KR20210151984A - 포인트 클라우드 데이터 처리 방법 및 장치 - Google Patents
포인트 클라우드 데이터 처리 방법 및 장치 Download PDFInfo
- Publication number
- KR20210151984A KR20210151984A KR1020217038893A KR20217038893A KR20210151984A KR 20210151984 A KR20210151984 A KR 20210151984A KR 1020217038893 A KR1020217038893 A KR 1020217038893A KR 20217038893 A KR20217038893 A KR 20217038893A KR 20210151984 A KR20210151984 A KR 20210151984A
- Authority
- KR
- South Korea
- Prior art keywords
- information
- point cloud
- lod
- points
- attribute
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims description 238
- 238000005070 sampling Methods 0.000 claims description 194
- 238000012545 processing Methods 0.000 claims description 130
- 230000005540 biological transmission Effects 0.000 claims description 72
- 238000010187 selection method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 description 83
- 238000013139 quantization Methods 0.000 description 77
- 230000009466 transformation Effects 0.000 description 62
- 238000007906 compression Methods 0.000 description 35
- 230000006835 compression Effects 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 34
- 230000011664 signaling Effects 0.000 description 28
- 230000015654 memory Effects 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 21
- 238000001914 filtration Methods 0.000 description 18
- 238000010276 construction Methods 0.000 description 13
- 238000002955 isolation Methods 0.000 description 13
- 238000013507 mapping Methods 0.000 description 13
- 230000006837 decompression Effects 0.000 description 11
- 238000005538 encapsulation Methods 0.000 description 11
- 238000009877 rendering Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 230000001131 transforming effect Effects 0.000 description 7
- 238000000638 solvent extraction Methods 0.000 description 6
- 230000001174 ascending effect Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000011449 brick Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013144 data compression Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 1
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000019395 ammonium persulphate Nutrition 0.000 description 1
- 238000000261 appearance potential spectroscopy Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/001—Model-based coding, e.g. wire frame
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/004—Predictors, e.g. intraframe, interframe coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/40—Tree coding, e.g. quadtree, octree
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/184—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/81—Monomedia components thereof
- H04N21/816—Monomedia components thereof involving special video data, e.g 3D video
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Generation (AREA)
Abstract
실시예들에 따른 포인트 클라우드 데이터 처리 방법은 포인트 클라우드 데이터를 인코딩여 비트스트림으로 전송할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 처리 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하고 포인트 클라우드 데이터를 디코딩할 수 있다.
Description
실시예들은 사용자에게 VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위하여 Point Cloud 콘텐츠를 제공하는 방안을 제공한다.
포인트 클라우드 콘텐트는 3차원 공간을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다.
실시예들은 포인트 클라우드 데이터를 효율적으로 처리하기 위한 장치 및 방법을 제공한다. 실시예들은 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 처리 방법 및 장치를 제공한다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 기재된 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
따라서 효율적으로 포인트 클라우드 데이터를 처리하기 위하여 실시예들에 따른 포인트 클라우드 데이터 처리 방법은 지오메트리 정보 및 어트리뷰트 정보를 포함하는 포인트 클라우드 데이터를 인코딩하는 단계 및 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함한다. 실시예들에 따른 지오메트리 정보는 포인트 클라우드 데이트의 포인트들의 포지션들을 나타내는 정보이고, 실시예들에 따른 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보이다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 지오메트리 정보 및 어트리뷰트 정보를 포함하는 포인트 클라우드 데이터를 인코딩하는 인코더 및 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 전송부를 포함한다. 실시예들에 따른 지오메트리 정보는 포인트 클라우드 데이트의 포인트들의 포지션들을 나타내는 정보이고, 실시예들에 따른 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보이다.
실시예들에 따른 포인트 클라우드 데이터 처리 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계 및 포인트 클라우드 데이터를 디코딩하는 단계를 포함한다. 실시예들에 따른 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함한다. 실시예들에 따른 지오메트리 정보는 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보이고, 실시예들에 따른 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보이다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신기 및 포인트 클라우드 데이터를 디코딩하는 디코더를 포함한다. 실시예들에 따른 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함한다. 실시예들에 따른 지오메트리 정보는 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보이고, 실시예들에 따른 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보이다.
실시예들에 따른 장치 및 방법은 높은 효율로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 장치 및 방법은 높은 퀄리티의 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 장치 및 방법은 VR 서비스, 자율주행 서비스 등 범용적인 서비스를 제공하기 위한 포인트 클라우드 콘텐트를 제공할 수 있다.
첨부된 도면은 본 발명의 실시예들을 나타내고 설명과 함께 본 발명의 원리를 설명한다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐츠 제공 시스템의 예시를 나타낸다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 5는 실시예들에 따른 복셀의 예시를 나타낸다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도 15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도 16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 18은 포인트 클라우드 인코더의 예시를 나타내는 블록도이다.
도 19는 지오메트리 정보 인코더의 예시를 나타내는 블록도이다.
도 20은 실시예들에 따른 어트리뷰트 정보 인코더의 예시를 나타낸다.
도 21은 실시예들에 따른 어트리뷰트 정보 인코더의 예시를 나타낸다.
도 22는 실시예들에 따른 어트리뷰트 정보 예측부의 예시를 나타낸다.
도 23은 LOD 생성 과정의 예시를 나타낸다.
도 24는 실시예들에 따른 몰톤 코드 기반 샘플링 과정의 예시를 나타낸다.
도 25는 실시예들에 따른 LOD 생성 과정의 예시를 나타낸다.
도 26은 포인트 클라우드 컴프레션 (PCC) 비트스트림의 구조도의 예시를 나타낸다.
도 27은 실시예들에 따른 APS를 위한 신택스의 예시이다.
도 28은 실시예들에 따른 APS를 위한 신택스의 예시이다.
도 29는 실시예들에 따른 TPS를 위한 신택스의 예시이다.
도 30은 실시예들에 따른 TPS를 위한 신택스의 예시이다.
도 31은 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시이다.
도 32는 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시이다.
도 33은 포인트 클라우드 디코더의 예시를 나타내는 블록도이다.
도 34는 지오메트리 정보 디코더의 예시를 나타내는 블록도이다.
도 35는 어트리뷰트 정보 디코더의 예시를 나타내는 블록도이다.
도 36은 실시예들에 따른 포인트 클라우드 데이터 처리 방법의 플로우 다이어그램의 예이시다.
도 37은 실시예들에 따른 포인트 클라우드 데이터 처리 방법의 플로우 다이어그램의 예시이다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐츠 제공 시스템의 예시를 나타낸다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 5는 실시예들에 따른 복셀의 예시를 나타낸다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도 15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도 16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 18은 포인트 클라우드 인코더의 예시를 나타내는 블록도이다.
도 19는 지오메트리 정보 인코더의 예시를 나타내는 블록도이다.
도 20은 실시예들에 따른 어트리뷰트 정보 인코더의 예시를 나타낸다.
도 21은 실시예들에 따른 어트리뷰트 정보 인코더의 예시를 나타낸다.
도 22는 실시예들에 따른 어트리뷰트 정보 예측부의 예시를 나타낸다.
도 23은 LOD 생성 과정의 예시를 나타낸다.
도 24는 실시예들에 따른 몰톤 코드 기반 샘플링 과정의 예시를 나타낸다.
도 25는 실시예들에 따른 LOD 생성 과정의 예시를 나타낸다.
도 26은 포인트 클라우드 컴프레션 (PCC) 비트스트림의 구조도의 예시를 나타낸다.
도 27은 실시예들에 따른 APS를 위한 신택스의 예시이다.
도 28은 실시예들에 따른 APS를 위한 신택스의 예시이다.
도 29는 실시예들에 따른 TPS를 위한 신택스의 예시이다.
도 30은 실시예들에 따른 TPS를 위한 신택스의 예시이다.
도 31은 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시이다.
도 32는 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시이다.
도 33은 포인트 클라우드 디코더의 예시를 나타내는 블록도이다.
도 34는 지오메트리 정보 디코더의 예시를 나타내는 블록도이다.
도 35는 어트리뷰트 정보 디코더의 예시를 나타내는 블록도이다.
도 36은 실시예들에 따른 포인트 클라우드 데이터 처리 방법의 플로우 다이어그램의 예이시다.
도 37은 실시예들에 따른 포인트 클라우드 데이터 처리 방법의 플로우 다이어그램의 예시이다.
발명의 실시를 위한 최선의 형태
실시예들의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 실시예들의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 실시예들의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 실시예들에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 실시예들이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
실시예들에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 실시예들은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐츠 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
. 실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Ariticial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터 뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 컨텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보), 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다. 도1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 데이터 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 데이터 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)으로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1 내지 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구명(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수 있다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 예시를 나타낸다. 포인트 클라우드 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1 내지 도2 에서 설명한 바와 같이 포인트 클라우드 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 인코더는 좌표계 변환부(Transformation Coordinates, 40000), 양자화부(Quantize and Remove Points (Voxelize), 40001), 옥트리 분석부(Analyze Octree, 40002), 서페이스 어프록시메이션 분석부(Analyze Surface Approximation, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Reconstruct Geometry, 40005), 컬러 변환부(Transform Colors, 40006), 어트리뷰트 변환부(Transfer Attributes, 40007), RAHT 변환부(40008), LOD생성부(Generated LOD, 40009), 리프팅 변환부(Lifting)(40010), 계수 양자화부(Quantize Coefficients, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encode, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quatization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 2차원 이미지/비디오 정보를 포함하는 최소 단위는 픽셀(pixel)과 같이, 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(ceter)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchial Transform) 코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰튼 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 예측 변환 코딩을 수행하기 위하여LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 인코더(예를 들면 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 식에 따라 결정된다. 하기 식에서 (x int n, y int n, z int n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 도 4의 포인트 클라우드 인코더, 또는 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 따라서 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이텍트 코딩의 대상이 되는 전채 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 인코더(또는 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(Δx, Δy, Δz), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음과 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③자승을 수행하고 그 값을 모두 더한 값을 구한다.
더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표는 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표는4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다. .
표. Triangles formed from vertices ordered 1
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertice)라고 호칭된다. 실시예들에 따른 포인트 클라우드 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 인코더는 콘텍스트 어탭티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더 또는 아리스메틱 인코더(40004))는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization)할 수 있다. 도면은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도면의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도면 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리이디언 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 인코더뿐만 아니라 포인트 클라우드 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD 0는 P0, P5, P4 및 P2를 포함한다. LOD 1은 LOD 0의 포인트들과 P1, P6 및 P3를 포함한다. LOD 2는 LOD 0의 포인트들, LOD 1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 인코더는 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)는 각 포인트의 어트리뷰트(어트리뷰트 값)에서 예측 어트리뷰트(어트리뷰트값)을 뺀 잔여값들(residuals, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값 등으로 호칭할 수 있다)을 양자화(quatization) 및 역양자화(inverse quantization)할 수 있다. 양자화 과정은 다음의 표에 나타난 바와 같다.
Attribute prediction residuals quantization pseudo code
Attribute prediction residuals inverse quantization pseudo code
실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더 (예를 들면 리프팅 변환부(40010))는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다. 은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(400012)의 인코딩). 가중치는 로 계산된다. 루트 노드는 마지막 과 을 통해서 다음과 같이 생성된다.,
gDC값 또한 하이패스 계수와 같이 양자화되어 엔트로피 코딩된다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 디코더는 지오메트리 디코더(geometry decoder)및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리 및 어트리뷰트 비트스트림을 기반으로 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 디코더는 도 10에서 설명한 포인트 클라우드 디코더의 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 디코더는 아리스메틱 디코더(arithmetic decode, 11000), 옥트리 합성부(synthesize octree, 11001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 11002), 지오메트리 리컨스트럭션부(reconstruct geometry, 11003), 좌표계 역변환부(inverse transform coordinates, 11004), 아리스메틱 디코더(arithmetic decode, 11005), 역양자화부(inverse quantize, 11006), RAHT변환부(11007), LOD생성부(generate LOD, 11008), 인버스 리프팅부(Inverse lifting, 11009), 및/또는 컬러 역변환부(inverse transform colors, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 코딩(direct coding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchial Transform) 디코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. . 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(400012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom0 0) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr0 0, Attr1 0)을 포함할 수 있다. 실시예들에 따른 TPS는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_ parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도 14의 상단은 도 1 내지 도 13에서 설명한 전송 장치(예를 들면 전송 장치(10000), 도 12의 전송 장치 등)가 포인트 클라우드 콘텐트를 처리 및 전송하는 과정을 나타낸다.
도 1 내지 도 13에서 설명한 바와 같이 전송 장치는 포인트 클라우드 콘텐트의 오디오(Ba)를 획득하고(Audio Acquisition), 획득한 오디오를 인코딩(Audio encoding)하여 오디오 비트스트림(Ea)들을 출력할 수 있다. 또한 전송 장치는 포인트 클라우드 콘텐트의 포인트 클라우드(Bv)(또는 포인트 클라우드 비디오)를 확보하고(Point Acqusition), 확보한 포인트 클라우드에 대하여 포인트 클라우드 인코딩(Point cloud encoding)을 수행하여 포인트 클라우드 비디오 비트스트림(Eb)들을 출력할 수 있다. 전송 장치의 포인트 클라우드 인코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 인코딩(예를 들면 도 4의 포인트 클라우드 인코더의 인코딩 등)과 동일 또는 유사하므로 구체적인 설명은 생략한다.
전송 장치는 생성된 오디오 비트스트림들 및 비디오 비트스트림들을 파일 및/또는 세그먼트로 인캡슐레이션(File/segment encapsulation)할 수 있다. 인캡슐레이션된 파일 및/또는 세그먼트(Fs, File)은 ISOBMFF 등의 파일 포맷의 파일 또는 DASH 세그먼트를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 관련 메타 데이터(metadata)는 인캡슐레이션된 파일 포맷 및/또는 세그먼트에 포함될 수 있다. 메타 데이터는 ISOBMFF 파일 포맷 상의 다양한 레벨의 박스(box)에 포함되거나 파일 내에서 별도의 트랙에 포함될 수 있다. 실시예에 따라 전송 장치는 메타데이터 자체를 별도의 파일로 인캡슐레이션할 수 있다. 실시예들에 따른 전송 장치는 인캡슐레이션 된 파일 포맷 및/또는 세그먼트를 네트워크를 통해 전송(delivery)할 수 있다. 전송 장치의 인캡슐레이션 및 전송 처리 방법은 도 1 내지 도 13에서 설명한 바 (예를 들면 트랜스미터(10003), 도 2의 전송 단계(20002) 등)와 동일하므로 구체적인 설명은 생략한다.
도 14의 하단은 도 1 내지 도 13에서 설명한 수신 장치(예를 들면 수신 장치(10004), 도 13의 수신 장치 등)가 포인트 클라우드 콘텐트를 처리 및 출력하는 과정을 나타낸다.
실시예들에 따라 수신 장치는 최종 오디오 데이터 및 최종 비디오 데이터를 출력하는 디바이스 (예를 들면 스피커(Loudspeakers), 헤드폰들(headphones), 디스플레이(Display))와 포인트 클라우드 콘텐트를 처리하는 포인트 클라우드 플레이어(Point Cloud Player)를 포함할 수 있다. 최종 데이터 출력 디바이스 및 포인트 클라우드 플레이어는 별도의 물리적인 디바이스들로 구성될 수 있다. 실시예들에 따른 포인트 클라우드 플레이어는 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 및/또는 차세대 코딩을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신한 데이터(예를 들면 방송 신호, 네트워크를 통해 전송되는 신호 등)에 포함된 파일 및/또는 세그먼트(F',Fs')를 확보하고 디캡슐레이션(File/segment decapsulation)할 수 있다. 수신 장치의 수신 및 디캡슐레이션 방법은 도 1 내지 도 13에서 설명한 바(예를 들면 리시버(10005), 수신부(13000), 수신 처리부(13001)등)와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 수신 장치는 파일 및/또는 세그먼트에 포함된 오디오 비트스트림(E'a) 및 비디오 비트스트림(E'v)를 확보한다. 도면에 도시된 바와 같이 수신 장치는 오디오 비트스트림에 대해 오디오 디코딩(audio decoding)을 수행하여 디코딩된 오디오 데이터(B'a)를 출력하고, 디코딩된 오디오 데이터를 렌더링(audio rendering)하여 최종 오디오 데이터(A'a)를 스피커 또는 헤드폰 등을 통해 출력한다.
또한 수신 장치는 비디오 비트스트림(E'v)에 대해 포인트 클라우드 디코딩(point cloud decoding)을 수행하여 디코딩된 비디오 데이터(B'v)를 출력한다. 실시예들에 따른 포인트 클라우드 디코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 디코딩과 동일 또는 유사하므로 (예를 들면 도11의 포인트 클라우드 디코더의 디코딩 등) 구체적인 설명은 생략한다. 수신 장치는 디코딩된 비디오 데이터를 렌더링(rendering)하여 최종 비디오 데이터를 디스플레이를 통해 출력할 수 있다.
실시예들에 따른 수신 장치는 함께 전송된 메타데이터를 기반으로 디캡슐레이션, 오디오 디코딩, 오디오 렌더링, 포인트 클라우드 디코딩 및 렌더링 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 메타데이터에 대한 설명은 도 12 내지 도 13에서 설명한 바와 동일하므로 생략한다.
도면에 도시된 점선과 같이, 실시예들에 따른 수신 장치(예를 들면 포인트 클라우드 플레이어 또는 포인트 클라우드 플레어 내의 센싱/트랙킹부(sensing/tracking))는 피드백 정보(orientation, viewport)를 생성할 수 있다. 실시예들에 따른 피드백 정보는 수신 장치의 디캡슐레이션, 포인트 클라우드 디코딩 과정 및/또는 렌더링 과정에서 사용될 수도 있고, 송신 장치로 전달 될 수도 있다. 피드백 정보에 대한 설명은 도 1 내지 도 13에서 설명한 바와 동일하므로 생략한다.
