KR20210139185A - Novel compound and organic light emitting device comprising the same - Google Patents

Novel compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR20210139185A
KR20210139185A KR1020210061611A KR20210061611A KR20210139185A KR 20210139185 A KR20210139185 A KR 20210139185A KR 1020210061611 A KR1020210061611 A KR 1020210061611A KR 20210061611 A KR20210061611 A KR 20210061611A KR 20210139185 A KR20210139185 A KR 20210139185A
Authority
KR
South Korea
Prior art keywords
compound
layer
stirred
water
group
Prior art date
Application number
KR1020210061611A
Other languages
Korean (ko)
Other versions
KR102479341B1 (en
Inventor
김민준
이동훈
서상덕
김동희
최승원
심재훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20210139185A publication Critical patent/KR20210139185A/en
Application granted granted Critical
Publication of KR102479341B1 publication Critical patent/KR102479341B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • H01L51/0067
    • H01L51/0073
    • H01L51/0074
    • H01L51/5012
    • H01L51/5072
    • H01L51/5092
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

The present invention provides a novel compound and an organic light emitting device using the same. The present invention provides a compound represented by chemical formula 1. The compound represented by chemical formula 1 described above can be used as a material for an organic layer of the organic light emitting device, and can improve efficiency, lower driving voltage, and/or improve lifespan characteristics in the organic light emitting device.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자{Novel compound and organic light emitting device comprising the same}Novel compound and organic light emitting device using the same

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.

유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of the organic light emitting device, when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.

한국특허 공개번호 제10-2000-0051826호Korean Patent Publication No. 10-2000-0051826

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula (1):

[화학식 1] [Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서, In Formula 1,

X는 O 또는 S이고,X is O or S;

A는 인접한 두 개의 고리와 융합된 벤젠 고리이며,A is a benzene ring fused with two adjacent rings,

R1 내지 R8 중 어느 하나는 하기 화학식 2로 표시되고, 나머지는 각각 독립적으로 CH 또는 CD이고,Any one of R 1 to R 8 is represented by the following formula (2), the rest are each independently CH or CD,

R은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1-60 알킬, 또는 치환 또는 비치환된 C6-60 아릴이며, each R is independently hydrogen, deuterium, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl;

n은 0 내지 6의 정수이고,n is an integer from 0 to 6,

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

상기 화학식 2에서,In Formula 2,

L은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,L is a single bond, or a substituted or unsubstituted C 6-60 arylene,

Y는 각각 독립적으로 N 또는 CH이되, 단 Y중 적어도 2개는 N이고,Y is each independently N or CH, provided that at least two of Y are N;

Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된, N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C5-60 헤테로아릴이며,Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted, C 5-60 hetero comprising at least one selected from the group consisting of N, O and S aryl,

점선은 결합 위치를 나타낸다.The dotted line indicates the bonding position.

또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물 층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Formula 1; to provide.

상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by Formula 1 described above may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device. In particular, the compound represented by the above formula (1) may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.

도 1은 기판(1), 양극(2), 유기물 층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9), 전자 주입 및 수송층(10), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 .
2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (8), a hole blocking layer (9), an electron injection and transport layer ( 10), and an example of an organic light emitting device including a cathode 4 is shown.

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.

본 명세서에서,

Figure pat00003
또는
Figure pat00004
는 다른 치환기에 연결되는 결합을 의미한다. In this specification,
Figure pat00003
or
Figure pat00004
means a bond connected to another substituent.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more atoms, or substituted or unsubstituted with two or more substituents connected among the above-exemplified substituents . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조를 갖는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may have a structure as follows, but is not limited thereto.

Figure pat00005
Figure pat00005

본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기와 같은 구조를 갖는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may have a structure as follows, but is not limited thereto.

Figure pat00006
Figure pat00006

본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 하기와 같은 구조를 갖는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. It may have a structure as follows, but is not limited thereto.

Figure pat00007
Figure pat00007

본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.

본 명세서에 있어서, 붕소기는 구체적으로 디메틸붕소기, 디에틸붕소기, t-부틸메틸붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes, but is not limited to, a dimethyl boron group, a diethyl boron group, a t-butylmethyl boron group, a diphenyl boron group, a phenyl boron group, and the like.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, n-옥틸, 이소옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, n-octyl, isooctyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2, 2-dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 4-methylhexyl, 5-methylhexyl, and the like.

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.

본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.

본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,

Figure pat00008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure pat00008
etc. can be However, the present invention is not limited thereto.

본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia and a jolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but is not limited thereto.

본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, as for heteroaryl among heteroarylamines, the description of the above-described heterocyclic group may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group. In the present specification, the description of the above-described aryl group may be applied except that arylene is a divalent group. In the present specification, the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.

본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by the above formula (1).

바람직하게는 상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나일 수 있다: Preferably, Formula 1 may be any one of Formulas 1-1 to 1-3 below:

[화학식 1-1][Formula 1-1]

Figure pat00009
Figure pat00009

[화학식 1-2][Formula 1-2]

Figure pat00010
Figure pat00010

[화학식 1-3][Formula 1-3]

Figure pat00011
Figure pat00011

상기 화학식 1-1 내지 1-3에 있어서,In Formulas 1-1 to 1-3,

X, R1 내지 R8, R 및 n은 앞서 정의한 바와 같다. X, R 1 to R 8 , R and n are as defined above.

또, 상기 화학식 1에서 바람직하게는 R은 수소 또는 중수소일 수 있으며, n이 2 이상의 정수인 경우, R은 각각 독립적으로 수소 또는 중수소일 수 있다. 보다 바람직하게는 R은 모두 수소일 수 있으며, 이때 n은 6의 정수이다. In addition, in Formula 1, preferably, R may be hydrogen or deuterium, and when n is an integer of 2 or more, R may each independently be hydrogen or deuterium. More preferably, all R may be hydrogen, where n is an integer of 6.

또, 상기 화학식 1에 있어서, 바람직하게는 R1 및 R2 중 어느 하나가 상기 화학식 2로 표시되고, 나머지는 각각 독립적으로 CH 또는 CD이거나; R3 및 R4 중 어느 하나가 상기 화학식 2로 표시되고, 나머지는 각각 독립적으로 CH 또는 CD이거나; 또는 R5 내지 R7 중 어느 하나가 상기 화학식 2로 표시되고, 나머지는 각각 독립적으로 CH 또는 CD일 수 있다. In addition, in Formula 1, preferably , any one of R 1 and R 2 is represented by Formula 2, and the rest are each independently CH or CD; Any one of R 3 and R 4 is represented by Formula 2, and the others are each independently CH or CD; Alternatively , any one of R 5 to R 7 may be represented by Formula 2, and the remainder may be each independently CH or CD.

이때, 상기 화학식 2에 있어서, L은 바람직하게는 단일 결합; 또는 중수소 치환되거나 또는 비치환된 C6-20 아릴렌일 수 있다.In this case, in Formula 2, L is preferably a single bond; or deuterium substituted or unsubstituted C 6-20 arylene.

보다 바람직하게는 L은 단일 결합, 페닐렌, 또는 나프틸렌일 수 있으며, 구체적으로는 L은 단일 결합이거나, 또는 하기 화학식들로 구성된 군으로부터 선택되는 어느 하나일 수 있다:More preferably, L may be a single bond, phenylene, or naphthylene, specifically, L may be a single bond, or any one selected from the group consisting of the following formulas:

Figure pat00012
Figure pat00012

상기 각 화학식에서, 점선은 결합 위치를 나타낸다.In each of the above formulas, the dotted line indicates the bonding position.

또, 상기 화학식 2에 있어서, 바람직하게는, Y 중 두 개가 N이고 나머지는 CH이거나, 또는 세 개의 Y 모두가 N일 수 있으며, 보다 바람직하게는 Y는 모두 N일 수 있다.In addition, in Formula 2, preferably, two of Y may be N and the rest may be CH, or all three Ys may be N, and more preferably, all of Y may be N.

또, 상기 화학식 2에 있어서, 바람직하게는, Ar1 및 Ar2는 각각 독립적으로 C6-30 아릴; 또는 N, O 또는 S를 포함하는 C5-30 헤테로아릴이며, 상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소, C1-20 알킬, 또는 C6-20 아릴로 치환되거나, 또는 비치환될 수 있다.In addition, in Formula 2, preferably, Ar 1 and Ar 2 are each independently C 6-30 aryl; or C 5-30 heteroaryl including N, O or S, wherein Ar 1 and Ar 2 are each independently substituted with one or more deuterium, C 1-20 alkyl, or C 6-20 aryl, or unsubstituted can be

또, 상기 화학식 2에 있어서, 바람직하게는, Ar1 및 Ar2 중 하나는 C6-20 아릴이고, 나머지는 N. O 또는 S를 포함하는 C5-20 헤테로아릴이거나, 또는 Ar1 및 Ar2 둘 모두가 C6-20 아릴일 수 있으며, 이때 상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소, C1-18 알킬, 또는 C6-18 아릴로 치환되거나, 또는 비치환될 수 있다.In addition, in Formula 2, preferably, one of Ar 1 and Ar 2 is C 6-20 aryl, and the other is C 5-20 heteroaryl including N. O or S, or Ar 1 and Ar 2 Both may be C 6-20 aryl, wherein Ar 1 and Ar 2 may each independently be unsubstituted or substituted with one or more deuterium, C 1-18 alkyl, or C 6-18 aryl. .

보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐, 터페닐, 나프틸, 페난쓰레닐, 트리페닐레닐, 플루오란테닐, (나프틸)페닐, (페닐)나프틸, 플루오레닐, 디벤조퓨라닐, 디벤조티오펜일 또는 카르바졸일이며, 상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소; 메틸 등의 C1-18 알킬; 또는 페닐 등의 C6-18 아릴로 치환되거나 또는 비치환될 수 있다.More preferably, Ar 1 and Ar 2 are each independently phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylenyl, fluoranthenyl, (naphthyl)phenyl, (phenyl)naphthyl, flu orenyl, dibenzofuranyl, dibenzothiophenyl or carbazolyl, wherein Ar 1 and Ar 2 are each independently one or more deuterium; C 1-18 alkyl such as methyl; Or it may be unsubstituted or substituted with C 6-18 aryl such as phenyl.

보다 바람직하게는 Ar1 및 Ar2는 각각 독립적으로 하기 화학식들로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:More preferably, Ar 1 and Ar 2 may each independently be any one selected from the group consisting of the following formulas:

Figure pat00013
Figure pat00013

Figure pat00014
Figure pat00014

상기 각 화학식에서, In each of the above formulas,

Z는 NR, O 또는 S이고, Z is NR, O or S;

R, R11 및 R12는 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, C1-18 알킬 또는 C6-18 아릴이고, 바람직하게는 상기 R, R11 및 R12은 동일하거나 상이하고, 수소, 중수소, 메틸, 또는 페닐이며,R, R 11 and R 12 are the same or different, each independently hydrogen, deuterium, C 1-18 alkyl or C 6-18 aryl, preferably R, R 11 and R 12 are the same or different, hydrogen, deuterium, methyl, or phenyl;

점선은 결합 위치를 나타낸다.The dotted line indicates the bonding position.

보다 더 바람직하게는 Ar1 및 Ar2 중 어느 하나는 페닐, 비페닐 또는 나프틸이고, 나머지는 페닐, 비페닐, 터페닐, 나프틸, 페난쓰레닐, 트리페닐레닐, 플루오란테닐, (나프틸)페닐, (페닐)나프틸, 플루오레닐, 디벤조퓨라닐, 디벤조티오펜일, 또는 카르바졸일이며, 이때, 상기 Ar1 및 Ar2 는 각각 독립적으로 하나 이상의 중수소, 메틸, 또는 페닐로 치환되거나 또는 비치환될 수 있다.Even more preferably , any one of Ar 1 and Ar 2 is phenyl, biphenyl or naphthyl, and the remainder is phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylenyl, fluoranthenyl, (naph tyl)phenyl, (phenyl)naphthyl, fluorenyl, dibenzofuranyl, dibenzothiophenyl, or carbazolyl, wherein Ar 1 and Ar 2 are each independently one or more deuterium, methyl, or It may be unsubstituted or substituted with phenyl.

또, 상기 화학식 1에서, Ar1과 Ar2는 서로 동일한 것일 수도 있고, 또는 서로 상이한 것일 수도 있다. In addition, in Formula 1, Ar 1 and Ar 2 may be the same as or different from each other.

상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다.Representative examples of the compound represented by Formula 1 are as follows.

Figure pat00015
Figure pat00015

Figure pat00016
Figure pat00016

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

Figure pat00020
Figure pat00020

Figure pat00021
Figure pat00021

Figure pat00022
Figure pat00022

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

Figure pat00027
Figure pat00027

Figure pat00028
Figure pat00028

Figure pat00029
Figure pat00029

Figure pat00030
Figure pat00030

Figure pat00031
Figure pat00031

Figure pat00032
Figure pat00032

Figure pat00033
Figure pat00033

Figure pat00034
Figure pat00034

Figure pat00035
Figure pat00035

Figure pat00036
Figure pat00036

Figure pat00037
Figure pat00037

Figure pat00038
.
Figure pat00038
.

한편, 상기 화학식 1로 표시되는 화합물은, 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. On the other hand, the compound represented by Formula 1 may be prepared by, for example, a preparation method as shown in Scheme 1 below.

[반응식 1][Scheme 1]

Figure pat00039
Figure pat00039

상기 반응식 1에서, A, Ar1, Ar2, R1 내지 R8, X, Y, 및 n은 상기 화학식 1에서 정의한 바와 같다.In Scheme 1, A, Ar 1 , Ar 2 , R 1 to R 8 , X, Y, and n are as defined in Formula 1 above.

또 상기 반응식 1에서, W는 할로겐기 또는 붕소 함유 유기기이다.Also, in Scheme 1, W is a halogen group or a boron-containing organic group.

또, 상기 반응식 1에서, R’1 내지 R’8 중 어느 하나는 상기 W와 스즈키 커플링 반응가능한 기이고, 나머지는 각각 독립적으로 CH 또는 CD이다. 구체적으로, 상기 W와 스즈키 커플링 반응가능한 기는 할로겐기 또는 붕소 함유 유기기일 수 있으며, 이‹š 상기 W와는 상이하여, W가 할로겐기이면, 상기 R’1 내지 R’8 중 어느 하나는 붕소 함유 유기기가 되고, W가 붕소 함유 유기기이면, R’1 내지 R’8 중 어느 하나는 할로겐기가 된다. In addition, in Scheme 1, any one of R' 1 to R' 8 is a group capable of reacting with W and Suzuki coupling, and the others are each independently CH or CD. Specifically, the group capable of Suzuki coupling reaction with W may be a halogen group or a boron-containing organic group, which is different from W, and when W is a halogen group, any one of R′ 1 to R′ 8 is boron. It becomes a containing organic group, and when W is a boron containing organic group, any one of R' 1 to R' 8 becomes a halogen group.

또, 상기 반응식 1에서 W는 할로겐기 또는 붕소 함유 유기기이되, 또, 상기 할로겐기는 구체적으로 클로로 또는 보로모 등이고, 상기 붕소 함유 유기기는, 보론산기, 보론산 에스터기, 또는 보론산 피나콜에스터(boronic acid pinacol ester)기 등일 수 있다.In addition, in Scheme 1, W is a halogen group or a boron-containing organic group, and the halogen group is specifically chloro or boromo, etc., and the boron-containing organic group is a boronic acid group, a boronic acid ester group, or a boronic acid pinacol ester. (boronic acid pinacol ester) group and the like.

구체적으로, 상기 화학식 1로 표시되는 화합물은 모핵 구조를 포함하는 화합물(i)과, 상기 모핵 구조에 결합되며, 트리아진 구조를 갖는 화합물(ii)를 염기 및 팔라듐계 촉매의 존재 하에, 스즈키 커플링 반응(Suzuki coupling reaction)시키는 단계를 포함하는 제조방법에 의해 제조될 수 있다. Specifically, the compound represented by Formula 1 is a compound (i) having a parent nucleus structure, and a compound (ii) bonded to the parent nucleus structure and having a triazine structure in the presence of a base and a palladium-based catalyst, Suzuki couple It can be prepared by a manufacturing method comprising the step of a ring reaction (Suzuki coupling reaction).

상기 팔라듐계 촉매로는, 비스(디벤질리덴아세톤)팔라듐(0)(Bis(dibenzylideneacetone)palladium(0); (Pd(dba)2)), 비스(트리-tert-부틸포스핀)팔라듐(0)(bis(tri-tert-butylphosphine)palladium(0), Pd(P-tBuP3)2), 테트라키스-(트리페닐포스핀)팔라듐(0) (tetrakis(triphenylphosphine)palladium(0), Pd(PPh3)4), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3)), 비스(트리페닐포스핀)팔라듐 클로라이드(Bis(triphenylphosphine)palladium chloride, Pd(PPh3)2Cl2), 비스(아세토니트릴)팔라듐 클로라이드(Bis(acetonitrile)palladium(Ⅱ) chloride, Pd(CH3CN)2Cl2), 팔라듐(Ⅱ) 아세테이트(Palladium(Ⅱ) acetate, Pd(OAc)2), 팔라듐(Ⅱ) 아세틸아세토네이트(Palladium(Ⅱ) acetylacetonate, Pd(acac)2], 알릴팔라듐(Ⅱ) 클로라이드 다이머(Allylpalladium(Ⅱ) chloride dimer, Pd(allyl)Cl]2), 팔라듐 카본(Palladium on carbon, Pd/C), 또는 팔라듐(Ⅱ) 클로라이드(Palladium(Ⅱ) chloride, PdCl2) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Examples of the palladium-based catalyst include bis(dibenzylideneacetone)palladium(0)(Bis(dibenzylideneacetone)palladium(0); (Pd(dba) 2 )), bis(tri-tert-butylphosphine)palladium(0) )(bis(tri-tert-butylphosphine)palladium(0), Pd(P-tBuP 3 ) 2 ), tetrakis-(triphenylphosphine)palladium(0) (tetrakis(triphenylphosphine)palladium(0), Pd( PPh 3 ) 4 ), tris (dibenzylideneacetone) dipalladium, Pd 2 (dba) 3 )), bis (triphenylphosphine) palladium chloride (Bis (triphenylphosphine) palladium chloride, Pd ( PPh 3 ) 2 Cl 2 ), bis(acetonitrile)palladium(II) chloride, Pd(CH 3 CN) 2 Cl 2 ), Palladium(II) acetate, Pd (OAc) 2 ), Palladium(II) acetylacetonate (Pd(acac) 2 ], Allylpalladium(II) chloride dimer, Pd(allyl)Cl] 2 ) , Palladium on carbon (Pd/C), or Palladium (II) chloride (PdCl 2 ), and the like, and any one or a mixture of two or more thereof may be used.

또, 상기 염기(base)로는 소듐 tert-부톡사이드(sodium tert-butoxide, NaOtBu), 포타슘 tert-부톡사이드(potassium tert-butoxide), 소듐 tert―펜톡사이드(sodium tert-pentoxide), 소듐 에톡사이드(sodium ethoxide), 소듐 카보네이트(sodium carbonate), 포타슘 카보네이트(potassium carbonate), 세슘 카보네이트(cesium carbonate), 소듐 하이드리드(sodium hydride), 리튬 하이드리드(lithium hydride) 또는 포타슘 하이드리드(potassium hydride) 등과 같은 무기 염기; 테트라에틸암모늄 히드록시드((Et4NOH), 비스(테트라에틸암모늄)탄산염, 트리에틸아민 등의 유기 염기; 불화세슘 등의 무기염을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. In addition, as the base, sodium tert-butoxide (NaOtBu), potassium tert-butoxide, sodium tert-pentoxide (sodium tert-pentoxide), sodium ethoxide ( sodium ethoxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydride, lithium hydride or potassium hydride, etc. inorganic bases; organic bases such as tetraethylammonium hydroxide ((Et 4 NOH), bis(tetraethylammonium) carbonate, and triethylamine; inorganic salts such as cesium fluoride, any one or mixture of two or more thereof may be used can

또, 상기 스즈키 커플링 반응은 물, 유기 용매, 또는 이들의 혼합 용매 중에서 수행될 수 있으며, 상기 유기 용매로는, 디에틸 에테르, 테트라히드로푸란, 1,4-디옥산, 에틸렌 글리콜 디에틸 에테르, 디메톡시에탄, 비스(2-메톡시에틸)에테르, 디에틸렌 글리콜 디에틸 에테르, 테트라하이드로퓨란 또는 아니솔과 같은 에테르 용매; 벤젠, 톨루엔 또는 자일렌과 같은 방향족 탄화수소계 용매; 클로로벤젠, 디메틸포름아마이드, 디메틸아세트아마이드, N-메틸피롤리돈, 디메틸이미다졸리돈 또는 아세토니트릴과 같은 할로겐화 방향족 용매; 또는 디메틸술폭사이드(DMSO)와 같은 설폭사이드계 용매 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.In addition, the Suzuki coupling reaction may be performed in water, an organic solvent, or a mixed solvent thereof. Examples of the organic solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol diethyl ether. , ether solvents such as dimethoxyethane, bis(2-methoxyethyl)ether, diethylene glycol diethyl ether, tetrahydrofuran or anisole; aromatic hydrocarbon-based solvents such as benzene, toluene or xylene; halogenated aromatic solvents such as chlorobenzene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylimidazolidone or acetonitrile; Or a sulfoxide-based solvent such as dimethyl sulfoxide (DMSO) may be used, and any one or a mixture of two or more thereof may be used.

한편, 상기 화학식 1의 화합물(1) 제조에 사용되는 반응 물질들, 화합물 (i) 및 (ii)는 통상의 유기 반응을 이용하여 제조할 수도 있고, 또는 상업적으로 입수하여 사용할 수도 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Meanwhile, the reactants, compounds (i) and (ii) used in the preparation of compound (1) of Formula 1 may be prepared using a conventional organic reaction, or may be commercially obtained and used. The manufacturing method may be more specific in Preparation Examples to be described later.

또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물 층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light emitting device including the compound represented by the formula (1). In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Formula 1; to provide.

상기 유기 발광 소자에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극일 수 있다.In the organic light emitting device, the first electrode may be an anode, the second electrode may be a cathode, or the first electrode may be a cathode and the second electrode may be an anode.

또, 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물 층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 또는 전자 주입 및 수송층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물 층을 포함할 수 있다.In addition, the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer or an electron injection and transport layer as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.

일 구현예에서, 상기 유기물층은 발광층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In one embodiment, the organic material layer may include a light emitting layer, wherein the organic material layer including the compound may be a light emitting layer.

다른 구현예에서, 상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자주입 및 수송층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In another embodiment, the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection and transport layer, wherein the organic material layer including the compound may be a light emitting layer.

또 다른 구현예에서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층 그리고 전자주입 및 수송층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In another embodiment, the organic material layer may include a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, and an electron injection and transport layer, wherein the organic material layer including the compound may be a light emitting layer.

또 다른 구현예에서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 그리고 전자주입 및 수송층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In another embodiment, the organic material layer may include a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole blocking layer, and an electron injection and transport layer, wherein the organic material layer containing the compound may be a light emitting layer.

또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일 실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.Also, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Also, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .

도 1은 기판(1), 양극(2), 유기물 층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 유기물 층(3)에 포함될 수 있다.1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 . In such a structure, the compound represented by Formula 1 may be included in the organic layer 3 .

도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9), 전자 주입 및 수송층(10), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9) 및 전자 주입 및 수송층(10) 중 1층 이상에 포함될 수 있다. 2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (8), a hole blocking layer (9), an electron injection and transport layer ( 10), and an example of an organic light emitting device including a cathode 4 is shown. In this structure, the compound represented by Formula 1 is the hole injection layer 5, the hole transport layer 6, the electron blocking layer 7, the light emitting layer 8, the hole blocking layer 9 and the electron injection and It may be included in one or more of the transport layers 10 .

본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물 층을 포함하는 경우, 상기 유기물 층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.

예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물 층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 그리고 전자 주입 및 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. After forming an organic material layer including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole blocking layer, and an electron injection and transport layer thereon, a material that can be used as a cathode is deposited thereon. have.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.

이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물 층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.

상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.

상기 음극 물질로는 통상 유기물 층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.

상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect with respect to the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. Preferably, the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, and conductive polymers of polyaniline and polythiophene series, but are not limited thereto.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. A material capable of transporting holes from the anode or hole injection layer to the light emitting layer as a hole transport material. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.

상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The electron suppression layer is formed on the hole transport layer, preferably provided in contact with the light emitting layer, adjusts hole mobility, prevents excessive movement of electrons, and increases the probability of hole-electron coupling by increasing the efficiency of the organic light emitting device layer that plays a role in improving The electron-blocking layer includes an electron-blocking material, and an arylamine-based organic material may be used as an example of the electron-blocking material, but is not limited thereto.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료로는 상술한 화학식 1로 표시되는 화합물이 사용될 수 있다. 또한, 호스트 재료로는 상기 화학식 1로 표시되는 화합물 이외에 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 추가로 사용할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The emission layer may include a host material and a dopant material. As the host material, the compound represented by Chemical Formula 1 may be used. In addition, as the host material, in addition to the compound represented by Formula 1, a condensed aromatic ring derivative or a hetero ring-containing compound may be additionally used. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like, and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.

또한, 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Further, examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group, and the styrylamine compound is a substituted or unsubstituted derivative. It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.

보다 구체적으로 상기 도펀트 재료로는 하기 구조의 화합물들을 들 수 있으나, 이에 한정되지 않는다:More specifically, the dopant material may include, but is not limited to, compounds having the following structures:

Figure pat00040
Figure pat00040

Figure pat00041
Figure pat00041

Figure pat00042
Figure pat00042

Figure pat00043
.
Figure pat00043
.

상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the hole-electron coupling probability layer that plays a role. The hole-blocking layer includes a hole-blocking material, and examples of the hole-blocking material include: azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.

상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다. The electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from the electrode and transporting the received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer. As the electron injection and transport material, a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable. Examples of specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto. or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. The present invention is not limited thereto.

상기 전자 주입 및 수송층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.The electron injection and transport layer may also be formed as a separate layer such as an electron injection layer and an electron transport layer. In this case, the electron transport layer is formed on the light emitting layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer. In addition, the electron injection layer is formed on the electron transport layer, and the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and the like may be used.

본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.The organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high luminous efficiency.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들에 의하여 한정되는 것은 아니다Hereinafter, preferred embodiments are presented to help the understanding of the present invention. However, the following examples are only for illustrating the present invention, and the content of the present invention is not limited by the following examples.

제조예 1Preparation Example 1

화합물 AA의 제조Preparation of compound AA

Figure pat00044
Figure pat00044

질소 분위기에서 sub1 (10g, 27.5mmol)와 sub2 (4.2g, 28.1mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.4g, 82.6mmol)를 물 34ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AA_P1를 6.9g 제조하였다. (수율 74%, MS: [M+H]+= 341)In a nitrogen atmosphere, sub1 (10g, 27.5mmol) and sub2 (4.2g, 28.1mmol) were placed in 200ml of THF, stirred and refluxed. After that, potassium carbonate (11.4g, 82.6mmol) was dissolved in 34ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.9 g of AA_P1. (Yield 74%, MS: [M+H]+= 341)

질소 분위기에서 AA_P1 (10g, 29.3mmol)를 AcOH 200ml에 넣고 교반 및 0oC까지 냉각하였다. 이 후 Hydrazine monohydrate (1.6g, 32.2mmol)를 천천히 투입 한 후, 교반 및 환류하였다. 12시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AA_P2를 7.1g 제조하였다. (수율 79%, MS: [M+H]+= 309)In a nitrogen atmosphere, AA_P1 (10 g, 29.3 mmol) was added to 200 ml of AcOH, stirred and cooled to 0 o C. After that, Hydrazine monohydrate (1.6g, 32.2mmol) was slowly added, followed by stirring and reflux. After reaction for 12 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.1 g of AA_P2. (yield 79%, MS: [M+H]+=309)

질소 분위기에서 AA_P2 (10g, 32.3mmol)와 sub3 (6.7g, 35.5mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.4g, 96.9mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AA_P3를 9.6g 제조하였다. (수율 80%, MS: [M+H]+= 373)In a nitrogen atmosphere, AA_P2 (10g, 32.3mmol) and sub3 (6.7g, 35.5mmol) were added to 200ml of THF, followed by stirring and reflux. After that, potassium carbonate (13.4g, 96.9mmol) was dissolved in 40ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.6 g of AA_P3. (Yield 80%, MS: [M+H]+= 373)

질소 분위기에서 AA_P3 (10g, 26.8mmol)와 potassium carbonate(11.1g, 80.5mmol)를 DMAc 200ml에 넣고 교반 및 환류하였다. 9시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AA_P4를 5.8g 제조하였다. (수율 61%, MS: [M+H]+= 353)In a nitrogen atmosphere, AA_P3 (10g, 26.8mmol) and potassium carbonate (11.1g, 80.5mmol) were added to 200ml of DMAc, stirred and refluxed. After reaction for 9 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 5.8 g of AA_P4. (Yield 61%, MS: [M+H]+= 353)

질소 분위기에서 AA_P4 (15g, 42.5mmol)와 bis(pinacolato)diboron (11.9g, 46.8mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (12.5g, 127.5mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.3mmol) 및 tricyclohexylphosphine (0.7g, 2.6mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA를 14.4g 제조하였다. (수율 76%, MS: [M+H]+= 445)In a nitrogen atmosphere, AA_P4 (15g, 42.5mmol) and bis(pinacolato)diboron (11.9g, 46.8mmol) were refluxed in 300ml of 1,4-dioxane and stirred. After that, potassium acetate (12.5g, 127.5mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7g, 1.3mmol) and tricyclohexylphosphine (0.7g, 2.6mmol) were added. After reacting for 5 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.4 g of compound AA. (Yield 76%, MS: [M+H]+= 445)

제조예 2Preparation 2

화학식 AB의 제조Preparation of formula AB

Figure pat00045
Figure pat00045

상기 제조예 1에서 출발 물질로 sub1 대신 sub4를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AB를 11.8g 제조하였다. (수율 80%, MS: [M+H]+= 445)11.8 g of Compound AB was prepared in the same manner as in Preparation Example 1, except that sub4 was used instead of sub1 as a starting material in Preparation Example 1. (Yield 80%, MS: [M+H]+= 445)

제조예 3Preparation 3

화합물 AC의 제조Preparation of compound AC

Figure pat00046
Figure pat00046

질소 분위기에서 sub5 (10g, 30.4mmol)와 sub2 (5g, 33.4mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.6g, 91.2mmol)를 물 38ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AC_P1를 6g 제조하였다. (수율 65%, MS: [M+H]+= 307)In a nitrogen atmosphere, sub5 (10g, 30.4mmol) and sub2 (5g, 33.4mmol) were added to 200ml of THF, stirred and refluxed. After that, potassium carbonate (12.6g, 91.2mmol) was dissolved in 38ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6 g of AC_P1. (Yield 65%, MS: [M+H] + = 307)

질소 분위기에서 AC_P1 (10g, 32.6mmol)를 AcOH 200ml에 넣고 교반 및 0oC까지 냉각하였다. 이 후 Hydrazine monohydrate (1.8g, 35.8mmol)를 천천히 투입 한 후, 교반 및 환류하였다. 12시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AC_P2를 6.4g 제조하였다. (수율 72%, MS: [M+H]+= 275)In a nitrogen atmosphere, AC_P1 (10 g, 32.6 mmol) was added to 200 ml of AcOH, stirred and cooled to 0 o C. After that, Hydrazine monohydrate (1.8g, 35.8mmol) was slowly added, followed by stirring and reflux. After reaction for 12 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.4 g of AC_P2. (Yield 72%, MS: [M+H] + = 275)

질소 분위기에서 AC_P2 (20g, 77.8mmol), N-Chlorosuccinimide (10.6g, 79.3mmol)을 chloroform 400ml에 넣고 상온에서 교반하였다. 6시간 반응 후, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AC_P3를 6.7g 제조하였다. (수율 28%, MS: [M+H]+= 309)In a nitrogen atmosphere, AC_P2 (20g, 77.8mmol) and N-Chlorosuccinimide (10.6g, 79.3mmol) were added to 400ml of chloroform and stirred at room temperature. After the reaction for 6 hours, the organic layer was separated after washing with water twice, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.7 g of AC_P3. (Yield 28%, MS: [M+H] + = 309)

질소 분위기에서 AA_P3 (10g, 32.3mmol)와 sub3 (6.7g, 35.5mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.4g, 96.9mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AC_P4를 7.8g 제조하였다. (수율 65%, MS: [M+H]+= 373)In a nitrogen atmosphere, AA_P3 (10g, 32.3mmol) and sub3 (6.7g, 35.5mmol) were placed in 200ml of THF, stirred and refluxed. After that, potassium carbonate (13.4g, 96.9mmol) was dissolved in 40ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.8 g of AC_P4. (Yield 65%, MS: [M+H]+= 373)

질소 분위기에서 AC_P4 (10g, 26.8mmol)와 potassium carbonate(11.1g, 80.5mmol)를 DMAc 200ml에 넣고 교반 및 환류하였다. 9시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 AC_P5를 5.9g 제조하였다. (수율 63%, MS: [M+H]+= 353)AC_P4 (10g, 26.8mmol) and potassium carbonate (11.1g, 80.5mmol) were added to 200ml of DMAc in a nitrogen atmosphere, and stirred and refluxed. After reaction for 9 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 5.9 g of AC_P5. (Yield 63%, MS: [M+H]+= 353)

질소 분위기에서 AC_P5 (15g, 42.5mmol)와 bis(pinacolato)diboron (11.9g, 46.8mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (12.5g, 127.5mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.3mmol) 및 tricyclohexylphosphine (0.7g, 2.6mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AC를 13g 제조하였다. (수율 69%, MS: [M+H]+= 445)AC_P5 (15g, 42.5mmol) and bis(pinacolato)diboron (11.9g, 46.8mmol) were refluxed in 300ml of 1,4-dioxane in a nitrogen atmosphere and stirred. After that, potassium acetate (12.5g, 127.5mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7g, 1.3mmol) and tricyclohexylphosphine (0.7g, 2.6mmol) were added. After reacting for 5 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of compound AC. (yield 69%, MS: [M+H]+= 445)

제조예 4Preparation 4

화합물 AD의 제조Preparation of compound AD

Figure pat00047
Figure pat00047

상기 제조예 3에서 AC_P2로부터 AC_P3의 제조시 AC_P3과 함께 생성되는 AD_P1을 실리카 겔 컬럼 크로마토그래피로 정제 분리하여 사용하며, 이를 sub 3과 반응시키는 것을 제외하고는, 상기 제조예 3과 동일한 방법으로 수행하여 화합물 AD를 11.9g 제조하였다. (수율 63%, MS: [M+H]+= 445)In the preparation of AC_P3 from AC_P2 in Preparation Example 3, AD_P1 produced together with AC_P3 was purified and separated by silica gel column chromatography, and was used in the same manner as in Preparation Example 3, except that it was reacted with sub 3 11.9 g of compound AD was prepared. (Yield 63%, MS: [M+H]+= 445)

제조예 5Preparation 5

화합물 AE의 제조Preparation of compound AE

Figure pat00048
Figure pat00048

상기 제조예 1에서 출발 물질로 sub1 대신 sub5를 사용하고, sub2 대신 sub6를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AE를 15.1g 제조하였다. (수율 80%, MS: [M+H]+= 445)15.1 g of Compound AE was prepared in the same manner as in Preparation Example 1, except that sub5 was used instead of sub1 as a starting material in Preparation Example 1, and sub6 was used instead of sub2. (Yield 80%, MS: [M+H]+= 445)

제조예 6Preparation 6

화합물 AF의 제조Preparation of compound AF

Figure pat00049
Figure pat00049

상기 제조예 1에서 출발 물질로 sub1 대신 sub5를 사용하고, sub2 대신 sub7를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AF를 12.1g 제조하였다. (수율 64%, MS: [M+H]+= 445)12.1 g of Compound AF was prepared in the same manner as in Preparation Example 1, except that sub5 was used instead of sub1 as a starting material in Preparation Example 1, and sub7 was used instead of sub2. (Yield 64%, MS: [M+H]+= 445)

제조예 7Preparation 7

화합물 AG의 제조Preparation of compound AG

Figure pat00050
Figure pat00050

상기 제조예 1에서 출발 물질로 sub1 대신 sub5를 사용하고, sub2 대신 sub8를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AG를 14.7g 제조하였다. (수율 78%, MS: [M+H]+= 445)14.7 g of Compound AG was prepared in the same manner as in Preparation Example 1, except that sub5 was used instead of sub1 as a starting material in Preparation Example 1, and sub8 was used instead of sub2. (Yield 78%, MS: [M+H]+= 445)

제조예 8Preparation 8

화합물 BA의 제조Preparation of compound BA

Figure pat00051
Figure pat00051

질소 분위기에서 AA_P2 (10g, 32.3mmol)와 sub9 (6.7g, 35.5mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.4g, 96.9mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 BA_P1를 7.9g 제조하였다. (수율 66%, MS: [M+H]+= 373)In a nitrogen atmosphere, AA_P2 (10g, 32.3mmol) and sub9 (6.7g, 35.5mmol) were placed in 200ml of THF, stirred and refluxed. After that, potassium carbonate (13.4g, 96.9mmol) was dissolved in 40ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.9 g of BA_P1. (Yield 66%, MS: [M+H]+= 373)

질소 분위기에서 BA_P1 (10g, 26.8mmol)와 potassium carbonate(11.1g, 80.5mmol)를 DMAc 200ml에 넣고 교반 및 환류하였다. 9시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 BA_P2를 6.6g 제조하였다. (수율 70%, MS: [M+H]+= 353)In a nitrogen atmosphere, BA_P1 (10g, 26.8mmol) and potassium carbonate (11.1g, 80.5mmol) were added to 200ml of DMAc, stirred and refluxed. After reaction for 9 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.6 g of BA_P2. (Yield 70%, MS: [M+H]+= 353)

질소 분위기에서 BA_P2 (15g, 42.5mmol)와 bis(pinacolato)diboron (11.9g, 46.8mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (12.5g, 127.5mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.3mmol) 및 tricyclohexylphosphine (0.7g, 2.6mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA를 14.7g 제조하였다. (수율 78%, MS: [M+H]+= 445)In a nitrogen atmosphere, BA_P2 (15g, 42.5mmol) and bis(pinacolato)diboron (11.9g, 46.8mmol) were refluxed in 300ml of 1,4-dioxane and stirred. After that, potassium acetate (12.5g, 127.5mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7g, 1.3mmol) and tricyclohexylphosphine (0.7g, 2.6mmol) were added. After reacting for 5 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of compound AA. (Yield 78%, MS: [M+H]+= 445)

제조예 9Preparation 9

화합물 BB의 제조Preparation of compound BB

Figure pat00052
Figure pat00052

상기 제조예 9에서 출발 물질로 AA_P2 대신 AB_P2를 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 BB를 11.8g 제조하였다. (수율 80%, MS: [M+H]+= 445)11.8 g of Compound BB was prepared in the same manner as in Preparation Example 9, except that AB_P2 was used instead of AA_P2 as a starting material in Preparation Example 9. (Yield 80%, MS: [M+H]+= 445)

제조예 10Preparation 10

화합물 BC 제조Compound BC Preparation

Figure pat00053
Figure pat00053

상기 제조예 9에서 출발 물질로 AA_P2 대신 AC_P3를 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 BC를 13g 제조하였다. (수율 69%, MS: [M+H]+= 445)13 g of Compound BC was prepared in the same manner as in Preparation Example 9, except that AC_P3 was used instead of AA_P2 as a starting material in Preparation Example 9. (yield 69%, MS: [M+H]+= 445)

제조예 11Preparation 11

화합물 BD 제조Compound BD preparation

Figure pat00054
Figure pat00054

상기 제조예 9에서 출발 물질로 AA_P2 대신 AD_P1를 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 BD를 14.5g 제조하였다. (수율 77%, MS: [M+H]+= 445)14.5 g of Compound BD was prepared in the same manner as in Preparation Example 9, except that AD_P1 was used instead of AA_P2 as a starting material in Preparation Example 9. (Yield 77%, MS: [M+H]+= 445)

제조예 12Preparation 12

화합물 BE 제조Compound BE preparation

Figure pat00055
Figure pat00055

상기 제조예 9에서 출발 물질로 AA_P2 대신 AE_P2를 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 BE를 11.7g 제조하였다. (수율 62%, MS: [M+H]+= 445)11.7 g of Compound BE was prepared in the same manner as in Preparation Example 9, except that AE_P2 was used instead of AA_P2 as a starting material in Preparation Example 9. (Yield 62%, MS: [M+H]+= 445)

제조예 13Preparation 13

화합물 BF 제조Compound BF preparation

Figure pat00056
Figure pat00056

상기 제조예 9에서 출발 물질로 AA_P2 대신 AF_P2를 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 BF를 13.6g 제조하였다. (수율 72%, MS: [M+H]+= 445)13.6 g of compound BF was prepared in the same manner as in Preparation Example 9, except that AF_P2 was used instead of AA_P2 as a starting material in Preparation Example 9. (Yield 72%, MS: [M+H]+= 445)

제조예 14Preparation 14

화합물 BG 제조Compound BG preparation

Figure pat00057
Figure pat00057

상기 제조예 9에서 출발 물질로 AA_P2 대신 AG_P2를 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 BG를 14.2g 제조하였다. (수율 75%, MS: [M+H]+= 445)14.2 g of Compound BG was prepared in the same manner as in Preparation Example 9, except that AG_P2 was used instead of AA_P2 as a starting material in Preparation Example 9. (yield 75%, MS: [M+H]+= 445)

제조예 15Preparation 15

화합물 CA 제조Compound CA Preparation

Figure pat00058
Figure pat00058

상기 제조예 9에서 출발 물질로 sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CA를 11.3g 제조하였다. (수율 60%, MS: [M+H]+= 445)11.3 g of compound CA was prepared in the same manner as in Preparation Example 9, except that sub10 was used instead of sub9 as a starting material in Preparation Example 9. (Yield 60%, MS: [M+H]+= 445)

제조예 16Preparation 16

화합물 CB 제조Compound CB preparation

Figure pat00059
Figure pat00059

상기 제조예 9에서 출발 물질로 AA_P2 대신 AB_P2를 사용하고, sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CB를 12.1g 제조하였다. (수율 64%, MS: [M+H]+= 445)12.1 g of compound CB was prepared in the same manner as in Preparation Example 9, except that AB_P2 was used instead of AA_P2 as a starting material in Preparation Example 9, and sub10 was used instead of sub9. (Yield 64%, MS: [M+H]+= 445)

제조예 17Preparation 17

화합물 CC 제조Compound CC preparation

Figure pat00060
Figure pat00060

상기 제조예 9에서 출발 물질로 AA_P2 대신 AC_P3를 사용하고, sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CC를 11.3g 제조하였다. (수율 60%, MS: [M+H]+= 445)11.3 g of Compound CC was prepared in the same manner as in Preparation Example 9, except that AC_P3 was used instead of AA_P2 as a starting material in Preparation Example 9, and sub10 was used instead of sub9. (Yield 60%, MS: [M+H]+= 445)

제조예 18Preparation 18

화합물 CD 제조Compound CD Preparation

Figure pat00061
Figure pat00061

상기 제조예 9에서 출발 물질로 AA_P2 대신 AD_P1를 사용하고, sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CD를 14.4g 제조하였다. (수율 76%, MS: [M+H]+= 445)14.4 g of compound CD was prepared in the same manner as in Preparation Example 9, except that AD_P1 was used instead of AA_P2 as a starting material in Preparation Example 9, and sub10 was used instead of sub9. (Yield 76%, MS: [M+H]+= 445)

제조예 19Preparation 19

화합물 CE 제조Compound CE manufacturing

Figure pat00062
Figure pat00062

상기 제조예 9에서 출발 물질로 AA_P2 대신 AE_P2를 사용하고, sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CE를 14.7g 제조하였다. (수율 78%, MS: [M+H]+= 445)14.7 g of Compound CE was prepared in the same manner as in Preparation Example 9, except that AE_P2 was used instead of AA_P2 as a starting material in Preparation Example 9, and sub10 was used instead of sub9. (Yield 78%, MS: [M+H]+= 445)

제조예 20Preparation 20

화합물 CF 제조Compound CF preparation

Figure pat00063
Figure pat00063

상기 제조예 9에서 출발 물질로 AA_P2 대신 AF_P2를 사용하고, sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CF를 14.4g 제조하였다. (수율 76%, MS: [M+H]+= 445)14.4 g of compound CF was prepared in the same manner as in Preparation Example 9, except that AF_P2 was used instead of AA_P2 as a starting material in Preparation Example 9, and sub10 was used instead of sub9. (Yield 76%, MS: [M+H]+= 445)

제조예 21Preparation 21

화합물 CG 제조Compound CG preparation

Figure pat00064
Figure pat00064

상기 제조예 9에서 출발 물질로 AA_P2 대신 AG_P2를 사용하고, sub9 대신 sub10을 사용한 것을 제외하고는, 제조예 9와 동일한 방법을 사용하여 화합물 CG를 14g 제조하였다. (수율 74%, MS: [M+H]+= 445)14 g of compound CG was prepared in the same manner as in Preparation Example 9, except that AG_P2 was used instead of AA_P2 as a starting material in Preparation Example 9, and sub10 was used instead of sub9. (Yield 74%, MS: [M+H]+= 445)

제조예 22Preparation 22

화합물 DA 제조Compound DA preparation

Figure pat00065
Figure pat00065

질소 분위기에서 sub11 (10g, 29mmol)와 sub2 (4.8g, 31.9mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12g, 86.9mmol)를 물 36ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P1를 6g 제조하였다. (수율 64%, MS: [M+H]+= 323)In a nitrogen atmosphere, sub11 (10g, 29mmol) and sub2 (4.8g, 31.9mmol) were added to 200ml of THF, stirred and refluxed. After that, potassium carbonate (12g, 86.9mmol) was dissolved in 36ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6 g of DA_P1. (Yield 64%, MS: [M+H]+= 323)

질소 분위기에서 DA_P1 (10g, 31.1mmol)를 AcOH 200ml에 넣고 교반 및 0oC까지 냉각하였다. 이 후 Hydrazine monohydrate (1.7g, 34.2mmol)를 천천히 투입 한 후, 교반 및 환류하였다. 12시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P2를 7.1g 제조하였다. (수율 79%, MS: [M+H]+= 291)In a nitrogen atmosphere, DA_P1 (10 g, 31.1 mmol) was added to 200 ml of AcOH, stirred and cooled to 0 o C. After that, Hydrazine monohydrate (1.7g, 34.2mmol) was slowly added, followed by stirring and reflux. After reaction for 12 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.1 g of DA_P2. (yield 79%, MS: [M+H] + = 291)

질소 분위기에서 DA_P2 (10g, 34.3mmol)와 sub12 (8.2g, 37.7mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.2g, 102.9mmol)를 물 43ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P3를 8.4g 제조하였다. (수율 64%, MS: [M+H]+= 385)In a nitrogen atmosphere, DA_P2 (10g, 34.3mmol) and sub12 (8.2g, 37.7mmol) were added to 200ml of THF and stirred and refluxed. After that, potassium carbonate (14.2g, 102.9mmol) was dissolved in 43ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.4 g of DA_P3. (Yield 64%, MS: [M+H] + = 385)

질소 분위기에서 DA_P3 (10g, 26mmol)와 Hydrogen Peroxide (1.8g, 52mmol)를 아세트산 500ml에 넣고 교반 및 환류하였다. 3시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P4를 8.3g 제조하였다. (수율 80%, MS: [M+H]+= 401)DA_P3 (10g, 26mmol) and Hydrogen Peroxide (1.8g, 52mmol) were added to 500ml of acetic acid in a nitrogen atmosphere, stirred and refluxed. After 3 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.3 g of DA_P4. (yield 80%, MS: [M+H]+= 401)

질소 분위기에서 DA_P4 (10g, 24.9mmol)를 H2SO4 200ml에 넣고 교반했다. 2 시간 후 반응이 종료되면 반응물을 물에 부어서 결정을 떨어트리고 여과 했다. 여과한 고체를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P5를 7.1g 제조하였다. (수율 77%, MS: [M+H]+= 369)In a nitrogen atmosphere, DA_P4 (10g, 24.9mmol) was added to 200ml of H 2 SO 4 and stirred. When the reaction was completed after 2 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was dissolved again in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.1 g of DA_P5. (Yield 77%, MS: [M+H] + = 369)

질소 분위기에서 DA_P5 (15g, 40.7mmol)와 bis(pinacolato)diboron (11.4g, 44.7mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (12g, 122mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) 및 tricyclohexylphosphine (0.7g, 2.4mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 DA를 12g 제조하였다. (수율 64%, MS: [M+H]+= 461)In a nitrogen atmosphere, DA_P5 (15g, 40.7mmol) and bis(pinacolato)diboron (11.4g, 44.7mmol) were refluxed in 300ml of 1,4-dioxane and stirred. After that, potassium acetate (12g, 122mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) and tricyclohexylphosphine (0.7g, 2.4mmol) were added. After reacting for 5 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12 g of compound DA. (Yield 64%, MS: [M+H] + = 461)

제조예 23Preparation 23

화합물 DB 제조Compound DB preparation

Figure pat00066
Figure pat00066

상기 제조예 22에서 출발 물질로 sub11 대신 sub13을 사용한 것을 제외하고는, 제조예 22와 동일한 방법을 사용하여 화합물 DB를 11.8g 제조하였다. (수율 63%, MS: [M+H]+= 461)11.8 g of Compound DB was prepared in the same manner as in Preparation Example 22, except that sub13 was used instead of sub11 as a starting material in Preparation Example 22. (Yield 63%, MS: [M+H] + = 461)

제조예 24Preparation 24

화합물 DC 제조Compound DC Preparation

Figure pat00067
Figure pat00067

질소 분위기에서 sub14 (10g, 32.2mmol)와 sub2 (5.8g, 38.6mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.3g, 96.5mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DC_P1를 5.6g 제조하였다. (수율 60%, MS: [M+H]+= 289)In a nitrogen atmosphere, sub14 (10g, 32.2mmol) and sub2 (5.8g, 38.6mmol) were added to 200ml of THF, stirred and refluxed. After that, potassium carbonate (13.3g, 96.5mmol) was dissolved in 40ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 5.6 g of DC_P1. (Yield 60%, MS: [M+H]+= 289)

질소 분위기에서 DC_P1 (10g, 34.6mmol)를 AcOH 200ml에 넣고 교반 및 0oC까지 냉각하였다. 이 후 Hydrazine monohydrate (2.1g, 41.5mmol)를 천천히 투입 한 후, 교반 및 환류하였다. 12시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DC_P2를 6.6g 제조하였다. (수율 74%, MS: [M+H]+= 257)In a nitrogen atmosphere, DC_P1 (10 g, 34.6 mmol) was added to 200 ml of AcOH, stirred and cooled to 0 o C. After that, Hydrazine monohydrate (2.1g, 41.5mmol) was slowly added, followed by stirring and reflux. After reaction for 12 hours, the mixture was cooled to room temperature and the organic solvent was distilled under reduced pressure. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.6 g of DC_P2. (Yield 74%, MS: [M+H] + = 257)

질소 분위기에서 DC_P2 (20g, 77.8mmol), N-Chlorosuccinimide (10.6g, 79.3mmol)을 chloroform 400ml에 넣고 상온에서 교반하였다. 6시간 반응 후, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DC_P3를 6.4g 제조하였다. (수율 28%, MS: [M+H]+= 293)In a nitrogen atmosphere, DC_P2 (20g, 77.8mmol) and N-Chlorosuccinimide (10.6g, 79.3mmol) were added to 400ml of chloroform and stirred at room temperature. After the reaction for 6 hours, the organic layer was separated after washing with water twice, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.4 g of DC_P3. (Yield 28%, MS: [M+H]+= 293)

질소 분위기에서 DA_P3 (10g, 34.3mmol)와 sub12 (9g, 41.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.2g, 102.9mmol)를 물 43ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P4를 9.6g 제조하였다. (수율 73%, MS: [M+H]+= 385)In a nitrogen atmosphere, DA_P3 (10g, 34.3mmol) and sub12 (9g, 41.2mmol) were added to 200ml of THF and stirred and refluxed. After that, potassium carbonate (14.2g, 102.9mmol) was dissolved in 43ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.6 g of DA_P4. (Yield 73%, MS: [M+H] + = 385)

질소 분위기에서 DC_P4 (10g, 26mmol)와 Hydrogen Peroxide (1.8g, 52mmol)를 아세트산 500ml에 넣고 교반 및 환류하였다. 3시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DC_P5를 6.3g 제조하였다. (수율 61%, MS: [M+H]+= 401)In a nitrogen atmosphere, DC_P4 (10g, 26mmol) and Hydrogen Peroxide (1.8g, 52mmol) were added to 500ml of acetic acid, stirred and refluxed. After 3 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.3 g of DC_P5. (Yield 61%, MS: [M+H]+= 401)

질소 분위기에서 DC_P5 (10g, 24.9mmol)를 H2SO4 200ml에 넣고 교반했다. 2 시간 후 반응이 종료되면 반응물을 물에 부어서 결정을 떨어트리고 여과 했다. 여과한 고체를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 DA_P6를 7.3g 제조하였다. (수율 79%, MS: [M+H]+= 369)In a nitrogen atmosphere, DC_P5 (10g, 24.9mmol) was added to 200ml of H 2 SO 4 and stirred. When the reaction was completed after 2 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was dissolved again in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.3 g of DA_P6. (yield 79%, MS: [M+H]+=369)

질소 분위기에서 DC_P6 (15g, 40.7mmol)와 bis(pinacolato)diboron (11.4g, 44.7mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (12g, 122mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) 및 tricyclohexylphosphine (0.7g, 2.4mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 DC를 12.4g 제조하였다. (수율 66%, MS: [M+H]+= 461)In a nitrogen atmosphere, DC_P6 (15g, 40.7mmol) and bis(pinacolato)diboron (11.4g, 44.7mmol) were refluxed in 300ml of 1,4-dioxane and stirred. After that, potassium acetate (12g, 122mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) and tricyclohexylphosphine (0.7g, 2.4mmol) were added. After reacting for 5 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of compound DC. (Yield 66%, MS: [M+H]+= 461)

제조예 25Preparation 25

화합물 DD의 제조Preparation of compound DD

Figure pat00068
Figure pat00068

상기 제조예 24와 동일한 출발 물질로 사용하되, DD_P1 화합물 합성 시, 상기 제조예 24의 DC_P3와 DD_P1이 동시에 생성되며 이를 실리카 겔 컬럼 크로마토그래피로 정제하였다. 이 것을 제외하고는 제조예 24와 동일한 방법을 사용하여 화합물 DD를 12.2g 제조하였다. (수율 65%, MS: [M+H]+= 461)It was used as the same starting material as in Preparation Example 24, but when the DD_P1 compound was synthesized, DC_P3 and DD_P1 of Preparation Example 24 were simultaneously generated, which was purified by silica gel column chromatography. Except for this, 12.2 g of Compound DD was prepared in the same manner as in Preparation Example 24. (Yield 65%, MS: [M+H]+= 461)

제조예 26Preparation 26

화합물 DE의 제조Preparation of compound DE

Figure pat00069
Figure pat00069

상기 제조예 22에서 출발 물질로 sub11 대신 sub14를 사용하고, sub2 대신 sub6를 사용한 것을 제외하고는, 제조예 22와 동일한 방법을 사용하여 화합물 DE를 11.8g 제조하였다. (수율 63%, MS: [M+H]+= 461)11.8 g of compound DE was prepared in the same manner as in Preparation Example 22, except that sub14 was used instead of sub11 as a starting material in Preparation 22, and sub6 was used instead of sub2. (Yield 63%, MS: [M+H] + = 461)

제조예 27Preparation 27

화합물 DF의 제조Preparation of compound DF

Figure pat00070
Figure pat00070

상기 제조예 22에서 출발 물질로 sub11 대신 sub14를 사용하고, sub2 대신 sub7를 사용한 것을 제외하고는, 제조예 22와 동일한 방법을 사용하여 화합물 DF를 11.8g 제조하였다. (수율 63%, MS: [M+H]+= 461)11.8 g of Compound DF was prepared in the same manner as in Preparation Example 22, except that sub14 was used instead of sub11 as a starting material in Preparation 22, and sub7 was used instead of sub2. (Yield 63%, MS: [M+H] + = 461)

제조예 28Preparation 28

화합물 DG의 제조Preparation of compound DG

Figure pat00071
Figure pat00071

상기 제조예 22에서 출발 물질로 sub11 대신 sub14를 사용하고, sub2 대신 sub8를 사용한 것을 제외하고는, 제조예 22와 동일한 방법을 사용하여 화합물 DG를 13.7g 제조하였다. (수율 73%, MS: [M+H]+= 461)13.7 g of Compound DG was prepared in the same manner as in Preparation Example 22, except that sub14 was used instead of sub11 as a starting material in Preparation 22, and sub8 was used instead of sub2. (Yield 73%, MS: [M+H] + = 461)

제조예 29Preparation 29

화합물 EA의 제조Preparation of compound EA

Figure pat00072
Figure pat00072

질소 분위기에서 DA_P2 (10g, 34.3mmol)와 sub15 (8.2g, 37.7mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.2g, 102.9mmol)를 물 43ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 EA_P1를 8.4g 제조하였다. (수율 64%, MS: [M+H]+= 385)In a nitrogen atmosphere, DA_P2 (10g, 34.3mmol) and sub15 (8.2g, 37.7mmol) were added to 200ml of THF, followed by stirring and reflux. After that, potassium carbonate (14.2g, 102.9mmol) was dissolved in 43ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.4 g of EA_P1. (Yield 64%, MS: [M+H] + = 385)

질소 분위기에서 EA_P1 (10g, 26mmol)와 Hydrogen Peroxide (1.8g, 52mmol)를 아세트산 500ml에 넣고 교반 및 환류하였다. 3시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 EA_P2를 8.3g 제조하였다. (수율 80%, MS: [M+H]+= 401)In a nitrogen atmosphere, EA_P1 (10g, 26mmol) and Hydrogen Peroxide (1.8g, 52mmol) were added to 500ml of acetic acid, stirred and refluxed. After 3 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.3 g of EA_P2. (yield 80%, MS: [M+H]+= 401)

질소 분위기에서 EA_P2 (10g, 24.9mmol)를 H2SO4 200ml에 넣고 교반했다. 2 시간 후 반응이 종료되면 반응물을 물에 부어서 결정을 떨어트리고 여과 했다. 여과한 고체를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 EA_P3를 7.1g 제조하였다. (수율 77%, MS: [M+H]+= 369)In a nitrogen atmosphere, EA_P2 (10g, 24.9mmol) was added to 200ml of H 2 SO 4 and stirred. When the reaction was completed after 2 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was dissolved again in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.1 g of EA_P3. (Yield 77%, MS: [M+H] + = 369)

질소 분위기에서 EA_P3 (15g, 40.7mmol)와 bis(pinacolato)diboron (11.4g, 44.7mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (12g, 122mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) 및 tricyclohexylphosphine (0.7g, 2.4mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 EA를 14.6g 제조하였다. (수율 78%, MS: [M+H]+= 461)In a nitrogen atmosphere, EA_P3 (15g, 40.7mmol) and bis(pinacolato)diboron (11.4g, 44.7mmol) were refluxed in 300ml of 1,4-dioxane and stirred. After that, potassium acetate (12g, 122mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) and tricyclohexylphosphine (0.7g, 2.4mmol) were added. After reacting for 5 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of compound EA. (Yield 78%, MS: [M+H] + = 461)

제조예 30Preparation 30

화합물 EB의 제조Preparation of compound EB

Figure pat00073
Figure pat00073

상기 제조예 29에서 출발 물질로 DA_P2 대신 DB_P2를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 EB를 13.8g 제조하였다. (수율 74%, MS: [M+H]+= 461)13.8 g of Compound EB was prepared in the same manner as in Preparation Example 29, except that DB_P2 was used instead of DA_P2 as a starting material in Preparation Example 29. (Yield 74%, MS: [M+H] + = 461)

제조예 31Preparation 31

화합물 EC의 제조Preparation of compound EC

Figure pat00074
Figure pat00074

상기 제조예 29에서 출발 물질로 DA_P2 대신 DC_P3를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 EC를 13.3g 제조하였다. (수율 71%, MS: [M+H]+= 461)13.3 g of Compound EC was prepared in the same manner as in Preparation Example 29, except that DC_P3 was used instead of DA_P2 as a starting material in Preparation Example 29. (Yield 71%, MS: [M+H] + = 461)

제조예 32Preparation 32

화합물 ED의 제조Preparation of compound ED

Figure pat00075
Figure pat00075

상기 제조예 29에서 출발 물질로 DA_P2 대신 DD_P1를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 ED를 14.4g 제조하였다. (수율 77%, MS: [M+H]+= 461)14.4 g of Compound ED was prepared in the same manner as in Preparation Example 29, except that DD_P1 was used instead of DA_P2 as a starting material in Preparation Example 29. (Yield 77%, MS: [M+H] + = 461)

제조예 33Preparation 33

화합물 EE의 제조Preparation of compound EE

Figure pat00076
Figure pat00076

상기 제조예 29에서 출발 물질로 DA_P2 대신 DE_P2를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 EE를 13.5g 제조하였다. (수율 72%, MS: [M+H]+= 461)13.5 g of Compound EE was prepared in the same manner as in Preparation Example 29, except that DE_P2 was used instead of DA_P2 as a starting material in Preparation Example 29. (Yield 72%, MS: [M+H] + = 461)

제조예 34Preparation 34

화합물 EF의 제조Preparation of compound EF

Figure pat00077
Figure pat00077

상기 제조예 29에서 출발 물질로 DA_P2 대신 DF_P2를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 EF를 12g 제조하였다. (수율 64%, MS: [M+H]+= 461)12 g of Compound EF was prepared in the same manner as in Preparation Example 29, except that DF_P2 was used instead of DA_P2 as a starting material in Preparation Example 29. (Yield 64%, MS: [M+H] + = 461)

제조예 35Preparation 35

화합물 EG의 제조Preparation of compound EG

Figure pat00078
Figure pat00078

상기 제조예 29에서 출발 물질로 DA_P2 대신 DG_P2를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 EG를 13.3g 제조하였다. (수율 71%, MS: [M+H]+= 461)13.3 g of Compound EG was prepared in the same manner as in Preparation Example 29, except that DG_P2 was used instead of DA_P2 as a starting material in Preparation Example 29. (Yield 71%, MS: [M+H] + = 461)

제조예 36Preparation 36

화합물 FA의 제조Preparation of compound FA

Figure pat00079
Figure pat00079

상기 제조예 29에서 출발 물질로 sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FA를 13.5g 제조하였다. (수율 72%, MS: [M+H]+= 461)13.5 g of compound FA was prepared in the same manner as in Preparation Example 29, except that sub16 was used instead of sub15 as a starting material in Preparation Example 29. (Yield 72%, MS: [M+H] + = 461)

제조예 37Preparation 37

화합물 FB의 제조Preparation of compound FB

Figure pat00080
Figure pat00080

상기 제조예 29에서 출발 물질로 DA_P2대신 DB_P2를 사용하고, sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FB를 13.8g 제조하였다. (수율 74%, MS: [M+H]+= 461)13.8 g of compound FB was prepared in the same manner as in Preparation Example 29, except that DB_P2 was used instead of DA_P2 as a starting material in Preparation Example 29, and sub16 was used instead of sub15. (Yield 74%, MS: [M+H] + = 461)

제조예 38Preparation 38

화합물 FC의 제조Preparation of compound FC

Figure pat00081
Figure pat00081

상기 제조예 29에서 출발 물질로 DA_P2대신 DC_P3를 사용하고, sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FC를 15g 제조하였다. (수율 80%, MS: [M+H]+= 461)15 g of compound FC was prepared in the same manner as in Preparation Example 29, except that DC_P3 was used instead of DA_P2 as a starting material in Preparation Example 29, and sub16 was used instead of sub15. (Yield 80%, MS: [M+H] + = 461)

제조예 39Preparation 39

화합물 FD의 제조Preparation of compound FD

Figure pat00082
Figure pat00082

상기 제조예 29에서 출발 물질로 DA_P2대신 DD_P1를 사용하고, sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FD를 14.6g 제조하였다. (수율 78%, MS: [M+H]+= 461)14.6 g of Compound FD was prepared in the same manner as in Preparation Example 29, except that DD_P1 was used instead of DA_P2 as a starting material in Preparation Example 29, and sub16 was used instead of sub15. (Yield 78%, MS: [M+H] + = 461)

제조예 40Preparation 40

화합물 FE의 제조Preparation of compound FE

Figure pat00083
Figure pat00083

상기 제조예 29에서 출발 물질로 DA_P2대신 DE_P2를 사용하고, sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FE를 15g 제조하였다. (수율 80%, MS: [M+H]+= 461)15 g of compound FE was prepared in the same manner as in Preparation Example 29, except that DE_P2 was used instead of DA_P2 as a starting material in Preparation Example 29, and sub16 was used instead of sub15. (Yield 80%, MS: [M+H] + = 461)

제조예 41Preparation 41

화합물 FF의 제조Preparation of compound FF

Figure pat00084
Figure pat00084

상기 제조예 29에서 출발 물질로 DA_P2대신 DF_P2를 사용하고, sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FF를 12.5g 제조하였다. (수율 67%, MS: [M+H]+= 461)12.5 g of compound FF was prepared in the same manner as in Preparation Example 29, except that DF_P2 was used instead of DA_P2 as a starting material in Preparation Example 29, and sub16 was used instead of sub15. (Yield 67%, MS: [M+H] + = 461)

제조예 42Preparation 42

화합물 FG의 제조Preparation of compound FG

Figure pat00085
Figure pat00085

상기 제조예 29에서 출발 물질로 DA_P2대신 DG_P2를 사용하고, sub15 대신 sub16를 사용한 것을 제외하고는, 제조예 29와 동일한 방법을 사용하여 화합물 FG를 13.3g 제조하였다. (수율 71%, MS: [M+H]+= 461)13.3 g of compound FG was prepared in the same manner as in Preparation Example 29, except that DG_P2 was used instead of DA_P2 as a starting material in Preparation Example 29, and sub16 was used instead of sub15. (Yield 71%, MS: [M+H] + = 461)

합성예 1Synthesis Example 1

Figure pat00086
Figure pat00086

질소 분위기에서 화학식 AA (10g, 22.5mmol)와 Trz1 (6.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1를 9.6g 제조하였다. (수율 78%, MS: [M+H]+= 550)Formula AA (10g, 22.5mmol) and Trz1 (6.1g, 23mmol) were added to 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.6 g of Compound 1. (Yield 78%, MS: [M+H]+= 550)

합성예 2Synthesis Example 2

Figure pat00087
Figure pat00087

질소 분위기에서 화학식 AA (10g, 22.5mmol)와 Trz2 (11.3g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2를 10.6g 제조하였다. (수율 61%, MS: [M+H]+= 776)Formula AA (10g, 22.5mmol) and Trz2 (11.3g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of Compound 2. (Yield 61%, MS: [M+H] + = 776)

합성예 3Synthesis Example 3

Figure pat00088
Figure pat00088

질소 분위기에서 화학식 AB (10g, 22.5mmol)와 Trz3 (7.3g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3를 9.3g 제조하였다. (수율 69%, MS: [M+H]+= 600)Formula AB (10g, 22.5mmol) and Trz3 (7.3g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.3 g of compound 3. (yield 69%, MS: [M+H]+= 600)

합성예 4Synthesis Example 4

Figure pat00089
Figure pat00089

질소 분위기에서 화학식 AB (10g, 22.5mmol)와 Trz4 (8.6g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4를 10g 제조하였다. (수율 68%, MS: [M+H]+= 656)Formula AB (10g, 22.5mmol) and Trz4 (8.6g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10 g of compound 4. (Yield 68%, MS: [M+H] + = 656)

합성예 5Synthesis Example 5

Figure pat00090
Figure pat00090

질소 분위기에서 화학식 AB (10g, 22.5mmol)와 Trz5 (9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5를 12g 제조하였다. (수율 79%, MS: [M+H]+= 676)Formula AB (10g, 22.5mmol) and Trz5 (9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12 g of compound 5. (yield 79%, MS: [M+H]+= 676)

합성예 6Synthesis Example 6

Figure pat00091
Figure pat00091

질소 분위기에서 화학식 AD (10g, 22.5mmol)와 Trz1 (6.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6를 9.4g 제조하였다. (수율 76%, MS: [M+H]+= 550)Formula AD (10g, 22.5mmol) and Trz1 (6.1g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.4 g of compound 6. (Yield 76%, MS: [M+H]+= 550)

합성예 7Synthesis Example 7

Figure pat00092
Figure pat00092

질소 분위기에서 화학식 AE (10g, 22.5mmol)와 Trz6 (9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7를 9.3g 제조하였다. (수율 61%, MS: [M+H]+= 676)Formula AE (10g, 22.5mmol) and Trz6 (9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.3 g of compound 7. (Yield 61%, MS: [M+H]+= 676)

합성예 8Synthesis Example 8

Figure pat00093
Figure pat00093

질소 분위기에서 화학식 AG (10g, 22.5mmol)와 Trz1 (6.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8를 9.4g 제조하였다. (수율 76%, MS: [M+H]+= 550)Formula AG (10g, 22.5mmol) and Trz1 (6.1g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.4 g of compound 8. (Yield 76%, MS: [M+H]+= 550)

합성예 9Synthesis Example 9

Figure pat00094
Figure pat00094

질소 분위기에서 화학식 BA (10g, 22.5mmol)와 Trz7 (9.6g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 12.2g 제조하였다. (수율 77%, MS: [M+H]+= 702)Formula BA (10g, 22.5mmol) and Trz7 (9.6g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of compound 9. (Yield 77%, MS: [M+H]+= 702)

합성예 10Synthesis Example 10

Figure pat00095
Figure pat00095

질소 분위기에서 화학식 BA (10g, 22.5mmol)와 Trz8 (11.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10를 12.4g 제조하였다. (수율 72%, MS: [M+H]+= 766)Chemical formula BA (10g, 22.5mmol) and Trz8 (11.1g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of compound 10. (Yield 72%, MS: [M+H]+= 766)

합성예 11Synthesis Example 11

Figure pat00096
Figure pat00096

질소 분위기에서 화학식 BB (10g, 22.5mmol)와 Trz1 (6.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11를 8.7g 제조하였다. (수율 70%, MS: [M+H]+= 550)Formula BB (10g, 22.5mmol) and Trz1 (6.1g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.7 g of compound 11. (Yield 70%, MS: [M+H]+= 550)

합성예 12Synthesis Example 12

Figure pat00097
Figure pat00097

질소 분위기에서 화학식 BB (10g, 22.5mmol)와 Trz9 (11.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 12.9g 제조하였다. (수율 75%, MS: [M+H]+= 766)Formula BB (10g, 22.5mmol) and Trz9 (11.1g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of compound 12. (yield 75%, MS: [M+H]+= 766)

합성예 13Synthesis Example 13

Figure pat00098
Figure pat00098

질소 분위기에서 화학식 BB (10g, 22.5mmol)와 Trz10 (9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13를 9.9g 제조하였다. (수율 65%, MS: [M+H]+= 676)Formula BB (10g, 22.5mmol) and Trz10 (9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.9 g of compound 13. (Yield 65%, MS: [M+H]+= 676)

합성예 14Synthesis Example 14

Figure pat00099
Figure pat00099

질소 분위기에서 화학식 BD (10g, 22.5mmol)와 Trz11 (7.9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 10.3g 제조하였다. (수율 73%, MS: [M+H]+= 626)Formula BD (10g, 22.5mmol) and Trz11 (7.9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.3 g of compound 14. (Yield 73%, MS: [M+H] + = 626)

합성예 15Synthesis Example 15

Figure pat00100
Figure pat00100

질소 분위기에서 화학식 BF (10g, 22.5mmol)와 Trz12 (8.4g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 10.8g 제조하였다. (수율 74%, MS: [M+H]+= 650)Formula BF (10g, 22.5mmol) and Trz12 (8.4g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.8 g of compound 15. (Yield 74%, MS: [M+H]+= 650)

합성예 16Synthesis Example 16

Figure pat00101
Figure pat00101

질소 분위기에서 화학식 BG (10g, 22.5mmol)와 Trz13 (8.2g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16를 9.5g 제조하였다. (수율 66%, MS: [M+H]+= 639)Formula BG (10g, 22.5mmol) and Trz13 (8.2g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.5 g of compound 16. (Yield 66%, MS: [M+H]+= 639)

합성예 17Synthesis Example 17

Figure pat00102
Figure pat00102

질소 분위기에서 화학식 CA (10g, 22.5mmol)와 Trz3 (7.3g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17를 8.5g 제조하였다. (수율 63%, MS: [M+H]+= 600)Chemical formula CA (10g, 22.5mmol) and Trz3 (7.3g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.5 g of compound 17. (Yield 63%, MS: [M+H]+= 600)

합성예 18Synthesis Example 18

Figure pat00103
Figure pat00103

질소 분위기에서 화학식 CA (10g, 22.5mmol)와 Trz14 (8.2g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18를 10.6g 제조하였다. (수율 74%, MS: [M+H]+= 640)Chemical formula CA (10g, 22.5mmol) and Trz14 (8.2g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of compound 18. (Yield 74%, MS: [M+H] + = 640)

합성예 19Synthesis Example 19

Figure pat00104
Figure pat00104

질소 분위기에서 화학식 CC (10g, 22.5mmol)와 Trz15 (9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 12.2g 제조하였다. (수율 80%, MS: [M+H]+= 676)Chemical formula CC (10g, 22.5mmol) and Trz15 (9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of compound 19. (Yield 80%, MS: [M+H]+= 676)

합성예 20Synthesis Example 20

Figure pat00105
Figure pat00105

질소 분위기에서 화학식 CC (10g, 22.5mmol)와 Trz16 (9.9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20를 12.9g 제조하였다. (수율 80%, MS: [M+H]+= 715)Chemical formula CC (10g, 22.5mmol) and Trz16 (9.9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of compound 20. (yield 80%, MS: [M+H]+= 715)

합성예 21Synthesis Example 21

Figure pat00106
Figure pat00106

질소 분위기에서 화학식 CD (10g, 22.5mmol)와 Trz17 (10.2g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21를 13.1g 제조하였다. (수율 80%, MS: [M+H]+= 726)Chemical formula CD (10g, 22.5mmol) and Trz17 (10.2g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.1 g of compound 21. (yield 80%, MS: [M+H]+= 726)

합성예 22Synthesis Example 22

Figure pat00107
Figure pat00107

질소 분위기에서 화학식 CD (10g, 22.5mmol)와 Trz18 (10.8g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 11.2g 제조하였다. (수율 66%, MS: [M+H]+= 752)Chemical formula CD (10g, 22.5mmol) and Trz18 (10.8g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.2 g of compound 22. (Yield 66%, MS: [M+H]+= 752)

합성예 23Synthesis Example 23

Figure pat00108
Figure pat00108

질소 분위기에서 화학식 CE (10g, 22.5mmol)와 Trz1 (6.1g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23를 9.6g 제조하였다. (수율 78%, MS: [M+H]+= 550)Chemical formula CE (10g, 22.5mmol) and Trz1 (6.1g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.6 g of compound 23. (Yield 78%, MS: [M+H]+= 550)

합성예 24Synthesis Example 24

Figure pat00109
Figure pat00109

질소 분위기에서 화학식 CE (10g, 22.5mmol)와 Trz19 (9g, 23mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3g, 67.5mmol)를 물 28ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 24를 11.5g 제조하였다. (수율 76%, MS: [M+H]+= 676)Chemical formula CE (10g, 22.5mmol) and Trz19 (9g, 23mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9.3g, 67.5mmol) was dissolved in 28ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.5 g of compound 24. (Yield 76%, MS: [M+H]+= 676)

합성예 25Synthesis Example 25

Figure pat00110
Figure pat00110

질소 분위기에서 화학식 DA (10g, 21.7mmol)와 Trz20 (9.6g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 25를 10.6g 제조하였다. (수율 67%, MS: [M+H]+= 731)Chemical formula DA (10g, 21.7mmol) and Trz20 (9.6g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of compound 25. (Yield 67%, MS: [M+H] + = 731)

합성예 26Synthesis Example 26

Figure pat00111
Figure pat00111

질소 분위기에서 화학식 DA (10g, 21.7mmol)와 Trz21 (8.7g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 26를 10.7g 제조하였다. (수율 71%, MS: [M+H]+= 692)Formula DA (10g, 21.7mmol) and Trz21 (8.7g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.7 g of compound 26. (Yield 71%, MS: [M+H]+=692)

합성예 27Synthesis Example 27

Figure pat00112
Figure pat00112

질소 분위기에서 화학식 DC (10g, 21.7mmol)와 Trz21 (8.3g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 27를 9.2g 제조하였다. (수율 63%, MS: [M+H]+= 672)Chemical formula DC (10g, 21.7mmol) and Trz21 (8.3g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.2 g of compound 27. (Yield 63%, MS: [M+H] + = 672)

합성예 28Synthesis Example 28

Figure pat00113
Figure pat00113

질소 분위기에서 화학식 DD (10g, 21.7mmol)와 Trz11 (7.6g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28를 8.4g 제조하였다. (수율 60%, MS: [M+H]+= 642)Formula DD (10g, 21.7mmol) and Trz11 (7.6g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.4 g of compound 28. (Yield 60%, MS: [M+H]+= 642)

합성예 29Synthesis Example 29

Figure pat00114
Figure pat00114

질소 분위기에서 화학식 DE (10g, 21.7mmol)와 Trz23 (9.3g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 11.3g 제조하였다. (수율 73%, MS: [M+H]+= 716)Chemical formula DE (10g, 21.7mmol) and Trz23 (9.3g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.3 g of compound 29. (Yield 73%, MS: [M+H]+= 716)

합성예 30Synthesis Example 30

Figure pat00115
Figure pat00115

질소 분위기에서 화학식 DF (10g, 21.7mmol)와 Trz3 (7g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30를 8.2g 제조하였다. (수율 61%, MS: [M+H]+= 616)Formula DF (10g, 21.7mmol) and Trz3 (7g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.2 g of compound 30. (Yield 61%, MS: [M+H]+= 616)

합성예 31Synthesis Example 31

Figure pat00116
Figure pat00116

질소 분위기에서 화학식 DG (10g, 21.7mmol)와 Trz24 (8.7g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31를 9.8g 제조하였다. (수율 65%, MS: [M+H]+= 692)Chemical formula DG (10g, 21.7mmol) and Trz24 (8.7g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.8 g of compound 31. (Yield 65%, MS: [M+H]+=692)

합성예 32Synthesis Example 32

Figure pat00117
Figure pat00117

질소 분위기에서 화학식 EA (10g, 21.7mmol)와 Trz1 (5.9g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 9.3g 제조하였다. (수율 76%, MS: [M+H]+= 566)Chemical formula EA (10g, 21.7mmol) and Trz1 (5.9g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.3 g of compound 32. (Yield 76%, MS: [M+H] + = 566)

합성예 33Synthesis Example 33

Figure pat00118
Figure pat00118

질소 분위기에서 화학식 EA (10g, 21.7mmol)와 Trz25 (7.9g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33를 9.7g 제조하였다. (수율 68%, MS: [M+H]+= 656)Formula EA (10g, 21.7mmol) and Trz25 (7.9g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.7 g of compound 33. (Yield 68%, MS: [M+H] + = 656)

합성예 34Synthesis Example 34

Figure pat00119
Figure pat00119

질소 분위기에서 화학식 EC (10g, 21.7mmol)와 Trz26 (8.1g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 11g 제조하였다. (수율 76%, MS: [M+H]+= 666)Chemical formula EC (10g, 21.7mmol) and Trz26 (8.1g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11 g of compound 34. (Yield 76%, MS: [M+H]+=666)

합성예 35Synthesis Example 35

Figure pat00120
Figure pat00120

질소 분위기에서 화학식 ED (10g, 21.7mmol)와 Trz1 (5.9g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 9.8g 제조하였다. (수율 80%, MS: [M+H]+= 566)Formula ED (10g, 21.7mmol) and Trz1 (5.9g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.8 g of compound 35. (Yield 80%, MS: [M+H]+= 566)

합성예 36Synthesis Example 36

Figure pat00121
Figure pat00121

질소 분위기에서 화학식 EF (10g, 21.7mmol)와 Trz27 (7.6g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36를 11g 제조하였다. (수율 79%, MS: [M+H]+= 642)Formula EF (10g, 21.7mmol) and Trz27 (7.6g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11 g of compound 36. (yield 79%, MS: [M+H] + = 642)

합성예 37Synthesis Example 37

Figure pat00122
Figure pat00122

질소 분위기에서 화학식 EG (10g, 21.7mmol)와 Trz1 (5.9g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 37를 7.9g 제조하였다. (수율 64%, MS: [M+H]+= 566)Chemical formula EG (10g, 21.7mmol) and Trz1 (5.9g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.9 g of compound 37. (Yield 64%, MS: [M+H]+= 566)

합성예 38Synthesis Example 38

Figure pat00123
Figure pat00123

질소 분위기에서 화학식 FB (10g, 21.7mmol)와 Trz11 (7.6g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 38를 10.3g 제조하였다. (수율 74%, MS: [M+H]+= 642)Formula FB (10g, 21.7mmol) and Trz11 (7.6g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.3 g of compound 38. (Yield 74%, MS: [M+H]+= 642)

합성예 39Synthesis Example 39

Figure pat00124
Figure pat00124

질소 분위기에서 화학식 FC (10g, 21.7mmol)와 Trz1 (5.9g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 39를 8.7g 제조하였다. (수율 71%, MS: [M+H]+= 566)Chemical formula FC (10g, 21.7mmol) and Trz1 (5.9g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.7 g of compound 39. (Yield 71%, MS: [M+H] + = 566)

합성예 40Synthesis Example 40

Figure pat00125
Figure pat00125

질소 분위기에서 화학식 FE (10g, 21.7mmol)와 Trz28 (9.3g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40를 11.4g 제조하였다. (수율 73%, MS: [M+H]+= 718)Formula FE (10g, 21.7mmol) and Trz28 (9.3g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.4 g of compound 40. (Yield 73%, MS: [M+H]+= 718)

합성예 41Synthesis Example 41

Figure pat00126
Figure pat00126

질소 분위기에서 화학식 FE (10g, 21.7mmol)와 Trz29 (9.3g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41를 10.6g 제조하였다. (수율 68%, MS: [M+H]+= 718)Chemical formula FE (10g, 21.7mmol) and Trz29 (9.3g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of compound 41. (Yield 68%, MS: [M+H]+= 718)

합성예 42Synthesis Example 42

Figure pat00127
Figure pat00127

질소 분위기에서 화학식 FG (10g, 21.7mmol)와 Trz1 (5.9g, 22.2mmol)를 THF 200ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9g, 65.2mmol)를 물 27ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 42를 9.7g 제조하였다. (수율 79%, MS: [M+H]+= 566)Formula FG (10g, 21.7mmol) and Trz1 (5.9g, 22.2mmol) were placed in 200ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (9g, 65.2mmol) was dissolved in 27ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.7 g of compound 42. (yield 79%, MS: [M+H]+=566)

실시예 1Example 1

ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. In this case, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성했다. 이어서, 상기 전자억제층 위에 호스트로서 상기 합성예 1에서 제조한 화합물 1과 도펀트로서 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다. The following HI-1 compound was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150 Å, but the following A-1 compound was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Next, the following EB-1 compound was vacuum-deposited to a thickness of 150 Å on the hole transport layer to form an electron blocking layer. Then, on the electron suppression layer, the compound 1 prepared in Synthesis Example 1 as a host and the following Dp-7 compound as a dopant were vacuum-deposited in a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 Å. A hole blocking layer was formed by vacuum-depositing the following HB-1 compound to a thickness of 30 Å on the light emitting layer. Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited in a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.

Figure pat00128
Figure pat00128

상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작했다. In the above process, the deposition rate of organic material was maintained at 0.4~0.7Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3Å/sec, and the deposition rate of aluminum was maintained at 2Å/sec, and the vacuum degree during deposition was 2×10 -7 ~ By maintaining 5 ×10 -6 torr, an organic light emitting device was manufactured.

실시예 2 내지 42Examples 2 to 42

실시예 1의 유기 발광 소자에서 화합물 1 대신에 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.

비교예 1 내지 6Comparative Examples 1 to 6

실시예 1의 유기 발광 소자에서 화합물 1 대신에 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.

Figure pat00129
Figure pat00129

실험예Experimental example

상기 실시예 1 내지 42, 및 비교예 1 내지 6에서 제조한 유기 발광 소자에 전류 10mA/cm2를 인가하였을 때, 구동 전압 및 효율을 각각 측정하고 그 결과를 하기 표 1에 나타냈다. 또, 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다. When a current of 10 mA/cm 2 was applied to the organic light emitting devices prepared in Examples 1 to 42 and Comparative Examples 1 to 6, driving voltage and efficiency were measured, respectively, and the results are shown in Table 1 below. In addition, the lifetime T95 means the time it takes for the luminance to decrease from the initial luminance (6000 nit) to 95%.

구분division 호스트host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color 실시예 1Example 1 화합물 1compound 1 3.803.80 20.320.3 122122 적색Red 실시예 2Example 2 화합물 2compound 2 3.863.86 20.620.6 117117 적색Red 실시예 3Example 3 화합물 3compound 3 3.813.81 20.920.9 129129 적색Red 실시예 4Example 4 화합물 4compound 4 3.883.88 19.419.4 110110 적색Red 실시예 5Example 5 화합물 5compound 5 3.823.82 19.619.6 114114 적색Red 실시예 6Example 6 화합물 6compound 6 3.763.76 20.220.2 115115 적색Red 실시예 7Example 7 화합물 7compound 7 3.843.84 19.919.9 106106 적색Red 실시예 8Example 8 화합물 8compound 8 3.743.74 20.120.1 109109 적색Red 실시예 9Example 9 화합물 9compound 9 3.923.92 17.517.5 9797 적색Red 실시예 10Example 10 화합물 10compound 10 3.983.98 18.218.2 101101 적색Red 실시예 11Example 11 화합물 11compound 11 3.953.95 18.618.6 106106 적색Red 실시예 12Example 12 화합물 12compound 12 4.074.07 18.118.1 104104 적색Red 실시예 13Example 13 화합물 13compound 13 3.903.90 18.818.8 127127 적색Red 실시예 14Example 14 화합물 14compound 14 4.054.05 17.917.9 110110 적색Red 실시예 15Example 15 화합물 15compound 15 3.943.94 18.418.4 106106 적색Red 실시예 16Example 16 화합물 16compound 16 4.064.06 17.617.6 121121 적색Red 실시예 17Example 17 화합물 17compound 17 3.773.77 21.221.2 138138 적색Red 실시예 18Example 18 화합물 18compound 18 3.733.73 21.821.8 145145 적색Red 실시예 19Example 19 화합물 19compound 19 3.813.81 20.120.1 117117 적색Red 실시예 20Example 20 화합물 20compound 20 3.933.93 19.519.5 9494 적색Red 실시예 21Example 21 화합물 21compound 21 3.973.97 19.919.9 131131 적색Red 실시예 22Example 22 화합물 22compound 22 4.084.08 18.818.8 114114 적색Red 실시예 23Example 23 화합물 23compound 23 4.024.02 20.520.5 128128 적색Red 실시예 24Example 24 화합물 24compound 24 4.084.08 20.920.9 132132 적색Red 실시예 25Example 25 화합물 25compound 25 3.723.72 21.121.1 126126 적색Red 실시예 26Example 26 화합물 26compound 26 3.803.80 20.420.4 104104 적색Red 실시예 27Example 27 화합물 27compound 27 3.813.81 19.919.9 9797 적색Red 실시예 28Example 28 화합물 28compound 28 3.753.75 21.421.4 112112 적색Red 실시예 29Example 29 화합물 29compound 29 3.733.73 21.821.8 128128 적색Red 실시예 30Example 30 화합물 30compound 30 3.743.74 20.220.2 119119 적색Red 실시예 31Example 31 화합물 31compound 31 3.703.70 21.621.6 124124 적색Red 실시예 32Example 32 화합물 32compound 32 3.943.94 19.319.3 102102 적색Red 실시예 33Example 33 화합물 33compound 33 3.973.97 18.818.8 9494 적색Red 실시예 34Example 34 화합물 34compound 34 3.903.90 20.120.1 8686 적색Red 실시예 35Example 35 화합물 35compound 35 3.933.93 19.519.5 105105 적색Red 실시예 36Example 36 화합물 36compound 36 3.913.91 19.919.9 9292 적색Red 실시예 37Example 37 화합물 37compound 37 3.893.89 19.019.0 109109 적색Red 실시예 38Example 38 화합물 38compound 38 3.733.73 21.321.3 125125 적색Red 실시예 39Example 39 화합물 39compound 39 3.763.76 21.121.1 117117 적색Red 실시예 40Example 40 화합물 40compound 40 3.703.70 21.921.9 139139 적색Red 실시예 41Example 41 화합물 41compound 41 3.813.81 21.621.6 115115 적색Red 실시예 42Example 42 화합물 42compound 42 3.773.77 21.421.4 119119 적색Red 비교예 1Comparative Example 1 C-1C-1 4.164.16 16.116.1 8181 적색Red 비교예 2Comparative Example 2 C-2C-2 4.134.13 16.816.8 5757 적색Red 비교예 3Comparative Example 3 C-3C-3 4.264.26 15.315.3 4343 적색Red 비교예 4Comparative Example 4 C-4C-4 4.124.12 16.616.6 7474 적색Red 비교예 5Comparative Example 5 C-5C-5 4.344.34 14.214.2 4949 적색Red 비교예 6Comparative Example 6 C-6C-6 4.284.28 13.413.4 3232 적색Red

실험결과, 본 발명에 따른 화합물을 발광층에 사용한 실시예들의 유기 발광 소자는, 비교예와 비교하여 구동 전압이 크게 낮아졌으며, 효율 측면에도 크게 상승하였다. 이로부터 호스트에서 적색 도판트로의 에너지 전달이 잘 이루어졌음을 알 수 있다. 또한 실시예의 유기 발광 소자는 비교예와 비교하여 높은 효율을 유지하면서도 크게 개선된 수명 특성을 나타내었으며, 이는 비교예에서 사용된 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단된다.As a result of the experiment, the organic light emitting diodes of Examples in which the compound according to the present invention was used for the light emitting layer had significantly lower driving voltages and greatly increased efficiency compared to Comparative Examples. From this, it can be seen that energy transfer from the host to the red dopant was well performed. In addition, the organic light emitting device of the example exhibited greatly improved lifespan characteristics while maintaining high efficiency compared to the comparative example, which is determined because the compound of the present invention has higher stability to electrons and holes than the compound used in the comparative example. do.

결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있으며, 이는 일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때 실시예의 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 나타낸다고 볼 수 있다.In conclusion, it can be confirmed that when the compound of the present invention is used as a host for the red light emitting layer, the driving voltage, luminous efficiency and lifespan characteristics of the organic light emitting device can be improved, which is generally the luminous efficiency and lifespan characteristics of the organic light emitting device. Considering that they have a trade-off relationship with each other, it can be seen that the organic light emitting device of the embodiment exhibits significantly improved device characteristics compared to the device of the comparative example.

1: 기판 2: 양극
3: 유기물 층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 발광층
9: 정공저지층 10: 전자 주입 및 수송층
1: Substrate 2: Anode
3: organic layer 4: cathode
5: hole injection layer 6: hole transport layer
7: electron suppression layer 8: light emitting layer
9: hole blocking layer 10: electron injection and transport layer

Claims (10)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure pat00130

상기 화학식 1에서,
X는 O 또는 S이고,
A는 인접한 두 개의 고리와 융합된 벤젠 고리이고,
R1 내지 R8 중 어느 하나는 하기 화학식 2로 표시되고, 나머지는 각각 독립적으로 CH 또는 CD이며,
R은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이며,
n은 0 내지 6의 정수이고,
[화학식 2]
Figure pat00131

상기 화학식 2에서,
L은 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Y는 각각 독립적으로 N 또는 CH이되, 단 Y중 적어도 2개는 N이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된, N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C5-60 헤테로아릴이며,
점선은 결합 위치를 나타낸다.
A compound represented by the following formula (1):
[Formula 1]
Figure pat00130

In Formula 1,
X is O or S;
A is a benzene ring fused with two adjacent rings,
Any one of R 1 to R 8 is represented by the following formula (2), the rest are each independently CH or CD,
each R is independently hydrogen; heavy hydrogen; substituted or unsubstituted C 1-60 alkyl; Or a substituted or unsubstituted C 6-60 aryl,
n is an integer from 0 to 6,
[Formula 2]
Figure pat00131

In Formula 2,
L is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
Y is each independently N or CH, provided that at least two of Y are N;
Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted, C 5-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
The dotted line indicates the bonding position.
제1항에 있어서,
상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나인,
화합물:
[화학식 1-1]
Figure pat00132

[화학식 1-2]
Figure pat00133

[화학식 1-3]
Figure pat00134

상기 화학식 1-1 내지 1-3에 있어서,
X, R1 내지 R8, R, 및 n는 제1항에서 정의한 바와 같다.
According to claim 1,
Formula 1 is any one of Formulas 1-1 to 1-3,
compound:
[Formula 1-1]
Figure pat00132

[Formula 1-2]
Figure pat00133

[Formula 1-3]
Figure pat00134

In Formulas 1-1 to 1-3,
X, R 1 to R 8 , R, and n are as defined in claim 1.
제1항에 있어서,
L은 단일 결합, 페닐렌, 또는 나프틸렌인,
화합물.
According to claim 1,
L is a single bond, phenylene, or naphthylene;
compound.
제1항에 있어서,
Y는 모두 N인,
화합물.
According to claim 1,
Y are all N;
compound.
제1항에 있어서,
Ar1 및 Ar2는 각각 독립적으로 C6-30 아릴; 또는 N, O 또는 S를 포함하는 C5-30 헤테로아릴이며,
상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소, C1-20 알킬 또는 C6-20 아릴로 치환되거나, 또는 비치환되는,
화합물.
According to claim 1,
Ar 1 and Ar 2 are each independently C 6-30 aryl; Or C 5-30 heteroaryl containing N, O or S,
wherein Ar 1 and Ar 2 are each independently substituted with one or more deuterium, C 1-20 alkyl, or C 6-20 aryl, or unsubstituted,
compound.
제1항에 있어서,
Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐, 터페닐, 나프틸, 페난쓰레닐, 트리페닐레닐, 플루오란테닐, (나프틸)페닐, (페닐)나프틸, 플루오레닐, 디벤조퓨라닐, 디벤조티오펜일 또는 카르바졸일이며,
상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소, C1-18 알킬, 또는 C6-18 아릴로 치환되거나 또는 비치환되는,
화합물.
According to claim 1,
Ar 1 and Ar 2 are each independently phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylenyl, fluoranthenyl, (naphthyl)phenyl, (phenyl)naphthyl, fluorenyl, dibenzo furanyl, dibenzothiophenyl or carbazolyl;
wherein Ar 1 and Ar 2 are each independently unsubstituted or substituted with one or more deuterium, C 1-18 alkyl, or C 6-18 aryl,
compound.
제1항에 있어서,
Ar1 및 Ar2는 중 어느 하나는 페닐, 비페닐 또는 나프틸이고,
나머지는 페닐, 비페닐, 터페닐, 나프틸, 페난쓰레닐, 트리페닐레닐, 플루오란테닐, (나프틸)페닐, (페닐)나프틸, 플루오레닐, 디벤조퓨라닐, 디벤조티오펜일, 또는 카르바졸일이며,
상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소, 메틸, 또는 페닐로 치환되거나 또는 비치환되는,
화합물.
According to claim 1,
Any one of Ar 1 and Ar 2 is phenyl, biphenyl or naphthyl,
The rest are phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylenyl, fluoranthenyl, (naphthyl)phenyl, (phenyl)naphthyl, fluorenyl, dibenzofuranyl, dibenzothiophene one, or carbazolyl,
wherein Ar 1 and Ar 2 are each independently unsubstituted or substituted with one or more deuterium, methyl, or phenyl;
compound.
제1항에 있어서,
R은 각각 독립적으로 수소 또는 중수소인,
화합물.
According to claim 1,
each R is independently hydrogen or deuterium;
compound.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure pat00135

Figure pat00136

Figure pat00137

Figure pat00138

Figure pat00139

Figure pat00140

Figure pat00141

Figure pat00142

Figure pat00143

Figure pat00144

Figure pat00145

Figure pat00146

Figure pat00147

Figure pat00148

Figure pat00149

Figure pat00150

Figure pat00151

Figure pat00152

Figure pat00153

Figure pat00154

Figure pat00155

Figure pat00156

Figure pat00157

Figure pat00158
.
According to claim 1,
The compound represented by Formula 1 is any one selected from the group consisting of
compound:
Figure pat00135

Figure pat00136

Figure pat00137

Figure pat00138

Figure pat00139

Figure pat00140

Figure pat00141

Figure pat00142

Figure pat00143

Figure pat00144

Figure pat00145

Figure pat00146

Figure pat00147

Figure pat00148

Figure pat00149

Figure pat00150

Figure pat00151

Figure pat00152

Figure pat00153

Figure pat00154

Figure pat00155

Figure pat00156

Figure pat00157

Figure pat00158
.
제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제9항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자. a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers contains the compound according to any one of claims 1 to 9 which is an organic light emitting device.
KR1020210061611A 2020-05-13 2021-05-12 Novel compound and organic light emitting device comprising the same KR102479341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200057326 2020-05-13
KR1020200057326 2020-05-13

Publications (2)

Publication Number Publication Date
KR20210139185A true KR20210139185A (en) 2021-11-22
KR102479341B1 KR102479341B1 (en) 2022-12-20

Family

ID=78717866

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210061611A KR102479341B1 (en) 2020-05-13 2021-05-12 Novel compound and organic light emitting device comprising the same

Country Status (1)

Country Link
KR (1) KR102479341B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR20160030003A (en) * 2014-09-05 2016-03-16 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting diode comprising the same
KR20170042414A (en) * 2015-10-08 2017-04-19 삼성디스플레이 주식회사 Organic light emitting device
KR20170043439A (en) * 2015-10-13 2017-04-21 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Devices Comprising the Same
KR20180024306A (en) * 2016-08-29 2018-03-08 에스에프씨 주식회사 Novel organic compounds and organic light-emitting diode therewith
KR20180031385A (en) * 2016-09-20 2018-03-28 에스에프씨 주식회사 Novel organic compounds and organic light-emitting diode therewith
KR20180099547A (en) * 2017-02-28 2018-09-05 롬엔드하스전자재료코리아유한회사 Organic electroluminescent device
KR20190080600A (en) * 2017-12-28 2019-07-08 엘지디스플레이 주식회사 Organic light emitting diode
KR20210002014A (en) * 2019-06-28 2021-01-06 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR20160030003A (en) * 2014-09-05 2016-03-16 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting diode comprising the same
KR20170042414A (en) * 2015-10-08 2017-04-19 삼성디스플레이 주식회사 Organic light emitting device
KR20170043439A (en) * 2015-10-13 2017-04-21 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Devices Comprising the Same
KR20180024306A (en) * 2016-08-29 2018-03-08 에스에프씨 주식회사 Novel organic compounds and organic light-emitting diode therewith
KR20180031385A (en) * 2016-09-20 2018-03-28 에스에프씨 주식회사 Novel organic compounds and organic light-emitting diode therewith
KR20180099547A (en) * 2017-02-28 2018-09-05 롬엔드하스전자재료코리아유한회사 Organic electroluminescent device
KR20190080600A (en) * 2017-12-28 2019-07-08 엘지디스플레이 주식회사 Organic light emitting diode
KR20210002014A (en) * 2019-06-28 2021-01-06 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device

Also Published As

Publication number Publication date
KR102479341B1 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
KR102602156B1 (en) Novel compound and organic light emitting device comprising the same
KR102411143B1 (en) Novel compound and organic light emitting device comprising the same
KR20210020843A (en) Novel compound and organic light emitting device comprising the same
KR20220000856A (en) Organic light emitting device
KR20210036304A (en) Novel compound and organic light emitting device comprising the same
KR20210031380A (en) Novel compound and organic light emitting device comprising the same
KR102437748B1 (en) Novel compound and organic light emitting device comprising the same
KR102398015B1 (en) Novel compound and organic light emitting device comprising the same
KR20210139192A (en) Novel compound and organic light emitting device comprising the same
KR102437746B1 (en) Novel compound and organic light emitting device comprising the same
KR102437747B1 (en) Novel compound and organic light emitting device comprising the same
KR102424910B1 (en) Novel compound and organic light emitting device comprising the same
KR102441472B1 (en) Novel compound and organic light emitting device comprising the same
KR102462985B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20220025690A (en) Novel compound and organic light emitting device comprising the same
KR20220038009A (en) Novel compound and organic light emitting device comprising the same
KR20210098390A (en) Novel compound and organic light emitting device comprising the same
KR20210012958A (en) Novel compound and organic light emitting device comprising the same
KR20210115596A (en) Novel compound and organic light emitting device comprising the same
KR102479341B1 (en) Novel compound and organic light emitting device comprising the same
KR102478095B1 (en) Novel compound and organic light emitting device comprising the same
KR102479342B1 (en) Novel compound and organic light emitting device comprising the same
KR102398016B1 (en) Novel compound and organic light emitting device comprising the same
KR102463816B1 (en) Novel compound and organic light emitting device comprising the same
KR20210108919A (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right