agtatgagtc aagaagcgcc gtgaagagga tcgacgacat cttgaacaag 780 ttcgaccctg tcgttgaaag ggtcatcaag aagcgccgtg agatcgtgag gaggagaaag 840 aacggagagg ttgttgaggg tgaggtcagc ggggttttcc ttgacacttt gcttgaattc 900 gctgaggatg agaccatgga gatcaaaatc accaaggacc acatcaaggg tcttgttgtc 960 gtgagtttcc tgcttcattc attgatcgaa atatgcagta ttttgttaac aagagatcga 1020 gaattgacat ttatatattc atgtggtggc aattaattaa cggtacgcat tcttaatcga 1080 tattgtgtat gtgcaggact ttttctcggc aggaacagac tccacagcgg tggcaacaga 1140 gtgggcattg gcagaactca tcaacaatcc taaggtgttg gaaaaggctc gtgaggaggt 1200 ctacagtgtt gtgggaaagg acagacttgt ggacgaagtt gacactcaaa accttcctta 1260 cattagagca atcgtgaagg agacattccg catgcacccg ccactcccag tggtcaaaag 1320 aaagtgcaca gaagagtgtg agattaatgg atatgtgatc ccagagggag cattgattct 1380 cttcaatgta tggcaagtag gaagagaccc caaatactgg gacagaccat cggagttccg 1440 tcctgagagg ttcctagaga caggggctga aggggaagca gggcctcttg atcttagggg 1500 acaacatttt caacttctcc catttgggtc tgggaggaga atgtgccctg gagtcaatct 1560 ggctacttcg ggaatggcaa cacttcttgc atctcttatt cagtgcttcg acttgcaagt 1620 gctgggtcca caaggacaga tattgaaggg tggtgacgcc aaagttagca tggaagagag 1680 agccggcctc actgttccaa ggtcacatag tcttgtctgt gttccacttg caaggatcgg 1740 cgttgcatct aaactccttt cttaattaag atcatcatca tatataatat ttactttttg 1800 tgtgttgata atcatcattt caataaggtc tcgttcatca actttttatg aagtatataa 1860 gcccttccat gcacattgta tcatctccca tttgtcttcg tttgcaatca ctagtgaatt 1920 cgcggccgcc tgcaggtcga ccatatggg 1949 <210> 4 <211> 526 <212> PRT <213> Glycine max <400> 4 Met Leu Leu Glu Leu Ala Leu Gly Leu Leu Val Leu Ala Leu Phe Leu 1 5 10 15 His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg Gln Leu 20 25 30 Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu 35 40 45 His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser 50 55 60 Lys Lys His Gly Pro Leu Phe Ser Leu Tyr Phe Gly Ser Met Pro Thr 65 70 75 80 Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His 85 90 95 Glu Ala Thr Ser Phe Asn Ser Arg Phe Gln Thr Ser Ala Ile Arg Arg 100 105 110 Leu Thr Tyr Asp Ser Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp 115 120 125 Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr 130 135 140 Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe Leu 145 150 155 160 Arg Val Met Ala Gln Gly Ala Glu Ala Gln Lys Pro Leu Asp Leu Thr 165 170 175 Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met Met Leu 180 185 190 Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys Ile 195 200 205 Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys His Leu 210 215 220 Lys Val Gly Lys Tyr Glu Ser Arg Ser Ala Val Lys Arg Ile Asp Asp 225 230 235 240 Ile Leu Asn Lys Phe Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg 245 250 255 Arg Glu Ile Val Arg Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu 260 265 270 Val Ser Gly Val Phe Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu 275 280 285 Thr Met Glu Ile Lys Ile Thr Lys Asp His Ile Lys Gly Leu Val Val 290 295 300 Asp Phe Phe Ser Ala Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp 305 310 315 320 Ala Leu Ala Glu Leu Ile Asn Asn Pro Lys Val Leu Glu Lys Ala Arg 325 330 335 Glu Glu Val Tyr Ser Val Val Gly Lys Asp Arg Leu Val Asp Glu Val 340 345 350 Asp Thr Gln Asn Leu Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe 355 360 365 Arg Met His Pro Pro Leu Pro Val Val Lys Arg Lys Cys Thr Glu Glu 370 375 380 Cys Glu Ile Asn Gly Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu Phe 385 390 395 400 Asn Val Trp Gln Val Gly Arg Asp Pro Lys Tyr Trp Asp Arg Pro Ser 405 410 415 Glu Phe Arg Pro Glu Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu Ala 420 425 430 Gly Pro Leu Asp Leu Arg Gly Gln His Phe Gln Leu Leu Pro Phe Gly 435 440 445 Ser Gly Arg Arg Met Cys Pro Gly Val Asn Leu Ala Thr Ser Gly Met 450 455 460 Ala Thr Leu Leu Ala Ser Leu Ile Gln Cys Phe Asp Leu Gln Val Leu 465 470 475 480 Gly Pro Gln Gly Gln Ile Leu Lys Gly Gly Asp Ala Lys Val Ser Met 485 490 495 Glu Glu