도15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도 15의 전송 장치는 포인트 클라우드 콘텐트를 전송하는 장치로서, 도 1 내지 도 14에서 설명한 전송 장치(예를 들면 도 1의 전송 장치(10000), 도 4의 포인트 클라우드 인코더, 도 12의 전송 장치, 도 14의 전송 장치 등)의 예시에 해당한다. 따라서 도 15의 전송 장치는 도 1 내지 도 14에서 설명한 전송 장치의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 전송 장치는 포인트 클라우드 획득(point cloud acquisition), 포인트 클라우드 인코딩(point cloud encoding), 파일/세그먼트 인캡슐레이션(file/segement encapsulation) 및 전송(delivery) 중 적어도 하나 또는 그 이상을 수행할 수 있다.
도면에 도시된 포인트 클라우드 획득 및 전송 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 전송 장치는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 지오메트리 컴프레션(geometry compression)이라 호칭될 수 있으며 어트리뷰트 인코딩은 어트리뷰트 컴프레션(attribute compression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 따라서 전송 장치는 각 어트리뷰트에 대하여 어트리뷰트 인코딩을 수행한다. 도면은 전송 장치가 하나 또는 그 이상의 어트리뷰트 컴프레션들(attribute #1 compression, …attribute #N compression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 전송 장치는 추가 컴프레션(auxiliary compression)을 수행할 수 있다. 추가 컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 전송 장치는 메쉬 데이터 컴프레션(Mesh data compression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 인코딩을 포함할 수 있다.
실시예들에 따른 전송 장치는 포인트 클라우드 인코딩에 따라 출력된 비트스트림들(예를 들면 포인트 클라우드 스트림들)을 파일 및/또는 세그먼트로 인캡슐레이션 할 수 있다. 실시예들에 따라 전송 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 인캡슐레이션(media track encapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 인캡슐레이션(metadata tracak encapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터는 미디어 트랙으로 인캡슐레이션 될 수 있다.
도 1 내지 도 14에서 설명한 바와 같이 전송 장치는 수신 장치로부터 피드백 정보(오리엔테이션/뷰포트 메타 데이터)를 수신하고, 수신한 피드백 정보를 기반으로 포인트 클라우드 인코딩, 파일/세그먼트 인캡슐레이션 및 전송 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다.
도16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 16의 수신 장치는 포인트 클라우드 콘텐트를 수신하는 장치로서, 도 1 내지 도 14에서 설명한 수신 장치(예를 들면 도 1의 수신 장치(10004), 도 11의 포인트 클라우드 디코더, 도 13의 수신 장치, 도 14의 수신 장치 등)의 예시에 해당한다. 따라서 도 16의 수신 장치는 도 1 내지 도 14에서 설명한 수신 장치의 동작과 동일 또는 유사한 동작을 수행한다. 또한 도 16의 수신 장치는 도 15의 전송 장치에서 전송한 신호 등을 받고, 도 15의 전송 장치의 동작의 역과정을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신 (delivery), 파일/세그먼트 디캡슐레이션(file/segement decapsulation), 포인트 클라우드 디코딩(point cloud decoding) 및 포인트 클라우드 렌더링(point cloud rendering) 중 적어도 하나 또는 그 이상을 수행할 수 있다.
도면에 도시된 포인트 클라우드 수신 및 포인트 클라우드 렌더링 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 수신 장치는 네트워크 또는 저장 장치로터 획득한 파일 및/또는 세그먼트에 대해 디캡슐레이션을 수행한다. 실시예들에 따라 수신 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 디캡슐레이션(media track decapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 디캡슐레이션(metadata tracak decapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터가 미디어 트랙으로 인캡슐레이션 된 경우, 메타 데이터 트랙 디캡슐레이션은 생략된다.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 디캡슐레이션을 통해 확보한 비트스트림(예를 들면 포인트 클라우드 스트림들)에 대하여 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 지오메트리 디컴프레션(geometry decompression)이라 호칭될 수 있으며 어트리뷰트 디코딩은 어트리뷰트 디컴프레션(attribute decompression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있으며 각각 인코딩된다. 따라서 수신 장치는 각 어트리뷰트에 대하여 어트리뷰트 디코딩을 수행한다. 도면은 수신 장치가 하나 또는 그 이상의 어트리뷰트 디컴프레션들(attribute #1 decompression, …attribute #N decompression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 수신 장치는 추가 디컴프레션(auxiliary decompression)을 수행할 수 있다. 추가 디컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 수신 장치는 메쉬 데이터 디컴프레션(Mesh data decompression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 디컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 디코딩을 포함할 수 있다. 실시예들에 따른 수신 장치는 포인트 클라우드 디코딩에 따라 출력된 포인트 클라우드 데이터를 렌더링 할 수 있다.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 별도의 센싱/트랙킹 엘레멘트등을 이용하여 오리엔테이션/뷰포트 메타 데이터를 확보하고, 이를 포함하는 피드백 정보를 전송 장치(예를 들면 도 15의 전송 장치)로 전송할 수 있다. 또한 수신 장치는 피드백 정보를 기반으로 수신 동작, 파일/세그먼트 디캡슐레이션 및 포인트 클라우드 디코딩 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 17의 구조는 서버(1760), 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상이 클라우드 네트워크(1710)와 연결된 구성을 나타낸다. 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740) 또는 가전(1750) 등은 장치라 호칭된다. 또한, XR 장치(1730)는 실시예들에 따른 포인트 클라우드 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(1700)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(1700)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(1760)는 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상과 클라우드 네트워크(1700)을 통하여 연결되고, 연결된 장치들(1710 내지 1770)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(1770)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(1710 내지 1750)의 다양한 실시 예들을 설명한다. 여기서, 도 17에 도시된 장치(1710 내지 1750)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(1730)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(1730)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(1730)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(1720)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(1720)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(1720)은 XR 장치(1730)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(1720)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(1720)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(1220)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression)기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 발명의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
도 18은 포인트 클라우드 인코더의 예시를 나타내는 블록도이다.
실시예들에 따른 포인트 클라우드 인코더(1800)(예를 들면 도 1의 포인트 클라우드 비디오 인코더(10002), 도4의 포인트 클라우드 인코더, 도 12, 도 14 및 도 15에서 설명한 포인트 클라우드 인코더 등)는 도 1 내지 도 17에서 설명한 인코딩 동작을 수행할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(1800)는 공간 분할부(1810), 지오메트리 정보 부호화부(1820) 및 속성 정보 부호화부(또는 어트리뷰트 정보 부호화부)(1830)을 포함할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(1800)는 도 18에 도시되지 않았으나 도 1 내지 도 17에서 설명한 인코딩 동작을 수행하기 위한 하나 또는 그 이상의 엘레멘트들을 더 포함할 수 있다.
포인트 클라우드 컴프레션 (Point Cloud Compression, PCC) 데이터 (또는 PCC 데이터, 포인트 클라우드 데이터)는 포인트 클라우드 인코더(1800)의 입력 데이터로서, 지오메트리 및/또는 어트리뷰트를 포함할 수 있다. 실시예들에 따른 지오메트리는 포인트의 포지션(예를 들면 위치)을 나타내는 정보로서, 직교 좌표계, 원통 좌표계, 구면 좌표계 등의 좌표계의 파라미터들로 표현될 수 있다. 실시예들에 따르면, 지오메트리는 지오메트리 정보로 호칭될 수 있고, 어트리뷰트는 어트리뷰트 정보로 호칭될 수 있다.
실시예들에 따른 공간 분할부(1810)는 포인트 클라우드 데이터의 지오메트리 및 어트리뷰트를 생성할 수 있다. 실시예들에 따른 공간 분할부(1810)는 포인트 클라우드 데이터의 포인트 정보를 저장하기 위하여 포인트 클라우드 데이터를 3차원 공간상의 하나 또는 그 이상의 3차원 블록(block)들로 분할할 수 있다. 실시예들에 따른 블록은 타일 그룹(Tile Group), 타일(Tile), 슬라이스(Slice), 부호화 단위(Coding Unit, CU), 예측 단위(Prediction Unit, PU) 또는 변환 단위(Transformation Unit, TU) 중 적어도 어느 하나를 나타낼 수 있다. 실시예들에 따른 공간 분할부(1810)는 옥트리(Octree), 쿼드 트리(Quadtree), 바이너리 트리(Biniary tree), 트리플 트리(Triple tree), k-d 트리 중 적어도 하나에 기반한 분할 동작을 수행할 수 있다. 하나의 블록은 하나 또는 그 이상의 포인트를 포함할 수 있다. 실시예들에 따른 블록은 기설정된 가로 길이 값, 세로 길이 값, 및 높이 값을 갖는 육면체 형태의 블록이 될 수 있다. 실시예에 따른 블록의 크기는 변경 가능하며 상술한 예시에 국한되지 않는다. 실시예들에 따른 공간 분할부(1810)는 블록에 포함된 하나 또는 그 이상의 포인트들에 대한 지오메트리 정보를 생성할 수 있다.
실시예들에 따른 지오메트리 정보 부호화부(1820)(또는 지오메트리 정보 인코더)는 지오메트리 인코딩을 수행하고, 지오메트리 비트스트림 및 복원된 지오메트리 정보를 생성할 수 있다. 실시예들에 따른 지오메트리 인코딩은 복원된 지오메트리 정보는 어트리뷰트 정보 부호화부(또는 어트리뷰트 인코더)(1830)으로 입력된다. 실시예들에 따른 지오메트리 정보 부호화부(1820)는 도 4에서 설명한 좌표계 변환부(40000), 양자화(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004) 및 지오메트리 리컨스럭션부(Reconstruct Geometry, 40005)의 동작들 중 적어도 하나 이상을 수행할 수 있다. 또한 실시예들에 따른 지오메트리 정보 부호화부(1820)는 도 12에서 설명한 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 코더(12006), 메타데이터 처리부(12007)의 동작들 중 적어도 하나 이상을 수행할 수 있다.
실시예들에 따른 어트리뷰트 정보 부호화부(1830)는 복원된 지오메트리 정보 및 어트리뷰트를 기반으로 어트리뷰트 정보 비트스트림 (또는 어트리뷰트 비트스트림)을 생성할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 지오메트리 정보 비트스트림 및 어트리뷰트 정보 비트스트림 또는 지오메트리 정보 비트스트림 및 어트리뷰트 정보 비트스트림이 멀티플렉싱된 비트스트림을 전송될 수 있다. 상술힌 바와 같이 비트스트림은 지오메트리 정보 및 어트리뷰트 정보와 연관된 시그널링 정보, 좌표계 변환과 관련된 시그널링 정보 등을 더 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 인코더는 비트스트림을 인캡슐레이션 하여 세그먼트 및/또는 파일 등의 형태로 전송할 수 있다.
도 19는 지오메트리 정보 인코더의 예시를 나타내는 블록도이다.
실시예들에 따른 지오메트리 정보 인코더(1900) (또는 지오메트리 인코더)는 도 18의 지오메트리 정보 부호화부(1820)의 예시로서, 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 18에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다. 도면에 도시된 바와 같이 지오메트리 정보 인코더(1900)는 좌표계 변환부(1910), 지오메트리 정보 변환양자화부(1920), 잔차지오메트리 정보 양자화부(1930), 지오메트리 정보 엔트로피 부호화부(1940), 잔차 지오메트리 정보 역양자화부(1950), 필터링부(1960), 메모리(1970) 및 지오메트리 정보 예측부(1980)를 포함할 수 있다. 실시예들에 따른 지오메트리 정보 인코더(1900)는 도 19에 도시되지 않았으나 도 1 내지 도 18에서 설명한 지오메트리 인코딩을 수행하기 위한 하나 또는 그 이상의 엘레멘트들을 더 포함할 수 있다.
실시예들에 따른 좌표계 변환부(1910)는 입력된 지오메트리 정보가 나타내는 각 포인트의 포지션을 3차원 공간상의 포지션으로 표현하기 위하여 수신한 지오메트리 정보를 좌표계 상의 정보로 변환할 수 있다. 좌표계 변환부(1910)는 도 4에서 설명한 좌표계 변환부(40000)의 동작과 동일 또는 유사한 동작을 수행한다. 실시예들에 따른 좌표계는 상술한 3차원 직교 좌표계, 원통 좌표계, 구면 좌표계 등을 포함할 수 있으며 예시에 국한되지 않는다. 실시예들에 따른 좌표계 변환부(1910)는 설정된 좌표계를 다른 좌표계로 변환할 수 있다.
실시예들에 따른 좌표계 변환부(1910)는 시퀀스, 프레임, 타일, 슬라이스, 블록 등의 단위에 대해 좌표계 변환을 수행할 수 있다. 실시예들에 따른 좌표계 변환 여부 및 좌표계 및/또는 변환과 관련된 정보는 시퀀스, 프레임, 타일, 슬라이스, 블록 등의 단위로 시그널링 될 수 있다. 따라서 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 주변 블록의 좌표계 변환 여부 블록의 크기, 포인트들의 개수, 양자화 값, 블록 분할 깊이, 단위의 위치, 단위와 원점과의 거리 등을 기반으로 좌표계 및/또는 변환과 관련된 정보를 확보할 수 있다.
실시예들에 따른 지오메트리 정보 변환 양자화부(1920)는 좌표계에서 표현된 지오메트리 정보를 양자화하고 변환 양자화된 지오메트리 정보를 생성할 수 있다. 실시예들에 따른 지오메트리 정보 변환 양자화부(1920)는 좌표계 변환부(1910)에서 출력된 지오메트리 정보가 나타내는 포인트들의 포지션들에 대하여 위치 변환 및/또는 회전 변환 등 하나 또는 그 이상의 변환을 적용하고, 변환된 지오메트리 정보를 양자화 값으로 나누어 양자화를 수행할 수 있다. 지오메트리 정보 변환 양자화부(1920)는 도 4의 양자화부(40001) 및/또는 도 12의 양자화 처리부(12001)의 동작과 동일 또는 유사한 동작을 수행할 수 있다. 실시예들에 따른 양자화 값은 부호화 단위(예를 들면 타일, 슬라이스 등)과 좌표계의 원점과의 거리 또는 기준 방향으로부터의 각도 등을 기초로 가변할 수 있다. 실시예들에 따른 양자화 값은 기설정된 값이 될 수 있다.
실시예들에 따른 지오메트리 정보 예측부(1930)는 주변 부호화 단위의 양자화 값을 기초로 예측값 (또는 예측 지오메트리 정보)을 산출할 수 있다.
잔차 지오메트리 정보 양자화부(1940)는 변환 양자화된 지오메트리 정보 및 예측값을 차분한 잔차 지오메트리 정보를 수신하고, 잔차 지오메트리 정보를 양자화값으로 양자화하여 양자화된 잔차 지오메트리 정보를 생성할 수 있다.
지오메트리 정보 엔트로피 부호화부(1950)는 양자화된 잔차 지오메트리 정보를 엔트로피 인코딩할 수 있다. 실시예들에 따른 엔트로피 인코딩은 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding) 및 CABAC(Context-Adaptive Binary Arithmetic Coding)등을 포함할 수 있다.
잔차 지오메트리 정보 역양자화부(1960)는 양자화된 지오메트리 정보를 양자화 값으로 스케일링 하여 잔차 지오메트리 정보를 복원할 수 있다. 복원된 잔차 지오메트리 정보와 예측 지오메트리 정보는 합산되어 복원된 지오메트리 정보로 생성될 수 있다.
필터링부(1970)는 복원된 지오메트리 정보를 필터링 할 수 있다. 실시예들에 따른 필터링부(1970)는 디블록킹 필터부, 오프셋 보정부 등을 포함할 수 있다. 서로 다른 두 부호화 단위가 다른 좌표계 변환된 지오메트리 정보에 대해 실시예들에 따른 필터링부(1970)는 두 부호화 단위 경계에 추가적인 필터링을 수행할 수 있다.
메모리(1980)는 복원된 지오메트리 정보(또는 복원 지오메트리 정보)를 저장할 수 있다. 저장된 지오메트리 정보는 지오메트리 정보 예측부(1930)에 제공될 수 있다. 또한 메모리에 저장된 복원 지오메트리 정보는 도 18에서 설명한 어트리뷰트 정보 부호화부(1830)에 제공될 수 있다.
도 20은 실시예들에 따른 어트리뷰트 정보 인코더의 예시를 나타낸다.
도 20에 도시된 어트리뷰트 정보 인코더(2000)는 도 18에서 설명한 어트리뷰트 정보 부호화부(1830)의 예시로서 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 17에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다. 도면에 도시된 바와 같이 실시예들에 따른 어트리뷰트 정보 인코더(2000)는 어트리뷰트 특성 변환부(2010), 지오메트리 정보 매핑부(2020), 어트리뷰트 정보 변환부(2030), 어트리뷰트 정보 양자화부(2040) 및 어트리뷰트 정보 엔트로피 부호화부(2050)를 포함할 수 있다.
실시예들에 따른 어트리뷰트 특성 변환부(2010)는 어트리뷰트 정보를 수신하고, 수신한 어트리뷰트 정보의 특성(예를 들면 색상 등)을 변환할 수 있다. 예를 들어 어트리뷰트 정보가 색상정보를 포함하는 경우, 어트리뷰트 특성 변환부(2010)는 어트리뷰트 정보의 색공간을 변환할 수 있다(예를 들면 RGB에서 YCbCr). 또한 어트리뷰트 특성 변환부(2010)는 선택적으로 어트리뷰트 정보의 특성을 변환하지 않을 수 있다. 어트리뷰트 특성 변환부(2010)는 어트리뷰트 변환부(40007), 및/또는 색상 변환 처리부(12008)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 지오메트리 정보 매핑부(2020)는 어트리뷰트 특성 변환부(2010)에서 출력된 어트리뷰트 정보와 수신한 복원 지오메트리 정보를 매핑하여 재구성된 어트리뷰트 정보를 생성할 수 있다. 지오메트리 정보 매핑부(2020)는 복원 지오메트리 정보를 기반으로 하나 또는 그 이상의 포인트들의 어트리뷰트 정보를 재구성한 어트리뷰트 정보를 생성할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 지오메트리 정보는 복셀의 중앙값을 중심으로 재구성될 수 있다. 어트리뷰트 정보는 지오메트리 정보에 종속되어있으므로, 지오메트리 정보 매핑부(2020)는 복원 지오메트리 정보를 기반으로 어트리뷰트 정보를 재구성한다. 지오메트리 정보 매핑부(2020)는 속성 변환 처리부(12009)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 어트리뷰트 정보 변환부(2030)는 재구성된 어트리뷰트 정보를 수신하여 변환할 수 있다. 실시예들에 따른 어트리뷰트 정보 변환부(2030)는 어트리뷰트 정보를 예측하고 수신한 재구성된 어트리뷰트 정보와 예측 어트리뷰트 정보간의 잔차에 대응하는 잔차 어트리뷰트 정보를 하나 또는 그 이상의 변환 타입(예를 들면 DCT, DST, SADCT, RAHT)을 사용하여 변환할 수 있다.
실시예들에 따른 어트리뷰 정보 양자화부(2040)는 변환된 잔차 어트리뷰트 정보를 수신하고 양자화 값을 기초로 변환양자화된 잔차 어트리뷰트 정보를 생성할 수 있다.
실시예들에 따른 어트리뷰트 정보 엔트로피 부호화부(2050)는 변환양자화된 잔차 어트리뷰트 정보를 입력 받아 엔트로피 부호화를 수행하고 어트리뷰트 정보 비트스트림을 출력할 수 있다. 실시예들에 따른 엔트로피 부호화는 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding) 및 CABAC(Context-Adaptive Binary Arithmetic Coding) 중 어느 하나 이상을 포함할 수 있으며, 상술한 실시예에 국한되지 않는다. 어트리뷰트 정보 엔트로피 부호화부(2050)는 아리스메틱 코더(12011)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
도 21은 실시예들에 따른 어트리뷰트 정보 인코더의 예시를 나타낸다.
도 21에 도시된 어트리뷰트 정보 인코더(2100)는 도 18에서 설명한 어트리뷰트 정보 부호화부(1830) 및 도 20에서 설명한 어트리뷰트 정보 인코더(2000)의 예시에 해당한다. 실시예들에 따른 어트리뷰트 정보 인코더(2100)는 어트리뷰트 특성 변환부(2110), 지오메트리 정보 매핑부(2120), 어트리뷰트 정보 예측부(2130), 잔차 어트리뷰트 정보 변환부(2140), 잔차 어트리뷰트 정보 역변환부(2145), 잔차 어트리뷰트 정보 양자화부(2150), 잔차 어트리뷰트 정보 역양자화부(2155), 필터링부(2160), 메모리(2170), 및 어트리뷰트 정보 엔트로피 부호화부(2180)를 포함할 수 있다. 도 21에 도시된 어트리뷰트 정보 인코더(2100)는 잔차 어트리뷰트 정보 변환부(2140), 잔차 어트리뷰트 정보 역변환부(2145), 잔차 어트리뷰트 정보 양자화부(2150), 잔차 어트리뷰트 정보 역양자화부(2155), 필터링부(2160), 메모리(2170)를 더 포함한다는 점에서 도 20에 도시된 어트리뷰트 정보 인코더(2000)과 차이가 있다.
실시예들에 따른 어트리뷰트 특성 변환부(2110) 및 지오메트리 정보 매핑부(2120)는 도 20에서 설명한 어트리뷰트 특성 변환부(2010) 및 지오메트리 정보 매핑부(2020)의 동작과 동일 또는 유사한 동작을 수행할 수 있다. 실시예들에 따른 어트리뷰트 정보 예측부(2130)는 예측 어트리뷰트 정보를 생성할 수 있다. 잔차 어트리뷰트 정보 변환부(2140)는 지오메트리 정보 매핑부(2120)에서 출력된 재구성 어트리뷰트 정보와 예측 어트리뷰트 정보를 차분하여 생성된 잔차 어트리뷰트 정보를 수신할 수 있다. 잔차 어트리뷰트 정보 변환부(2140)는 수신한 잔차 어트리뷰트 정보를 포함하는 잔차 3차원 블록을 하나 또는 그 이상의 변환 타입들(예를 들면 Predictive Transform, Lifting Transform, DCT, DST, SADCT, RAHT 등)으로 변화할 수 있다.
실시예들에 따른 잔차 어트리뷰트 정보 양자화부(2150)는 입력된 변환 잔차 어트리뷰트 정보를 양자화값을 기초로 변환할 수 있다. 변환된 잔차 어트리뷰트 정보는 잔차 어트리뷰트 정보 역양자화부(2155)로 입력될 수 있다. 실시예들에 따른 잔차 어트리뷰트 정보 역양자화부(2155)는 변환양자화된 잔차 어트리뷰트 정보를 양자화 값을 기초로 변환하여 변환 잔차 어트리뷰트 정보를 생성할 수 있다. 잔차 어트리뷰트 정보 역양자화부(2155)에서 생성된 변환 잔차 어트리뷰트 정보는 잔차 어트리뷰트 역변환부(2145)로 입력된다. 실시예들에 따른 잔차 어트리뷰트 역변환부(2145)는 변환 잔차 어트리뷰트 정보를 포함한 잔차 3차원 블록을 하나 또는 그 이상의 변환 타입들(예를 들면 Predictive Transform, Lifting Transform, DCT, DST, SADCT, RAHT 등)을 사용하여 역변환할 수 있다. 실시예들에 따른 복원 어트리뷰트 정보는 역변환된 잔차 어트리뷰트 정보 및 어트리뷰트 정보 예측부(2130)에서 출력된 예측 어트리뷰트 정보의 결합으로 생성될 수 있다. 실시예들에 따른 복원 어트리뷰트 정보는 역변환되지 않은 잔차 어트리뷰트 정보 및 예측 어트리뷰트 정보의 결합으로 생성될 수 있다. 복원 어트리뷰트 정보는 필터링부(2160)으로 입력될 수 있다. 실시예들에 따른 어트리뷰트 정보 예측부(2130), 잔차 어트리뷰트 정보 변환부(2140) 및/또는 잔차 어트리뷰트 정보 양자화부(2150)는 예측/리프팅/RAHT 변환 처리부(12010)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 필터링부(2160)는 복원 어트리뷰트 정보를 필터링할 수 있다. 실시예들에 따른 필터링부(2160)는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter) 등을 포함할 수 있다. 필터링부(2160)는 도 19의 필터링부(1970)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 메모리(2170)는 필터링부(2160)로부터 출력된 복원 어트리뷰트 정보를 저장할 수 있다. 저장된 복원 어트리뷰트 정보는 어트리뷰트 정보 예측부(2130)의 예측 동작의 입력 데이터로 제공될 수 있다. 어트리뷰트 정보 예측부(2130)는 포인트들의 복원 어트리뷰트 정보를 기초로 예측 어트리뷰트 정보를 생성할 수 있다. 도면상 메모리(2170)는 하나의 블록으로 도시되어 있으나, 하나 또는 그 이상의 물리적인 메모리들로 구성될 수 있다. 실시예들에 따른 어트리뷰트 정보 엔트로피 부호화부(2180)는 도 20에서 설명한 어트리뷰트 정보 엔트로피 부호화부(2050)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
도 22는 실시예들에 따른 어트리뷰트 정보 예측부의 예시를 나타낸다.
도 22에 도시된 어트리뷰트 정보 예측부(2200)는 도 21에서 설명한 어트리뷰트 정보 예측부(2130)의 예시에 해당한다. 어트리뷰트 정보 예측부(2200)는 어트리뷰트 정보 예측부(2130)의 동작과 동일 또는 유사한 동작을 수행할 수 있다. 실시예들에 따른 어트리뷰트 정보 예측부(2200)는 LOD 구성부(2210) 및 이웃 포인트 집합 구성부(2220)를 포함할 수 있다. LOD 구성부(2210)는 LOD 생성부(40009)와 동일 또는 유사한 동작을 수행할 수 있다. 즉, 도면에 도시된 바와 같이 LOD 구성부(2210)는 어트리뷰트 및 복원된 지오메트리를 수신하고 수신한 어트리뷰트 및 복원된 지오메트리를 기반으로 하나 또는 그 이상의 LOD를 구성할 수 있다. 도 4 및 도 8에서 설명한 바와 같이 LOD는 3차원 공간에 분포한 포인트들을 리파인먼트 레벨들(refinement levels)의 세트로 재정렬(reorganize)하여 생성될 수 있다. 실시예들에 따른 LOD는 일정 간격으로 분포하는 하나 또는 그 이상의 포인트들을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도이다. 따라서 LOD(또는 LOD 값)가 나타내는 레벨이 낮을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD가 나타내는 레벨이 높을 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 즉, 높은 레벨을 나타내는 LOD는 더 짧은 간격으로 분포하는 포인트들을 포함할 수 있다. 실시예들에 따른 포인트 클라우드 인코더 (예를 들면 도 4의 포인트 클라우드 인코더) 및 포인트 클라우드 디코더 (예를 들면 도 11의 포인트 클라우드 디코더)는 어트리뷰트 압축율을 높이기 위해LOD를 생성할 수 있다. 유사한 어트리뷰트를 갖는 포인트들은 대상 포인트의 이웃에 있을 확률이 높기 때문에 유사한 속성을 갖는 이웃 포인트를 통한 예측 어트리뷰트와 대상 포인트의 어트리뷰트 간의 잔차 값은 0에 가까울 확률이 높기 때문이다. 따라서 실시예들에 따른 포인트 클라우드 인코더 및 포인트 클라우드 디코더는 어트리뷰트 예측시 사용할 수 있는 적절한 이웃 포인트를 선택하기 위하여 LOD를 생성할 수 있다.
실시예들에 따른 LOD 구성부(2210)는 하나 또는 그 이상의 방식들을 이용하여 LOD를 구성할 수 있다. 상술한 바와 같이 포인트 클라우드 디코더(예를 들면 도 10내지 도 11에서 설명한 포인트 클라우드 디코더 등)도 LOD를 생성해야 한다. 따라서 실시예들에 따른 LOD 구성 방식(또는 LOD 생성 방식)과 관련된 정보, 또는 LOD 구성 방식 정보는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 통해 수신장치(예를 들면 도 1의 수신장치(10004) 또는 도 10 및 도 11의 포인트 클라우드 디코더 등)로 전송된다. 따라서 수신장치는 LOD 구성 방식 정보를 기반으로 LOD를 생성할 수 있다.
실시예들에 따른 이웃 포인트 집합 구성부(2220)는 각 LOD (또는 LOD 집합)이 생성되면 LOD l집합의 포인트의 하나 또는 그 이상의 이웃 포인트들을 서치 (search) 또는 검색할 수 있다. 하나 또는 그 이상의 이웃 포인트들의 개수는 X로 표현될 수 있으며 X는 0보다 큰 정수이다. 실시예들에 따른 이웃 포인트는 3차원 공간에서 LOD l집합의 포인트로부터 가장 가까운 곳에 위치한 이웃 (Nearest Neighbor, NN) 포인트로서, 대상 LOD(예를 들면 LOD l)과 동일한 LOD에 포함되거나, 대상 LOD보다 LOD레벨이 작은 LOD 집합(예를 들면 LOD l-1, LOD l-2, ..., LOD 0)에 포함된다. 실시예들에 따른 이웃 포인트 집합 구성부(2220)는 서치된 하나 또는 그 이상의 이웃 포인트를 예측기에 이웃 포인트 집합으로서 등록(register)할 수 있다. 실시예들에 따른 이웃 포인트들의 개수는 이웃 포인트들의 최대 개수로서 사용자의 입력 신호에 따라 설정될 수도 있고, 이웃 포인트 서치 방식에 따라 특정 값으로 기설정될 수 있다.
실시예들에 따른 이웃 포인트 집합 구성부(2220)는 도 9에 도시된 LOD1에 속하는 포인트 P3의 이웃 포인트를 LOD 0 및 LOD 1에서 서치할 수 있다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD 2는 LOD 0의 포인트들, LOD 1의 포인트들 및 P9, P8 및 P7을 포함한다. 이웃 포인트들의 개수 X가 3 인 경우, 이웃 포인트 집합 구성부(2220)는 도 9의 상단에 도시된 3차원 공간에서 P3에서 가장 가까운 3개의 이웃 포인트들을 LOD 0 또는 LOD 1에 속한 포인트들 중에서 서치할 수 있다. 즉, 이웃 포인트 집합 구성부(2220)는 동일한 LOD레벨인 LOD 1에 속한 P6, 및 LOD 레벨이 작은 LOD 0에 속한P2 및 P4를 P3의 이웃 포인트들로서 서치할 수 있다. 3차원 공간에서 P7는 P3와 가까운 포인트이지만 LOD 레벨이 더 크므로 이웃 포인트로서 서치되지 않는다. 이웃 포인트 집합 구성부(2220)는 서치한 이웃 포인트들(P2, P4, P6)을 P3의 예측기에 이웃 포인트 집합으로서 등록할 수 있다. 실시예들에 따른 이웃 포인트 집합 생성 방법은 예시에 국한되지 않는다. 또한 실시예들에 따른 이웃 포인트 집합 생성 방법에 대한 정보(이하 이웃 포인트 집합 생성 정보)는 상술한 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림에 포함되어 수신장치(예를 들면 도 1의 수신장치(10004) 또는 도 10 및 도 11의 포인트 클라우드 디코더 등)로 전송된다.
상술한 바와 같이 모든 포인트는 하나의 예측기(predictor)를 가질 수 있다. 실시예들에 따른 포인트 클라우드 인코더는 예측기를 적용하여 해당 포인트의 어트리뷰트 값을 인코딩하고, 예측 어트리뷰트(또는 예측 어트리뷰트 값)을 생성할 수 있다. 실시예들에 따른 예측기는 LOD 생성 후 서치된 이웃 포인트들을 기반으로 생성된다. 예측기는 대상 포인트의 어트리뷰트를 예측하는데 사용된다. 따라서 예측기는 이웃 포인트들의 어트리뷰트에 가중치를 적용하여 예측 어트리뷰트를 생성할 수 있다.
예를 들어 예측기는 이웃 포인트 집합에 대하여 대상 포인트(예를 들면 P3)와 각 이웃 포인트와의 거리 값을 기반으로(예를 들면 ½거리) 가중치(weight)를 계산 및 등록할 수 있다. 상술한 바와 같이, P3의 이웃 포인트 집합은 P2, P4, 및 P6이므로, 실시예들에 따른 포인트 클라우드 인코더(또는 예측기)는 P3와 각 이웃 포인트 사이의 거리값을 기반으로 가중치를 계산한다. 따라서 각 이웃 포인트의 가중치는 로 표현된다. 실시예들에 따른 포인트 클라우드 인코더는 예측기의 이웃 포인트 집합이 설정되면 이웃 포인트들의 가중치 전체 합으로 이웃 포인트의 가중치를 정규화(normalize)할 수 있다. 예를 들어P3노드의 이웃 포인트 집합 내의 모든 이웃 포인트의 가중치를 더한 값은 다음과 같이 표현된다. . 가중치의 합(total_weight)을 각 이웃 포인트의 가중치로 다시 나누어 생성된 정규화된 가중치 값은 다음과 같이 표현된다. .
실시예들에 따른 포인트 클라우드 인코더(또는 어트리뷰트 정보 예측부)는 예측기를 통해 어트리뷰트를 예측할 수 있다. 실시예들에 따른 예측 어트리뷰트(또는 예측 어트리뷰트 정보)는 도 9에서 설명한 바와 같이 등록된 이웃 포인트들의 어트리뷰트에 계산한 가중치를 곱한 값의 평균값이 될 수도 있고, 특정 포인트의 어트리뷰트에 가중치를 곱한 값이 될 수 있다. 실시예들에 따라 포인트 클라우드 인코더는 압축된 결과 값을 미리 계산한 후, 상술한 어트리뷰트 값들 중 가장 작은 스트림을 생성할 수 있는 예측 어트리뷰트 값(가장 압축 효율이 높은 예측 어트리뷰트 값)을 선택적으로 사용할 수 있다. 또한 어트리뷰트를 예측하는 방법은 위 예시에 국한되지 않는다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)등)는 포인트의 어트리뷰트 값, 예측 어트리뷰트 값의 잔차 및 선택된 예측 어트리뷰트에 대한 정보(또는 예측 어트리뷰트를 선택한 방법에 대한 정보)를 인코딩하고 수신장치(예를 들면 도 1의 수신장치(10004) 또는 도 10 및 도 11의 포인트 클라우드 디코더 등)으로 전달할 수 있다. 실시예들에 따른 수신장치는 송신장치에서 수행한 LOD 생성, 이웃 포인트 집합 생성, 이웃 포인트들의 가중치 정규화, 어트리뷰트 예측과 동일한 프로세스를 수행한다. 수신장치는 선택된 예측 어트리뷰트에 대한 정보를 기반으로 송신장치에서 수행된 방법과 동일한 방법으로 어트리뷰트를 예측할 수 있다. 수신장치는 수신한 잔차 값을 디코딩하고, 예측 어트리뷰트 값에 디코딩한 잔차 값을 더하여 어트리뷰트 값을 복원할 수 있다.
상술한 바와 같이 실시예들에 따른LOD 구성부(2210)는 하나 또는 그 이상의 다양한 LOD 생성 방법들을 기반으로 LOD를 생성할 수 있다.
실시예들에 따른LOD 구성부(2210)는 거리 기반으로 LOD를 생성할 수 있다(거리 기반 LOD 생성 방식). LOD 구성부(2210)는 각 LOD마다 적어도 두 개의 포인트들 사이의 거리(예를 들면 유클리디언 디스턴스)를 설정하고, 3차원 공간에 분포한 모든 포인트들 사이의 거리를 계산하여 계산 결과를 기반으로 LOD를 생성할 수 있다. 상술한 바와 같이 각 LOD는 LOD가 나타내는 레벨에 따라 일정 간격으로 분포하는 포인트들을 포함할 수 있다. 따라서 LOD 구성부(2210)는 모든 포인트들 사이의 거리를 계산해야만 한다. 즉, 포인트 클라우드 인코더 및 포인트 클라우드 디코더는 LOD를 생성할 때마다 모든 포인트들 사이의 거리를 계산해야 하므로 포인트 클라우드 데이터를 처리하는 과정에서 불필요한 버든(burden)을 야기할 수 있다. 하지만 포인트 클라우드 콘텐트의 밀집도(density)가 높은 경우 밀집한 포인트들은 지오메트리 기반 인접성(geometry-based nearby relationship)이 높아 유사한 어트리뷰트들을 가질 확률이 높다. 따라서 실시예들에 따른 LOD 구성부(2210)는 밀집도가 높은 포인트 클라우드 콘텐트에 대해 포인트들간 거리를 계산하여LOD를 생성할 수 있다.
또한 실시예들에 따른 LOD 구성부(2210)는 포인트들의 몰톤 코드를 기반으로 LOD를 구성할 수 있다(몰튼 순서 기반 샘플링 LOD 생성 방식). 상술한 바와 같이 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다.
실시예들에 따른 LOD 구성부(2210)는 복원된 지오메트리를 기반으로 각 포인트의 몰톤 코드를 생성하고 몰톤 코드를 기반으로 포인트들을 오름차순으로 정렬할 수 있다. 몰톤 코드의 오름차순으로 정렬된 포인트들의 순서를 몰톤 순서(Morton order)라 호칭할 수 있다. LOD 구성부(2210)는 몰톤 순서로 정렬된 포인트들에 대해 샘플링을 수행하여 LOD를 구성할 수 있다. 실시예들에 따른 LOD 구성부(2210)는 다양한 방식으로 샘플링을 수행할 수 있다. 예를 들어, 실시예들에 따른 LOD 구성부(2210)는 노드에 대응하는 각 영역에 포함된 포인트들의 몰톤 순서에 따라 순차적으로 샘플링 레이트의 갭을 기반으로 포인트를 선택할 수 있다. 실시예들에 따른 샘플링 레이트(예를 들면 k l로 표현될 수 있다)는 포인트 클라우드의 분포도, 포인트 클라우드 콘텐트에 따라 자동으로 변경되거나 사용자 입력에 따라 변경될 수 있다. 또한 실시예들에 따른 샘플링 레이트는 고정된 값을 가질 수 있다. LOD 구성부(2210)는 몰톤 순서에 따라 가장 첫번째로 정렬된 포인트(0번째 포인트)로부터 샘플링 레이트(예를 들면 5)만큼 떨어진 위치에 정렬된 포인트(예를 들면 샘플링 레이트가 5인 경우 첫번째 포인트로부터 5번째 포인트)를 선택하고, 나머지 포인트들에 대해서도 매 5개의 포인트들 중 하나를 선택하여(예를 들면 5번째 포인트로부터 5번째 위치한 포인트) 선택된 포인트들을 현재 LOD(예를 들면 LOD l)보다 작은 LOD(LOD l-1)로 분류할 수 있다. 따라서 LOD 구성부(2210)는 모든 포인트들 사이의 거리를 계산하지 않고 LOD를 구성할 수 있다. 즉, 포인트 클라우드 인코더 및 포인트 클라우드 디코더는 LOD를 생성할 때마다 모든 포인트들 사이의 거리를 계산할 필요가 없으므로 보다 빨리 포인트 클라우드 데이터를 처리할 수 있다. 또한 실시예들에 따른 LOD 구성부(2210)는 LOD 별로 샘플링을 다르게 수행할 수 있다.
하지만 포인트 클라우드 콘텐트의 밀집도(density)가 낮은 경우 포인트들 간의 지오메트리 기반 인접성(geometry-based nearby relationship)이 낮으므로 분포한 포인트들이 유사한 어트리뷰트들을 가질 확률이 낮다. 따라서 어트리뷰트 정보 인코딩 및 디코딩의 정확도를 증가시키기 위해 실시예들에 따른 LOD 구성부(2210)는 고정 샘플링 범위(sampling range), 옥트리 기반 고정 샘플링 범위, 및 옥트리 기반 동적 샘플링 범위 중 어느 하나를 기반으로 샘플링을 수행하여 LOD를 생성할 수 있다. 실시예들에 따른 샘플링 범위 및 샘플링에 대한 정보는 상술한 LOD 구성 방식(또는 LOD 생성 방식)정보에 포함되어 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 통해 수신장치(예를 들면 도 1의 수신장치(10004) 또는 도 10 및 도 11의 포인트 클라우드 디코더 등)로 전송된다. 따라서 수신장치는 LOD 구성 방식 정보를 기반으로 LOD를 생성할 수 있다.
실시예들에 따른 LOD 구성부(2210)는 고정 샘플링 범위에 기반하여 샘플링을 수행할 수 있다. 실시예들에 따른 샘플링 레이트는 포인트 클라우드의 밀집도에 따라 3차원 공간의 영역 별로 다르게 설정될 수 있다. 또한 실시예들에 따른 샘플링 레이트는 LOD 별로 다르게 설정될 수 있다. 실시예들에 따른 샘플링 범위는 고정된다.
도 23은 LOD 생성 과정의 예시를 나타낸다.
도 23은 LOD 생성 과정의 예시(2300)를 나타낸다. 도 23은 실시예들에 따른 샘플링 레이트(예를 들면 k l로 표현될 수 있다)가 4 인 경우의 고정 샘플링 범위 기반의 LOD 생성 과정을 나타낸다. 실시예들에 따른 고정 샘플링 범위에 대한 설명은 도 22에서 설명한 바와 동일하므로 생략한다. 실시예들에 따른 샘플링 레이트는 포인트 클라우드의 분포도, 사용자 입력 등에 따라 변경될 수 있다. 또한 실시예들에 따른 샘플링 레이트는 고정된 값을 가질 수 있다.
도 23의 상단은 3차원 공간을 분할하여 생성된 두 개의 공간 각각에 포함된 포인트들을 나타낸다. 도면에 도시된 바와 같이 첫번째 공간(23010)은 다섯개의 포인트들, P0, P1, P5, P6 및 P9을 포함하고, 두번째 공간(2302)는 다섯개의 포인트들, P2, P3, P4, P7 및 P8을 포함할 수 있다.
도 23의 첫번째 인덱스(2310)는 3차원 공간에 분포한 10개의 포인트들의 오리지널 오더(original order)를 나타낸다. 상술한 바와 같이 LOD 구성부 (예를 들면 도 22의 LOD 구성부(2210))는 각 포인트의 몰톤 코드를 계산하고 계산된 몰톤 코드 기반으로 각 포인트를 오름차순(I l)으로 정렬할 수 있다. 도 23에 도시된 두번째 인덱스(2320)는 10개의 포인트들의 몰톤 순서를 나타낸다. 실시예들에 따른 샘플링 레이트는 4이므로, 샘플링에 의해 각 4개의 포인트마다 선택된 포인트들의 예시(2330), 즉 포인트들 P5, P1, 및 P7를 나타낸다. 선택되지 않은 포인트들은 LOD l에만 포함된다. 도 23에 도시된 세번째 인덱스(2340)는 LOD l에 포인트들의 인덱스를 나타낸다. 실시예들에 따른 LOD 구성부는 LOD l-1을 생성하기 위하여 선택된 포인트들 P5, P1, 및 P7에 대하여 다시 샘플링(또는 서브 샘플링)을 수행할 수 있다. 도 23는 샘플링에 따라 선택된 포인트의 예시(2350), 즉 P5를 나타낸다. 선택되지 않은 포인트들(예를 들면 P1, P7)은 LOD l-1에만 포함된다. 도면에 도시된 네번째 인덱스(2350)는 포인트들이 속한 LOD 순서를 나타낸다. 샘플링 결과 LOD 0은 P5를 포함하고, LOD 1은 포인트들 P5, P1, 및 P7를 포함하고 LOD 2는 전체 포인트들을 포함할 수 있다(2360).
도 24는 실시예들에 따른 몰톤 코드 기반 샘플링 과정의 예시를 나타낸다.
도 24의 좌측은 3차원 공간이 분할된 하나의 공간 내 포인트들의 몰톤 순서(2400)를 나타낸다. 상술한 바와 같이 실시예들에 따른 LOD 구성부(예를 들면 LOD 구성부(2210))는 각 포인트의 몰톤 코드를 계산하고 계산된 몰톤 코드 기반으로 각 포인트를 오름차순으로 정렬할 수 있다. 도면에 도시된 번호는 몰톤 코드를 기반으로 오름차순으로 정렬된 포인트의 몰톤 순서를 나타낸다. 도 24의 우측은 3차원 공간을 분할하여 생성된 복수의 공간들 내 포인트들의 몰톤 순서들에 대하여 샘플링을 수행하여 생성된 LOD의 예시(2410)를 나타낸다. 도 24의 예시(2410)는 샘플링 레이트가 4인 예시를 나타낸다. 좌표계 내에 표현된 점(2415)은 샘플링 과정에서 선택된 포인트를 나타낸다. 좌표계 내에 표시된 선(2418)은 포인트를 선택하는 과정을 나타낸다. 상술한 바와 같이 LOD 구성부(예를 들면 LOD 구성부(2210))는 몰튼 순서로 정렬된 포인트들에 대해 샘플링을 수행하여 LOD를 구성할 수 있다. 도 24에 도시된 바와 같이 몰톤 순서는 지그재그 형태의 선으로 표현될 수 있다. 즉, 몰톤 순서에 따라 정렬된 포인트들 사이의 거리는 일정하지 않을 수 있다. 또한 포인트들이 3차원 영역(예를 들면 X축, Y축 Z축으로 표현되는 3차원 영역)에 골고루 분포하지 않는다. 따라서 몰톤 순서로 정렬된 포인트들에 대하여 샘플링을 수행하더라도 샘플링 결과가 포인트들 간의 거리의 최소 및 최대값을 보장하지 않을 수 있으므로 이웃 포인트 집합 생성에 영향을 미칠 수 있다.
실시예들에 따른 LOD 구성부는 옥트리 기반 고정 샘플링 범위에 기반하여 샘플링을 수행할 수 있다. 실시예들에 따른 샘플링 레이트는 옥트리의 뎁스(depth)마다 다르게 설정될 수 있다. 실시예들에 따른 샘플링 범위는 고정된다. 도5 내지 도 6에서 설명한 바와 같이 실시예들에 따른 옥트리는 포인트 클라우드 콘텐트의 3차원 공간을 8등분으로 재귀적으로 분할하여 생성될 수 있다. 실시예들에 따른 재귀적으로 분할된 영역들은 동일한 부피를 가진 정육면체 또는 직육면체의 형태를 갖는다. 실시예들에 따른 옥트리는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내는 오큐판시 코드를 가진다. 오큐판시 코드는 복수의 노드들을 포함하며, 각 노드는 각 분할된 공간에 포인트가 존재하는지 여부를 나타낼 수 있다. 예를 들어 분할된 공간에 적어도 하나의 포인트가 포함되면 해당 공간에 대응하는 노드는 포인트가 존재함을 나타낸다(예를 들면 1값 할당). 각 노드의 뎁스는 적어도 하나의 LOD가 나타내는 레벨에 대응한다.
각 레벨에 대응하는 노드 영역은 LOD 내의 포인트간의 최대 거리를 보장해줄 수 있다. 실시예들에 따른 노드 내의 포인트들 중 선택된 포인트들간의 최대 거리는 노드 크기이고, 노드와 노드 사이에서 선택된 포인트들간의 최대 거리는 노드 크기로 제한된다. 따라서 실시예들에 따른 샘플링은 포인트들 간의 최대 거리를 일정하게 유지할 수 있으므로, LOD 구성부는 LOD 생성의 복잡도를 낮추고 압축 효율이 높은 LOD를 생성할 수 있다.
또한 실시예들에 따른 LOD 구성부는 옥트리 기반 동적 샘플링 범위(dynamic sampling ragne)에 기반하여 샘플링을 수행할 수 있다. 실시예들에 따른 샘플링 레이트는 LOD의 레벨 및 옥트리의 뎁스(depth)를 기반으로 설정될 수 있다. 또한 실시예들에 따른 샘플링 범위는 고정되지 않고 LOD의 레벨 및 몰톤 코드 값을 기반으로 계산될 수 있다. 실시예들에 따른 LOD 구성부는 샘플링 위하여 매 샘플링 레이트 값에 대응하는 개수의 포인트들을 그룹핑(선택)하지 않고, 옥트리를 기반으로 샘플링을 위한 포인트들을 그룹핑 할 수 있다. 옥트리 구조에서 동일한 부모 노드에 속한 포인트들은 서로 이웃하는 것이 명확하다. 따라서 실시예들에 따른 LOD 구성부는 선택된 포인트들이 실제 이웃하는지를 확인하기 위하여 포인트들간의 거리를 추가적으로 계산할 필요가 없다. 또한 실시예들에 따른 LOD 구성부는 옥트리의 오큐판시 코드의 노드들의 할당(occupy)여부를 기반으로 포인트 클라우드 콘텐트의 밀집도를 확인하고 밀집도를 기반으로 샘플링을 위한 포인트들을 선택할 수 있다. 예를 들어 노드들이 전부 할당되어 있으면 각 노드가 나타내는 영역내의 포인트들의 밀집도가 높다는 것을 나타내고, 노드들이 사용되지 않으면 포인트들의 밀집도는 낮다는 것을 나타낸다. 밀집도가 높은 포인트들은 어트리뷰트들의 유사도가 높으므로 LOD 구성부는 샘플링을 위하여 밀집도가 낮은 포인트들보다 적은 개수의 포인트들을 선택할 수 있다.
실시예들에 따른 고정 샘플링 범위에 기반하여 샘플링은 포인트들의 밀집도와 관계없이 샘플링 레이트 값에 따라 반복적으로 동일한 개수의 포인트들을 선택하는 과정을 포함한다. 반복적인 포인트 선택 과정은 LOD 생성과정에서 불필요한 버든을 초래할 수 있다.
도 25는 실시예들에 따른 LOD 생성 과정의 예시를 나타낸다.
도25는 옥트리 기반 동적 샘플링 범위에 기반하여 LOD를 생성하는 과정의 예시(2500)이다. 실시예들에 따른 옥트리 기반 동적 샘플링 범위는 도 24에서 설명한 바와 동일하므로 구체적인 설명은 생략한다. 실시예들에 따른 옥트리 기반 동적 샘플링 범위는 옥트리 내 동일한 부모 노드를 갖는 자식 포인트들을 기반으로 설정될 수 있다.
실시예들에 따른 LOD의 최대 레벨은 lmax로 표현된다.상술한 바와 같이 포인트 클라우드 콘텐트의 밀도는 다르므로 LOD의 최대 레벨은 포인트 클라우드 콘텐트마다 다르게 설정될 수 있다. 따라서 실시예들에 따른 각 포인트 클라우드 콘텐트는 최대 레벨의 LOD를 위하여 같거나 다른 옥트리 뎁스를 가질 수 있다. 실시예들에 따른 옥트리의 뎁스는 d로 표현될 수 있다. 실시예들에 따른 LOD 최대 레벨은 옥트리의 뎁스보다 작다 ( ).
실시예들에 따른 LOD(예를 들면 LOD l)의 최대 샘플링 레이트는 다음과 같이 표현될 수 있다.
k는 최대 샘플링 레이트를 나타낸다. 실시예들에 따른 LOD 구성부는 포인트 클라우드 콘텐트의 포인트 밀집도에 따라 샘플링 비율을 변경할 수 있다. 따라서 위 식에서 1은 옥트리의 뎁스 레벨 (예를 들면 d-1레벨)에서 수행되는 샘플링을 나타낸다. 포인트들이 밀집한 경우, d-1 레벨의 노드들이 전부 할당될 가능성이 높기 때문이다. 하지만 포인트 클라우드 콘텐트에 따라 밀집도가 다르므로, 실시예들에 따른 LOD 구성부는 옥트리의 오큐판시 코드의 특정 뎁스에서 LOD를 구성하기 위한 값을 설정할 수 있다. 실시예들에 따른 LOD(예를 들면 LOD l)의 최대 샘플링 레이트는 다음과 같이 표현될 수 있다.
X는 옥트리의 특정 뎁스에서 LOD를 구성하기 위한 값으로, 0 보다 큰 값을 갖는다. 실시예들에 따른 X는 포인트 클라우드 콘텐트마다 다르게 설정될 수 있다.
도25에 도시된 예시(2500)는 X가 3인 경우와 X가 1인 경우의 샘플링이 수행되는 노드들을 나타낸다. 실시예들에 따른 LOD 구성부는 X 값이 3인 경우, 뎁스3에 대응하는 노드(2510)부터 샘플링을 수행할 수 있다(예를 들면 LOD 값은 0). 실시예들에 따른 LOD 구성부는 X 값이 1인 경우 뎁스 1에 대응하는 노드(2520)부터 샘플링을 수행할 수 있다. 실시예들에 따른 자식 노드들의 개수는 pow (8,x)(2530)와 같이 표현된다.
실시예들에 따른 각 LOD 별 샘플링 범위는 다음과 같이 표현될 수 있다.
P i.mc는 i번째 포인트의 몰톤 코드 값을 나타낸다. 실시예들에 따른 샘플링 범위는 옥트리의 오큐판시 코드에서 동일한 상위 부모 노드를 갖는 몰톤 코드 범위로 한정될 수 있다. 예를 들어 LOD의 레벨이 최대 레벨이고, 몰톤 순서로 나열된 포인트들 중 몰톤 코드가 2인 포인트에 대한 샘플링 범위는 몰톤 코드 0부터 7까지의 포인트들을 포함하는 범위(각 뎁스에서 오큐판시 코드는 8개의 노드를 가지므로)로 설정된다. 실시예들에 따른 LOD 구성부는 포인트의 몰톤 코드 값이 샘플링 범위의 최대값 (예를 들면 )보다 큰 경우, 다음 샘플링 범위를 다시 계산할 수 있다.
따라서, 포인트들을 옥트리 구조로 구성한 경우, LOD 0의 최대 샘플링 비율은 8(8 0+1=8)이 된다. LOD 0의 샘플링 범위는 물톤 코드 0~7, 8~15, 16~23 …이 될 수 있다. 실시예들에 따른 LOD 1의 최대 샘플링 비율은 64 (8 1+1 = 64)이고 LOD 1의 샘플링 범위는 0~63, 64~127, 128~192 …이 될 수 있다.
실시예들에 따른 샘플링 범위는 하나의 포인트만 포함할 수 있다. 하나의 샘플링 범위에 포함된 하나의 포인트를 고립 포인트(isolated point)라 호칭할 수 있다. 압축 효율을 높이기 위하여 LOD 구성부는 하나 또는 그 이상의 방법으로 고립 포인트를 처리할 수 있다.
예를 들어 LOD 구성부는 고립 포인트들에 대하여 샘플링을 수행할 수 있다. LOD는 상술한 고정 샘플링 레이트 k개 만큼의 연속된 고립 포인트들 중 하나의 포인트를 선택할 수 있다.
실시예들에 따른 LOD 구성부는 고립 포인트를 현재 LOD보다 낮은 레벨의 LOD들의 후보 그룹으로 분리할 수 있다. 실시예들에 따른 LOD 구성부는 LOD l 생성 중 고립 포인트를 갖는 샘플링 범위에 대해서 해당 고립 포인트를 선택하지 않고 LOD (0~-l-1)으로 분리한다. 실시예들에 따른 LOD 구성부는 LOD l-1- 생성시 보다 큰 샘플링 범위 및 샘플링 레이트 비율을 적용하여 고립 포인트를 선택할 수 있다.
실시예들에 따른 LOD 구성부는 고립 포인트를 현재 LOD에 등록할 수 있다. 예를 들어LOD 구성부는 LOD l 생성 중 고립 포인트가 생성되면 해당 고립 포인트를 LOD l 에 등록한다. 고립 포인트는 주변 포인트를 대표할 수 있는 어트리뷰트들을 가질 확률이 낮기 때문에 LOD l 에 속한 다른 포인트의 이웃 포인트 집합으로 선택될 필요가 없기 때문이다.
실시예들에 따른 고립 포인트 처리 방법에 대한 정보는 상술한 LOD 구성 방식(또는 LOD 생성 방식)정보에 포함되어 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 통해 수신장치(예를 들면 도 1의 수신장치(10004) 또는 도 10 및 도 11의 포인트 클라우드 디코더 등)로 전송된다. 따라서 수신장치는 LOD 구성 방식 정보를 기반으로 LOD를 생성할 수 있다.
실시예들에 따른 LOD 구성부(예를 들면 도 22의 LOD 구성부(2210))는 샘플링 범위 내에 있는 포인트들 중 하나의 포인트를 선택하고 선택한 포인트를 현재 LOD (예를 들면 LOD l)의 레벨보다 낮은 레벨의 LOD들(예를 들면 LOD (0~-l-1))로 분류하고, 나머지 선택되지 않은 포인트들은 현재 LOD에 등록할 수 있다.
실시예들에 따른 LOD 구성부는 어트리뷰트 예측 코딩을 위하여 좋은 이웃 노드 집합을 생성하고 압축 효율을 높이기 위하여 하나 또는 그 이상의 방법들을 기반으로 포인트를 선택할 수 있다.
예를 들어 실시예들에 따른 LOD 구성부는 샘플링 범위 내에서 N번째 포인트를 선택할 수 있다. 실시예들에 따른 N 값은 사용자 입력 신호에 따라 설정될 수 있다. 또한 실시예들에 따른 N 값은 RDO(Rate Distortion Optimization) 방식을 기반으로 설정될 수 있다.
실시예들에 따른 LOD 구성부는 샘플링 범위에 속한 포인트들의 중간 값(mean) 또는 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택할 수 있다. 몰톤 코드 값이 유사할수록 포인트들 간의 거리가 가까울 확률이 높다. 동일한 샘플링 범위 내에 속한 포인트들의 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트는 해당 샘플링 범위에 속한 포인트들을 대표할 수 있는 어트리뷰트들(예를 들면 색상, 반사값 등)을 갖거나 해당 샘플링 범위에 속한 포인트들에게 상대적으로 더 큰 영향을 줄 수 있는 어트리뷰트들을 가질 가능성이 높기 때문이다. 특히 주변 값을 대표할 수 있는 포인트가 이웃 노드 집합으로 선택되면 압축 효율을 높일 수 있다. 또한 실시예들에 따른 LOD 구성부는 중간 몰톤 코드 값을 기준으로 정렬된 포인트들의 순서 중 N 번째 포인트를 선택할 수 있다. 실시예들에 따른 N은 기설정된 값이다. 만약 설정된 N값이 없으면 실시예들에 따른 LOD 구성부는 정렬된 포인트들의 순서 중 0 번째 포인트를 선택할 수 있다.
하지만 샘플링 범위에 속한 포인트들이 골고루 분포하지 않는 경우(예를 들면 한쪽으로 치우쳐서 분포하는 경우), 포인트들의 중간 몰톤 코드 값이 해당 샘플링 범위를 제대로 대표하지 못할 수 있다. 따라서 실시예들에 따른 LOD 구성부는 샘플링 범위의 이상적인 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택할 수 있다. 실시예들에 따른 LOD 구성부는 옥트리 구조에서 부모 노드의 모든 자식 노드들이 할당되었다고 가정하고 이상적인 중간 몰톤 코드 값을 계산하고 이상적인 중간 몰톤 코드 값과 가장 가까운 몰톤 코드를 갖는 포인트를 선택한다. 실시예들에 따른 LOD 구성부는 이상적인 중간 몰톤 코드 값을 기준으로 정렬된 포인트들의 순서 중 N 번째 포인트를 선택할 수 있다. 실시예들에 따른 N은 기설정된 값이다. 만약 설정된 N값이 없으면 실시예들에 따른 LOD 구성부는 정렬된 포인트들의 순서 중 0 번째 포인트를 선택할 수 있다.
실시예들에 따른 LOD 구성부는 하나의 샘플링 범위 내에서 하나 또는 그 이상의 포인트들을 선택할 수 있다. 선택할 포인트들의 개수는 기설정될 수 있다. 샘플링 범위 내에서 N번째 포인트를 선택하는 방법에 따르는 경우, LOD 구성부는 샘플링 범위 내의 포인트들에 대하여 N 번째 포인트를 반복적으로 선택할 수 있다. 예를 들어 N이 2인 경우, LOD 구성부는 샘플링 범위 내의 2번째 포인트, 4번째 포인트..를 기설정된 개수 X개만큼 반복적으로 선택한다. 샘플링 범위에 속한 포인트들의 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택하는 방법에 따르는 경우, LOD 구성부는 중간 몰톤 코드값으로 정렬된 순서에서 N번째에 해당하는 포인트들을 기설정된 개수 X개만큼 반복 선택할 수 있다. 샘플링 범위에 속한 포인트들의 이상적인 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택하는 방법에 따르는 경우, LOD 구성부는 이상적인 중간 몰톤 코드 값으로 정렬된 순서에서 N번째에 해당하는 포인트들을 기설정된 개수 X개만큼 반복 선택할 수 있다.
실시예들에 따른 포인트 선택 방법은 상술한 고립 포인트를 선택할 때에도 적용될 수 있다. 또한 실시예들에 따른 포인트 선택 방법에 대한 정보는 상술한 LOD 구성 방식(또는 LOD 생성 방식)정보에 포함되어 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 통해 수신장치(예를 들면 도 1의 수신장치(10004) 또는 도 10 및 도 11의 포인트 클라우드 디코더 등)로 전송된다. 따라서 수신장치는 LOD 구성 방식 정보를 기반으로 LOD를 생성할 수 있다.
도 26은 포인트 클라우드 컴프레션 (PCC) 비트스트림의 구조도의 예시를 나타낸다.
상술한 바와 같이, 포인트 클라우드 데이터 송신 장치(예를 들면 도 1, 도 11, 도 14 및 도 1에서 설명한 포인트 클라우드 데이터 송신 장치)는 부호화된 포인트 클라우드 데이터를 비트스트림(2600)의 형태로 전송할 수 있다. 실시예들에 따른 비트스트림(2600)은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다.
포인트 클라우드 데이터 송신 장치(예를 들면 도 1, 도 11, 도 14 및 도 1에서 설명한 포인트 클라우드 데이터 송신 장치)는 전송 채널의 에러를 고려하여 포인트 클라우드 데이터의 영상을 하나 또는 그 이상의 패킷들로 나누어 네트워크를 통해 전송할 수 있다. 실시예들에 따른 비트스트림(2600)은 하나 또는 그 이상의 패킷(예를 들면 NAL (Network Abstraction Layer) 유닛)들을 포함할 수 있다. 따라서 열악한 네트워크 환경에서 일부 패킷이 손실되더라도 포인트 클라우드 데이터 수신 장치는 나머지 패킷들을 이용하여 해당 영상을 복원할 수 있다. 포인트 클라우드 데이터를 하나 또는 그 이상의 슬라이스(slice)들 또는 하나 또는 그 이상의 타일(tile)들로 분할하여 처리할 수 있다. 실시예들에 따른 타일 및 슬라이스는 포인트 클라우드 데이터의 픽처를 파티셔닝(partitioning)하여 포인트 클라우드 컴프레션 코딩 처리하기 위한 영역이다. 포인트 클라우드 데이터 송신 장치는 포인트 클라우드 데이터의 나누어진 영역별 중요도에 따라 각 영역에 대응하는 데이터를 처리하여 고품질의 포인트 클라우드 콘텐트를 제공할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 송신 장치는 사용자에게 중요한 영역에 대응하는 데이터를 더 좋은 압축 효율과 적절한 레이턴시를 갖는 포인트 클라우드 컴프레션 코딩 처리할 수 있다.
실시예들에 따른 타일은 포인트 클라우드 데이터가 분포한 3차원 공간(예를 들면 바운딩 박스) 내의 직육면체를 의미한다. 실시예들에 따른 슬라이스는 인코드된 포인트 클라우드 데이터의 일부 또는 전부를 나타내는 신택스 엘레멘트의 시리즈들로서, 독립적으로 인코드 또는 디코드될 수 있는 포인트들의 집합을 의미한다. 실시예들에 따른 슬라이스는 패킷을 통해 전송되는 데이터를 포함하며 하나의 지오메트리 데이터 유닛 및 0보다 크기가 같은 개수의 어트리뷰트 데이터 유닛들을 포함할 수 있다. 실시예들에 따른 하나의 타일은 하나 또는 그 이상의 슬라이스들을 포함할 수 있다.
실시예들에 따른 비트스트림(2600)은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 하나 또는 그 이상의 슬라이스들을 포함할 수 있다.
실시예들에 따른 SPS는 프로파일, 레벨 등 시퀀스 전체에 대한 인코딩 정보로서, 픽처 해상도, 비디오 포멧 등 파일 전체에 대한 포괄적인 정보를 포함할 수 있다.
실시예들에 따른 하나의 슬라이스(예를 들면 도 25의 slice 0)는 슬라이스 헤더 및 슬라이스 데이터를 포함한다. 슬라이스 데이터는 하나의 지오메트리 비트스트림 (Geom0 0) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr0 0, Attr1 0)을 포함할 수 있다.
지오메트리 비트스트림은 헤더(예를 들면 지오메트리 슬라이스 헤더) 및 페이로드(예를 들면 지오메트리 슬라이스 데이터)를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_geom_parameter_set_id), 타일 식별자(geom_tile id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 어트리뷰트 비트스트림은 헤더 (예를 들면 어트리뷰트 슬라이스 헤더 또는 어트리뷰트 브릭 헤더) 및 페이로드 (예를 들면 어트리뷰트 슬라이스 데이터 또는 어트리뷰트 브릭 데이터)를 포함할 수 있다.
도22 내지 도 25에서 설명한 바와 같이, 실시예들에 따른 포인트 클라우드 인코더 및 포인트 클라우드 디코더는 어트리뷰트 예측을 위하여 LOD를 생성할 수 있다. 따라서 도 26에 도시된 비트스트림은 도 18 내지 도 25에서 설명한 LOD 구성 방식 정보를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 디코더는 LOD 구성 방식 정보를 기반으로 LOD를 생성할 수 있다.
실시예들에 따른 비트스트림에 포함되는 시그널링 정보는 포인트 클라우드 인코더에 포함된 메타데이터 처리부 또는 전송 처리부(예를 들면 도 12의 전송 처리부(12012)) 또는 메타데이터 처리부 또는 전송 처리부 내의 엘레멘트에 의해 생성될 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및 어트리뷰트 인코딩의 수행 결과를 기반으로 생성될 수 있다.
도 27은 실시예들에 따른 APS를 위한 신택스의 예시이다.
도 27은 실시예들에 따른 APS를 위한 신택스의 예시로서 다음의 정보(또는 필드, 파라미터 등)를 포함할 수 있다.
aps_attr_parameter_set_id는 다른 신택스 엘리먼트들에 의한 참조를 위한 APS의 식별자를 나타낸다. aps_attr_parameter_set_id는 0 내지 15 범위 내의 값을 가진다. 도 30에 도시된 바와 같이 비트스트림 내에는 하나 또는 그 이상의 어트리뷰트 비트스트림들이 포함되므로, 각 어트리뷰트 비트스트림의 헤더에는 aps_attr_parameter_set_id와 동일한 값을 갖는 필드(예를 들면 ash_attr_parameter_set_id
)가 포함될 수 있다. 실시예들에 따른 포인트 클라우드 디코더는 aps_attr_parameter_set_id를 기반으로 각 어트리뷰트 비트스트림에 대응하는 APS를 확보하고 해당 어트리뷰트 비트스트림을 처리할 수 있다.
aps_seq_parameter_set_id 는 액티브 SPS(active SPS)를 위한 sps_seq_parameter_set_id 의 값을 나타낸다. aps_seq_parameter_set_id 는 0 내지 15의 범위 내의 값을 가진다.
attr_coding_type 는 attr_coding_type 의 주어진 값에 대한 어트리뷰트 코딩 타입(coding type)을 나타낸다. attr_coding_type의 값은 실시예들에 따른 비트스트림들 내에서 0, 1 또는 2 중 어느 하나와 같다. 다른 attr_coding_type의 값들은 ISO/IEC에 의해 추후 사용될 수 있을 수 있다. 따라서 실시예들에 따른 포인트 클라우드 디코더는 attr_coding_type의 0, 1 및 2 가 아닌 나머지 값들을 무시할 수 있다. 해당 값이 0이면, 어트리뷰트 코딩 타입은 프레딕팅 웨이트 리프팅(predicting weight lifting) 변환 코딩, 해당 값이1이면 어트리뷰트 코딩 타입이 RAHT 변환 코딩, 해당 값이 2이면 어트리뷰트 코딩 타입은 픽스트 웨이트 리프팅(fixed weight lifting) 변환 코딩이다.
이하는 어트리뷰트 코딩 타입이 0 또는 2인 경우의 파라미터들이다.
num_pred_nearest_neighbours는 예측을 위해 사용되는 이웃 포인트들(nearest neighbors)의 맥시멈 개수를 나타낸다. num_pred_nearest_neighbours는 0부터 특정 값까지의 범위 내의 값을 갖는다.
max_num_direct_predictors는 다이렉트 예측(direct prediction)변환을 위해 사용되는 예측기(predictors)의 개수를 나타낸다. max_num_direct_predictors는 0부터 num_pred_nearest_neighbours의 값의 범위 내의 값을 가진다. 디코딩 동작에서 사용되는 변수 MaxNumPredictors의 값은 다음과 같다.
MaxNumPredictors = max_num_direct_predicots + 1
lifting_search_range는 리프팅(lifting)을 위한 탐색 범위(search range)를 나타낸다.
lifting_quant_step_size는 어트리뷰트의 첫 번째 컴포넌트를 위한 양자화 스텝 사이즈(quantization step size)를 나타낸다. lifting_quant_step_size의 값은 1부터 xx(임의의 값)까지의 범위일 수 있다.
lifting_quant_step_size_chroma는 어트리뷰트가 색(colour)인 경우, 어트리뷰터의 크로마(chroma) 컴포넌트를 위한 양자화 스텝 사이즈(quantization step size)를 나타낼 수 있다. lifting_quant_step_size_chroma는 1부터 xx(임의의 값)의 범위를 가질 수 있다.
lod_binary_tree_enabled_flag는 LOD 생성 과정에서 이진 트리가 적용되는지 여부를 나타낸다.
num_detail_levels_minus1는 어트리뷰트 부호화(어트리뷰트 코딩)을 위한 LOD의 개수를 나타낸다. num_detail_levels_minus1는 0에서 xx(임의의 값)의 범위 내의 값을 가질 수 있다. 이하의 for 문은 각 LOD에 대한 정보이다.
sampling_distance_squared [idx]는 idx로 표현되는 각 LOD에 대한 샘플링 거리(sampling distance)의 제곱을 나타낼 수 있다. 실시예들에 따른 idx는 0부터 num_detail_levels_minus1 가 나타내는 어트리뷰트 코딩을 위한 LOD의 수까지의 값을 갖는다. sampling_distance_squared는 0에서 xx(임의의 값)의 범위 내의 값을 가진다.
이하는 실시예들에 따른 LOD 구성 정보(2700)이다.
lod_generation_type는 LOD 집합을 구성(생성)하는 방법의 타입을 나타내는 정보이다. lod_generation_type은 1 및 2 중 어느 하나의 값을 가질 수 있으며, lod_generation_type의 값은 본 예시에 국한되지 않는다. lod_generation_type의 값이 1인 경우, lod_generation_type은 LOD 집합 생성 방식이 거리 기반 LOD 생성 방식(예를 들면 도 22에서 설명한 거리 기반 LOD 생성 방식)임을 나타낸다. lod_generation_type의 값이 2인 경우, lod_generation_type은 LOD 집합 생성 방식이 몰톤 순서 기반 샘플링 LOD 생성 방식(예를 들면 도 22에서 설명한 몰톤 순서 기반 샘플링 LOD 생성 방식)임을 나타낸다. LOD 집합 생성 방식에 대해서는 도 22에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
이하는 lod_generation_type의 값이 2인 경우, 샘플링과 관련된 정보들이다.
sampling_range_type은 샘플링 범위 및 샘플링 레이트, 또는 샘플링 범위의 타입을 나타낸다. sampling_range_type은 1, 2 및 3 중 어느 하나의 값을 가질 수 있으며, sampling_range_type의 값은 본 예시에 국한되지 않는다. sampling_range_type의 값이 1 인 경우 sampling_range_type은 샘플링 범위가 고정 샘플링 범위(예를 들면 도 22 및 도 23에서 설명한 고정 샘플링 범위)임을 나타낸다. sampling_range_type의 값이 2인 경우 sampling_range_type은 샘플링 범위가 옥트리 기반 고정 샘플링 범위(예를 들면 도 22 및 도 24에서 설명한 옥트리 기반 고정 샘플링 범위)임을 나타낸다. sampling_range_type의 값이 3인 경우 sampling_range_type은 샘플링 범위가 옥트리 기반 동적 샘플링 범위(예를 들면 도 22 및 도 25에서 설명한 옥트리 기반 동적 샘플링 범위)임을 나타낸다. 실시예들에 따른 샘플링 범위 및 샘플링 레이트는 도 22내지 도 25에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
sampling_rate는 샘플링 레이트를 나타낸다. sampling_rate의 값은 0보다 큰 정수이다.
sampling_select_type은 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법을 나타낸다. sampling_select_type은 1, 2 및 3 중 어느 하나의 값을 가질 수 있으며, sampling_select_type의 값은 본 예시에 국한되지 않는다. sampling_select_type의 값이 1인 경우, sampling_select_type은 포인트 선택 방법이 샘플링 범위 내에서 N번째 포인트를 선택하는 방법(예를 들면 도 25에서 설명한 샘플링 범위 내에서 N번째 포인트를 선택하는 방법)임을 나타낸다. sampling_select_type의 값이 2인 경우, sampling_select_type은 포인트 선택 방법이 샘플링 범위에 속한 포인트들의 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택하는 방법(예를 들면 도 25에서 설명한 샘플링 범위에 속한 포인트들의 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택하는 방법)임을 나타낸다. sampling_select_type의 값이 3인 경우, sampling_select_type은 포인트 선택 방법이 샘플링 범위의 이상적인 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택하는 방법(예를 들면 도 25에서 설명한 샘플링 범위의 이상적인 중간 몰톤 코드 값에 가장 가까운 몰톤 코드를 갖는 포인트를 선택하는 방법)임을 나타낸다. 실시예들에 따른 포인트 선택 방법은 도 25에서 설명한 포인트 선택 방법과 동일하므로 구체적인 설명은 생략한다.
sampling_select_idx는 선택할 포인트의 고정 인덱스를 나타낸다. 예를 들어 sampling_select_type의 값이 1인 경우, sampling_select_idx는 샘플링 범위 내에서 정렬된 포인트들 중 선택될 N번째 포인트의 인덱스를 나타낸다. 또한 sampling_select_type의 값이 2 및 3인 경우, sampling_select_idx는 중간 몰톤 코드 값 또는 이상적인 중간 몰톤 코드 값을 기준으로 정렬된 포인트들 중 선택될 N 번째 포인트의 인덱스를 나타낸다.
sampling_select_max_num_of_points는 하나의 샘플링 범위 내에서 선택할 수 있는 최대 포인트 개수를 나타낸다.
이하는 sampling_select_type의 값이 2인 경우의 샘플링 정보를 나타낸다. sampling_begin_depth는 LOD 0 집합 생성을 시작할 옥트리의 뎁스를 나타낸다. sampling_begin_depth는 양의 정수 값을 갖는다.
sampling_isolated_point_threshold는 고립 포인트로 정의될 수 있는 포인트 개수의 한계 값을 나타낸다.
sampling_isolated_point_sampling_typ는 고립 포인트 처리 방법을 나타낸다. sampling_isolated_point_sampling_type는 고립 포인트들에 대해 샘플링을 수행하는 방법, 고립 포인트를 현재 LOD보다 낮은 레벨의 LOD들의 후보 그룹으로 분리하여 처리하는 방법 및 고립 포인트를 현재 LOD에 등록하는 방법 중 어느 하나를 나타낼 수 있다. 고립 포인트들에 대해 샘플링을 수행하는 방법은 고정 샘플링 레이트 k개 만큼의 연속된 고립 포인트들에 대하여 하나의 포인트를 선택하는 방법이다. 현재 LOD보다 낮은 레벨의 LOD들의 후보 그룹으로 분리하여 처리하는 방법은 LOD l 생성 중 고립 포인트를 갖는 샘플링 범위에 대해서 해당 고립 포인트를 선택하지 않고 LOD (0~-l-1)으로 분리하고 LOD l-1- 생성시 고립 포인트를 선택하는 방법이다. 고립 포인트를 현재 LOD에 등록하는 방법은 LOD l생성 중 고립 포인트가 생성되면 해당 고립 포인트를 LOD l에 등록하는 방법이다. 고립 포인트 처리 방법은 도 25에서 설명한 고립 포인트 처리 방법과 동일하므로 구체적인 설명은 생략한다.
이하는 어트리뷰트 코딩 타입이 0 값인 경우의 관련 파라미터이다.
adaptive_prediction_threshold는 예측(프리딕션)의 스레숄드 값을 나타낸다.
이하는 어트리뷰트 코딩 타입이 1 값인 경우의 관련 파라미터들이다.
raht_depth는 RAHT변환을 위한 LOD 개수를 나타낸다. depthRAHT은 1부터 xx(임의의 값)까지의 범위 내의 값을 가진다.
raht_quant_step_size는 어트리뷰트의 첫 번째 컴포넌트에 대한 양자화 스텝 사이즈(quantization step size)를 나타낸다. rath_quant_step_size는 1부터 xx(임의의 값)의 범위내의 값을 가진다.
raht_quant_step_size_chroma는 RAHT 적용시 어트리뷰터의 크로마(chroma) 컴포넌트를 위한 양자화 스텝 사이즈(quantization step size)를 나타낼 수 있다.
aps_extension_present_flag는 0또는 1 값을 갖는 flag이다.
1 값을 갖는 aps_extension_present_flag 는 APS RBSP 신텍스 스트럭처 내에 aps_extension_data 신텍스 스트럭처가 존재함을 나타낸다. 0 값을 갖는 aps_extension_present_flag는 이 신텍스 스트럭처가 존재하지 않음을 나타낸 것이다. 만약 신택스 스트럭처가 존재하지 않는다면, aps_extension_present_flag의 값은 0과 같은 것으로 추론된다.
aps_extension_data_flag는 어떤 값을 가질 수 있다. 본 필드의 존재 및 값은 실시예들에 따른 디코더 성능에 영향을 주지 않을 수 있다.
도 28은 실시예들에 따른 APS를 위한 신택스의 예시이다.
도 28은 도 27에서 설명한 APS를 위한 신택스의 예시이다. 도 28은 LOD별 샘플링 정보가 다르게 적용되는 경우의 APS를 위한 신택스의 예시이다. 설명의 편의를 위하여 도 27에서 설명한 정보 및/또는 파라미터와 동일한 정보 및/또는 파라미터에 대한 설명은 생략한다.
실시예들에 따른 LOD 구성부(예를 들면 LOD 구성부(2210))는 LOD 별로 샘플링을 다르게 수행할 수 있다. 이 경우 따라서 실시예들에 따른 APS를 위한 신택스는 lod_generation_type의 값이 2인 경우, 샘플링과 관련된 다음의 정보(2800)를 더 포함할 수 있다.
sampling_attrs_per_lod_flag는 LOD별 샘플링 수행 방식이 다른지 여부를 나타내는 플래그이다. 도 22에서 설명한 바와 같이 LOD 구성부(예를 들면 LOD 구성부(2210))는 LOD별로 샘플링을 다르게 수행할 수 있으므로, 실시예들에 따른 LOD 생성 정보는 각 LOD를 위한 샘플링 정보를 포함할 수 있다. 따라서 sampling_attrs_per_lod_flag값이 1인 경우, 이하의 for 문은 각 LOD에 대한 샘플링과 관련된 정보(2810)이다. 도면에 도시된 idx는 각 LOD를 나타낸다. 또한 실시예들에 따른 샘플링과 관련된 정보(2810)는 도 27에서 설명한 정보와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 LOD 구성부(예를 들면 LOD 구성부(2210))는 타일 또는 슬라이스 별로 LOD 생성 방식을 다르게 적용할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터 수신 장치도 LOD를 생성해야 하므로, 실시예들에 따른 비트 스트림은 영역별 LOD 생성 방식과 관련된 시그널링 정보를 더 포함할 수 있다.
도 29는 실시예들에 따른 TPS를 위한 신택스의 예시이다.
실시예들에 따른 LOD 구성부가 타일 별로 LOD 생성 방식을 다르게 적용한 경우, 실시예들에 따른 TPS는 LOD 구성 정보(예를 들면 도 27 및 도 28에서 설명한 LOD 구성 정보(2700, 2800, 2810)를 더 포함할 수 있다. 도 29는 실시예들에 따른 TPS를 위한 신택스의 예시로서 다음의 정보(또는 필드, 파라미터 등)를 포함할 수 있다.
num_tiles 은 비트스트림을 위해 시그널링되는 타일들의 개수를 나타낸다. 만약 비트스트림을 위해 시그널링되는 타일들이 존재하지 않는 경우, 본 정보의 값은 0으로 추론된다. 이하는 각 타일들에 대한 시그널링 파라미터들이다.
tile_bounding_box_offset_x[ i ] 는 직교 좌표계 내의 i-번째 타일의 x 오프셋을 나타낸다 본 파라미터가 존재하지 않으면, tile_bounding_box_offset_x[ 0 ]의 값은 SPS 에 포함된 sps_bounding_box_offset_x의 값으로 본다.
tile_bounding_box_offset_y[ i ] 는 직교 좌표계 내의 i-번째 타일의 y 오프셋을 나타낸다 본 파라미터가 존재하지 않으면, tile_bounding_box_offset_y[ 0 ]의 값은 SPS에 포함된 sps_bounding_box_offset_y의 값으로 본다.
tile_bounding_box_offset_z[ i ] 는 직교 좌표계 내의 i-번째 타일의 z 오프셋을 나타낸다. 본 파라미터가 존재하지 않으면, tile_bounding_box_offset_z[ 0 ]의 값은 sps_bounding_box_offset_z의 값으로 본다.
tile_bounding_box_scale_factor[ i ] 는 직교 좌표계 내의 i-번째 타일과 관련된 스케일 펙터(scale factor)를 나타낸다. 본 파라미터가 존재하지 않으면, tile_bounding_box_scale_factor[ 0 ]의 값은 sps_bounding_box_scale_factor의 값으로 본다.
tile_bounding_box_size_width[ i ] 는 직교 좌표계 내의 i-번째 타일의 폭(width)를 나타낸다. 본 파라미터가 존재하지 않는 경우, tile_bounding_box_size_width[ 0 ]의 값은 sps_bounding_box_size_width값으로 본다.
tile_bounding_box_size_height[ i ] 는 직교 좌표계 내의 i-번째 타일의 높이(height)를 나타낸다. 본 파라미터가 존재하지 않는 경우, tile_bounding_box_size_height[ 0 ]의 값은 sps_bounding_box_size_height의 값으로 본다.
tile_bounding_box_size_depth[ i ] 는 직교 좌표계 내의 i-번째 타일의 뎁스(depth)를 나타낸다. 본 파라미터가 존재하지 않는 경우, tile_bounding_box_size_depth[ 0 ]의 값은 sps_bounding_box_size_depth의 값으로 본다.
도면에 도시된 바와 같이 실시예들에 따른 TPS는 LOD 구성 정보(2900)를 포함할 수 있다. 실시예들에 따른 LOD 구성 정보(2900)는 각 타일마다 적용된다. LOD 구성 정보(2900)는 도 27에서 설명한 LOD 구성 정보(2700)와 동일하므로 구체적인 설명은 생략한다.
도 30은 실시예들에 따른 TPS를 위한 신택스의 예시이다.
도 30은 도 28에서 설명한 TPS를 위한 신택스의 예시이다. 도 30은 LOD별 샘플링 정보가 다르게 적용되는 경우의 TPS를 위한 신택스의 예시이다. 설명의 편의를 위하여 도 28에서 설명한 정보 및/또는 파라미터와 동일한 정보 및/또는 파라미터에 대한 설명은 생략한다.
실시예들에 따른 LOD 구성부(예를 들면 LOD 구성부(2210))는 LOD 별로 샘플링을 다르게 수행할 수 있다. 이 경우 따라서 실시예들에 따른 TPS를 위한 신택스는 lod_generation_type의 값이 2인 경우, 샘플링과 관련된 sampling_attrs_per_lod_flag (3000)를 더 포함할 수 있다. 실시예들에 따른 sampling_attrs_per_lod_flag는 도 28에서 설명한 sampling_attrs_per_lod_flag(2800)와 동일하므로 구체적인 설명은 생략한다. 또한 sampling_attrs_per_lod_flag값이 1인 경우, 실시예들에 따른 TPS를 위한 신택스는 각 LOD에 대한 샘플링과 관련된 정보(3010)를 나타내는 for 문을 포함한다. 실시예들에 따른 각 LOD에 대한 샘플링과 관련된 정보(3010)는 도 28에서 설명한 각 LOD에 대한 샘플링과 관련된 정보(2810)과 동일하므로 구체적인 설명은 생략한다.
도 31은 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시이다.
도 31의 어트리뷰트 헤더를 위한 신택스는 도 26에서 설명한 어트리뷰트 비트스트림에 포함된 헤더를 통해 전송되는 정보들의 신택스의 예시이다.
실시예들에 따른 LOD 구성부(예를 들면 LOD 구성부(2110))가 슬라이스 별로 이웃 포인트 집합 생성 방법을 다르게 적용한 경우, 실시예들에 따른 어트리뷰트 헤더는 LOD 구성 정보(3100) (예를 들면 도 27에서 설명한 LOD 구성 정보(2700), 도 29에서 설명한 LOD 구성 정보(2900))를 더 포함할 수 있다. 도 31에 도시된 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시는 다음의 정보(또는 필드, 파라미터 등)를 포함할 수 있다.
ash_attr_parameter_set_id는 액티브 APS들의 aps_attr_parameter_set_id 와 동일한 값을 갖는다.
ash_attr_sps_attr_idx는 액티브 SPS(active SPS)에 대한 sps_seq_parameter_set_id의 값을 나타낼 수 있다. ash_attr_sps_attr_idx의 값은 0부터 액티브 SPS내에 포함된 sps_num_attribute_sets 값까지의 범위 내에 속한다.
ash_attr_geom_slice_id는 지오메트리 슬라이스 아이디(예를 들면 geom_slice_id)의 값을 나타낸다.
도면에 도시된 바와 같이 실시예들에 따른 어트리뷰트 헤더는 LOD 구성 정보(3100)를 포함할 수 있다. 실시예들에 따른 LOD 구성 정보(3100)는 각 슬라이스에 속한 어트리뷰트 비트스트림(또는 어트리뷰트 슬라이스 데이터)마다 적용된다. LOD 구성 정보(3100)는 도 27 및 도 29에서 설명한 LOD 구성 정보(2700, 2900)과 동일하므로 구체적인 설명은 생략한다.
도 32는 실시예들에 따른 어트리뷰트 헤더를 위한 신택스의 예시이다.
도 32는 도 31에서 설명한 어트리뷰트 헤더를 위한 신택스의 예시이다. 도 32는 LOD별 샘플링 정보가 다르게 적용되는 경우의 어트리뷰트 헤더를 위한 신택스의 예시이다.
실시예들에 따른 LOD 구성부(예를 들면 LOD 구성부(2210))는 LOD 별로 샘플링을 다르게 수행할 수 있다. 이 경우 따라서 실시예들에 따른 어트리뷰트 헤더를 위한 신택스는 lod_generation_type의 값이 2인 경우, 샘플링과 관련된 sampling_attrs_per_lod_flag (3200)를 더 포함할 수 있다. 실시예들에 따른 sampling_attrs_per_lod_flag는 도 28 및 도 30에서 설명한 sampling_attrs_per_lod_flag(2800, 3000)와 동일하므로 구체적인 설명은 생략한다. 또한 sampling_attrs_per_lod_flag값이 1인 경우, 실시예들에 따른 어트리뷰트 헤더를 위한 신택스는 각 LOD에 대한 샘플링과 관련된 정보(3210)를 나타내는 for 문을 포함한다. 실시예들에 따른 각 LOD에 대한 샘플링과 관련된 정보(3210)는 도 28 및 도 30에서 설명한 각 LOD에 대한 샘플링과 관련된 정보(2810, 3010)과 동일하므로 구체적인 설명은 생략한다.
도 33은 포인트 클라우드 디코더의 예시를 나타내는 블록도이다.
실시예들에 따른 포인트 클라우드 디코더(3300)는 도 1 내지 도 17에서 설명한 디코더(예를 들면 도 1, 도 10-도 11, 도 13-도 14 및 도 16에서 설명한 포인트 클라우드 디코더)의 디코딩 동작과 동일 또는 유사한 디코딩 동작을 수행할 수 있다. 또한 포인트 클라우드 디코더(3300)는 도 18에서 설명한 포인트 클라우드 인코더(1800)의 인코딩 동작의 역과정에 해당하는 디코딩 동작을 수행할 수 있다. 실시예들에 따른 포인트 클라우드 디코더(3300)는 공간 분할부(3310), 지오메트리 정보 복호화부(3320) (또는 지오메트리 정보 디코더) 및 어트리뷰트 정보 복호화부(또는 어트리뷰트 디코더)(3330)을 포함할 수 있다. 실시예들에 따른 포인트 클라우드 디코더(3300)는 도 33에 도시되지 않았으나 도 1 내지 도 17에서 설명한 디코딩 동작을 수행하기 위한 하나 또는 그 이상의 엘레멘트들을 더 포함할 수 있다.
실시예들에 따른 공간 분할부(3310)는 실시예들에 따른 포인트 클라우드 데이터 전송 장치(예를 들면 도 1, 도 11, 도 14 및 도 1에서 설명한 포인트 클라우드 데이터 송신 장치)으로부터 수신한 시그널링 정보 (예를 들면 도 18에서 설명한 공간 분할부(1810)에서 수행된 분할 동작에 대한 정보) 또는 포인트 클라우드 디코더(3300)에서 유도한(생성한) 분할 정보를 기반으로 공간을 분할할 수 있다. 상술한 바와 같이 포인트 클라우드 인코더(1800)의 공간 분할부(1810)의 분할 동작은 옥트리(Octree), 쿼드 트리(Quadtree), 바이너리 트리(Biniary tree), 트리플 트리(Triple tree), k-d 트리 중 적어도 하나에 기반할 수 있다.
실시예들에 따른 지오메트리 정보 복호화부(3320)는 입력한 지오메트리 비트스트림을 복호화하여 지오메트리 정보를 복원할 수 있다. 복원된 지오메트리 정보는 어트리뷰트 정보 복호화부(3330)로 입력될 수 있다. 실시예들에 따른 지오메트리 정보 복호화부(3320)는 도12에서 설명한 아리스메틱 디코더(arithmetic decode, 12000), 옥트리 합성부(synthesize octree, 12001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 12002), 지오메트리 리컨스럭션부(reconstruct geometry, 12003) 및 좌표계 역변환부(inverse transform coordinates, 12004)의 동작을 수행할 수 있다. 또한 실시예들에 따른 지오메트리 정보 복호화부(3320)는 도 13에서 설명한 Arithmetic 디코더(13002), Occupancy코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004) 및 inverse 양자화 처리부(13005)의 동작을 수행할 수 있다. 또는 실시예들에 따른 지오메트리 정보 복호화부(3320)는 도 16에서 설명한 Point Cloud 디코딩부(Point Cloud decoding)의 동작을 수행할 수 있다.
실시예들에 따른 어트리뷰트 정보 복호화부(3330)는 어트리뷰트 정보 비트스트림 및 복원된 지오메트리 정보를 기반으로 어트리뷰트 정보를 복호화할 수 있다. 실시예들에 따른 어트리뷰트 정보 복호화부(3330)는 도 11의 포인트 클라우드 디코더에 포함된 아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)의 동작과 동일 또는 유사한 동작을 수행할 수 있다. 실시예들에 따른 어트리뷰트 정보 복호화부(3030)는 도 13의 수신 장치에 포함된 아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
포인트 클라우드 디코더(3300)는 복원된 지오메트리 정보와 복원된 어트리뷰트 정보를 기반으로 최종 PCC 데이터를 출력할 수 있다.
도 34는 지오메트리 정보 디코더의 예시를 나타내는 블록도이다.
실시예들에 따른 지오메트리 정보 디코더(3400)는 도 30의 지오메트리 정보 복호화부(3320)의 예시로서, 지오메트리 정보 복호화부(3020)의 동작과 동일 또는 유사한 수행할 수 있다. 실시예들에 따른 지오메트리 정보 디코더(3400)는 도 19에서 설명한 지오메트리 정보 인코더(1900)의 부호화 동작의 역과정에 해당하는 복호화 동작을 수행할 수 있다. 실시예들에 따른 지오메트리 정보 디코더(3400)는 지오메트리 정보 엔트로피 복호화부(3410), 지오메트리 정보 역양자화부(3420), 지오메트리 정보 예측부(3430), 필터링부(3440), 메모리(3450), 지오메트리 정보 역변환 역양자화부(3460), 및 좌표계 역변환부(3470)을 포함할 수 있다. 실시예들에 따른 지오메트리 정보 디코더(3400)는 도 31에 도시되지 않았으나 도 1 내지 도 31에서 설명한 지오메트리 디코딩 동작을 수행하기 위한 하나 또는 그 이상의 엘레멘트들을 더 포함할 수 있다.
실시예들에 따른 지오메트리 정보 엔트로피 복호화부(3410)는 지오메트리 정보 비트스트림을 엔트로피 복호화하여 양자화된 잔차 지오메트리 정보를 생성할 수 있다. 지오메트리 정보 엔트로피 복호화부(3410)는 도 19에서 설명한 지오메트리 정보 엔트로피 부호화부(1905)에서 수행한 엔트로피 부호화 동작의 역과정인 엔트로피 복호화 동작을 수행할 수 있다. 상술한 바와 같이 실시예들에 따른 엔트로피 부호화 동작은 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding) 및 CABAC(Context-Adaptive Binary Arithmetic Coding)등을 포함할 수 있으며, 엔트로피 복호화 동작은 엔트로피 부호화 동작에 대응하여 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding) 및 CABAC(Context-Adaptive Binary Arithmetic Coding)등을 포함할 수 있다. 실시예들에 따른 지오메트리 정보 엔트로피 복호화부(3410)는 지오메트리 정보 비트스트림에 포함된 지오메트리 코딩과 관련된 정보, 예를 들면, 예측 지오메트리 정보 생성과 관련된 정보, 양자화와 관련된 정보(예를 들면 양자화 값 등), 좌표계 변환과 관련된 시그널링 정보 등을 복호화 할 수 있다.
실시예들에 따른 잔차 지오메트리 정보 역양자화부(3420)는 양자화된 잔차 지오메트리 정보에 대하여 양자화와 관련된 정보를 기반으로 역양자화 동작을 수행하여 잔차 지오메트리 정보 또는 지오메트리 정보를 생성할 수 있다.
실시예들에 따른 지오메트리 정보 예측부(3430)는 지오메트리 엔트로피 복호화부(3410)에서 출력된 예측 지오메트리 정보 생성과 관련된 정보 및 메모리(3450)에 저장되어 있던 이전에 복호화된 지오메트리 정보를 기반으로 예측 지오메트리 정보를 생성할 수 있다. 실시예들에 따른 지오메트리 정보 예측부(3430)는 인터 예측부 및 인트라 예측부를 포함할 수 있다. 실시예들에 따른 인터 예측부는 지오메트리 정보 인코더(예를 들면 지오메트리 정보 인코더(1900))에서 제공하는 현재 예측 단위(예를 들면 노드 등)의 인터 예측(또는 인터 프레딕션)에 필요한 정보를 기반으로 현재 예측 단위가 포함된 현재 공간(예를 들면 프레임, 픽쳐 등)의 이전 공간 또는 이후 공간 중 적어도 하나의 공간에 포함된 정보를 기초로 현재 예측 단위에 대한 인터 예측을 수행할 수 있다. 실시예들에 따른 인트라 예측부는 지오메트리 정보 인코더(1900)에서 제공하는 예측 단위의 인트라 예측과 관련된 정보를 기반으로 현재 공간 내의 포인트의 지오메트리 정보를 기초로 예측 지오메트리 정보를 생성할 수 있다.
실시예들에 따른 필터링부(3440)는 필터링 관련 정보를 기반으로 생성된 예측 지오메트리 정보와 복원된 잔차 지오메트리 정보가 합쳐져 생성된 복원 지오메트리 정보를 필터링할 수 있다. 실시예들에 따른 필터링 관련 정보는 지오메트리 정보 인코더(1900)으로부터 시그널링 될 수도 있다. 또는 실시예들에 따른 지오메트리 정보 디코더(3400)는 필터링 관련 정보를 디코딩 과정에서 유도하여 산출할 수 있다.
실시예들에 따른 메모리(3450)는 복원 지오메트리 정보를 저장할 수 있다. 실시예들에 따른 지오메트리 역변환 양자화부(3460)는 양자화 관련 정보를 기반으로 메모리(3450)에 저장된 복원 지오메트리 정보를 역변환양자화할 수 있다.
실시예들에 따른 좌표계 역변환부(3470)는 지오메트리 정보 엔트로피 복호화부(3410)에서 제공된 좌표계 변환 관련 정보 및 메모리(3450)에 저장된 복원 지오메트리 정보를 기반으로 역변환양자화된 지오메트리 정보의 좌표계를 역변환하여 지오메트리 정보를 출력할 수 있다.
도 35는 어트리뷰트 정보 디코더의 예시를 나타내는 블록도이다.
실시예들에 따른 어트리뷰트 정보 디코더(3500)는 도 33의 어트리뷰트 정보 복호화부(3330)의 예시로서, 어트리뷰트 정보 복호화부(3330)의 동작과 동일 또는 유사한 동작을 수행할 수 있다. 실시예들에 따른 어트리뷰트 정보 디코더(3500)는 도 20 및 도 21에서 설명한 어트리뷰트 정보 인코더(2000) 및 어트리뷰트 정보 인코더(2100)의 부호화 동작의 역과정에 해당하는 복호화 동작을 수행할 수 있다. 실시예들에 따른 어트리뷰트 정보 디코더(3500)는 어트리뷰트 정보 엔트로피 복호화부(3510), 지오메트리 정보 매핑부(3520), 잔차 어트리뷰트 정보 역양자화부(3230), 잔차 어트리뷰트 정보 역변환부(3240), 메모리(3250), 어트리뷰트 정보 예측부(3260), 어트리뷰트 정보 역변환부(3270)를 포함할 수 있다. 실시예들에 따른 어트리뷰트 정보 디코더(3500)는 도 32에 도시되지 않았으나 도 1 내지 도 31에서 설명한 어트리뷰트 디코딩 동작을 수행하기 위한 하나 또는 그 이상의 엘레멘트들을 더 포함할 수 있다.
어트리뷰트 정보 엔트로피 복호화부(3510)는 어트리뷰트 정보 비트스트림을 수신하고, 엔트로피 복호화를 수행해여 변환양자화된 어트리뷰트 정보를 생성한다.
지오메트리 정보 매핑부(3520)는 변환양자화된 어트리뷰트 정보 및 복원 지오메트리 정보를 매핑하여 잔차 어트리뷰트 정보를 생성한다.
잔차 어트리뷰트 정보 역양자화부(3530)는 잔차 어트리뷰트 정보를 양자화 값을 기초로 역양자화할 수 있다.
잔차 어트리뷰트 정보 역변환부(3540)는 역양자화 수행된 어트리뷰트 정보를 포함한 잔차 3차원 블록을 DCT, DST, SADCT, RAHT등의 변환 코딩을 수행하여 역변환할 수 있다.
메모리(3550)는 역변환된 어트리뷰트 정보와 어트리뷰트 정보 예측부(3260)에서 출력된 예측 어트리뷰트 정보를 합하여 저장할 수 있다. 또는 메모리(3550)는 어트리뷰트 정보를 역변환하지 않고 예측 어트리뷰트 정보와 합하여 저장할 수 있다.
어트리뷰트 정보 예측부(3560)는 메모리(3550)에 저장된 어트리뷰트 정보를 기반으로 예측 어트리뷰트 정보를 생성할 수 있다. 어트리뷰트 정보 예측부(3560)는 엔트로피 복호화를 수행하여 예측 어트리뷰트 정보를 생성할 수 있다. 또한 어트리뷰트 정보 예측부(3560)는 도 22에서 설명한 어트리뷰트 정보 예측부(2200)의 동작과 동일 또는 유사한 동작을 수행할 수 있다. 또한 어트리뷰트 예측부(3260)는 도 26 내지 도 29에서 설명한 이웃 포인트 집합 생성 정보를 기반으로 도 22 내지 도 25에서 설명한 이웃 포인트 집합을 생성하여 예측 어트리뷰트 정보를 생성할 수 있다.
어트리뷰트 정보 역변환부(3570)는 어트리뷰트 정보의 유형 및 변환 정보를 어트리뷰트 정보 엔트로피 복호화부(3510)으로부터 수신하여 다양한 컬러 역변환 코딩을 수행할 수 있다.
도 36은 실시예들에 따른 포인트 클라우드 데이터 처리 방법의 플로우 다이어그램의 예이시다.
도 36의 플로우 다이어그램(3600)은 포인트 클라우드 데이터 처리 장치(예를 들면 도 1, 도 11, 도 14 내지 도 15, 및 도 18 내지 도 22에서 설명한 포인트 클라우드 데이터 송신 장치 또는 포인트 클라우드 데이터 인코더)의 포인트 클라우드 데이터 처리 방법을 나타낸다. 실시예들에 따른 포인트 클라우드 데이터 처리 장치는 도 1 내지 도 35에서 설명한 인코딩 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 지오메트리 정보 및 어트리뷰트 정보를 포함하는 포인트 클라우드 데이터를 인코딩할 수 있다(3310). 실시예들에 따른 지오메트리 정보는 포인트 클라우드 데이터의 포인트들의 포지션들을 나타내는 정보이다. 실시예들에 따른 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보이다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 지오메트리 정보를 인코딩하고, 어트리뷰트 정보를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 처리 장치는 도 1 내지 도 35에서 설명한 지오메트리 정보 인코딩 동작과 동일 또는 유사한 동작을 수행한다. 또한 포인트 클라우드 데이터 처리 장치는 도 1 내지 도 35에서 설명한 어트리뷰트 정보 인코딩 동작과 동일 또는 유사한 동작을 수행한다. 실시예들에 따른 포인트 클라우드 데이터 처리 장치는 포인트들을 분할하여 적어도 하나 이상의 LOD를 생성할 수 있다. 실시예들에 따른 LOD 생성 방식 또는 방법은 도 22 내지 25에서 설명한 LOD 생성 방식 또는 방법과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송할 수 있다(3620).
실시예들에 따른 비트스트림의 구조는 도 26에서 설명한 바와 동일하므로 구체적인 설명은 생략한다. 실시예들에 따른 비트스트림은 LOD 구성 정보 (예를 들면 도 27 내지 도 32에서 설명한 LOD 구성 정보)를 포함할 수 있다. 또한 실시예들에 따른 LOD 구성 정보는 도 27 내지 도 32에서 설명한 바와 같이 APS, TPS, 어트리뷰트 헤더 등을 통해 수신장치로 전송될 수 있다.
실시예들에 따른 LOD 구성 정보는 LOD 생성 방법의 타입을 나타내는 타입 정보(예를 들면 도 27 내지 도 32에서 설명한 lod_generation_type)를 포함할 수 있다. 실시예들에 따른 타입 정보는 포인트들 간의 거리를 기반으로 LOD를 생성하는 제 1 타입 (예를 들면 도 22에서 설명한 거리 기반 LOD 생성 방식) 및 포인트들의 몰톤 코드 기반 샘플링으로 LOD를 생성하는 제 2 타입(예를 들면 도 22에서 설명한 몰톤 순서 기반 샘플링 LOD 생성 방식) 중 적어도 하나를 나타낼 수 있다. LOD 집합 생성 방식에 대해서는 도 22에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 타입 정보가 제 2 타입을 나타내는 경우, LOD 구성 정보는 샘플링 범위 타입 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_range_type), 샘플링 레이트 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_rate), 샘플링에 따라 선택될 수 있는 포인트의 고정 인덱스 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_select_idx), 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_select_type) 및 샘플링에 따라 선택될 수 있는 포인트들의 최대 개수 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_select_max_num_of_points)를 포함할 수 있다. 실시예들에 따른 LOD 구성 정보는 도 27 내지 도 32에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 37은 실시예들에 따른 포인트 클라우드 데이터 처리 방법의 플로우 다이어그램의 예시이다.
도 37의 플로우 다이어그램(3700)은 포인트 클라우드 데이터 처리 장치(예를 들면 도 1, 도 13, 도 14, 도 16 및 도 27 내지 도 28에서 설명한 포인트 클라우드 데이터 수신장치 또는 포인트 클라우드 데이터 디코더)의 포인트 클라우드 데이터 처리 방법을 나타낸다. 실시예들에 따른 포인트 클라우드 데이터 처리 장치는 도 1 내지 도 35에서 설명한 디코딩 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 포인트 클라우드 데이터를 포함하는 비트스트림을 수신한다(3710).
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 포인트 클라우드 데이터를 디코딩한다(3320). 실시예들에 따른 디코딩된 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함한다. 지오메트리 정보는 포인트 클라우드 데이터의 포인트들의 포지션들을 나타내는 정보이다. 실시예들에 따른 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보이다. 실시예들에 따른 비트스트림의 구조는 도 26에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 포인트 클라우드 데이터 처리 장치는 지오메트리 정보를 디코딩하고, 어트리뷰트 정보를 디코딩할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 처리 장치는 도 1 내지 도 35에서 설명한 지오메트리 정보 디코딩 동작과 동일 또는 유사한 동작을 수행한다. 또한 포인트 클라우드 데이터 처리 장치는 도 1 내지 도 35에서 설명한 어트리뷰트 정보 디코딩 동작과 동일 또는 유사한 동작을 수행한다. 실시예들에 따른 포인트 클라우드 데이터 처리 장치는 포인트들을 분할하여 적어도 하나 이상의 LOD를 생성할 수 있다. 실시예들에 따른 LOD 생성 방식 또는 방법은 도 22 내지 32에서 설명한 LOD 생성 방식 또는 방법과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 비트스트림의 구조는 도 26에서 설명한 바와 동일하므로 구체적인 설명은 생략한다. 실시예들에 따른 비트스트림은 LOD 구성 정보(예를 들면 도 27 내지 도 32에서 설명한 LOD 구성 정보)를 포함할 수 있다. 또한 실시예들에 따른 이웃 포인트 집합 생성 정보는 도 27 내지 도 32에서 설명한 바와 같이 APS, TPS, 어트리뷰트 헤더 등을 통해 수신 장치로 전송될 수 있다.
실시예들에 따른 LOD 구성 정보는 LOD 생성 방법의 타입을 나타내는 타입 정보(예를 들면 도 27 내지 도 32에서 설명한 lod_generation_type)를 포함할 수 있다. 실시예들에 따른 타입 정보는 포인트들 간의 거리를 기반으로 LOD를 생성하는 제 1 타입 (예를 들면 도 22에서 설명한 거리 기반 LOD 생성 방식) 및 포인트들의 몰톤 코드 기반 샘플링으로 LOD를 생성하는 제 2 타입(예를 들면 도 22에서 설명한 몰톤 순서 기반 샘플링 LOD 생성 방식) 중 적어도 하나를 나타낼 수 있다. LOD 집합 생성 방식에 대해서는 도 22에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 타입 정보가 제 2 타입을 나타내는 경우, LOD 구성 정보는 샘플링 범위 타입 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_range_type), 샘플링 레이트 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_rate), 샘플링에 따라 선택될 수 있는 포인트의 고정 인덱스 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_select_idx), 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_select_type) 및 샘플링에 따라 선택될 수 있는 포인트들의 최대 개수 정보(예를 들면 도 27 내지 도 32에서 설명한 sampling_select_max_num_of_points)를 포함할 수 있다. 실시예들에 따른 LOD 구성 정보는 도 27 내지 도 32에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 37에서 설명한 실시예들에 따른 포인트 클라우드 데이터 처리 장치의 구성요소들은 메모리와 결합된 하나 또는 그 이상의 프로세서들을 포함하는 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 결합으로 구현될 수 있다. 실시예들에 따른 디바이스의 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다. 또한 실시예들에 따른 포인트 클라우드 데이터 처리 장치의 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 또한 실시예들에 따른 포인트 클라우드 데이터 처리 장치의 구성요소들은 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 도 1 내지 도 37에서 설명한 포인트 클라우드 데이터 처리 장치의 동작/방법들 중 어느 하나 또는 그 이상의 동작들을 수행시키거나, 수행하기 위한 인스트럭션들을 포함할 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다. 실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다. 실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들에 따른 장치 및 방법에 대한 설명은 서로 보완하여 적용될 수 있다. 예를 들어, 실시예들에 따른 포인트 클라우드 데이터 전송 방법은 실시예들에 따른 포인트 클라우드 데이터 전송 장치 또는 포인트 클라우드 데이터 전송 장치에 포함된 구성요소들에 의해 수행될 수 있다. 또한 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 실시예들에 따른 포인트 클라우드 데이터 수신 장치 또는 포인트 클라우드 데이터 수신 장치에 포함된 구성요소들에 의해 수행될 수 있다.
실시예들에 따른 장치의 다양한 구성요소들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 구성될 수 있다. 실시예들의 다양한 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다 실시예들에 따라, 실시예들에 따른 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 실시예들에 따라, 실시예들에 따른 장치의 구성요소들 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 실시예들에 따른 동작/방법들 중 어느 하나 또는 그 이상의 동작/방법들을 수행시키거나, 수행시키기 위한 인스트럭션들을 포함할 수 있다. 실시예들에 따른 장치의 방법/동작들을 수행하기 위한 실행 가능한 인스트럭션들은 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적이지 않은 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있거나, 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적인 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있다. 또한 실시예들에 따른 메모리는 휘발성 메모리(예를 들면 RAM 등)뿐 만 아니라 비휘발성 메모리, 플래쉬 메모리, PROM등을 전부 포함하는 개념으로 사용될 수 있다. 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함될 수 있다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이 문서에서 “/”와 “,”는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A”만을 의미하거나, 2) “B”만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 구성요소들을 설명하기 위해 사용될 수 있다. 하지만 실시예들에 따른 다양한 구성요소들은 위 용어들에 의해 해석이 제한되어서는 안된다. 이러한 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위해 사?熾幷? 것에 불과하다. 것에 불과하다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋시그널로 지칭될 수 있다. 이러한 용어의 사용은 다양한 실시예들의 범위 내에서 벗어나지 않는 것으로 해석되어야만 한다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이지만, 문맥 상 명확하게 나타내지 않는 한 동일한 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. 포함한다 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다. 실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
발명의 실시를 위한 형태
발명의 실시를 위한 최선의 형태에서 구체적으로 설명되었다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
Claims (20)
- 지오메트리 정보 및 어트리뷰트 정보를 포함하는 포인트 클라우드 데이터를 인코딩하는 단계로서, 상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션들을 나타내는 정보이고, 상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보이고; 및
상기 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함하는 포인트 클라우드 데이터 처리 방법. - 제 1 항에 있어서, 상기 포인트 클라우드 데이터를 인코딩하는 단계는,
상기 지오메트리 정보를 인코딩하는 단계; 및
상기 어트리뷰트 정보를 인코딩하는 단계를 포함하는 포인트 클라우드 데이터 처리 방법. - 제 2 항에 있어서, 상기 어트리뷰트 정보를 인코딩하는 단계는
상기 포인트들을 분할하여 적어도 하나 이상의 LOD(Level of Detail)를 생성하는 단계를 포함하는 포인트 클라우드 데이터 처리 방법. - 제 3 항에 있어서, 상기 비트스트림은 상기 LOD 생성과 관련된 LOD 구성 정보를 포함하고,
상기 LOD 구성 정보는, 상기 LOD 생성 방법의 타입을 나타내는 타입 정보를 포함하고, 상기 타입 정보는 포인트들 간의 거리를 기반으로 LOD를 생성하는 제 1 타입 및 포인트들의 몰톤 코드 기반 샘플링으로 LOD를 생성하는 제 2 타입 중 적어도 하나를 나타내는 것을 포함하는 포인트 클라우드 데이터 처리 방법. - 제 4 항에 있어서, 상기 타입 정보가 상기 제 2 타입을 나타내는 경우, 상기 LOD 구성 정보는 샘플링 범위 타입 정보, 샘플링 레이트 정보, 샘플링에 따라 선택될 수 있는 포인트의 고정 인덱스 정보, 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법 정보 및 샘플링에 따라 선택될 수 있는 포인트들의 최대 개수 정보를 포함하는 포인트 클라우드 데이터 처리 방법.
- 지오메트리 정보 및 어트리뷰트 정보를 포함하는 포인트 클라우드 데이터를 인코딩하는 인코더로서, 상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션들을 나타내는 정보이고, 상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보이고; 및
상기 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 전송부를 포함하는 포인트 클라우드 데이터 처리 장치. - 제 6 항에 있어서, 상기 인코더는,
상기 지오메트리 정보를 인코딩하는 제 1 인코더; 및
상기 어트리뷰트 정보를 인코딩하는 제 2 인코더를 포함하는 포인트 클라우드 데이터 처리 장치. - 제 7 항에 있어서, 상기 제 2 인코더는,
상기 포인트들을 분할하여 적어도 하나 이상의 LOD(Level of Detail)를 생성하는, 포인트 클라우드 데이터 처리 장치. - 제 8 항에 있어서, 상기 비트스트림은 상기 LOD 생성과 관련된 LOD 구성 정보를 포함하고,
상기 LOD 구성 정보는, 상기 LOD 생성 방법의 타입을 나타내는 타입 정보를 포함하고, 상기 타입 정보는 포인트들 간의 거리를 기반으로 LOD를 생성하는 제 1 타입 및 포인트들의 몰톤 코드 기반 샘플링으로 LOD를 생성하는 제 2 타입 중 적어도 하나를 나타내는 것을 포함하는 포인트 클라우드 데이터 처리 장치. - 제 9 항에 있어서, 상기 타입 정보가 상기 제 2 타입을 나타내는 경우, 상기 LOD 구성 정보는 샘플링 범위 타입 정보, 샘플링 레이트 정보, 샘플링에 따라 선택될 수 있는 포인트의 고정 인덱스 정보, 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법 정보 및 샘플링에 따라 선택될 수 있는 포인트들의 최대 개수 정보를 포함하는 포인트 클라우드 데이터 처리 장치.
- 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계로서 상기 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함하고, 상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보이고, 상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보이고; 및
상기 포인트 클라우드 데이터를 디코딩하는 단계를 포함하는 포인트 클라우드 데이터 처리 방법. - 제 11 항에 있어서, 상기 포인트 클라우드 데이터를 디코딩하는 단계는,
상기 지오메트리 정보를 디코딩하는 단계; 및
상기 어트리뷰트 정보를 디코딩하는 단계를 포함하는 포인트 클라우드 데이터 처리 방법. - 제 12 항에 있어서, 상기 어트리뷰트 정보를 디코딩하는 단계는
상기 포인트들을 분할하여 적어도 하나 이상의 LOD(Level of Detail)를 생성하는 단계를 포함하는 포인트 클라우드 데이터 처리 방법. - 제 13 항에 있어서, 상기 비트스트림은 상기 LOD 생성과 관련된 LOD 구성 정보를 포함하고,
상기 LOD 구성 정보는, 상기 LOD 생성 방법의 타입을 나타내는 타입 정보를 포함하고, 상기 타입 정보는 포인트들 간의 거리를 기반으로 LOD를 생성하는 제 1 타입 및 포인트들의 몰톤 코드 기반 샘플링으로 LOD를 생성하는 제 2 타입 중 적어도 하나를 나타내는 것을 포함하는 포인트 클라우드 데이터 처리 방법. - 제 14 항에 있어서, 상기 타입 정보가 상기 제 2 타입을 나타내는 경우, 상기 LOD 구성 정보는 샘플링 범위 타입 정보, 샘플링 레이트 정보, 샘플링에 따라 선택될 수 있는 포인트의 고정 인덱스 정보, 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법 정보 및 샘플링에 따라 선택될 수 있는 포인트들의 최대 개수 정보를 포함하는 포인트 클라우드 데이터 처리 방법.
- 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신기로서 상기 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함하고, 상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보이고, 상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보이고; 및
상기 포인트 클라우드 데이터를 디코딩하는 디코더;를 포함하는 포인트 클라우드 데이터 처리 장치. - 제 16항에 있어서, 상기 디코더는
상기 지오메트리 정보를 디코딩하는 제 1 디코더; 및
상기 어트리뷰트 정보를 디코딩하는 제 2 디코더를 포함하는 포인트 클라우드 데이터 처리 장치. - 제 17 항에 있어서, 상기 제 2 디코더는
상기 포인트들을 분할하여 적어도 하나 이상의 LOD(Level of Detail)를 생성하는 것을 포함하는 포인트 클라우드 데이터 처리 장치. - 제 18 항에 있어서, 상기 비트스트림은 상기 LOD 생성과 관련된 LOD 구성 정보를 포함하고,
상기 LOD 구성 정보는, 상기 LOD 생성 방법의 타입을 나타내는 타입 정보를 포함하고, 상기 타입 정보는 포인트들 간의 거리를 기반으로 LOD를 생성하는 제 1 타입 및 포인트들의 몰톤 코드 기반 샘플링으로 LOD를 생성하는 제 2 타입 중 적어도 하나를 나타내는 것을 포함하는 포인트 클라우드 데이터 처리 장치. - 제 19 항에 있어서, 상기 타입 정보가 상기 제 2 타입을 나타내는 경우, 상기 LOD 구성 정보는 샘플링 범위 타입 정보, 샘플링 레이트 정보, 샘플링에 따라 선택될 수 있는 포인트의 고정 인덱스 정보, 샘플링 범위 내에서 포인트를 선택하는 포인트 선택 방법 정보 및 샘플링에 따라 선택될 수 있는 포인트들의 최대 개수 정보를 포함하는 포인트 클라우드 데이터 처리 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962854950P | 2019-05-30 | 2019-05-30 | |
US62/854,950 | 2019-05-30 | ||
PCT/KR2020/006987 WO2020242244A1 (ko) | 2019-05-30 | 2020-05-29 | 포인트 클라우드 데이터 처리 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210151984A true KR20210151984A (ko) | 2021-12-14 |
KR102609776B1 KR102609776B1 (ko) | 2023-12-05 |
Family
ID=73552388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217038893A KR102609776B1 (ko) | 2019-05-30 | 2020-05-29 | 포인트 클라우드 데이터 처리 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220224940A1 (ko) |
EP (1) | EP3975124A4 (ko) |
KR (1) | KR102609776B1 (ko) |
CN (1) | CN114175100A (ko) |
WO (1) | WO2020242244A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024151077A1 (ko) * | 2023-01-10 | 2024-07-18 | 엘지전자 주식회사 | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114073085A (zh) * | 2019-07-02 | 2022-02-18 | Lg 电子株式会社 | 点云数据处理方法和设备 |
US20220245863A1 (en) * | 2019-07-02 | 2022-08-04 | Sony Group Corporation | Information processing device and method |
WO2021025251A1 (ko) * | 2019-08-08 | 2021-02-11 | 엘지전자 주식회사 | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 |
EP4006839B1 (en) * | 2019-10-03 | 2024-10-16 | LG Electronics Inc. | Device for transmitting point cloud data, method for transmitting point cloud data, device for receiving point cloud data, and method for receiving point cloud data |
US11568571B2 (en) * | 2019-10-03 | 2023-01-31 | Tencent America LLC | Techniques and apparatus for lossless lifting for attribute coding |
EP4277284A1 (en) * | 2021-01-06 | 2023-11-15 | LG Electronics Inc. | Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method |
CN113032974B (zh) * | 2021-03-05 | 2024-08-09 | 清华大学 | 一种六面体单元有限质点法 |
AU2021204622A1 (en) * | 2021-04-15 | 2022-11-03 | Sensetime International Pte. Ltd. | Method and apparatus for generating point cloud encoder, method and apparatus for generating point cloud data, electronic device and computer storage medium |
US11924467B2 (en) * | 2021-11-16 | 2024-03-05 | Google Llc | Mapping-aware coding tools for 360 degree videos |
CN118175276A (zh) * | 2022-12-09 | 2024-06-11 | 维沃移动通信有限公司 | 点云编码方法、点云解码方法及终端 |
WO2024160290A1 (en) * | 2023-02-03 | 2024-08-08 | Douyin Vision Co., Ltd. | Method, apparatus, and medium for point cloud coding |
CN117647404B (zh) * | 2024-01-30 | 2024-04-19 | 交通运输部公路科学研究所 | 基于转鼓台架的预见性巡航控制系统测试平台及测试方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190080483A1 (en) * | 2017-09-14 | 2019-03-14 | Apple Inc. | Point Cloud Compression |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10897269B2 (en) * | 2017-09-14 | 2021-01-19 | Apple Inc. | Hierarchical point cloud compression |
US11568575B2 (en) * | 2019-02-19 | 2023-01-31 | Google Llc | Cost-driven framework for progressive compression of textured meshes |
EP4083924A4 (en) * | 2020-01-06 | 2023-02-22 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | NEAREST NEIGHBOR SEARCH METHOD, APPARATUS, DEVICE AND INFORMATION MEDIA |
-
2020
- 2020-05-29 EP EP20814907.0A patent/EP3975124A4/en active Pending
- 2020-05-29 CN CN202080052578.5A patent/CN114175100A/zh active Pending
- 2020-05-29 WO PCT/KR2020/006987 patent/WO2020242244A1/ko unknown
- 2020-05-29 KR KR1020217038893A patent/KR102609776B1/ko active IP Right Grant
- 2020-05-29 US US17/615,336 patent/US20220224940A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190080483A1 (en) * | 2017-09-14 | 2019-03-14 | Apple Inc. | Point Cloud Compression |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024151077A1 (ko) * | 2023-01-10 | 2024-07-18 | 엘지전자 주식회사 | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20220224940A1 (en) | 2022-07-14 |
EP3975124A4 (en) | 2022-08-24 |
EP3975124A1 (en) | 2022-03-30 |
WO2020242244A1 (ko) | 2020-12-03 |
KR102609776B1 (ko) | 2023-12-05 |
CN114175100A (zh) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102340238B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
KR102295825B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
KR102358759B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
KR102609776B1 (ko) | 포인트 클라우드 데이터 처리 방법 및 장치 | |
KR102423499B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
KR102386712B1 (ko) | 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법 | |
US11882303B2 (en) | Apparatus and method for processing point cloud data | |
KR102406845B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
KR20210134049A (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
JP7451576B2 (ja) | ポイントクラウドデータ処理方法及び装置 | |
US20220130075A1 (en) | Device and method for processing point cloud data | |
US20220343548A1 (en) | Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method | |
KR102548048B1 (ko) | 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법 | |
US20220360797A1 (en) | Apparatus and method for processing point cloud data | |
KR102300045B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
US20220256190A1 (en) | Point cloud data processing apparatus and method | |
US20230334703A1 (en) | Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method | |
KR102294613B1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
US20240020885A1 (en) | Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device | |
US20230412837A1 (en) | Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device | |
US20230206510A1 (en) | Point cloud data processing device and processing method | |
CN115702568A (zh) | 点云数据发送装置、点云数据发送方法、点云数据接收装置和点云数据接收方法 | |
EP4387230A1 (en) | Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device | |
EP4432658A1 (en) | Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device | |
US20240357166A1 (en) | Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |