KR20210155025A - Study cafe member management system and method - Google Patents

Study cafe member management system and method Download PDF

Info

Publication number
KR20210155025A
KR20210155025A KR1020200071272A KR20200071272A KR20210155025A KR 20210155025 A KR20210155025 A KR 20210155025A KR 1020200071272 A KR1020200071272 A KR 1020200071272A KR 20200071272 A KR20200071272 A KR 20200071272A KR 20210155025 A KR20210155025 A KR 20210155025A
Authority
KR
South Korea
Prior art keywords
information
learning
study cafe
management system
concentration
Prior art date
Application number
KR1020200071272A
Other languages
Korean (ko)
Inventor
민성윤
Original Assignee
민성윤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 민성윤 filed Critical 민성윤
Priority to KR1020200071272A priority Critical patent/KR20210155025A/en
Publication of KR20210155025A publication Critical patent/KR20210155025A/en
Priority to KR1020230035708A priority patent/KR20230041998A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1103Detecting eye twinkling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • G06K9/00597
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/12Healthy persons not otherwise provided for, e.g. subjects of a marketing survey
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/011Emotion or mood input determined on the basis of sensed human body parameters such as pulse, heart rate or beat, temperature of skin, facial expressions, iris, voice pitch, brain activity patterns

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Psychology (AREA)
  • Strategic Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Psychiatry (AREA)
  • Educational Technology (AREA)
  • Primary Health Care (AREA)
  • Developmental Disabilities (AREA)
  • Human Computer Interaction (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Social Psychology (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)

Abstract

Disclosed are a study cafe membership management system and method. According to the embodiment of the present invention, a study cafe member management system includes: a biometric information collection device installed in each seat booth and including member's body temperature, iris information, motion, and brain waves; a central server which analyzes the biometric information sensed by the biometric information collection device to identify member status information including health abnormalities, drowsiness, and decreased concentration, detects learning information including study cafe usage time, total learning time, average learning concentration, and recommended learning pattern, and transmits the learning information and status information for each member to a member's smart terminal; and a member terminal which receives the learning information and status information for each member from the central server. Therefore, it is possible to significantly improve learning efficiency and performance when using the study cafe.

Description

스터디 카페 회원관리 시스템 및 방법 {STUDY CAFE MEMBER MANAGEMENT SYSTEM AND METHOD}Study Cafe membership management system and method {STUDY CAFE MEMBER MANAGEMENT SYSTEM AND METHOD}

본 개시는 스터디 카페 회원관리 시스템 및 방법에 관한 것으로 구체적으로, 스터디 카페 또는 독서실에 등록한 회원의 체온, 홍채정보, 모션정보 등의 생체 정보를 수집하여 분석함으로써 감염병 예방 및 개별 회원들의 학습 효율 향상 방안을 제공하는 스터디 카페 회원관리 시스템에 관한 것이다. The present disclosure relates to a study cafe member management system and method, and specifically, a method for preventing infectious diseases and improving the learning efficiency of individual members by collecting and analyzing biometric information such as body temperature, iris information, and motion information of members registered in a study cafe or reading room It relates to a study cafe member management system that provides

본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.Unless otherwise indicated herein, the material described in this section is not prior art to the claims of this application, and inclusion in this section is not an admission that it is prior art.

스터디 카페는 중고등학생, 대학생, 직장인들이 카페와 유사한 공간에서 공부를 할 수 있는 곳이다. 2010년대에 등장하기 시작한 스터디 카페는 점차 더 많은 사람들이 찾고 있는 추세이다. 하지만 최근 코비드 19 감염병 발생으로 독서실, 스터디 카페 등 여러 사람들이 모이는 장소의 안전성 문제가 대두되고 있다. 회원들의 열 체크, 소독 등 방역관리에 힘쓰고 있지만 독서실이나 스터디 카페의 공간 특성상 회원들이 비교적 오랜 시간 머무르기 때문에 방역관리가 어려운 실정이다. 또한, 독서실이나 스터디 카페에 등록한 회원들이 스터디 카페 방문 후 외출하는 등 독서실이나 스터디 카페에서 실질적인 학습을 수행하지 않는 경우도 많기 때문에 보다 체계적인 회원관리 시스템이 필요하다.The study cafe is a place where middle and high school students, college students, and office workers can study in a space similar to a cafe. Study cafes, which began to appear in the 2010s, are increasingly being visited by more and more people. However, due to the recent outbreak of COVID-19, safety issues in places where many people gather, such as reading rooms and study cafes, are emerging. Although efforts are being made to manage members' heat check and disinfection, it is difficult to manage quarantine because members stay for a relatively long time due to the nature of the space in the reading room or study cafe. In addition, a more systematic member management system is needed because there are many cases where members registered in the reading room or study cafe do not perform practical learning in the reading room or study cafe, such as going out after visiting the study cafe.

1. 한국 공개특허공보 제 10-2020-0013826호 (2020년02월10일)1. Korean Patent Publication No. 10-2020-0013826 (February 10, 2020) 2. 한국 공개특허공보 제 10-2020-0013825호 (202002월10일)2. Korean Patent Publication No. 10-2020-0013825 (February 10, 2020)

실시예에 따른 스터디 카페 회원관리 시스템 및 방법은 회원들의 체온, 홍채인식정보, 모션정보를 포함하는 생체신호를 수집하고 수집된 생체신호 분석을 통해 회원의 건강상태, 집중도, 학습 능률 등을 파악하여 이를 회원과 관리자에게 알림으로써 스터디 카페 이용 시 학습 능률과 성과를 대폭 향상시킬 수 있도록 한다. The study cafe member management system and method according to the embodiment collects bio-signals including body temperature, iris recognition information, and motion information of members, and analyzes the collected bio-signals to identify members' health status, concentration, learning efficiency, etc. By notifying members and managers of this, it is possible to significantly improve learning efficiency and performance when using the study cafe.

실시예에 따른 스터디 카페 회원관리 시스템은 개별 좌석 부스에 설치되어 회원의 체온, 홍채정보, 모션, 뇌파를 포함하는 생체정보 수집장치; 생체정보 수집장치에서 센싱된 생체정보를 분석하여 건강이상, 졸음, 집중력 저하를 포함하는 회원 상태정보를 파악하고, 스터디 카페이용시간, 총 학습 시간, 평균 학습 집중도, 추천 학습 패턴을 포함하는 학습정보를 파악하여 학습정보와 회원 별 상태 정보를 회원의 스마트 단말로 전송하는 중앙서버; 중앙서버로부터 학습정보 및 회원 별 상태 정보를 수신하는 회원단말; 을 포함한다. Study cafe member management system according to an embodiment is installed in the individual seat booth, the member's body temperature, iris information, motion, biometric information collecting device including brain waves; By analyzing the biometric information sensed by the biometric information collection device, member status information including health abnormalities, drowsiness, and reduced concentration are identified, and learning information including study cafe usage time, total learning time, average learning concentration, and recommended learning patterns a central server that detects and transmits learning information and status information for each member to the member's smart terminal; a member terminal for receiving learning information and member-specific status information from the central server; includes

실시예에 따른 스터디 카페의 회원관리 시스템은 회원의 생체정보 센싱 및 분석을 통해 회원의 스터디 카페 출입 정보, 건강정보 및 공부 중 집중도를 파악하여 이에 따른 학습 효율 향상 방안을 제공함으로써, 회원 별 학습 능률 및 성과 향상에 도움을 준다.The member management system of the study cafe according to the embodiment provides a method to improve learning efficiency by identifying the member's study cafe access information, health information, and concentration while studying through sensing and analysis of the member's biometric information, thereby improving the learning efficiency for each member and help improve performance.

본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.

도 1은 실시예에 따른 스터디 카페 회원관리 시스템 구성도
도 2는 실시예에 따른 생체정보 수집장치가 설치된 독서실이나 스터디 카페의 개별 좌석 부스를 나타낸 도면
도 3은 실시예에 따른 중앙서버의 데이터 처리 블록을 나타낸 도면
도 4는 실시예에 따른 스터디 카페 회원관리 시스템의 신호 흐름도
1 is a configuration diagram of a study cafe member management system according to an embodiment
2 is a view showing an individual seat booth in a reading room or study cafe in which a biometric information collecting device according to an embodiment is installed
3 is a diagram illustrating a data processing block of a central server according to an embodiment;
Figure 4 is a signal flow chart of the study cafe member management system according to the embodiment

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 도면부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the technical field to which the present invention belongs It is provided to fully inform the possessor of the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.

본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the embodiments of the present invention, if it is determined that a detailed description of a well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms to be described later are terms defined in consideration of functions in an embodiment of the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification.

도 1은 실시예에 따른 스터디 카페 회원관리 시스템 구성도이다.1 is a configuration diagram of a study cafe member management system according to an embodiment.

도 1을 참조하면, 실시예에 따른 스터디 카페 회원관리 시스템은 생체정보 수집장치(100), 중앙서버(200) 및 회원단말(300)을 포함하여 구성될 수 있다.Referring to FIG. 1 , the study cafe member management system according to the embodiment may include a biometric information collection device 100 , a central server 200 , and a member terminal 300 .

생체정보 수집장치(100)는 독서실이나 스터디 카페의 개별 좌석 부스에 설치되어 회원의 생체정보를 수집한다. 실시예에서 수집되는 회원 생체정보에는 The biometric information collection device 100 is installed in the individual seat booth of the reading room or study cafe to collect the member's biometric information. The member biometric information collected in the embodiment includes

체온, 홍채정보, 모션, 뇌파, 심박수 등이 포함될 수 있다. Body temperature, iris information, motion, brain waves, heart rate, etc. may be included.

중앙서버(200)는 생체정보 수집장치에서 센싱된 생체정보를 분석하여 회원상태정보를 파악하고, 이를 회원의 스마트 단말로 전송한다. 실시예에서 회원 상태정보에는 건강이상, 졸음여부, 집중력 수치 등이 포함될 수 있다. 또한, 중앙서버(200)는 회원 별 상태 정보 및 스터디 카페이용시간, 총 학습 시간, 평균 학습 능률, 추천 학습 패턴 등의 학습 정보를 파악한다.The central server 200 analyzes the bio-information sensed by the bio-information collecting device to determine member status information, and transmits it to the member's smart terminal. In an embodiment, the member status information may include health abnormalities, drowsiness, concentration values, and the like. In addition, the central server 200 grasps learning information such as status information for each member, study cafe use time, total learning time, average learning efficiency, and recommended learning pattern.

회원단말(300)은 중앙서버(200)로부터 회원상태정보와 학습 정보 등 독서실이나 스터디 카페 이용에 필요한 정보를 수신한다. 실시예에서 회원 단말(300)은 중앙서버(200)로부터 회원 별 상태 정보 및 스터디 카페이용시간, 총 학습 시간, 평균 학습 능률, 추천 학습 패턴 등의 학습 정보를 수신할 수 있다. The member terminal 300 receives information necessary for using the reading room or study cafe, such as member status information and learning information, from the central server 200 . In an embodiment, the member terminal 300 may receive learning information such as status information for each member and study cafe use time, total learning time, average learning efficiency, and recommended learning pattern from the central server 200 .

도 2는 실시예에 따른 생체정보 수집장치가 설치된 독서실이나 스터디 카페의 개별 좌석 부스를 나타낸 도면이다. 2 is a view showing an individual seat booth in a reading room or study cafe in which the biometric information collecting device according to the embodiment is installed.

도 2를 참조하면, 실시예에 따른 생체정보 수집장치(100)는 체온센서(420), 홍채인식센서(440), 카메라를 포함하여 구성될 수 있다. 실시예에서 체온센서, 홍채 인식 센서, 카메라 등 회원 생체정보 인식을 위한 장치 각각은 독서실, 스터디 카페의 좌석부스에 개별적으로 설치될 수 있다. 체온센서(420)는 착석한 회원의 체온을 감지하고, 홍채인식 센서는 회원의 홍채정보를 감지한다. 실시예에서 홍채정보에는 주기 별 눈 깜빡임 횟수, 홍채 노출 정도 등이 포함될 수 있다. 카메라는 회원의 착석여부 및 모션을 감지한다. 아울러 실시예에 따른 생체정보 수집장치는 뇌파 감지 센서를 포함하여 구성될 수 있고, 감지된 회원 별 뇌파를 회원의 졸음도 측정 및 집중도 측정에 이용할 수 있다. Referring to FIG. 2 , the biometric information collecting apparatus 100 according to the embodiment may include a body temperature sensor 420 , an iris recognition sensor 440 , and a camera. In an embodiment, each device for member biometric information recognition, such as a body temperature sensor, an iris recognition sensor, and a camera, may be individually installed in a reading room or a seat booth of a study cafe. The body temperature sensor 420 detects the body temperature of the seated member, and the iris recognition sensor detects the member's iris information. In an embodiment, the iris information may include the number of eye blinks per cycle, the degree of exposure of the iris, and the like. The camera detects whether the member is seated or not and the motion. In addition, the biometric information collection device according to the embodiment may be configured to include an EEG sensor, and the detected EEG for each member may be used to measure a member's sleepiness level and concentration level.

도 3은 실시예에 따른 중앙서버의 데이터 처리 블록을 나타낸 도면이다.3 is a diagram illustrating a data processing block of a central server according to an embodiment.

도 3을 참조하면, 실시예에 따른 중앙서버(200)는 생체정보 분석모듈(210), 학습패턴 분석모듈(230) 및 학습효율 관리모듈(250)을 포함하여 구성될 수 있다. 본 명세서에서 사용되는 '모듈' 이라는 용어는 용어가 사용된 문맥에 따라서, 소프트웨어, 하드웨어 또는 그 조합을 포함할 수 있는 것으로 해석되어야 한다. 예를 들어, 소프트웨어는 기계어, 펌웨어(firmware), 임베디드코드(embedded code), 및 애플리케이션 소프트웨어일 수 있다. 또 다른 예로, 하드웨어는 회로, 프로세서, 컴퓨터, 집적 회로, 집적 회로 코어, 센서, 멤스(MEMS; Micro-Electro-Mechanical System), 수동 디바이스, 또는 그 조합일 수 있다.Referring to FIG. 3 , the central server 200 according to the embodiment may include a biometric information analysis module 210 , a learning pattern analysis module 230 , and a learning efficiency management module 250 . As used herein, the term 'module' should be construed to include software, hardware, or a combination thereof, depending on the context in which the term is used. For example, the software may be machine language, firmware, embedded code, and application software. As another example, the hardware may be a circuit, a processor, a computer, an integrated circuit, an integrated circuit core, a sensor, a Micro-Electro-Mechanical System (MEMS), a passive device, or a combination thereof.

생체정보 분석모듈(210)은 회원 별 생체 정보 중, 회원의 눈 깜빡임 주기, 눈꺼풀의 움직임, 홍채 움직임, 홍채 노출 정보, 뇌파종류정보 및 모션정보를 통해 회원 별 졸음수치를 산출하고, 졸음수치가 일정 수치 이상인 경우 회원 단말로 알린다. 생체정보 분석모듈(210)은 전달된 생체정보에서 회원의 움직임 속도, 눈깜빡임 속도를 산출하여 산출된 속도에 반비례하도록 졸음수치를 산출한다. 또한, 홍채 인식 센서에 의해 감지된 홍채 노출량을 파악하여 홍채 노출량이 일정 시간 이상 동안 일정 수준 미만인 경우 졸음상태로 판단하고 이를 회원에게 알릴 수 있도록 한다. The biometric information analysis module 210 calculates the drowsiness level for each member through the member's eye blink cycle, eyelid movement, iris movement, iris exposure information, EEG type information and motion information among the member's biometric information, and the drowsiness level is If it exceeds a certain number, the member terminal is notified. The biometric information analysis module 210 calculates the member's movement speed and eye blink speed from the delivered biometric information, and calculates a drowsiness value to be inversely proportional to the calculated speed. In addition, the iris exposure amount detected by the iris recognition sensor is identified, and when the iris exposure amount is less than a certain level for a certain period of time or more, it is determined that the iris exposure is drowsy and the member can be notified of this.

학습패턴 분석모듈(230)은 회원 별 스터디 카페 이용시간, 이용시간에 따른 졸음수치 및 집중도를 산출하여 회원의 학습패턴정보를 파악한다. 실시예에서 학습패턴 분석모듈(230)은 생체정보로 전달받은 뇌파를 분석하고 시간대별로 파악된 졸음 수치 정보를 이용하여 학습 시간 중 집중도가 최상, 최하인 시간대를 추출한다. 아울러, 회원이 전체 스터디 카페나 독서실에 머무른 전체 시간 중 집중도가 일정 수준 미만인 시간의 비율을 산출하여 이를 회원에게 알릴 수 있다. The learning pattern analysis module 230 calculates the study cafe usage time for each member, the drowsiness level and concentration according to the usage time, and grasps the member's learning pattern information. In an embodiment, the learning pattern analysis module 230 analyzes the brain waves received as biometric information and extracts the best and the lowest time zones of the learning time by using the drowsiness numerical information identified for each time period. In addition, it is possible to calculate the ratio of the time when the concentration is less than a certain level among the total time that the member stayed in the entire study cafe or reading room and inform the member.

학습효율 관리모듈(250)은 회원 별 학습 패턴 분석 결과에 따라 집중도가 가장 높은 시간대를 추출하고, 건강상태 및 집중도 상승을 위한 학습 방법을 추천한다. 예컨대, 학습효율 관리모듈(250)은 회원이 공부 시작 후 얼마만큼의 시간이 지나야 집중도가 최저가 되는지 파악하여, 집중도가 최저가 되는 시간에 휴식 알림을 전송할 수 있다. 또한, 공부시간이 일정 시간을 초과하는 경우, 이를 알리고 스트레칭 등 휴식활동을 권유 할 수 있다. The learning efficiency management module 250 extracts a time period with the highest concentration according to the result of analyzing the learning pattern for each member, and recommends a learning method for increasing the health status and concentration. For example, the learning efficiency management module 250 may determine how much time elapses after the member starts studying to determine the lowest concentration level, and transmit a break notification at the time when the concentration level becomes the lowest. In addition, if the study time exceeds a certain amount of time, it can be notified and recommended for rest activities such as stretching.

또한, 학습효율 관리모듈(250)은 회원의 학습 성과 및 학습 패턴 정보를 일, 주, 월, 분기, 년을 포함하는 기간별로 분석하여 스터디 카페를 이용하는 동안의 학습패턴 변화 정보를 산출하고 산출된 학습패턴 변화 정보를 회원에게 알린다. In addition, the learning efficiency management module 250 calculates the learning pattern change information while using the study cafe by analyzing the member's learning performance and learning pattern information by period including days, weeks, months, quarters, and years. Notify members of learning pattern change information.

이하에서는 스터디 카페의 회원관리 방법에 대해서 차례로 설명한다. 실시예에 따른 스터디 카페의 회원관리 방법의 작용(기능)은 스터디 카페의 회원관리 서버 및 시스템상의 기능과 본질적으로 같은 것이므로 도 1 내지 도 3과 중복되는 설명은 생략하도록 한다.Hereinafter, the member management method of the study cafe will be described in turn. Since the operation (function) of the member management method of the study cafe according to the embodiment is essentially the same as the function on the member management server and system of the study cafe, the description overlapping with FIGS. 1 to 3 will be omitted.

도 4는 실시예에 따른 스터디 카페 회원관리 시스템의 신호 흐름도이다.Figure 4 is a signal flow chart of the study cafe member management system according to the embodiment.

도 4를 참조하면, S410 단계에서는 독서실이나 스터디 카페의 개별 좌석에 구비된 생체정보 수집장치에서 체온, 홍채정보, 모션정보 등 다양한 생체정보를 수집하고, S420 단계에서 수집된 생체정보를 중앙서버(200)로 전송한다. S430 단계에서는 중앙서버에서 수신한 생체정보를 분석하여 회원의 건강상태, 졸음여부, 집중도 등을 파악한다. S440 단계에서는 중앙서버(200)에서 생체정보 분석 결과에 따라 학습 패턴을 분석한다. 예컨대, S440 단계에서는 회원 별 집중도 최상시간, 최하시간을 추출하거나, 공부 시작 후 어느 정도의 시간이 흘러야 집중도가 최하가 되는지 파악할 수 있다. 아울러, 공부 시작 시점 이후 집중도가 최상이 되는 시간 또한 파악할 수 있다. S450 단계에서는 분석된 회원 별 학습 패턴 정보에 따라 학습 방법을 추천한다. 예컨대, 특정 회원에게 공부 시작 이후 3시간이 지나면 집중도가 급격히 하락하므로 휴식을 권유하거나 건강상태가 좋지 못한 회원 및 집중도가 지속적으로 일정수준 미만인 회원에게는 휴식 후 다시 학습을 시작할 것을 권유 할 수 있다. S460 단계에서는 추천된 학습 방법을 회원단말(300)로 전송하고, S470 단계에서는 회원단말(300)에서 학습 패턴 정보 및 추천 학습 방법을 출력한다. 4, in step S410, various biometric information such as body temperature, iris information, and motion information is collected from the biometric information collecting device provided at each seat in the reading room or study cafe, and the biometric information collected in step S420 is transferred to the central server ( 200) is sent. In step S430, the biometric information received from the central server is analyzed to determine the member's health status, drowsiness, concentration, and the like. In step S440, the central server 200 analyzes the learning pattern according to the biometric information analysis result. For example, in step S440, it is possible to extract the highest and lowest concentration time for each member, or figure out how much time elapses after the start of the study before the concentration becomes the lowest. In addition, it is also possible to determine the time when the concentration is the best after the start of the study. In step S450, a learning method is recommended according to the analyzed learning pattern information for each member. For example, since concentration drops sharply after 3 hours from the start of study to a specific member, it is recommended to take a break, or to recommend a member with poor health or a member whose concentration is consistently below a certain level to start learning again after taking a break. In step S460, the recommended learning method is transmitted to the member terminal 300, and in step S470, the learning pattern information and the recommended learning method are output from the member terminal 300.

실시예에 따른 스터디 카페의 회원관리 시스템은 회원의 생체정보 센싱 및 분석을 통해 회원의 스터디 카페 출입 정보, 건강정보 및 공부 중 집중도를 파악하여 이에 따른 학습 효율 향상 방안을 제공함으로써, 회원 별 학습 능률 및 성과 향상에 도움을 줄 수 있도록 한다.The member management system of the study cafe according to the embodiment provides a method to improve learning efficiency by identifying the member's study cafe access information, health information, and concentration while studying through sensing and analysis of the member's biometric information, thereby improving the learning efficiency for each member and to help improve performance.

개시된 내용은 예시에 불과하며, 특허청구범위에서 청구하는 청구의 요지를 벗어나지 않고 당해 기술분야에서 통상의 지식을 가진 자에 의하여 다양하게 변경 실시될 수 있으므로, 개시된 내용의 보호범위는 상술한 특정의 실시예에 한정되지 않는다.The disclosed content is merely an example, and can be variously changed and implemented by those skilled in the art without departing from the gist of the claims claimed in the claims, so the protection scope of the disclosed content is limited to the specific It is not limited to an Example.

Claims (9)

스터디 카페 회원관리 시스템에 있어서,
개별 좌석 부스에 설치되어 회원의 체온, 홍채정보, 모션, 뇌파를 포함하는 생체정보 수집장치;
상기 생체정보 수집장치에서 센싱된 생체정보를 분석하여 건강이상, 졸음, 집중력 저하를 포함하는 회원 상태정보를 파악하고, 스터디 카페이용시간, 총 학습 시간, 평균 학습 집중도, 추천 학습 패턴을 포함하는 학습정보를 파악하여 상기 학습정보와 회원 별 상태 정보를 회원의 스마트 단말로 전송하는 중앙서버;
상기 중앙서버로부터 학습정보 및 회원 별 상태 정보를 수신하는 회원단말; 을 포함하는 스터디 카페 회원관리 시스템.
In the study cafe member management system,
Biometric information collection device installed in each seat booth and including member's body temperature, iris information, motion, and brain waves;
By analyzing the biometric information sensed by the biometric information collection device, member status information including health abnormalities, drowsiness, and decreased concentration are identified, study cafe use time, total learning time, average learning concentration, and learning including recommended learning patterns a central server that grasps information and transmits the learning information and status information for each member to the smart terminal of the member;
a member terminal for receiving learning information and member-specific status information from the central server; Study cafe membership management system that includes.
제 1항에 있어서, 상기 생체정보 수집장치;는
회원의 체온을 감지하는 체온센서;
회원의 홍채정보를 감지하는 홍채인식센서; 및
회원의 착석여부 및 모션을 감지하는 카메라;
를 포함하는 것을 특징으로 하는 스터디 카페 회원관리 시스템.
According to claim 1, wherein the biometric information collecting device;
a body temperature sensor that detects the member's body temperature;
an iris recognition sensor for detecting member's iris information; and
A camera that detects whether a member is seated or not;
Study cafe membership management system, characterized in that it comprises a.
제 1항에 있어서, 상기 중앙서버; 는
회원 별 생체 정보 중 회원의 눈 깜빡임 주기, 눈꺼풀의 움직임, 홍채 움직임, 뇌파종류정보 및 모션정보를 통해 회원 별 졸음수치를 산출하고, 졸음수치가 일정 수치 이상인 경우 졸음수치 및 알람을 회원 단말로 전송하는 생체정보 분석모듈; 을 포함하는 것을 특징으로 하는 스터디 카페 회원관리 시스템.
According to claim 1, wherein the central server; Is
Among the biometric information of each member, each member’s drowsiness level is calculated through the member’s eye blink cycle, eyelid movement, iris movement, EEG type information, and motion information. a biometric information analysis module; Study cafe membership management system, characterized in that it comprises a.
제 3항에 있어서, 상기 중앙서버;는
회원 별 스터디 카페 이용시간, 이용시간에 따른 졸음수치 및 집중도를 산출하여 회원의 학습패턴정보를 파악하는 학습패턴 분석모듈;을 더 포함하는 것을 특징으로 하는 스터디 카페 회원관리 시스템.
The method of claim 3, wherein the central server;
Study cafe member management system, characterized in that it further comprises; a study cafe use time for each member, a learning pattern analysis module that calculates the drowsiness level and concentration according to the use time to understand the learning pattern information of the member.
제 4항에 있어서, 상기 중앙서버; 는
회원 별 학습 패턴 분석 결과에 따라 집중도가 가장 높은 시간대를 추출하고, 건강상태 및 집중도 상승을 위한 회원 별 학습 방법을 추천하는 학습효율 관리모듈;을 더 포함하는 것을 특징으로 하는 스터디 카페 회원관리 시스템.
According to claim 4, The central server; Is
Study cafe member management system, characterized in that it further comprises; extracting the time of highest concentration according to the result of analysis of each member's learning pattern, and a learning efficiency management module that recommends a learning method for each member to increase health status and concentration.
제 5항에 있어서, 상기 학습효율 관리모듈;은
회원의 학습 성과 및 학습 패턴 정보를 일, 주, 월, 분기, 년을 포함하는 기간별로 분석하여 스터디 카페를 이용하는 동안의 학습패턴 변화 정보를 산출하는 것을 특징으로 하는 스터디 카페 회원관리 시스템.
The method of claim 5, wherein the learning efficiency management module;
Study cafe membership management system, characterized in that by analyzing the learning performance and learning pattern information of the member by period including days, weeks, months, quarters, and years, and calculating the learning pattern change information while using the study cafe.
독서실 또는 스터디 카페 회원의 정보분석서버에 있어서,
체온, 홍채정보, 모션, 뇌파를 포함하는 생체정보를 분석하여 건강이상, 졸음, 집중력 저하를 포함하는 회원 상태정보를 파악하고, 스터디 카페이용시간, 총 학습 시간, 평균 학습 집중도, 추천 학습 패턴을 포함하는 학습정보를 파악하여 상기 학습정보와 회원 별 상태 정보를 회원의 스마트 단말로 전송하는 회원 정보 분석 서버.
In the reading room or study cafe member's information analysis server,
By analyzing biometric information including body temperature, iris information, motion, and brain waves, member status information including health abnormalities, drowsiness, and poor concentration are identified, and study cafe usage time, total learning time, average learning concentration, and recommended learning patterns are determined. A member information analysis server that identifies the learning information included and transmits the learning information and status information for each member to the member's smart terminal.
제 7항에 있어서, 상기 정보분석서버;는
회원 별 생체 정보 중, 회원의 눈 깜빡임 주기, 눈꺼풀의 움직임, 홍채 움직임, 뇌파종류정보 및 모션정보를 통해 회원 별 졸음수치를 산출하고, 졸음수치가 일정 수치 이상인 경우 회원 단말로 알리는 생체정보 분석모듈; 및
회원 별 스터디 카페 이용시간, 이용시간에 따른 졸음수치 및 집중도를 산출하여 회원의 학습패턴정보를 파악하는 학습패턴 분석모듈; 을 포함하는 것을 특징으로 하는 회원 정보 분석 서버.
The method of claim 7, wherein the information analysis server;
Among the biometric information of each member, the biometric information analysis module calculates the drowsiness level for each member based on the member's eye blink cycle, eyelid movement, iris movement, EEG type information and motion information, and notifies the member terminal when the drowsiness level is above a certain level ; and
a learning pattern analysis module that calculates the study cafe usage time for each member, the drowsiness level and concentration according to the usage time, and grasps the member's learning pattern information; Member information analysis server comprising a.
제 8항에 있어서, 상기 정보분석서버;는
회원 별 학습 패턴 분석 결과에 따라 집중도가 가장 높은 시간대를 추출하고, 건강상태 및 집중도 상승을 위한 학습 방법을 추천하는 학습효율 관리모듈; 을 더 포함하고,
상기 학습효율 관리모듈;은
회원의 학습 성과 및 학습 패턴 정보를 일, 주, 월, 분기, 년을 포함하는 기간별로 분석하여 스터디 카페를 이용하는 동안의 학습패턴 변화 정보를 산출하는 것을 특징으로 하는 회원 정보 분석 서버.

The method of claim 8, wherein the information analysis server;
a learning efficiency management module that extracts a time period with the highest concentration according to the result of analyzing the learning pattern for each member and recommends a learning method for improving health status and concentration; further comprising,
The learning efficiency management module;
Member information analysis server, characterized in that by analyzing the learning performance and learning pattern information of the member by period including days, weeks, months, quarters, and years to calculate the learning pattern change information while using the study cafe.

KR1020200071272A 2020-06-12 2020-06-12 Study cafe member management system and method KR20210155025A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200071272A KR20210155025A (en) 2020-06-12 2020-06-12 Study cafe member management system and method
KR1020230035708A KR20230041998A (en) 2020-06-12 2023-03-20 Study cafe member management system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200071272A KR20210155025A (en) 2020-06-12 2020-06-12 Study cafe member management system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230035708A Division KR20230041998A (en) 2020-06-12 2023-03-20 Study cafe member management system and method

Publications (1)

Publication Number Publication Date
KR20210155025A true KR20210155025A (en) 2021-12-22

Family

ID=79164217

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200071272A KR20210155025A (en) 2020-06-12 2020-06-12 Study cafe member management system and method
KR1020230035708A KR20230041998A (en) 2020-06-12 2023-03-20 Study cafe member management system and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230035708A KR20230041998A (en) 2020-06-12 2023-03-20 Study cafe member management system and method

Country Status (1)

Country Link
KR (2) KR20210155025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096524A1 (en) * 2022-10-31 2024-05-10 주식회사 에이치에이치에스 System for safety management using brainwave-based complex signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200013825A (en) 2018-07-31 2020-02-10 백태규 Reading room management system for inducing users to improve the learning habits
KR20200013826A (en) 2018-07-31 2020-02-10 백태규 Smart reading room management system for self-directed study

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200013825A (en) 2018-07-31 2020-02-10 백태규 Reading room management system for inducing users to improve the learning habits
KR20200013826A (en) 2018-07-31 2020-02-10 백태규 Smart reading room management system for self-directed study

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096524A1 (en) * 2022-10-31 2024-05-10 주식회사 에이치에이치에스 System for safety management using brainwave-based complex signals

Also Published As

Publication number Publication date
KR20230041998A (en) 2023-03-27

Similar Documents

Publication Publication Date Title
Cook et al. Using smart city technology to make healthcare smarter
CN106777954B (en) A kind of intelligent guarding system and method for Empty nest elderly health
CN111899878B (en) Old person health detection system, method, computer device and readable storage medium
Yang et al. Lifelogging data validation model for internet of things enabled personalized healthcare
Saleem et al. IoT Healthcare: Design of Smart and Cost‐Effective Sleep Quality Monitoring System
JP6892233B2 (en) Two-way remote patient monitoring and state management intervention system
Akmandor et al. Smart, secure, yet energy-efficient, internet-of-things sensors
KR102129730B1 (en) Patient condition predicting apparatus based on artificial intelligence and predicting method using the same
US9147334B2 (en) System and method for monitoring hospital workflow compliance with a hand hygiene network
EP3289497A1 (en) Identifying events from aggregated device sensed physical data
CN106796746A (en) Activity monitoring approach and system
Lawanont et al. Daily stress recognition system using activity tracker and smartphone based on physical activity and heart rate data
KR20230041998A (en) Study cafe member management system and method
KR20200056660A (en) Pain monitoring method and apparatus using tiny motion in facial image
Fernandes et al. A human-in-the-loop cyber-physical approach for students performance assessment
KR20130112158A (en) Apparatus and method for predicting or detecting a fall
Bianchi et al. Multi sensor assistant: a multisensor wearable device for ambient assisted living
AU2021101013A4 (en) Aiot based pandemic related smart health management system for industrial workers
Shang et al. Implicit irregularity detection using unsupervised learning on daily behaviors
Kumar et al. Smart band for elderly fall detection using machine learning
Zheng et al. Using machine learning techniques to optimize fall detection algorithms in smart wristband
Wang et al. Monitoring for elderly care: the role of wearable sensors in fall detection and fall prediction research
Najmurrokhman et al. Development of falling notification system for elderly using mpu6050 sensor and short message service
Wlodarczak et al. Reality mining in eHealth
Fioretti et al. ADLs detection with a wrist-worn accelerometer in uncontrolled conditions

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
A107 Divisional application of patent