Arg Ala Gly Leu Thr Val Pro Arg Ser His Ser Leu Val Cys 500 505 510 Val Pro Leu Ala Arg Ile Gly Val Ala Ser Lys Leu Leu Ser 515 520 525 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> IFS1FOR <400> 5 gtaattaacc tcactcaaac tcgg 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> IFS1REV <400> 6 gcaaacgaag acaaatggga gatgata 27 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> IFS2FOR <400> 7 aaaattagcc tcacaaaagc aaag 24 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> IFS2REV <400> 8 gcaaacgaag acaaatggga gatgata 27 <110> Republic of Korea <120> Recombinant vector comprising polynucleotide encoding isoflavone          synthase and transformants transformed thereby <130> P07-0100 <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 1904 <212> DNA <213> Glycine max <220> <221> 5'UTR (222) (1) .. (60) <220> <221> 3'UTR (222) (1761) .. (1904) <220> <221> intron (222) (961) .. (1096) <400> 1 aacctcactc aaactcggga tcacagaaac caacaacagt tcttgcactg aggtttcacg 60 atgttgctgg aacttgcact tggtttgttt gtgttagctt tgtttctgca cttgcgtccc 120 acaccaagtg caaaatcaaa agcacttcgc cacctcccaa accctccaag cccaaagcct 180 cgtcttccct tcattggcca ccttcacctc ttaaaagata aacttctcca ctatgcactc 240 atcgatctct ccaaaaagca tggcccctta ttctctctct ccttcggctc catgccaacc 300 gtcgttgcct ccacccctga gttgttcaag ctcttcctcc aaacccacga ggcaacttcc 360 ttcaacacaa ggttccaaac ctctgccata agacgcctca cttacgacaa ctctgtggcc 420 atggttccat tcggacctta ctggaagttc gtgaggaagc tcatcatgaa cgaccttctc 480 aacgccacca ccgtcaacaa gctcaggcct ttgaggaccc aacagatccg caagttcctt 540 agggttatgg cccaaagcgc agaggcccag aagccccttg acgtcaccga ggagcttctc 600 aaatggacca acagcaccat ctccatgatg atgctcggcg aggctgagga gatcagagac 660 atcgctcgcg aggttcttaa gatcttcggc gaatacagcc tcactgactt catctggcct 720 ttgaagtatc tcaaggttgg aaagtatgag aagaggattg atgacatctt gaacaagttc 780 gaccctgtcg ttgaaagggt catcaagaag cgccgtgaga tcgtcagaag gagaaagaac 840 ggagaagttg ttgagggcga ggccagcggc gtcttcctcg acactttgct tgaattcgct 900 gaggacgaga ccatggagat caaaattacc aaggagcaaa tcaagggcct tgttgtcgac 960 agtttcctgc ttcattcatt gatcgaaata tgcagtattt tgttaacaag agatcgagaa 1020 ttgacattta tatattcatg tggtggcaat taattaacgg tacgcattct taatcgatat 1080 tgtgtatgtg caggactttt tctctgcagg gacagattcc acagcggtgg caacagagtg 1140 ggcattggca gagctcatca acaatcccag ggtgttgcaa aaggctcgtg aggaggtcta 1200 cagtgttgtg ggcaaagata gactcgttga cgaagttgac actcaaaacc ttccttacat 1260 tagggccatt gtgaaggaga cattccgaat gcacccacca ctcccagtgg tcaaaagaaa 1320 gtgcacagaa gagtgtgaga ttaatgggta tgtgatccca gagggagcat tggttctttt 1380 caatgtttgg caagtaggaa gggaccccaa atactgggac agaccatcag aattccgtcc 1440 cgagaggttc ttagaaactg gtgctgaagg ggaagcaggg cctcttgatc ttaggggcca 1500 gcatttccaa ctcctcccat ttgggtctgg gaggagaatg tgccctggtg tcaatttggc 1560 tacttcagga atggcaacac ttcttgcatc tcttatccaa tgctttgacc tgcaagtgct 1620 gggccctcaa ggacaaatat tgaaaggtga tgatgccaaa gttagcatgg aagagagagc 1680 tggcctcaca gttccaaggg cacatagtct cgtttgtgtt ccacttgcaa ggatcggcgt 1740 tgcatctaaa ctcctttctt aattaagata atcatcatat acaatagtag tgtcttgcca 1800 tcgcagttgc tttttatgta ttcataatca tcatttcaat aaggtgtgac tggtacttaa 1860 tcaagtaatt aaggttacat acatgcaaaa aaaaaaaaaa aaaa 1904 <210> 2 <211> 521 <212> PRT <213> Glycine max <400> 2 Met Leu Leu Glu Leu Ala Leu Gly Leu Phe Val Leu Ala Leu Phe Leu   1 5 10 15 His Leu Arg Pro Thr Pro Ser Ala Lys Ser Lys Ala Leu Arg His Leu              20 25 30 Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu          35 40 45 His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser      50 55 60 Lys Lys His Gly Pro Leu Phe Ser Leu Ser Phe Gly Ser Met Pro Thr  65 70 75 80 Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His                  85 90 95 Glu Ala Thr Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Arg Arg             100 105 110 Leu Thr Tyr Asp Asn Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp         115 120 125 Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr     130 135 140 Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe Leu 145 150 155 160 Arg Val Met Ala Gln Ser Ala Glu Ala Gln Lys Pro Leu Asp Val Thr                 165 170 175 Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met Met Leu             180 185 190 Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys Ile         195 200 205 Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys Tyr Leu     210 215 220 Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile Leu Asn Lys Phe 225 230 235 240 Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg Arg Glu Ile Val Arg                 245 250 255 Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu Ala Ser Gly Val Phe             260 265 270 Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu Ile Lys         275 280 285 Ile Thr Lys Glu Gln Ile Lys Gly Leu Val Val Asp Phe Phe Ser Ala     290 295 300 Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp Ala Leu Ala Glu Leu 305 310 315 320 Ile Asn Asn Pro Arg Val Leu Gln Lys Ala Arg Glu Glu Val Tyr Ser                 325 330 335 Val Val Gly Lys Asp Arg Leu Val Asp Glu Val Asp Thr Gln Asn Leu             340 345 350 Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg Met His Pro Pro         355 360 365 Leu Pro Val Val Lys Arg Lys Cys Thr Glu Glu Cys Glu Ile Asn Gly     370 375 380 Tyr Val Ile Pro Glu Gly Ala Leu Val Leu Phe Asn Val Trp Gln Val 385 390 395 400 Gly Arg Asp Pro Lys Tyr Trp Asp Arg Pro Ser Glu Phe Arg Pro Glu                 405 410 415 Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu Ala Gly Pro Leu Asp Leu             420 425 430 Arg Gly Gln His Phe Gln Leu Leu Pro Phe Gly Ser Gly Arg Arg Met         435 440 445 Cys Pro Gly Val Asn Leu Ala Thr Ser Gly Met Ala Thr Leu Leu Ala     450 455 460 Ser Leu Ile Gln Cys Phe Asp Leu Gln Val Leu Gly Pro Gln Gly Gln 465 470 475 480 Ile Leu Lys Gly Asp Asp Ala Lys Val Ser Met Glu Glu Arg Ala Gly                 485 490 495 Leu Thr Val Pro Arg Ala His Ser Leu Val Cys Val Pro Leu Ala Arg             500 505 510 Ile Gly Val Ala Ser Lys Leu Leu Ser         515 520 <210> 3 <211> 1949 <212> DNA <213> Glycine max <220> <221> 5'UTR (222) (1) .. (48) <220> <221> 3'UTR (222) (1766) .. (1949) <220> <221> intron (222) (961) .. (1096) <400> 3 attagcctca caaaagcaaa gatcaaacaa accaaggacg agaacacgat gttgcttgaa 60 cttgcacttg gtttattggt tttggctctg tttctgcact tgcgtcccac acccactgca 120 aaatcaaaag cacttcgcca actcccaaac ccaccaagcc caaagcctcg tcttcccttc 180 ataggacacc ttcatctctt aaaagacaaa cttctccact acgcactcat cgacctctcc 240 aaaaaacatg gtcccttatt ctctctctac tttggctcca tgccaaccgt tgttgcctcc 300 acaccagaat tgttcaagct cttcctccaa acgcacgagg caacttcctt caactcaagg 360 ttccaaacct cagccataag acgcctcacc tatgatagct cagtggccat ggttcccttc 420 ggaccttact ggaagttcgt gaggaagctc atcatgaacg accttctcaa cgccaccact 480 gtaaacaagt tgaggccttt gaggacccaa cagatccgca agttccttag ggttatggcc 540 caaggcgcag aggcacagaa gccccttgac ttgaccgagg agcttctgaa atggaccaac 600 agcaccatct ccatgatgat gctcggcgag gctgaggaga tcagagacat cgctcgcgag 660 gttcttaaga tctttggcga atacagcctc actgacttca tctggccatt gaagcatctc 720 aaggttggaa agtatgagtc aagaagcgcc gtgaagagga tcgacgacat cttgaacaag 780 ttcgaccctg tcgttgaaag ggtcatcaag aagcgccgtg agatcgtgag gaggagaaag 840 aacggagagg ttgttgaggg tgaggtcagc ggggttttcc ttgacacttt gcttgaattc 900 gctgaggatg agaccatgga gatcaaaatc accaaggacc acatcaaggg tcttgttgtc 960 gtgagtttcc tgcttcattc attgatcgaa atatgcagta ttttgttaac aagagatcga 1020 gaattgacat ttatatattc atgtggtggc aattaattaa cggtacgcat tcttaatcga 1080 tattgtgtat gtgcaggact ttttctcggc aggaacagac tccacagcgg tggcaacaga 1140 gtgggcattg gcagaactca tcaacaatcc taaggtgttg gaaaaggctc gtgaggaggt 1200 ctacagtgtt gtgggaaagg acagacttgt ggacgaagtt gacactcaaa accttcctta 1260 cattagagca atcgtgaagg agacattccg catgcacccg ccactcccag tggtcaaaag 1320 aaagtgcaca gaagagtgtg agattaatgg atatgtgatc ccagagggag cattgattct 1380 cttcaatgta tggcaagtag gaagagaccc caaatactgg gacagaccat cggagttccg 1440 tcctgagagg ttcctagaga caggggctga aggggaagca gggcctcttg atcttagggg 1500 acaacatttt caacttctcc catttgggtc tgggaggaga atgtgccctg gagtcaatct 1560 ggctacttcg ggaatggcaa cacttcttgc atctcttatt cagtgcttcg acttgcaagt 1620 gctgggtcca caaggacaga tattgaaggg tggtgacgcc aaagttagca tggaagagag 1680 agccggcctc actgttccaa ggtcacatag tcttgtctgt gttccacttg caaggatcgg 1740 cgttgcatct aaactccttt cttaattaag atcatcatca tatataatat ttactttttg 1800 tgtgttgata atcatcattt caataaggtc tcgttcatca actttttatg aagtatataa 1860 gcccttccat gcacattgta tcatctccca tttgtcttcg tttgcaatca ctagtgaatt 1920 cgcggccgcc tgcaggtcga ccatatggg 1949 <210> 4 <211> 526 <212> PRT <213> Glycine max <400> 4 Met Leu Leu Glu Leu Ala Leu Gly Leu Leu Val Leu Ala Leu Phe Leu   1 5 10 15 His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg Gln Leu              20 25 30 Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu          35 40 45 His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser      50 55 60 Lys Lys His Gly Pro Leu Phe Ser Leu Tyr Phe Gly Ser Met Pro Thr  65 70 75 80 Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His                  85 90 95 Glu Ala Thr Ser Phe Asn Ser Arg Phe Gln Thr Ser Ala Ile Arg Arg             100 105 110 Leu Thr Tyr Asp Ser Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp         115 120 125 Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr     130 135 140 Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe Leu 145 150 155 160 Arg Val Met Ala Gln Gly Ala Glu Ala Gln Lys Pro Leu Asp Leu Thr                 165 170 175 Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met Met Leu             180 185 190 Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys Ile         195 200 205 Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys His Leu     210 215 220 Lys Val Gly Lys Tyr Glu Ser Arg Ser Ala Val Lys Arg Ile Asp Asp 225 230 235 240 Ile Leu Asn Lys Phe Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg                 245 250 255 Arg Glu Ile Val Arg Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu             260 265 270 Val Ser Gly Val Phe Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu         275 280 285 Thr Met Glu Ile Lys Ile Thr Lys Asp His Ile Lys Gly Leu Val Val     290 295 300 Asp Phe Phe Ser Ala Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp 305 310 315 320 Ala Leu Ala Glu Leu Ile Asn Asn Pro Lys Val Leu Glu Lys Ala Arg                 325 330 335 Glu Glu Val Tyr Ser Val Val Gly Lys Asp Arg Leu Val Asp Glu Val             340 345 350 Asp Thr Gln Asn Leu Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe         355 360 365 Arg Met His Pro Pro Leu Pro Val Val Lys Arg Lys Cys Thr Glu Glu     370 375 380 Cys Glu Ile Asn Gly Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu Phe 385 390 395 400 Asn Val Trp Gln Val Gly Arg Asp Pro Lys Tyr Trp Asp Arg Pro Ser                 405 410 415 Glu Phe Arg Pro Glu Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu Ala             420 425 430 Gly Pro Leu Asp Leu Arg Gly Gln His Phe Gln Leu Leu Pro Phe Gly         435 440 445 Ser Gly Arg Arg Met Cys Pro Gly Val Asn Leu Ala Thr Ser Gly Met     450 455 460 Ala Thr Leu Leu Ala Ser Leu Ile Gln Cys Phe Asp Leu Gln Val Leu 465 470 475 480 Gly Pro Gln Gly Gln Ile Leu Lys Gly Gly Asp Ala Lys Val Ser Met                 485 490 495 Glu Glu Arg Ala Gly Leu Thr Val Pro Arg Ser His Ser Leu Val Cys             500 505 510 Val Pro Leu Ala Arg Ile Gly Val Ala Ser Lys Leu Leu Ser         515 520 525 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> IFS1FOR <400> 5 gtaattaacc tcactcaaac tcgg 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> IFS1REV <400> 6 gcaaacgaag acaaatggga gatgata 27 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> IFS2FOR <400> 7 aaaattagcc tcacaaaagc aaag 24 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> IFS2REV <400> 8 gcaaacgaag acaaatggga gatgata 27  

Claims (8)

(a) 서열번호 3의 IFS2를 암호화하는 폴리뉴클레오티드를 포함하며, 도 1에 도시된 pMJC-GB-IFS2 또는 pMJC-GGB-IFS2 재조합 벡터를 제조하는 단계; 및(a) preparing a pMJC-GB-IFS2 or pMJC-GGB-IFS2 recombinant vector comprising a polynucleotide encoding IFS2 of SEQ ID NO: 3; And (b) 상기 재조합 벡터로 벼를 형질전환 하는 단계;(b) transforming rice with the recombinant vector; 를 포함하는 아이소플라본을 생산하는 형질전환 벼의 제조방법.Method for producing a transformed rice producing an isoflavone comprising a. (a) 서열번호 3의 IFS2를 암호화하는 폴리뉴클레오티드를 포함하며, 도 1에 도시된 pMJC-GB-IFS2 또는 pMJC-GGB-IFS2 재조합 벡터를 제조하는 단계;(a) preparing a pMJC-GB-IFS2 or pMJC-GGB-IFS2 recombinant vector comprising a polynucleotide encoding IFS2 of SEQ ID NO: 3; (b) 상기 재조합 벡터로 벼를 형질전환 하는 단계; 및(b) transforming rice with the recombinant vector; And (c) 상기 형질전환 벼에서 아이소플라본을 추출하는 단계(c) extracting isoflavones from the transformed rice 를 포함하는 벼로부터 아이소플라본을 제조하는 방법.Method for producing isoflavones from rice comprising a. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070104034A 2007-10-16 2007-10-16 Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby KR100973997B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070104034A KR100973997B1 (en) 2007-10-16 2007-10-16 Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070104034A KR100973997B1 (en) 2007-10-16 2007-10-16 Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby

Publications (2)

Publication Number Publication Date
KR20090038642A KR20090038642A (en) 2009-04-21
KR100973997B1 true KR100973997B1 (en) 2010-08-05

Family

ID=40762762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070104034A KR100973997B1 (en) 2007-10-16 2007-10-16 Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby

Country Status (1)

Country Link
KR (1) KR100973997B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050207A (en) * 2005-11-10 2007-05-15 대한민국(관리부서:농촌진흥청) Isoflavone synthetic transgenic rice family(ytr-32) and the method for preparing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050207A (en) * 2005-11-10 2007-05-15 대한민국(관리부서:농촌진흥청) Isoflavone synthetic transgenic rice family(ytr-32) and the method for preparing thereof

Also Published As

Publication number Publication date
KR20090038642A (en) 2009-04-21

Similar Documents

Publication Publication Date Title
JP2812685B2 (en) Stilbene synthase gene
JP2898499B2 (en) Endo-type xyloglucan transferase gene
EP1498027B1 (en) Plant with improved organogenesis and method of constructing the same
KR20110086203A (en) Osmpt gene modifying plant architecture and uses theoreof
KR100905219B1 (en) Fusion polynucleotide for biosynthesis of beta-carotene comprising self-cleavage 2A sequence and transformed cell using the same
KR101166715B1 (en) Recombinant vector comprising polynucleotide related with tocotrienol biosynthesis and transformants transformed thereby
KR100973997B1 (en) Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby
KR101829803B1 (en) Anthocyanin biosynthesis genes involved in pigmentation of zoysiagrass and uses thereof
KR102038481B1 (en) Soybean plant with increased yield transformed with PfFAD3-1 gene from lesquerella and production method thereof
US8288613B2 (en) Lignan hydroxylase
KR101566692B1 (en) Method for producing transgenic plant with increased stilbene production and the plant thereof
KR101161276B1 (en) Vascular tissue-specific promoter and expression vector comprising the same
JP2007306917A (en) Method for increasing the resistance of rice plant to pathogenic microorganism and pathogenic microorganism-resistant rice transformant
KR101399944B1 (en) Method for producing transgenic soybean plant with improved syringin and coniferin content and transgenic soybean plant produced by the same
KR102603683B1 (en) Plant growth regulatory genes encoding seeds plant specific extensin motif containing proteins and uses thereof
KR101825219B1 (en) NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof
CN113373158B (en) Application of sesame SiWRKY67 gene in regulation and control of melatonin synthesis
KR20120072545A (en) Germinated transformants synthesizing tocotrienol with high anti-oxidant activity
CN113227383B (en) Role of HAK gene in regulating and controlling plant traits
KR102110870B1 (en) IbOr-R96H mutant from Ipomoea batatas and uses thereof
KR20230052726A (en) Transformed Chinese cabbage with improved clubroot resistance and manufacturing method thereof
JP3349440B2 (en) How to control plants
KR101263838B1 (en) A preparation method of freezing―tolerant plant by a recombinant DNA technology
KR101629370B1 (en) Composition for Preventing or Treating Prostate Cancer Comprising Rice Transformed with Tocotrienol Biosynthesis Gene
KR101303779B1 (en) A20 gene controlling germination or growth, and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant