KR102398016B1 - Novel compound and organic light emitting device comprising the same - Google Patents

Novel compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR102398016B1
KR102398016B1 KR1020210048072A KR20210048072A KR102398016B1 KR 102398016 B1 KR102398016 B1 KR 102398016B1 KR 1020210048072 A KR1020210048072 A KR 1020210048072A KR 20210048072 A KR20210048072 A KR 20210048072A KR 102398016 B1 KR102398016 B1 KR 102398016B1
Authority
KR
South Korea
Prior art keywords
compound
mmol
added
layer
water
Prior art date
Application number
KR1020210048072A
Other languages
Korean (ko)
Other versions
KR20210127635A (en
Inventor
김민준
이동훈
서상덕
김영석
김서연
이다정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/640,465 priority Critical patent/US20220402928A1/en
Priority to CN202180005067.2A priority patent/CN114341140A/en
Priority to PCT/KR2021/004692 priority patent/WO2021210910A1/en
Publication of KR20210127635A publication Critical patent/KR20210127635A/en
Application granted granted Critical
Publication of KR102398016B1 publication Critical patent/KR102398016B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • H01L51/0067
    • H01L51/0071
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다. The present invention provides a novel compound and an organic light emitting device using the same.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자{Novel compound and organic light emitting device comprising the same} Novel compound and organic light emitting device comprising the same

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.

유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, it may be made of an electron injection layer, etc. In the structure of the organic light emitting device, when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.

한국특허 공개번호 제10-2000-0051826호Korean Patent Publication No. 10-2000-0051826

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다: The present invention provides a compound represented by the following formula (1):

[화학식 1] [Formula 1]

Figure 112021043118015-pat00001
Figure 112021043118015-pat00001

상기 화학식 1에서,In Formula 1,

Y1 내지 Y9는 각각 독립적으로, N, C-H, C-D, 또는 C-L'―R이고, 단, Y1 내지 Y9 중 적어도 하나는 N이고,Y 1 To Y 9 are each independently N, CH, CD, or C-L'-R, provided that at least one of Y 1 To Y 9 is N,

여기서, L'는 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고, Here, L' is a single bond; Or a substituted or unsubstituted C 6-60 arylene,

R은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고, R is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S,

L은 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴렌이고,L is a single bond; substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene containing any one or more heteroatoms selected from the group consisting of N, O and S,

L1 및 L2는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,L 1 and L 2 are each independently, a single bond; Or a substituted or unsubstituted C 6-60 arylene,

Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S.

또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하는 유기 발광 소자로서, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and an emission layer provided between the first electrode and the second electrode, wherein the emission layer includes the compound represented by Formula 1 above.

상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용되어, 유기 발광 소자의 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. The compound represented by Chemical Formula 1 described above may be used as a material for the organic material layer of the organic light emitting device to improve efficiency, low driving voltage, and/or lifespan characteristics of the organic light emitting device.

도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and an example of an organic light emitting device including a cathode 4 are shown.

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.

(용어의 정의)(Definition of Terms)

본 명세서에서,

Figure 112021043118015-pat00002
Figure 112021043118015-pat00003
는 다른 치환기에 연결되는 결합을 의미하고, “D”는 중수소를 의미한다.In this specification,
Figure 112021043118015-pat00002
and
Figure 112021043118015-pat00003
means a bond connected to another substituent, and “D” means deuterium.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환ㄱ기로 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium; halogen group; cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; a phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl containing one or more of N, O and S atoms, or substituted or unsubstituted with a substituent to which two or more of the above-exemplified substituents are connected means that For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a group having the following structure, but is not limited thereto.

Figure 112021043118015-pat00004
Figure 112021043118015-pat00004

본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a group of the following structural formula, but is not limited thereto.

Figure 112021043118015-pat00005
Figure 112021043118015-pat00005

본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a group having the following structure, but is not limited thereto.

Figure 112021043118015-pat00006
Figure 112021043118015-pat00006

본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되는 것은 아니다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.

본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되는 것은 아니다.In the present specification, the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl and the like, but are not limited thereto.

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.

본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.

본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴이기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,

Figure 112021043118015-pat00007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure 112021043118015-pat00007
etc. can be However, the present invention is not limited thereto.

본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.In the present specification, heteroaryl is a heteroaryl containing at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms. Examples of heteroaryl include xanthene, thioxanthen, thiophene, furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, bipyridyl, Pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino Pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group ( phenanthroline), an isoxazolyl group, a thiadiazolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.

본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.In the present specification, the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the above-described aryl group. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, as for heteroaryl among heteroarylamines, the description regarding heteroaryl described above may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group. In the present specification, the description of the above-described aryl group may be applied, except that arylene is a divalent group. In the present specification, the description of the above-described heteroaryl may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents. In the present specification, the heterocyclic group is not a monovalent group, and the description regarding heteroaryl described above may be applied, except that it is formed by combining two substituents.

본 명세서 있어서, 용어 "중수소화된 또는 중수소로 치환된"의 의미는 각 화학식 또는 치환기 내 적어도 하나의 이용가능한 수소가 중수소로 치환된 것을 의미한다. 일례로, 각 화학식에서 적어도 10% 중수소화된다는 것은, 이용가능한 수소의 적어도 10%가 중수소에 의해 치환된 것을 의미한다. 일례로, 각 화학식에서 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화될 수 있다.As used herein, the term "deuterated or substituted with deuterium" means that at least one available hydrogen in each formula or substituent is substituted with deuterium. As an example, at least 10% deuterated in each formula means that at least 10% of the available hydrogens have been replaced by deuterium. As an example, each formula may be at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated.

(화합물)(compound)

본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by Formula 1 above.

상기 화학식 1로 표시되는 화합물은, 벤조나프토퓨란 1번 위치에 트리아지닐기를 가지면서, 나머지 위치의 탄소 원자 중 적어도 하나가 "질소 원자"로 치환되어 있는 구조를 갖는다. The compound represented by Formula 1 has a structure in which benzonaphthofuran has a triazinyl group at position 1 and at least one of carbon atoms at the remaining positions is substituted with a “nitrogen atom”.

이러한 화합물은, 상기 트리아지닐기가 1번 외 다른 위치에 치환되어 있는 화합물 및 트리아지닐기로 치환되지 않은 화합물에 비해서 우수한 에너지 전달 특성 및 안정성을 나타낼 수 있다. 이에 따라, 상기 화합물을 채용한 유기 발광 소자는, 상기 트리아지닐기가 1번 외 다른 위치에 치환되어 있는 화합물 및 트리아지닐기로 치환되지 않은 화합물을 채용한 유기 발광 소자에 비하여, 발광 효율 및 수명이 동시에 향상된 소자 특성을 나타낼 수 있다.These compounds may exhibit superior energy transfer properties and stability compared to compounds in which the triazinyl group is substituted at positions other than No. 1 and compounds not substituted with triazinyl groups. Accordingly, the organic light emitting device employing the compound has the same luminous efficiency and lifetime as compared to organic light emitting devices employing a compound in which the triazinyl group is substituted at a position other than No. 1 and a compound not substituted with a triazinyl group. It is possible to exhibit improved device characteristics.

일 구현예에서, Y1 내지 Y9 중 하나가 N일 수 있다. In one embodiment, one of Y 1 to Y 9 may be N.

구체적으로, Y1 내지 Y9 중 하나는 N이고, 나머지는 각각 독립적으로, C-H, 또는 C-D이거나; 또는Specifically, one of Y 1 to Y 9 is N, and the others are each independently CH, or CD; or

Y1 내지 Y9 중 하나는 N이고, 나머지 중 하나는 C-L'―R이고, 그 외 나머지는 각각 독립적으로, C-H, 또는 C-D일 수 있다.One of Y 1 to Y 9 may be N, and one of the others may be C-L′-R, and the others may independently be CH or CD.

보다 구체적으로, More specifically,

Y1 내지 Y9 중 하나는 N이고, 나머지는 모두 C-H이거나;one of Y 1 to Y 9 is N and all others are CH;

Y1 내지 Y9 중 하나는 N이고, 나머지는 모두 C-D이거나;one of Y 1 to Y 9 is N and all others are CD;

Y1 내지 Y9 중 하나는 N이고, 나머지 중 하나는 C-L'―R이고, 그 외 나머지는 모두 C-H이거나; 또는one of Y 1 to Y 9 is N, the other is C-L′-R, and all others are CH; or

Y 중 하나는 N이고, 나머지 중 하나는 C-L'―R이고, 그 외 나머지는 모두 C-D일 수 있다.One of Y may be N, the other may be C-L'-R, and all others may be C-D.

예를 들어, for example,

Y1은 N이고, Y2, Y3, Y4, Y5, Y6, Y7, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y 1 is N, Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 and Y 9 are each independently CH, CD, or C-L′-R;

Y2는 N이고, Y1, Y3, Y4, Y5, Y6, Y7, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y 2 is N, Y 1 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 and Y 9 are each independently CH, CD, or C-L′-R;

Y3는 N이고, Y1, Y2, Y4, Y5, Y6, Y7, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y 3 is N, Y 1 , Y 2 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 and Y 9 are each independently CH, CD, or C-L′-R;

Y4는 N이고, Y1, Y2, Y3, Y5, Y6, Y7, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y4is N, and YOne, Y2, Y3, Y5, Y6, Y7, Y8 and Y9are each independently C-H, C-D, or C-L'-R;

Y5는 N이고, Y1, Y2, Y3, Y4, Y6, Y7, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y 5 is N, Y 1 , Y 2 , Y 3 , Y 4 , Y 6 , Y 7 , Y 8 and Y 9 are each independently CH, CD, or C-L′-R;

Y6는 N이고, Y1, Y2, Y3, Y4, Y5, Y7, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y 6 is N, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 7 , Y 8 and Y 9 are each independently CH, CD, or C-L′-R;

Y7은 N이고, Y1, Y2, Y3, Y4, Y5, Y6, Y8 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나;Y 7 is N, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 8 and Y 9 are each independently CH, CD, or C-L′-R;

Y8은 N이고, Y1, Y2, Y3, Y4, Y5, Y6, Y7 및 Y9는 각각 독립적으로, C-H, C-D, 또는 C-L'―R이거나; 또는 Y 8 is N, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 9 are each independently CH, CD, or C-L′-R; or

Y9는 N이고, Y1, Y2, Y3, Y4, Y5, Y6, Y7 및 Y8은 각각 독립적으로, C-H, C-D, 또는 C-L'―R일 수 있다. Y 9 is N, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 8 may each independently be CH, CD, or C-L′-R.

또한, 상기 화학식 1에서, L'는 단일결합; 또는 비치환되거나, 또는 중수소로 치환된 C6-20 아릴렌일 수 있다. In addition, in Formula 1, L' is a single bond; or unsubstituted or substituted C 6-20 arylene with deuterium.

구체적으로, L'는 단일결합; 비치환되거나, 또는 중수소로 치환된 페닐렌; 또는 비치환되거나, 또는 중수소로 치환된 나프틸렌일 수 있다.Specifically, L' is a single bond; phenylene unsubstituted or substituted with deuterium; Or it may be unsubstituted or naphthylene substituted with deuterium.

예를 들어, L'는 단일결합,

Figure 112021043118015-pat00008
, 또는
Figure 112021043118015-pat00009
일 수 있으나, 이에 한정되는 것은 아니다.For example, L' is a single bond,
Figure 112021043118015-pat00008
, or
Figure 112021043118015-pat00009
may be, but is not limited thereto.

또한, 상기 화학식 1에서, R은 C6-60 아릴, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나의 헤테로원자를 포함하는 C2-20 헤테로아릴이고,In addition, in Formula 1, R is C 6-60 aryl, or C 2-20 heteroaryl including any one heteroatom selected from the group consisting of N, O and S,

여기서, R은 비치환되거나, 또는 중수소, C1-10 알킬 및 C6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상, 예를 들어 1개 또는 2개의 치환기로 치환될 수 있다. Here, R may be unsubstituted or substituted with one or more, for example, one or two substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl.

구체적으로, R은 하기로 구성되는 군으로부터 선택되는 어느 하나이다:Specifically, R is any one selected from the group consisting of:

Figure 112021043118015-pat00010
Figure 112021043118015-pat00010

상기에서,above,

X1 및 X2는 각각 독립적으로, O, S, 또는 N(페닐)이고,X 1 and X 2 are each independently O, S, or N (phenyl),

Z는 각각 독립적으로, 중수소(D), C1-10 알킬, 또는 C6-20 아릴이고,each Z is independently deuterium (D), C 1-10 alkyl, or C 6-20 aryl;

a는 각각 독립적으로, 0 내지 5의 정수이고,a is each independently an integer of 0 to 5,

b는 각각 독립적으로, 0 내지 4의 정수이고,b is each independently an integer of 0 to 4,

c는 각각 독립적으로, 0 내지 7의 정수이고,c is each independently an integer of 0 to 7,

d는 각각 독립적으로, 0 내지 6의 정수이고, d is each independently an integer from 0 to 6,

e는 각각 독립적으로, 0 내지 3의 정수이다.e is each independently an integer of 0 to 3.

예를 들어, R은 페닐, 비페닐릴, 나프틸, 페난트릴, 디벤조퓨라닐, 디벤조티오페닐, 또는 카바졸일일 수 있다.For example, R can be phenyl, biphenylyl, naphthyl, phenanthryl, dibenzofuranyl, dibenzothiophenyl, or carbazolyl.

또한 예를 들어, R은 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니다:Also, for example, R may be any one selected from the group consisting of, but is not limited thereto:

Figure 112021043118015-pat00011
.
Figure 112021043118015-pat00011
.

또한, 상기 화학식 1에서, L은 단일결합; 또는 비치환되거나, 또는 중수소로 치환된 C6-20 아릴렌일 수 있다. In addition, in Formula 1, L is a single bond; or unsubstituted or substituted C 6-20 arylene with deuterium.

구체적으로, L은 단일결합; 비치환되거나, 또는 중수소로 치환된 페닐렌; 또는 비치환되거나, 또는 중수소로 치환된 나프틸렌일 수 있다.Specifically, L is a single bond; phenylene unsubstituted or substituted with deuterium; Or it may be unsubstituted or naphthylene substituted with deuterium.

보다 구체적으로, L은 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:More specifically, L may be a single bond or any one selected from the group consisting of:

Figure 112021043118015-pat00012
Figure 112021043118015-pat00012

상기에서,above,

D는 중수소를 의미하고,D means deuterium,

f는 각각 독립적으로, 0 내지 4의 정수이고,f is each independently an integer from 0 to 4,

g는 각각 독립적으로, 0 내지 6의 정수이다.g is each independently an integer from 0 to 6.

예를 들어, L은 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:For example, L may be a single bond or any one selected from the group consisting of:

Figure 112021043118015-pat00013
.
Figure 112021043118015-pat00013
.

또한, 상기 화학식 1에서, L1 및 L2는 각각 독립적으로, 단일결합; 또는 비치환되거나, 또는 중수소로 치환된 C6-20 아릴렌일 수 있다. In addition, in Formula 1, L 1 And L 2 Each independently, a single bond; or unsubstituted or substituted C 6-20 arylene with deuterium.

구체적으로, L1 및 L2는 각각 독립적으로, 단일결합; 비치환되거나, 또는 중수소로 치환된 페닐렌; 비치환되거나, 또는 중수소로 치환된 비페닐디일; 또는 비치환되거나, 또는 중수소로 치환된 나프틸렌일 수 있다.Specifically, L 1 and L 2 are each independently, a single bond; phenylene unsubstituted or substituted with deuterium; biphenyldiyl unsubstituted or substituted with deuterium; Or it may be unsubstituted or naphthylene substituted with deuterium.

그리고, L1 및 L2 중 하나는 단일결합일 수 있다. And, one of L 1 and L 2 may be a single bond.

또한, 상기 화학식 1에서, Ar1 및 Ar2는 각각 독립적으로, C6-20 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 1개의 헤테로원자를 포함하는 C2-20 헤테로아릴이고, In addition, in Formula 1, Ar 1 and Ar 2 are each independently, C 6-20 aryl; or C 2-20 heteroaryl comprising one heteroatom selected from the group consisting of N, O and S;

여기서, Ar1 및 Ar2는 비치환되거나, 또는 중수소, C1-10 알킬 및 C6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.Here, Ar 1 and Ar 2 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl, and C 6-20 aryl.

구체적으로, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 벤조나프토티오페닐, 카바졸일, 또는 벤조카바졸일이고,Specifically, Ar 1 and Ar 2 are each independently, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, fluorenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, benzonaph tothiophenyl, carbazolyl, or benzocarbazolyl;

여기서, Ar1 및 Ar2는 비치환되거나, 또는 중수소, C1-10 알킬 및 C6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상, 예를 들어, 1개 또는 2개의 치환기로 치환될 수 있다.Here, Ar 1 and Ar 2 are unsubstituted or substituted with one or more, for example, 1 or 2 substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl. can

예를 들어, Ar1 및 Ar2는 각각 독립적으로, 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니다: For example, Ar 1 and Ar 2 may be each independently, each independently, any one selected from the group consisting of, but are not limited thereto:

Figure 112021043118015-pat00014
.
Figure 112021043118015-pat00014
.

또한, 상기 화학식 1에서, Ar1 및 Ar2 중 하나는 비치환되거나, 또는 중수소로 치환된 페닐; 비치환되거나 또는 중수소로 치환된 비페닐릴; 또는 비치환되거나 또는 중수소로 치환된 나프틸일 수 있다. In addition, in Formula 1, one of Ar 1 and Ar 2 is unsubstituted or substituted with deuterium phenyl; biphenylyl unsubstituted or substituted with deuterium; or naphthyl unsubstituted or substituted with deuterium.

구체적으로, Ar1 및 Ar2 중 하나는 페닐, 비페닐릴, 또는 나프틸일 수 있다.Specifically, one of Ar 1 and Ar 2 may be phenyl, biphenylyl, or naphthyl.

예를 들어, Ar1 및 Ar2 중 하나는

Figure 112021043118015-pat00015
,
Figure 112021043118015-pat00016
, 또는
Figure 112021043118015-pat00017
일 수 있다. For example, one of Ar 1 and Ar 2 is
Figure 112021043118015-pat00015
,
Figure 112021043118015-pat00016
, or
Figure 112021043118015-pat00017
can be

또한, 상기 화학식 1에서, Ar1 및 Ar2은 서로 동일할 수 있고, 또는 상이할 수 있다. Also, in Formula 1, Ar 1 and Ar 2 may be the same as or different from each other.

상기 Ar1 및 Ar2가 서로 동일한 경우, Ar1 및 Ar2은 모두

Figure 112021043118015-pat00018
이거나, 또는
Figure 112021043118015-pat00019
일 수 있다. When Ar 1 and Ar 2 are the same as each other, Ar 1 and Ar 2 are both
Figure 112021043118015-pat00018
is, or
Figure 112021043118015-pat00019
can be

또한, 상기 화학식 1에서, In addition, in Formula 1,

L1이 단일결합이고, L2

Figure 112021043118015-pat00020
, 또는
Figure 112021043118015-pat00021
이면서,L 1 is a single bond, L 2 is
Figure 112021043118015-pat00020
, or
Figure 112021043118015-pat00021
while,

Ar1은 페닐, 나프틸, 또는 비페닐릴이고,Ar 1 is phenyl, naphthyl, or biphenylyl,

Ar2는 하기로 구성되는 군에서 선택되는 어느 하나일 수 있다:Ar 2 may be any one selected from the group consisting of:

Figure 112021043118015-pat00022
.
Figure 112021043118015-pat00022
.

또한, 상기 화합물은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시될 수 있다:In addition, the compound may be represented by any one of the following Chemical Formulas 1-1 to 1-3:

[화학식 1-1][Formula 1-1]

Figure 112021043118015-pat00023
Figure 112021043118015-pat00023

상기 화학식 1-1에서,In Formula 1-1,

Q1 내지 Q9는 각각 독립적으로, N 또는 C-H이고, 단, Q1 내지 Q9 중 하나는 N이고, Q 1 To Q 9 are each independently N or CH, provided that one of Q 1 To Q 9 is N,

L, L1, L2, Ar1 및 Ar2는 상기 화학식 1에서 정의한 바와 같고,L, L 1 , L 2 , Ar 1 and Ar 2 are as defined in Formula 1 above,

[화학식 1-2][Formula 1-2]

Figure 112021043118015-pat00024
Figure 112021043118015-pat00024

상기 화학식 1-2에서,In Formula 1-2,

Q1 내지 Q6, Q8 및 Q9는 각각 독립적으로, N 또는 C-H이고, 단, Q1 내지 Q6, Q8 및 Q9 중 하나는 N이고, Q 1 to Q 6 , Q 8 and Q 9 are each independently N or CH, provided that one of Q 1 to Q 6 , Q 8 and Q 9 is N,

R, L, L1, L2, Ar1 및 Ar2는 상기 화학식 1에서 정의한 바와 같고,R, L, L 1 , L 2 , Ar 1 and Ar 2 are as defined in Formula 1 above,

[화학식 1-3][Formula 1-3]

Figure 112021043118015-pat00025
Figure 112021043118015-pat00025

상기 화학식 1-3에서,In Formula 1-3,

Q1 내지 Q7 및 Q9는 각각 독립적으로, N 또는 C-H이고, 단, Q1 내지 Q7 및 Q9 중 하나는 N이고, Q 1 to Q 7 and Q 9 are each independently N or CH, provided that one of Q 1 to Q 7 and Q 9 is N,

R, L, L1, L2, Ar1 및 Ar2는 상기 화학식 1에서 정의한 바와 같다.R, L, L 1 , L 2 , Ar 1 and Ar 2 are as defined in Formula 1 above.

일례로, 상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나이다: In one example, the compound is any one selected from the group consisting of:

Figure 112021043118015-pat00026
Figure 112021043118015-pat00026

Figure 112021043118015-pat00027
Figure 112021043118015-pat00027

Figure 112021043118015-pat00028
Figure 112021043118015-pat00028

Figure 112021043118015-pat00029
Figure 112021043118015-pat00029

Figure 112021043118015-pat00030
Figure 112021043118015-pat00030

Figure 112021043118015-pat00031
Figure 112021043118015-pat00031

Figure 112021043118015-pat00032
Figure 112021043118015-pat00032

Figure 112021043118015-pat00033
Figure 112021043118015-pat00033

Figure 112021043118015-pat00034
Figure 112021043118015-pat00034

Figure 112021043118015-pat00035
Figure 112021043118015-pat00035

Figure 112021043118015-pat00036
Figure 112021043118015-pat00036

Figure 112021043118015-pat00037
Figure 112021043118015-pat00037

Figure 112021043118015-pat00038
Figure 112021043118015-pat00038

Figure 112021043118015-pat00039
Figure 112021043118015-pat00039

Figure 112021043118015-pat00040
Figure 112021043118015-pat00040

Figure 112021043118015-pat00041
Figure 112021043118015-pat00041

Figure 112021043118015-pat00042
Figure 112021043118015-pat00042

Figure 112021043118015-pat00043
Figure 112021043118015-pat00043

Figure 112021043118015-pat00044
Figure 112021043118015-pat00044

Figure 112021043118015-pat00045
Figure 112021043118015-pat00045

Figure 112021043118015-pat00046
Figure 112021043118015-pat00046

Figure 112021043118015-pat00047
Figure 112021043118015-pat00047

Figure 112021043118015-pat00048
Figure 112021043118015-pat00048

Figure 112021043118015-pat00049
Figure 112021043118015-pat00049

Figure 112021043118015-pat00050
Figure 112021043118015-pat00050

Figure 112021043118015-pat00051
Figure 112021043118015-pat00051

Figure 112021043118015-pat00052
Figure 112021043118015-pat00052

Figure 112021043118015-pat00053
Figure 112021043118015-pat00053

Figure 112021043118015-pat00054
Figure 112021043118015-pat00054

Figure 112021043118015-pat00055
Figure 112021043118015-pat00055

Figure 112021043118015-pat00056
Figure 112021043118015-pat00056

Figure 112021043118015-pat00057
Figure 112021043118015-pat00057

Figure 112021043118015-pat00058
Figure 112021043118015-pat00058

Figure 112021043118015-pat00059
Figure 112021043118015-pat00059

Figure 112021043118015-pat00060
Figure 112021043118015-pat00060

Figure 112021043118015-pat00061
Figure 112021043118015-pat00061

Figure 112021043118015-pat00062
Figure 112021043118015-pat00062

Figure 112021043118015-pat00063
Figure 112021043118015-pat00063

Figure 112021043118015-pat00064
Figure 112021043118015-pat00064

Figure 112021043118015-pat00065
Figure 112021043118015-pat00065

Figure 112021043118015-pat00066
Figure 112021043118015-pat00066

Figure 112021043118015-pat00067
Figure 112021043118015-pat00067

Figure 112021043118015-pat00068
Figure 112021043118015-pat00068

Figure 112021043118015-pat00069
Figure 112021043118015-pat00069

Figure 112021043118015-pat00070
Figure 112021043118015-pat00070

Figure 112021043118015-pat00071
Figure 112021043118015-pat00071

Figure 112021043118015-pat00072
Figure 112021043118015-pat00072

Figure 112021043118015-pat00073
Figure 112021043118015-pat00073

Figure 112021043118015-pat00074
Figure 112021043118015-pat00074

Figure 112021043118015-pat00075
Figure 112021043118015-pat00075

Figure 112021043118015-pat00076
Figure 112021043118015-pat00076

Figure 112021043118015-pat00077
Figure 112021043118015-pat00077

Figure 112021043118015-pat00078
Figure 112021043118015-pat00078

Figure 112021043118015-pat00079
Figure 112021043118015-pat00079

Figure 112021043118015-pat00080
Figure 112021043118015-pat00080

Figure 112021043118015-pat00081
Figure 112021043118015-pat00081

Figure 112021043118015-pat00082
Figure 112021043118015-pat00082

Figure 112021043118015-pat00083
Figure 112021043118015-pat00083

Figure 112021043118015-pat00084
Figure 112021043118015-pat00084

Figure 112021043118015-pat00085
Figure 112021043118015-pat00085

Figure 112021043118015-pat00086
Figure 112021043118015-pat00086

Figure 112021043118015-pat00087
Figure 112021043118015-pat00087

Figure 112021043118015-pat00088
Figure 112021043118015-pat00088

Figure 112021043118015-pat00089
Figure 112021043118015-pat00089

Figure 112021043118015-pat00090
Figure 112021043118015-pat00090

Figure 112021043118015-pat00091
Figure 112021043118015-pat00091

Figure 112021043118015-pat00092
Figure 112021043118015-pat00092

Figure 112021043118015-pat00093
Figure 112021043118015-pat00093

Figure 112021043118015-pat00094
Figure 112021043118015-pat00094

Figure 112021043118015-pat00095
Figure 112021043118015-pat00095

Figure 112021043118015-pat00096
Figure 112021043118015-pat00096

Figure 112021043118015-pat00097
Figure 112021043118015-pat00097

Figure 112021043118015-pat00098
Figure 112021043118015-pat00098

Figure 112021043118015-pat00099
Figure 112021043118015-pat00099

Figure 112021043118015-pat00100
Figure 112021043118015-pat00100

Figure 112021043118015-pat00101
Figure 112021043118015-pat00101

Figure 112021043118015-pat00102
Figure 112021043118015-pat00102

Figure 112021043118015-pat00103
Figure 112021043118015-pat00103

Figure 112021043118015-pat00104
Figure 112021043118015-pat00104

Figure 112021043118015-pat00105
Figure 112021043118015-pat00105

Figure 112021043118015-pat00106
Figure 112021043118015-pat00106

Figure 112021043118015-pat00107
Figure 112021043118015-pat00107

Figure 112021043118015-pat00108
Figure 112021043118015-pat00108

Figure 112021043118015-pat00109
Figure 112021043118015-pat00109

Figure 112021043118015-pat00110
Figure 112021043118015-pat00110

Figure 112021043118015-pat00111
Figure 112021043118015-pat00111

Figure 112021043118015-pat00112
Figure 112021043118015-pat00112

Figure 112021043118015-pat00113
Figure 112021043118015-pat00113

Figure 112021043118015-pat00114
Figure 112021043118015-pat00114

Figure 112021043118015-pat00115
Figure 112021043118015-pat00115

..

한편, 상기 화학식 1로 표시되는 화합물 중 Z가 상기 화학식 1로 표시되는 치환기인 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다: On the other hand, among the compounds represented by Formula 1, the compound in which Z is a substituent represented by Formula 1 may be prepared by the preparation method shown in Scheme 1 below:

[반응식 1][Scheme 1]

Figure 112021043118015-pat00116
Figure 112021043118015-pat00116

상기 반응식 1에서, X는 할로겐이고, 바람직하게는 브로모, 또는 클로로이며, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.In Scheme 1, X is halogen, preferably bromo, or chloro, and definitions of other substituents are the same as those described above.

구체적으로, 상기 화학식 1로 표시되는 화합물은 출발물질 A1 및 A2의 Suzuki-coupling 반응을 통해 제조될 수 있다. 이러한 Suzuki-coupling 반응은 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하며, 상기 Suzuki-coupling 반응을 위한 반응기는 적절히 변경될 수 있다. 상기 화학식 1로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Specifically, the compound represented by Formula 1 may be prepared through a Suzuki-coupling reaction of starting materials A1 and A2. This Suzuki-coupling reaction is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction may be appropriately changed. The method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.

(유기 발광 소자)(organic light emitting element)

또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다.In addition, the present invention provides an organic light emitting device comprising the compound represented by Formula 1 above. In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein the at least one organic material layer includes the compound represented by Formula 1 above.

본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.

일 구현예에서, 상기 유기물층은 발광층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In one embodiment, the organic material layer may include a light emitting layer, wherein the organic material layer including the compound may be a light emitting layer.

다른 구현예에서, 상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자주입 및 수송층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In another embodiment, the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection and transport layer, wherein the organic material layer including the compound may be a light emitting layer.

또 다른 구현예에서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층 및 전자주입 및 수송층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In another embodiment, the organic material layer may include a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, and an electron injection and transport layer, wherein the organic material layer including the compound may be a light emitting layer.

또 다른 구현예에서, 상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층, 전자저지층 및 전자주입 및 수송층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.In another embodiment, the organic material layer may include a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, an electron blocking layer and an electron injection and transport layer, wherein the organic material layer comprising the compound may be a light emitting layer.

또한, 본 발명에 따른 유기 발광 소자는, 제1 전극이 양극이고, 제2 전극이 음극인, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 제1 전극이 음극이고, 제2 전극이 양극인, 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.In addition, the organic light emitting device according to the present invention is an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers and a cathode are sequentially stacked on a substrate in which a first electrode is an anode and a second electrode is a cathode can be In addition, the organic light emitting device according to the present invention has an inverted type organic light emitting device in which a cathode, one or more organic material layers and an anode are sequentially stacked on a substrate in which a first electrode is a cathode and a second electrode is an anode can be For example, the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .

도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 . In such a structure, the compound represented by Formula 1 may be included in the light emitting layer.

도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and an example of an organic light emitting device including a cathode 4 are shown.

본 발명에 따른 유기 발광 소자는, 상기 발광층이 본 발명에 따른 화합물을 포함하고, 상술한 방법과 같이 제조되는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조할 수 있다.The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that the light emitting layer includes the compound according to the present invention and is manufactured as described above.

예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or a metal oxide having conductivity or an alloy thereof is deposited on a substrate to form an anode And, after forming an organic layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon.

이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.

일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.

상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 화합물 등이 있으나, 이에 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive compounds such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.

상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; LiF/Al or a multi-layered material such as LiO 2 /Al, but is not limited thereto.

상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 화합물 등이 있으나, 이들에만 한정되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive compounds, and the like, but are not limited thereto.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 화합물, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. The hole transport material is a material that can transport holes from the anode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. material is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive compound, and a block copolymer having a conjugated portion and a non-conjugated portion together.

상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The electron suppression layer is formed on the hole transport layer, preferably provided in contact with the light emitting layer, adjusts hole mobility, prevents excessive movement of electrons, and increases the hole-electron coupling probability, thereby increasing the efficiency of the organic light emitting device It means a layer that plays a role in improving The electron blocking layer includes an electron blocking material, and an example of such an electron blocking material may be an arylamine-based organic material, but is not limited thereto.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료로는 상술한 화학식 1로 표시되는 화합물이 사용될 수 있다. 또한, 호스트 재료로는 상기 화학식 1로 표시되는 화합물 이외에 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 추가로 사용할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되는 것은 아니다. The emission layer may include a host material and a dopant material. As the host material, the compound represented by Chemical Formula 1 may be used. In addition, as the host material, in addition to the compound represented by Formula 1, a condensed aromatic ring derivative or a hetero ring-containing compound may be additionally used. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like, and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.

또한, 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.Further, examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene, and the like, having an arylamino group. As the styrylamine compound, a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.

보다 구체적으로는, 상기 도펀트 재료로 하기와 같은 화합물이 사용될 수 있으나, 이에 한정되는 것은 아니다:More specifically, the following compounds may be used as the dopant material, but the present invention is not limited thereto:

Figure 112021043118015-pat00117
Figure 112021043118015-pat00117

Figure 112021043118015-pat00118
Figure 112021043118015-pat00118

Figure 112021043118015-pat00119
Figure 112021043118015-pat00119

Figure 112021043118015-pat00120
.
Figure 112021043118015-pat00120
.

상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류 유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to control electron mobility and prevent excessive movement of holes to increase the hole-electron coupling probability, thereby improving the efficiency of the organic light emitting device layer that plays a role. The hole blocking layer includes a hole blocking material, and examples of the hole blocking material include azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.

상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다. The electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from the electrode and transporting the received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer. As the electron injection and transport material, a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable. Examples of specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto. or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and derivatives thereof, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.

상기 전자 주입 및 수송층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.The electron injection and transport layer may be formed as a separate layer such as an electron injection layer and an electron transport layer. In this case, the electron transport layer is formed on the light emitting layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer. In addition, the electron injection layer is formed on the electron transport layer, and the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, etc. can be used.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. The present invention is not limited thereto.

본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.The organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high luminous efficiency.

또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.

상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The compound represented by Formula 1 and the preparation of an organic light emitting device including the same will be described in detail in Examples below. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

합성예 A: 중간체 화합물 A의 합성Synthesis Example A: Synthesis of intermediate compound A

Figure 112021043118015-pat00121
Figure 112021043118015-pat00121

질소 분위기에서 A_sm1(15 g, 72.3 mmol)와 A-sm2(19 g, 94 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(30 g, 216.9 mmol)를 물 90 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 A_P1를 14.6 g 제조하였다. (수율 71%, MS: = 285)In a nitrogen atmosphere, A_sm1 (15 g, 72.3 mmol) and A-sm2 (19 g, 94 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (30 g, 216.9 mmol) was dissolved in 90 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of A_P1. (Yield 71%, MS: = 285)

다음으로, 질소 분위기에서 A_P1(10 g, 35.1 mmol)와 HBF4(6.2 g, 70.2 mmol)를 ACN 100 mL에 넣고 교반하였다. 이후 NaNO2(4.8 g, 70.2 mmol)를 H2O 20 mL에 녹여서 0℃에서 천천히 넣어주었다. 10 시간 반응 후 이를 room temperature까지 승온 후, 물 200 mL 를 넣어 희석하였다. 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 A_P2를 6.5 g 제조하였다. (수율 74%, MS: [M+H]+= 251)Next, A_P1 (10 g, 35.1 mmol) and HBF 4 (6.2 g, 70.2 mmol) were added to 100 mL of ACN in a nitrogen atmosphere and stirred. After that, NaNO 2 (4.8 g, 70.2 mmol) was dissolved in 20 mL of H 2 O and slowly added at 0°C. After 10 hours of reaction, the temperature was raised to room temperature, and 200 mL of water was added thereto to dilute. It was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.5 g of A_P2. (Yield 74%, MS: [M+H] + = 251)

다음으로, 질소 분위기에서 A_P2(15 g, 59.1 mmol)와 bis(pinacolato)diboron(16.5 g, 65 mmol)를 1,4-dioxane 300 mL에 환류시키며 교반하였다. 이후 potassium acetate(8.7 g, 88.7 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(1 g, 1.8 mmol) 및 tricyclohexylphosphine(1 g, 3.5 mmol)을 투입하였다. 10 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A를 14.3 g 제조하였다. (수율 70%, MS: [M+H]+= 346)Next, A_P2 (15 g, 59.1 mmol) and bis(pinacolato)diboron (16.5 g, 65 mmol) were refluxed in 300 mL of 1,4-dioxane in a nitrogen atmosphere and stirred. After potassium acetate (8.7 g, 88.7 mmol) was added and sufficiently stirred, bis(dibenzylideneacetone)palladium(0) (1 g, 1.8 mmol) and tricyclohexylphosphine (1 g, 3.5 mmol) were added. After reacting for 10 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of Compound A. (Yield 70%, MS: [M+H] + = 346)

합성예 B: 중간체 화합물 B의 합성Synthesis Example B: Synthesis of intermediate compound B

Figure 112021043118015-pat00122
Figure 112021043118015-pat00122

질소 분위기에서 B_sm1 (15 g, 45 mmol)와 A_sm2 (9.5 g, 47.2 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.7 g, 135mmol)를 물 56mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 B_P1를 10.4 g 제조하였다. (수율 64%, MS: [M+H]+= 363)B_sm1 (15 g, 45 mmol) and A_sm2 (9.5 g, 47.2 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18.7 g, 135 mmol) was dissolved in 56 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.4 g of B_P1. (Yield 64%, MS: [M+H]+= 363)

다음으로, 질소 분위기에서 B_P1 (10 g, 27.5mmol)와 HBF4(4.8 g, 55mmol)를 ACN 100 mL에 넣고 교반하였다. 이후 NaNO2(3.8 g, 55mmol)를 H2O 20 mL에 녹여서 0℃에서 천천히 넣어주었다. 10 시간 반응 후 이를 room temperature까지 승온 후, 물 200 mL 를 넣어 희석하였다. 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 B_P2를 6.5 g 제조하였다. (수율 74%, MS: [M+H]+= 251)Next, B_P1 (10 g, 27.5 mmol) and HBF 4 (4.8 g, 55 mmol) were added to 100 mL of ACN in a nitrogen atmosphere and stirred. After that, NaNO 2 (3.8 g, 55 mmol) was dissolved in H 2 O 20 mL and slowly added at 0°C. After 10 hours of reaction, the temperature was raised to room temperature, and 200 mL of water was added thereto to dilute. It was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.5 g of B_P2. (Yield 74%, MS: [M+H] + = 251)

다음으로, 질소 분위기에서 B_P2 (15 g, 45.1mmol)와 bis(pinacolato)diboron (12.6 g, 49.6mmol)를 1,4-dioxane 300mL에 환류시키며 교반하였다. 이 후 potassium acetate (6.6 g, 67.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.4mmol) 및 tricyclohexylphosphine (0.8 g, 2.7mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화학식 B를 13.7g 제조하였다. (수율 80%, MS: [M+H]+= 380)Next, B_P2 (15 g, 45.1 mmol) and bis(pinacolato)diboron (12.6 g, 49.6 mmol) were refluxed in 300 mL of 1,4-dioxane and stirred in a nitrogen atmosphere. After that, potassium acetate (6.6 g, 67.7 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.4mmol) and tricyclohexylphosphine (0.8 g, 2.7mmol) were added. After reacting for 8 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.7 g of Formula B. (yield 80%, MS: [M+H]+= 380)

합성예 C: 중간체 화합물 C의 합성Synthesis Example C: Synthesis of intermediate compound C

Figure 112021043118015-pat00123
Figure 112021043118015-pat00123

상기 합성예 A에서 출발 물질로 A-sm1 대신 C-sm1을 사용한 것을 제외하고는, 합성예 A와 동일한 방법을 사하여 화합물 C를 12.2g 제조하였다. (수율: 60%, MS: [M+H]+= 346)12.2 g of Compound C was prepared in the same manner as in Synthesis Example A, except that C-sm1 was used instead of A-sm1 as a starting material in Synthesis Example A. (Yield: 60%, MS: [M+H] + = 346)

합성예 D: 중간체 화합물 D의 합성Synthesis Example D: Synthesis of intermediate compound D

Figure 112021043118015-pat00124
Figure 112021043118015-pat00124

상기 합성예 B에서 출발 물질로 B-sm1 대신 D-sm1을 사용한 것을 제외하고는, 합성예 B와 동일한 방법을 사용하여 화합물 D를 10.9g 제조하였다. (수율: 64%, MS: [M+H]+= 380)10.9 g of Compound D was prepared in the same manner as in Synthesis Example B, except that D-sm1 was used instead of B-sm1 as a starting material in Synthesis Example B. (Yield: 64%, MS: [M+H] + = 380)

합성예 E: 중간체 화합물 E의 합성Synthesis Example E: Synthesis of intermediate compound E

Figure 112021043118015-pat00125
Figure 112021043118015-pat00125

상기 합성예 B에서 출발 물질로 B-sm1 대신 E-sm1을 사용한 것을 제외하고는, 합성예 B와 동일한 방법을 사용하여 화합물 E를 12g 제조하였다. (수율: 70%, MS: [M+H]+= 380)12 g of Compound E was prepared in the same manner as in Synthesis Example B, except that E-sm1 was used instead of B-sm1 as a starting material in Synthesis Example B. (Yield: 70%, MS: [M+H] + = 380)

합성예 F: 중간체 화합물 F의 합성Synthesis Example F: Synthesis of intermediate compound F

Figure 112021043118015-pat00126
Figure 112021043118015-pat00126

상기 합성예 B에서 출발 물질로 B-sm1 대신 F-sm1을 사용한 것을 제외하고는, 합성예 B와 동일한 방법을 사용하여 화합물 F를 11.5g 제조하였다. (수율: 67%, MS: [M+H]+= 380)11.5 g of Compound F was prepared in the same manner as in Synthesis Example B, except that F-sm1 was used instead of B-sm1 as a starting material in Synthesis Example B. (Yield: 67%, MS: [M+H] + = 380)

합성예 G: 중간체 화합물 G의 합성Synthesis Example G: Synthesis of intermediate compound G

Figure 112021043118015-pat00127
Figure 112021043118015-pat00127

상기 합성예 A에서 출발 물질로 A-sm1 대신 G-sm1을 사용한 것을 제외하고는, 합성예 A와 동일한 방법을 사용하여 화합물 G 15.5g를 제조하였다. (수율: 76%, MS: [M+H]+= 346)15.5 g of Compound G was prepared in the same manner as in Synthesis Example A, except that G-sm1 was used instead of A-sm1 as a starting material in Synthesis Example A. (Yield: 76%, MS: [M+H] + = 346)

합성예 H: 중간체 화합물 H의 합성Synthesis Example H: Synthesis of intermediate compound H

Figure 112021043118015-pat00128
Figure 112021043118015-pat00128

질소 분위기에서 H_sm1(15 g, 72.6 mmol)와 H_sm2(19.2 g, 94.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(30.1 g, 217.9 mmol)를 물 90 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 H_P1를 13.4 g 제조하였다. (수율 73%, MS: [M+H]+= 254)In a nitrogen atmosphere, H_sm1 (15 g, 72.6 mmol) and H_sm2 (19.2 g, 94.4 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (30.1 g, 217.9 mmol) was dissolved in 90 mL of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of H_P1. (Yield 73%, MS: [M+H] + = 254)

다음으로, 질소 분위기에서 H_P1(10 g, 35.1 mmol)와 HBF4(6.2 g, 70.2 mmol)를 ACN 100 mL에 넣고 교반하였다. 이후 NaNO2(4.8 g, 70.2 mmol)를 H2O 20 mL에 녹여서 0℃에서 천천히 넣어주었다. 10 시간 반응 후 이를 room temperature까지 승온 후, 물 200 mL 를 넣어 희석하였다. 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 H_P2를 6.3 g 제조하였다. (수율 72%, MS: [M+H]+= 251)Next, H_P1 (10 g, 35.1 mmol) and HBF 4 (6.2 g, 70.2 mmol) were added to 100 mL of ACN in a nitrogen atmosphere and stirred. After that, NaNO 2 (4.8 g, 70.2 mmol) was dissolved in 20 mL of H 2 O and slowly added at 0°C. After 10 hours of reaction, the temperature was raised to room temperature, and 200 mL of water was added thereto to dilute. It was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.3 g of H_P2. (Yield 72%, MS: [M+H] + = 251)

다음으로, 질소 분위기에서 H_P2(15 g, 59.1 mmol)와 bis(pinacolato)diboron(16.5 g, 65 mmol)를 1,4-dioxane 300 mL에 환류시키며 교반하였다. 이후 potassium acetate (8.7 g, 88.7 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (1 g, 1.8 mmol) 및 tricyclohexylphosphine(1 g, 3.5 mmol)을 투입하였다. 10 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 H를 15.5 g 제조하였다. (수율 76%, MS: [M+H]+= 346)Next, in a nitrogen atmosphere, H_P2 (15 g, 59.1 mmol) and bis(pinacolato)diboron (16.5 g, 65 mmol) were refluxed in 300 mL of 1,4-dioxane and stirred. After potassium acetate (8.7 g, 88.7 mmol) was added and sufficiently stirred, bis(dibenzylideneacetone)palladium(0) (1 g, 1.8 mmol) and tricyclohexylphosphine (1 g, 3.5 mmol) were added. After reacting for 10 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.5 g of Compound H. (yield 76%, MS: [M+H] + = 346)

합성예 I: 중간체 화합물 I의 합성Synthesis Example I: Synthesis of intermediate compound I

Figure 112021043118015-pat00129
Figure 112021043118015-pat00129

질소 분위기에서 I_sm1 (15 g, 45.1mmol)와 H_sm2 (9.6 g, 47.4mmol)를 THF 300mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.7 g, 135.4mmol)를 물 56mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 I_P1를 10.9g 제조하였다. (수율 67%, MS: [M+H]+= 363)In a nitrogen atmosphere, I_sm1 (15 g, 45.1 mmol) and H_sm2 (9.6 g, 47.4 mmol) were placed in 300 mL of THF, stirred and refluxed. After that, potassium carbonate (18.7 g, 135.4 mmol) was dissolved in 56 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.9 g of I_P1. (Yield 67%, MS: [M+H]+= 363)

다음으로, 질소 분위기에서 I_P1 (10 g, 27.5mmol)와 HBF4(4.8 g, 55mmol)를 ACN 100 mL에 넣고 교반하였다. 이후 NaNO2(3.8 g, 55mmol)를 H2O 20 mL에 녹여서 0℃에서 천천히 넣어주었다. 10 시간 반응 후 이를 room temperature까지 승온 후, 물 200 mL 를 넣어 희석하였다. 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 I_P2를 6.5 g 제조하였다. (수율 74%, MS: [M+H]+= 251)Next, I_P1 (10 g, 27.5 mmol) and HBF 4 (4.8 g, 55 mmol) were added to 100 mL of ACN in a nitrogen atmosphere and stirred. After that, NaNO 2 (3.8 g, 55 mmol) was dissolved in H 2 O 20 mL and slowly added at 0°C. After 10 hours of reaction, the temperature was raised to room temperature, and 200 mL of water was added thereto to dilute. It was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.5 g of I_P2. (Yield 74%, MS: [M+H] + = 251)

다음으로, 질소 분위기에서 I_P2 (15 g, 45.1mmol)와 bis(pinacolato)diboron (12.6 g, 49.6mmol)를 1,4-dioxane 300 mL에 환류시키며 교반하였다. 이 후 potassium acetate(6.6 g, 67.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.4mmol) 및 tricyclohexylphosphine (0.8 g, 2.7mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화학식 I를 13.2g 제조하였다. (수율 77%, MS: [M+H]+= 380)Next, I_P2 (15 g, 45.1 mmol) and bis(pinacolato)diboron (12.6 g, 49.6 mmol) were refluxed in 300 mL of 1,4-dioxane and stirred in a nitrogen atmosphere. After that, potassium acetate (6.6 g, 67.7 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.8 g, 1.4 mmol) and tricyclohexylphosphine (0.8 g, 2.7 mmol) were added. After reacting for 8 hours, cooling to room temperature, and separating the organic layer using chloroform and water, the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of Formula I. (Yield 77%, MS: [M+H]+=380)

합성예 J: 중간체 화합물 J의 합성Synthesis Example J: Synthesis of intermediate compound J

Figure 112021043118015-pat00130
Figure 112021043118015-pat00130

상기 합성예 I에서 출발 물질로 I-sm1 대신 J-sm1을 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 J를 12.5g 제조하였다. (수율: 73%, MS: [M+H]+= 380)12.5 g of Compound J was prepared in the same manner as in Synthesis Example I, except that J-sm1 was used instead of I-sm1 as a starting material in Synthesis Example I. (Yield: 73%, MS: [M+H] + = 380)

합성예 K: 중간체 화합물 K의 합성Synthesis Example K: Synthesis of intermediate compound K

Figure 112021043118015-pat00131
Figure 112021043118015-pat00131

상기 합성예 H에서 출발 물질로 H-sm2 대신 K-sm2를 사용한 것을 제외하고는, 합성예 H와 동일한 방법을 사용하여 화합물 K 13.7g를 제조하였다. (수율: 67%, MS: [M+H]+= 346)13.7 g of Compound K was prepared in the same manner as in Synthesis Example H, except that K-sm2 was used instead of H-sm2 as a starting material in Synthesis Example H. (Yield: 67%, MS: [M+H] + = 346)

합성예 L: 중간체 화합물 L의 합성Synthesis Example L: Synthesis of intermediate compound L

Figure 112021043118015-pat00132
Figure 112021043118015-pat00132

상기 합성예 I에서 출발 물질로 I-sm1 대신 J-sm1을 사용하고 H-sm2 대신 K_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 L를 12.7g 제조하였다. (수율: 74%, MS: [M+H]+= 380)12.7 g of Compound L was prepared in the same manner as in Synthesis Example I, except that J-sm1 was used instead of I-sm1 and K_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 74%, MS: [M+H] + = 380)

합성예 M: 중간체 화합물 M의 합성Synthesis Example M: Synthesis of intermediate compound M

Figure 112021043118015-pat00133
Figure 112021043118015-pat00133

상기 합성예 I에서 출발 물질로 H-sm2 대신 M_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 M를 12.5g 제조하였다. (수율: 73%, MS: [M+H]+= 380)12.5 g of Compound M was prepared in the same manner as in Synthesis Example I, except that M_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 73%, MS: [M+H] + = 380)

합성예 N: 중간체 화합물 N의 합성Synthesis Example N: Synthesis of intermediate compound N

Figure 112021043118015-pat00134
Figure 112021043118015-pat00134

상기 합성예 H에서 출발 물질로 H-sm2 대신 M-sm2를 사용한 것을 제외하고는, 합성예 H와 동일한 방법을 사용하여 화합물 N 14.7g을 제조하였다. (수율: 72%, MS: [M+H]+= 346)14.7 g of Compound N was prepared in the same manner as in Synthesis Example H, except that M-sm2 was used instead of H-sm2 as a starting material in Synthesis Example H. (Yield: 72%, MS: [M+H] + = 346)

합성예 O: 중간체 화합물 O의 합성Synthesis Example O: Synthesis of intermediate compound O

Figure 112021043118015-pat00135
Figure 112021043118015-pat00135

상기 합성예 I에서 출발 물질로 I-sm1 대신 J-sm1을 사용하고 H-sm2 대신 M_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 O를 13.2g 제조하였다. (수율: 77%, MS: [M+H]+= 380)13.2 g of Compound O was prepared in the same manner as in Synthesis Example I, except that J-sm1 was used instead of I-sm1 and M_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 77%, MS: [M+H] + = 380)

합성예 P: 중간체 화합물 P의 합성Synthesis Example P: Synthesis of intermediate compound P

Figure 112021043118015-pat00136
Figure 112021043118015-pat00136

상기 합성예 H에서 출발 물질로 H-sm2 대신 P-sm2를 사용한 것을 제외하고는, 합성예 H와 동일한 방법을 사용하여 화합물 P 14.7g를 제조하였다. (수율: 72%, MS: [M+H]+= 346)14.7 g of Compound P was prepared in the same manner as in Synthesis Example H, except that P-sm2 was used instead of H-sm2 as a starting material in Synthesis Example H. (Yield: 72%, MS: [M+H] + = 346)

합성예 Q: 중간체 화합물 Q의 합성Synthesis Example Q: Synthesis of intermediate compound Q

Figure 112021043118015-pat00137
Figure 112021043118015-pat00137

상기 합성예 I에서 출발 물질로 H-sm2 대신 P_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 Q를 12.8g 제조하였다. (수율: 75%, MS: [M+H]+= 380)12.8 g of Compound Q was prepared in the same manner as in Synthesis Example I, except that P_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 75%, MS: [M+H] + = 380)

합성예 R: 중간체 화합물 R의 합성Synthesis Example R: Synthesis of intermediate compound R

Figure 112021043118015-pat00138
Figure 112021043118015-pat00138

상기 합성예 H에서 출발 물질로 H-sm2 대신 R-sm2를 사용한 것을 제외하고는, 합성예 H와 동일한 방법을 사용하여 화합물 R 13.3g를 제조하였다. (수율: 65%, MS: [M+H]+= 346)13.3 g of compound R was prepared in the same manner as in Synthesis Example H, except that R-sm2 was used instead of H-sm2 as a starting material in Synthesis Example H. (Yield: 65%, MS: [M+H] + = 346)

합성예 S: 중간체 화합물 S의 합성Synthesis Example S: Synthesis of intermediate compound S

Figure 112021043118015-pat00139
Figure 112021043118015-pat00139

상기 합성예 I에서 출발 물질로 I-sm1 대신 J-sm1을 사용하고 H-sm2 대신 R_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 S를 11.3g 제조하였다. (수율: 66%, MS: [M+H]+= 380)11.3 g of Compound S was prepared in the same manner as in Synthesis Example I, except that J-sm1 was used instead of I-sm1 and R_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 66%, MS: [M+H] + = 380)

합성예 T: 중간체 화합물 T의 합성Synthesis Example T: Synthesis of intermediate compound T

Figure 112021043118015-pat00140
Figure 112021043118015-pat00140

상기 합성예 H에서 출발 물질로 H-sm2 대신 T-sm2를 사용한 것을 제외하고는, 합성예 H와 동일한 방법을 사용하여 화합물 T 13.9g를 제조하였다. (수율: 68%, MS: [M+H]+= 346)13.9 g of Compound T was prepared in the same manner as in Synthesis Example H, except that T-sm2 was used instead of H-sm2 as a starting material in Synthesis Example H. (Yield: 68%, MS: [M+H] + = 346)

합성예 U: 중간체 화합물 U의 합성Synthesis Example U: Synthesis of intermediate compound U

Figure 112021043118015-pat00141
Figure 112021043118015-pat00141

상기 합성예 I에서 출발 물질로 I-sm1 대신 J-sm1을 사용하고 H-sm2 대신 T_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 U를 13g 제조하였다. (수율: 76%, MS: [M+H]+= 380)13 g of Compound U was prepared in the same manner as in Synthesis Example I, except that J-sm1 was used instead of I-sm1 and T_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 76%, MS: [M+H] + = 380)

합성예 V: 중간체 화합물 U의 합성Synthesis Example V: Synthesis of intermediate compound U

Figure 112021043118015-pat00142
Figure 112021043118015-pat00142

상기 합성예 I에서 출발 물질로 H-sm2 대신 T_sm2를 사용한 것을 제외하고는, 합성예 I와 동일한 방법을 사용하여 화합물 V를 12.3g 제조하였다. (수율: 72%, MS: [M+H]+= 380)12.3 g of Compound V was prepared in the same manner as in Synthesis Example I, except that T_sm2 was used instead of H-sm2 as a starting material in Synthesis Example I. (Yield: 72%, MS: [M+H] + = 380)

합성예 1: 화합물 1의 제조Synthesis Example 1: Preparation of compound 1

Figure 112021043118015-pat00143
Figure 112021043118015-pat00143

질소 분위기에서 화합물 A(15 g, 46.1 mmol)와 Trz1(16.7 g, 48.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12.7 g, 92.2 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1를 17.2 g 제조하였다. (수율 71%, MS: [M+H]+= 527)Compound A (15 g, 46.1 mmol) and Trz1 (16.7 g, 48.4 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.7 g, 92.2 mmol) was dissolved in 38 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.2 g of Compound 1. (Yield 71%, MS: [M+H] + = 527)

합성예 2: 화합물 2의 제조Synthesis Example 2: Preparation of compound 2

Figure 112021043118015-pat00144
Figure 112021043118015-pat00144

질소 분위기에서 화합물 A(15 g, 46.1 mmol)와 Trz2(19.1 g, 48.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12.7 g, 92.2 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2를 18.1 g 제조하였다. (수율 68%, MS: [M+H]+= 577)Compound A (15 g, 46.1 mmol) and Trz2 (19.1 g, 48.4 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.7 g, 92.2 mmol) was dissolved in 38 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.1 g of Compound 2. (Yield 68%, MS: [M+H] + = 577)

합성예 3: 화합물 3의 제조Synthesis Example 3: Preparation of compound 3

Figure 112021043118015-pat00145
Figure 112021043118015-pat00145

질소 분위기에서 화합물 A(15 g, 46.1 mmol)와 Trz3(19.1 g, 48.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12.7 g, 92.2 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3을 20.7 g 제조하였다. (수율 78%, MS: [M+H]+= 577)Compound A (15 g, 46.1 mmol) and Trz3 (19.1 g, 48.4 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.7 g, 92.2 mmol) was dissolved in 38 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.7 g of compound 3. (Yield 78%, MS: [M+H] + = 577)

합성예 4: 화합물 4의 제조Synthesis Example 4: Preparation of compound 4

Figure 112021043118015-pat00146
Figure 112021043118015-pat00146

질소 분위기에서 화합물 B(15 g, 39.5 mmol)와 Trz4(15.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-1를 17.6 g 제조하였다. (수율 73%, MS: [M+H]+= 611)Compound B (15 g, 39.5 mmol) and Trz4 (15.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.6 g of subB-1. (Yield 73%, MS: [M+H] + = 611)

다음으로, 질소 분위기에서 subB-1(15 g, 24.5 mmol)와 sub1(3.1 g, 25.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(6.8 g, 49.1 mmol)를 물 20 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4를 11.2 g 제조하였다. (수율 70%, MS: [M+H]+= 653)Next, subB-1 (15 g, 24.5 mmol) and sub1 (3.1 g, 25.8 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (6.8 g, 49.1 mmol) was dissolved in 20 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.2 g of compound 4. (Yield 70%, MS: [M+H] + = 653)

합성예 5: 화합물 5의 제조Synthesis Example 5: Preparation of compound 5

Figure 112021043118015-pat00147
Figure 112021043118015-pat00147

질소 분위기에서 화합물 C(15 g, 46.1 mmol)와 Trz5(18.1 g, 48.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12.7 g, 92.2 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5를 19.5 g 제조하였다. (수율 76%, MS: [M+H]+= 557)Compound C (15 g, 46.1 mmol) and Trz5 (18.1 g, 48.4 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.7 g, 92.2 mmol) was dissolved in 38 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.5 g of compound 5. (yield 76%, MS: [M+H] + = 557)

합성예 6: 화합물 6의 제조Synthesis Example 6: Preparation of compound 6

Figure 112021043118015-pat00148
Figure 112021043118015-pat00148

질소 분위기에서 화합물 D(15 g, 39.5 mmol)와 Trz6(10.4 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subD-1를 12.5 g 제조하였다. (수율 65%, MS: [M+H]+= 487)Compound D (15 g, 39.5 mmol) and Trz6 (10.4 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.5 g of subD-1. (Yield 65%, MS: [M+H] + = 487)

다음으로, 질소 분위기에서 subD-1(15 g, 30.8 mmol)와 sub2(7.4 g, 32.3 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.5 g, 61.6 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6를 13.3 g 제조하였다. (수율 68%, MS: [M+H]+= 635)Next, subD-1 (15 g, 30.8 mmol) and sub2 (7.4 g, 32.3 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (8.5 g, 61.6 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of compound 6. (Yield 68%, MS: [M+H] + = 635)

합성예 7: 화합물 7의 제조Synthesis Example 7: Preparation of compound 7

Figure 112021043118015-pat00149
Figure 112021043118015-pat00149

질소 분위기에서 화합물 E(15 g, 39.5 mmol)와 Trz4(15.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subE-1를 19.3 g 제조하였다. (수율 80%, MS: [M+H]+= 611)Compound E (15 g, 39.5 mmol) and Trz4 (15.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.3 g of subE-1. (yield 80%, MS: [M+H] + = 611)

다음으로, 질소 분위기에서 subE-1(15 g, 24.5 mmol)와 sub1(3.1 g, 25.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(6.8 g, 49.1 mmol)를 물 20 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7를 11.2 g 제조하였다. (수율 70%, MS: [M+H]+= 653)Next, subE-1 (15 g, 24.5 mmol) and sub1 (3.1 g, 25.8 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (6.8 g, 49.1 mmol) was dissolved in 20 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.2 g of compound 7. (Yield 70%, MS: [M+H] + = 653)

합성예 8: 화합물 8의 제조Synthesis Example 8: Preparation of compound 8

Figure 112021043118015-pat00150
Figure 112021043118015-pat00150

질소 분위기에서 화합물 C(15 g, 43.5 mmol)와 Trz7(22.1 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8를 19.1 g 제조하였다. (수율 66%, MS: [M+H]+= 667)Compound C (15 g, 43.5 mmol) and Trz7 (22.1 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.1 g of compound 8. (Yield 66%, MS: [M+H] + = 667)

합성예 9: 화합물 9의 제조Synthesis Example 9: Preparation of compound 9

Figure 112021043118015-pat00151
Figure 112021043118015-pat00151

질소 분위기에서 화합물 F(15 g, 39.5 mmol)와 Trz6(10.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subF-1를 14.7 g 제조하였다. (수율 77%, MS: [M+H]+= 485)Compound F (15 g, 39.5 mmol) and Trz6 (10.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of subF-1. (Yield 77%, MS: [M+H] + = 485)

다음으로, 질소 분위기에서 subF-1(15 g, 30.9 mmol)와 sub3(6.9 g, 32.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.6 g, 61.9 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 11.8 g 제조하였다. (수율 62%, MS: [M+H]+= 617)Next, subF-1 (15 g, 30.9 mmol) and sub3 (6.9 g, 32.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 61.9 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.8 g of compound 9. (Yield 62%, MS: [M+H] + = 617)

합성예 10: 화합물 10의 제조Synthesis Example 10: Preparation of compound 10

Figure 112021043118015-pat00152
Figure 112021043118015-pat00152

질소 분위기에서 화합물 G(15 g, 43.5 mmol)와 Trz8(16.8 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10을 18.9 g 제조하였다. (수율 79%, MS: [M+H]+= 551)Compound G (15 g, 43.5 mmol) and Trz8 (16.8 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.9 g of compound 10. (yield 79%, MS: [M+H] + = 551)

합성예 11: 화합물 11의 제조Synthesis Example 11: Preparation of compound 11

Figure 112021043118015-pat00153
Figure 112021043118015-pat00153

질소 분위기에서 화합물 G(15 g, 43.5 mmol)와 Trz9(22.1 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11를 17.4 g 제조하였다. (수율 60%, MS: [M+H]+= 667)Compound G (15 g, 43.5 mmol) and Trz9 (22.1 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.4 g of compound 11. (Yield 60%, MS: [M+H] + = 667)

합성예 12: 화합물 12의 제조Synthesis Example 12: Preparation of compound 12

Figure 112021043118015-pat00154
Figure 112021043118015-pat00154

질소 분위기에서 화합물 G(15 g, 43.5 mmol)와 Trz4(18 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 16.5 g 제조하였다. (수율 66%, MS: [M+H]+= 577)Compound G (15 g, 43.5 mmol) and Trz4 (18 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.5 g of compound 12. (Yield 66%, MS: [M+H] + = 577)

합성예 13: 화합물 13의 제조Synthesis Example 13: Preparation of compound 13

Figure 112021043118015-pat00155
Figure 112021043118015-pat00155

질소 분위기에서 화합물 H(15 g, 43.5 mmol)와 Trz10(16.8 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13를 17.7 g 제조하였다. (수율 74%, MS: [M+H]+= 551)Compound H (15 g, 43.5 mmol) and Trz10 (16.8 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.7 g of compound 13. (Yield 74%, MS: [M+H] + = 551)

합성예 14: 화합물 14의 제조Synthesis Example 14: Preparation of compound 14

Figure 112021043118015-pat00156
Figure 112021043118015-pat00156

질소 분위기에서 화합물 H(15 g, 43.5 mmol)와 Trz11(20.3 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 21.5 g 제조하였다. (수율 79%, MS: [M+H]+= 627)Compound H (15 g, 43.5 mmol) and Trz11 (20.3 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.5 g of compound 14. (yield 79%, MS: [M+H] + = 627)

합성예 15: 화합물 15의 제조Synthesis Example 15: Preparation of compound 15

Figure 112021043118015-pat00157
Figure 112021043118015-pat00157

질소 분위기에서 화합물 I(15 g, 39.5 mmol)와 Trz6(10.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subI-1를 12.6 g 제조하였다. (수율 66%, MS: [M+H]+= 485)Compound I (15 g, 39.5 mmol) and Trz6 (10.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.6 g of subI-1. (Yield 66%, MS: [M+H] + = 485)

다음으로, 질소 분위기에서 subI-1(15 g, 30.9 mmol)와 sub3(6.9 g, 32.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.6 g, 61.9 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 13.2 g 제조하였다. (수율 69%, MS: [M+H]+= 617)Next, subI-1 (15 g, 30.9 mmol) and sub3 (6.9 g, 32.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 61.9 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of compound 15. (yield 69%, MS: [M+H] + = 617)

합성예 16: 화합물 16의 제조Synthesis Example 16: Preparation of compound 16

Figure 112021043118015-pat00158
Figure 112021043118015-pat00158

질소 분위기에서 subI-1(15 g, 30.9 mmol)와 sub4(7.2 g, 32.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.6 g, 61.9 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16를 12.8 g 제조하였다. (수율 66%, MS: [M+H]+= 627)In a nitrogen atmosphere, subI-1 (15 g, 30.9 mmol) and sub4 (7.2 g, 32.5 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 61.9 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of compound 16. (Yield 66%, MS: [M+H] + = 627)

합성예 17: 화합물 17의 제조Synthesis Example 17: Preparation of compound 17

Figure 112021043118015-pat00159
Figure 112021043118015-pat00159

질소 분위기에서 화합물 H(15 g, 43.5 mmol)와 Trz12(18 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17을 15.3 g 제조하였다. (수율 61%, MS: [M+H]+= 577)Compound H (15 g, 43.5 mmol) and Trz12 (18 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of compound 17. (Yield 61%, MS: [M+H] + = 577)

합성예 18: 화합물 18의 제조Synthesis Example 18: Preparation of compound 18

Figure 112021043118015-pat00160
Figure 112021043118015-pat00160

질소 분위기에서 화합물 J(15 g, 39.5 mmol)와 Trz13(17.1 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subJ-1를 19.5 g 제조하였다. (수율 76%, MS: [M+H]+= 651)Compound J (15 g, 39.5 mmol) and Trz13 (17.1 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.5 g of subJ-1. (yield 76%, MS: [M+H] + = 651)

다음으로, 질소 분위기에서 subJ-1(15 g, 23 mmol)와 sub1(2.9 g, 24.2 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(6.4 g, 46.1 mmol)를 물 19 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18를 11 g 제조하였다. (수율 69%, MS: [M+H]+= 693)Next, subJ-1 (15 g, 23 mmol) and sub1 (2.9 g, 24.2 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (6.4 g, 46.1 mmol) was dissolved in 19 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11 g of compound 18. (yield 69%, MS: [M+H] + = 693)

합성예 19: 화합물 19의 제조Synthesis Example 19: Preparation of compound 19

Figure 112021043118015-pat00161
Figure 112021043118015-pat00161

질소 분위기에서 화합물 K(15 g, 43.5 mmol)와 Trz14(18 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 19.8 g 제조하였다. (수율 79%, MS: [M+H]+= 577)Compound K (15 g, 43.5 mmol) and Trz14 (18 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.8 g of compound 19. (yield 79%, MS: [M+H] + = 577)

합성예 20: 화합물 20의 제조Synthesis Example 20: Preparation of compound 20

Figure 112021043118015-pat00162
Figure 112021043118015-pat00162

질소 분위기에서 화합물 K(15 g, 43.5 mmol)와 Trz8(16.8 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20을 18.6 g 제조하였다. (수율 78%, MS: [M+H]+= 551)Compound K (15 g, 43.5 mmol) and Trz8 (16.8 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.6 g of compound 20. (Yield 78%, MS: [M+H] + = 551)

합성예 21: 화합물 21의 제조Synthesis Example 21: Preparation of compound 21

Figure 112021043118015-pat00163
Figure 112021043118015-pat00163

질소 분위기에서 화합물 L(15 g, 39.5 mmol)와 Trz15(12.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subL-1를 14.4 g 제조하였다. (수율 68%, MS: [M+H]+= 535)In a nitrogen atmosphere, compound L (15 g, 39.5 mmol) and Trz15 (12.6 g, 39.5 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.4 g of subL-1. (Yield 68%, MS: [M+H] + = 535)

질소 분위기에서 subL-1(15 g, 28 mmol)와 sub1(3.6 g, 29.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(7.8 g, 56.1 mmol)를 물 23 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21을 12.9 g 제조하였다. (수율 80%, MS: [M+H]+= 577)In a nitrogen atmosphere, subL-1 (15 g, 28 mmol) and sub1 (3.6 g, 29.4 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (7.8 g, 56.1 mmol) was dissolved in 23 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of compound 21. (yield 80%, MS: [M+H] + = 577)

합성예 22: 화합물 22의 제조Synthesis Example 22: Preparation of compound 22

Figure 112021043118015-pat00164
Figure 112021043118015-pat00164

질소 분위기에서 화합물 K(15 g, 43.5 mmol)와 Trz13(19.8 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 17.9 g 제조하였다. (수율 67%, MS: [M+H]+= 617)Compound K (15 g, 43.5 mmol) and Trz13 (19.8 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.9 g of compound 22. (Yield 67%, MS: [M+H] + = 617)

합성예 23: 화합물 23의 제조Synthesis Example 23: Preparation of compound 23

Figure 112021043118015-pat00165
Figure 112021043118015-pat00165

질소 분위기에서 화합물 K(15 g, 43.5 mmol)와 Trz4(18 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23을 17.8 g 제조하였다. (수율 71%, MS: [M+H]+= 577)Compound K (15 g, 43.5 mmol) and Trz4 (18 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.8 g of compound 23. (Yield 71%, MS: [M+H] + = 577)

합성예 24: 화합물 24의 제조Synthesis Example 24: Preparation of compound 24

Figure 112021043118015-pat00166
Figure 112021043118015-pat00166

질소 분위기에서 화합물 M(15 g, 39.5 mmol)와 Trz6(10.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subM-1를 14.9 g 제조하였다. (수율 78%, MS: [M+H]+= 485)Compound M (15 g, 39.5 mmol) and Trz6 (10.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.9 g of subM-1. (Yield 78%, MS: [M+H] + = 485)

다음으로, 질소 분위기에서 subM-1(15 g, 30.9 mmol)와 sub3(6.9 g, 32.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.6 g, 61.9 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 24를 11.8 g 제조하였다. (수율 62%, MS: [M+H]+= 617)Next, subM-1 (15 g, 30.9 mmol) and sub3 (6.9 g, 32.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 61.9 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.8 g of compound 24. (Yield 62%, MS: [M+H] + = 617)

합성예 25: 화합물 25의 제조Synthesis Example 25: Preparation of compound 25

Figure 112021043118015-pat00167
Figure 112021043118015-pat00167

질소 분위기에서 화합물 N(15 g, 43.5 mmol)와 Trz16(19.2 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 25를 19.6 g 제조하였다. (수율 75%, MS: [M+H]+= 603)Compound N (15 g, 43.5 mmol) and Trz16 (19.2 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.6 g of compound 25. (yield 75%, MS: [M+H] + = 603)

합성예 26: 화합물 26의 제조Synthesis Example 26: Preparation of compound 26

Figure 112021043118015-pat00168
Figure 112021043118015-pat00168

질소 분위기에서 화합물 N(15 g, 43.5 mmol)와 Trz17(18 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 26를 16 g 제조하였다. (수율 64%, MS: [M+H]+= 577)Compound N (15 g, 43.5 mmol) and Trz17 (18 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16 g of compound 26. (Yield 64%, MS: [M+H] + = 577)

합성예 27: 화합물 27의 제조Synthesis Example 27: Preparation of compound 27

Figure 112021043118015-pat00169
Figure 112021043118015-pat00169

질소 분위기에서 화합물 N(15 g, 43.5 mmol)와 Trz18(19.1 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 27를 17.2 g 제조하였다. (수율 66%, MS: [M+H]+= 601)In a nitrogen atmosphere, compound N (15 g, 43.5 mmol) and Trz18 (19.1 g, 45.6 mmol) were added to 300 mL of THF, followed by stirring and reflux. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.2 g of compound 27. (Yield 66%, MS: [M+H] + = 601)

합성예 28: 화합물 28의 제조Synthesis Example 28: Preparation of compound 28

Figure 112021043118015-pat00170
Figure 112021043118015-pat00170

질소 분위기에서 화합물 O(15 g, 39.5 mmol)와 Trz1(13.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subO-1를 13.5 g 제조하였다. (수율 61%, MS: [M+H]+= 561)Compound O (15 g, 39.5 mmol) and Trz1 (13.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.5 g of subO-1. (Yield 61%, MS: [M+H] + = 561)

다음으로, 질소 분위기에서 subO-1(15 g, 26.7 mmol)와 sub1(3.4 g, 28.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(7.4 g, 53.5 mmol)를 물 22 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28을 12.2 g 제조하였다. (수율 76%, MS: [M+H]+= 603)Next, subO-1 (15 g, 26.7 mmol) and sub1 (3.4 g, 28.1 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (7.4 g, 53.5 mmol) was dissolved in 22 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of compound 28. (yield 76%, MS: [M+H] + = 603)

합성예 29: 화합물 29의 제조Synthesis Example 29: Preparation of compound 29

Figure 112021043118015-pat00171
Figure 112021043118015-pat00171

질소 분위기에서 화합물 N(15 g, 43.5 mmol)와 Trz19(18 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 18.8 g 제조하였다. (수율 75%, MS: [M+H]+= 577)In a nitrogen atmosphere, compound N (15 g, 43.5 mmol) and Trz19 (18 g, 45.6 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.8 g of compound 29. (yield 75%, MS: [M+H] + = 577)

합성예 30: 화합물 30의 제조Synthesis Example 30: Preparation of compound 30

Figure 112021043118015-pat00172
Figure 112021043118015-pat00172

질소 분위기에서 화합물 P(15 g, 43.5 mmol)와 Trz20(19.8 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30을 16.3 g 제조하였다. (수율 61%, MS: [M+H]+= 617)Compound P (15 g, 43.5 mmol) and Trz20 (19.8 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.3 g of compound 30. (Yield 61%, MS: [M+H] + = 617)

합성예 31: 화합물 31의 제조Synthesis Example 31: Preparation of compound 31

Figure 112021043118015-pat00173
Figure 112021043118015-pat00173

질소 분위기에서 화합물 Q(15 g, 39.5 mmol)와 Trz6(10.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subQ-1를 11.7 g 제조하였다. (수율 61%, MS: [M+H]+= 487)Compound Q (15 g, 39.5 mmol) and Trz6 (10.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.7 g of subQ-1. (Yield 61%, MS: [M+H] + = 487)

다음으로, 질소 분위기에서 subQ-1(15 g, 30.8 mmol)와 sub5(6.4 g, 32.3 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.5 g, 61.6 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31을 11.5 g 제조하였다. (수율 62%, MS: [M+H]+= 605)Next, subQ-1 (15 g, 30.8 mmol) and sub5 (6.4 g, 32.3 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (8.5 g, 61.6 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.5 g of compound 31. (Yield 62%, MS: [M+H] + = 605)

합성예 32: 화합물 32의 제조Synthesis Example 32: Preparation of compound 32

Figure 112021043118015-pat00174
Figure 112021043118015-pat00174

질소 분위기에서 화합물 P(15 g, 43.5 mmol)와 Trz21(16.3 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 16.7 g 제조하였다. (수율 71%, MS: [M+H]+= 541)Compound P (15 g, 43.5 mmol) and Trz21 (16.3 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound 32. (Yield 71%, MS: [M+H] + = 541)

합성예 33: 화합물 33의 제조Synthesis Example 33: Preparation of compound 33

Figure 112021043118015-pat00175
Figure 112021043118015-pat00175

질소 분위기에서 화합물 R(15 g, 43.5 mmol)와 Trz22(17.1 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33을 14.5 g 제조하였다. (수율 60%, MS: [M+H]+= 557)Compound R (15 g, 43.5 mmol) and Trz22 (17.1 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of compound 33. (Yield 60%, MS: [M+H] + = 557)

합성예 34: 화합물 34의 제조Synthesis Example 34: Preparation of compound 34

Figure 112021043118015-pat00176
Figure 112021043118015-pat00176

질소 분위기에서 화합물 R(15 g, 43.5 mmol)와 Trz23(16.3 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 15.7 g 제조하였다. (수율 67%, MS: [M+H]+= 541)Compound R (15 g, 43.5 mmol) and Trz23 (16.3 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.7 g of compound 34. (Yield 67%, MS: [M+H] + = 541)

합성예 35: 화합물 35의 제조Synthesis Example 35: Preparation of compound 35

Figure 112021043118015-pat00177
Figure 112021043118015-pat00177

질소 분위기에서 화합물 S(15 g, 39.5 mmol)와 Trz21(14.1 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subS-1를 16.1 g 제조하였다. (수율 71%, MS: [M+H]+= 575)Compound S (15 g, 39.5 mmol) and Trz21 (14.1 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.1 g of subS-1. (Yield 71%, MS: [M+H] + = 575)

다음으로, 질소 분위기에서 subS-1(15 g, 26.1 mmol)와 sub6(4.7 g, 27.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(7.2 g, 52.2 mmol)를 물 22 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 13.4 g 제조하였다. (수율 77%, MS: [M+H]+= 667)Next, subS-1 (15 g, 26.1 mmol) and sub6 (4.7 g, 27.4 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (7.2 g, 52.2 mmol) was dissolved in 22 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of compound 35. (Yield 77%, MS: [M+H] + = 667)

합성예 36: 화합물 36의 제조Synthesis Example 36: Preparation of compound 36

Figure 112021043118015-pat00178
Figure 112021043118015-pat00178

질소 분위기에서 화합물 S(15 g, 39.5 mmol)와 Trz24(13.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subS-2를 15.3 g 제조하였다. (수율 69%, MS: [M+H]+= 561)Compound S (15 g, 39.5 mmol) and Trz24 (13.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of subS-2. (yield 69%, MS: [M+H] + = 561)

질소 분위기에서 subS-2(15 g, 26.7 mmol)와 sub6(4.8 g, 28.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(7.4 g, 53.5 mmol)를 물 22 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36을 13.8 g 제조하였다. (수율 79%, MS: [M+H]+= 653)In a nitrogen atmosphere, subS-2 (15 g, 26.7 mmol) and sub6 (4.8 g, 28.1 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (7.4 g, 53.5 mmol) was dissolved in 22 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of compound 36. (yield 79%, MS: [M+H] + = 653)

합성예 37: 화합물 37의 제조Synthesis Example 37: Preparation of compound 37

Figure 112021043118015-pat00179
Figure 112021043118015-pat00179

질소 분위기에서 화합물 T(15 g, 43.5 mmol)와 Trz25(20.3 g, 45.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(12 g, 86.9 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 37를 19 g 제조하였다. (수율 70%, MS: [M+H]+= 627)Compound T (15 g, 43.5 mmol) and Trz25 (20.3 g, 45.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12 g, 86.9 mmol) was dissolved in 36 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19 g of compound 37. (Yield 70%, MS: [M+H] + = 627)

합성예 38: 화합물 38의 제조Synthesis Example 38: Preparation of compound 38

Figure 112021043118015-pat00180
Figure 112021043118015-pat00180

질소 분위기에서 화합물 U(15 g, 39.5 mmol)와 Trz26(13.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subU-1를 17.5 g 제조하였다. (수율 79%, MS: [M+H]+= 561)Compound U (15 g, 39.5 mmol) and Trz26 (13.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.5 g of subU-1. (yield 79%, MS: [M+H] + = 561)

다음으로, 질소 분위기에서 subU-1(15 g, 26.7 mmol)와 sub1(3.4 g, 28.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(7.4 g, 53.5 mmol)를 물 22 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 38을 12.2 g 제조하였다. (수율 76%, MS: [M+H]+= 603)Next, subU-1 (15 g, 26.7 mmol) and sub1 (3.4 g, 28.1 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (7.4 g, 53.5 mmol) was dissolved in 22 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of compound 38. (yield 76%, MS: [M+H] + = 603)

합성예 39: 화합물 39의 제조Synthesis Example 39: Preparation of compound 39

Figure 112021043118015-pat00181
Figure 112021043118015-pat00181

질소 분위기에서 화합물 V(15 g, 39.5 mmol)와 Trz6(10.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subV-1를 13.2 g 제조하였다. (수율 69%, MS: [M+H]+= 485)Compound V (15 g, 39.5 mmol) and Trz6 (10.6 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of subV-1. (yield 69%, MS: [M+H] + = 485)

다음으로, 질소 분위기에서 subV-1(15 g, 30.9 mmol)와 sub7(7.4 g, 32.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.6 g, 61.9 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 39를 12.7 g 제조하였다. (수율 65%, MS: [M+H]+= 633)Next, subV-1 (15 g, 30.9 mmol) and sub7 (7.4 g, 32.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 61.9 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.7 g of compound 39. (Yield 65%, MS: [M+H] + = 633)

합성예 40: 화합물 40의 제조Synthesis Example 40: Preparation of compound 40

Figure 112021043118015-pat00182
Figure 112021043118015-pat00182

질소 분위기에서 화합물 U(15 g, 39.5 mmol)와 Trz6(10.6 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subU-2를 14.3 g 제조하였다. (수율 75%, MS: [M+H]+= 485)In a nitrogen atmosphere, compound U (15 g, 39.5 mmol) and Trz6 (10.6 g, 39.5 mmol) were added to 300 mL of THF, stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of subU-2. (yield 75%, MS: [M+H] + = 485)

다음으로, 질소 분위기에서 subU-2(15 g, 30.9 mmol)와 sub8(7.2 g, 32.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(8.6 g, 61.9 mmol)를 물 26 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40을 14.1 g 제조하였다. (수율 73%, MS: [M+H]+= 627)Next, subU-2 (15 g, 30.9 mmol) and sub8 (7.2 g, 32.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 61.9 mmol) was dissolved in 26 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.1 g of compound 40. (Yield 73%, MS: [M+H] + = 627)

합성예 41: 화합물 41의 제조Synthesis Example 41: Preparation of compound 41

Figure 112021043118015-pat00183
Figure 112021043118015-pat00183

질소 분위기에서 화합물 U(15 g, 39.5 mmol)와 Trz5(14.8 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(10.9 g, 79 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subU-3를 15.2 g 제조하였다. (수율 65%, MS: [M+H]+= 591)Compound U (15 g, 39.5 mmol) and Trz5 (14.8 g, 39.5 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.9 g, 79 mmol) was dissolved in 33 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of subU-3. (Yield 65%, MS: [M+H] + = 591)

다음으로, 질소 분위기에서 subU-3(15 g, 25.4 mmol)와 sub1(3.2 g, 26.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 potassium carbonate(7 g, 50.8 mmol)를 물 21 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41을 12.2 g 제조하였다. (수율 76%, MS: [M+H]+= 633)Next, subU-3 (15 g, 25.4 mmol) and sub1 (3.2 g, 26.6 mmol) were added to 300 mL of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (7 g, 50.8 mmol) was dissolved in 21 mL of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of compound 41. (Yield 76%, MS: [M+H] + = 633)

실시예 1Example 1

ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. At this time, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing the ITO for 30 minutes, ultrasonic washing was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성하였다. On the thus prepared ITO transparent electrode, the following HI-1 compound was formed as a hole injection layer to a thickness of 1150 Å, but the following A-1 compound was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Then, the following EB-1 compound was vacuum-deposited to a thickness of 150 Å on the hole transport layer to form an electron blocking layer.

이어서, 상기 전자억제층 위에 상기 합성예 1에서 제조한 화합물 1과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성하였다. Next, the compound 1 prepared in Synthesis Example 1 and the compound Dp-7 below were vacuum-deposited in a weight ratio of 98:2 on the electron suppression layer to form a red light emitting layer having a thickness of 400 Å.

상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. A hole blocking layer was formed by vacuum-depositing the following HB-1 compound to a thickness of 30 Å on the light emitting layer. Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.

Figure 112021043118015-pat00184
Figure 112021043118015-pat00184

상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.In the above process, the deposition rate of organic material was maintained at 0.4~0.7Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3Å/sec, and the deposition rate of aluminum was maintained at 2Å/sec, and the vacuum degree during deposition was 2×10 -7 ~ By maintaining 5×10 -6 torr, an organic light emitting diode was manufactured.

실시예 2 내지 실시예 24Examples 2 to 24

실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.

비교예 1 내지 비교예 12Comparative Examples 1 to 12

실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.

Figure 112021043118015-pat00185
Figure 112021043118015-pat00185

실험예Experimental example

상기 실시예 1 내지 실시예 24 및 비교예 1 내지 비교예 12에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2)하고 그 결과를 하기 표1애 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.When a current was applied to the organic light emitting devices prepared in Examples 1 to 24 and Comparative Examples 1 to 12, voltage and efficiency were measured (15 mA/cm 2 ), and the results are shown in Table 1 below. . The lifetime T95 means the time required for the luminance to decrease from the initial luminance (6000 nit) to 95%.

구분division 물질
(발광층)
matter
(Light emitting layer)
구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실시예 1Example 1 화합물 1compound 1 3.853.85 20.320.3 143143 적색Red 실시예 2Example 2 화합물 2compound 2 3.833.83 20.920.9 139139 적색Red 실시예 3Example 3 화합물 4compound 4 3.923.92 18.318.3 147147 적색Red 실시예 4Example 4 화합물 6compound 6 3.773.77 19.719.7 143143 적색Red 실시예 5Example 5 화합물 8compound 8 3.833.83 18.018.0 150150 적색Red 실시예 6Example 6 화합물 9compound 9 3.723.72 20.320.3 165165 적색Red 실시예 7Example 7 화합물 10compound 10 3.783.78 21.021.0 163163 적색Red 실시예 8Example 8 화합물 11compound 11 3.843.84 18.918.9 150150 적색Red 실시예 9Example 9 화합물 16compound 16 3.913.91 20.520.5 161161 적색Red 실시예 10Example 10 화합물 17compound 17 3.823.82 20.420.4 164164 적색Red 실시예 11Example 11 화합물 18compound 18 3.863.86 18.818.8 157157 적색Red 실시예 12Example 12 화합물 19compound 19 3.713.71 21.121.1 165165 적색Red 실시예 13Example 13 화합물 23compound 23 3.763.76 19.319.3 144144 적색Red 실시예 14Example 14 화합물 24compound 24 3.703.70 21.521.5 171171 적색Red 실시예 15Example 15 화합물 27compound 27 3.733.73 20.820.8 168168 적색Red 실시예 16Example 16 화합물 29compound 29 3.803.80 18.618.6 165165 적색Red 실시예 17Example 17 화합물 30compound 30 3.903.90 17.817.8 148148 적색Red 실시예 18Example 18 화합물 31compound 31 3.843.84 19.219.2 135135 적색Red 실시예 19Example 19 화합물 33compound 33 3.923.92 19.519.5 158158 적색Red 실시예 20Example 20 화합물 35compound 35 3.753.75 20.420.4 152152 적색Red 실시예 21Example 21 화합물 36compound 36 3.873.87 18.518.5 161161 적색Red 실시예 22Example 22 화합물 37compound 37 3.843.84 19.119.1 153153 적색Red 실시예 23Example 23 화합물 39compound 39 3.773.77 20.020.0 187187 적색Red 실시예 24Example 24 화합물 40compound 40 3.713.71 19.319.3 179179 적색Red 비교예 1Comparative Example 1 C-1C-1 4.244.24 17.017.0 104104 적색Red 비교예 2Comparative Example 2 C-2C-2 4.534.53 15.115.1 5252 적색Red 비교예 3Comparative Example 3 C-3C-3 4.284.28 16.216.2 8989 적색Red 비교예 4Comparative Example 4 C-4C-4 4.064.06 17.417.4 117117 적색Red 비교예 5Comparative Example 5 C-5C-5 4.354.35 16.316.3 9191 적색Red 비교예 6Comparative Example 6 C-6C-6 4.054.05 17.117.1 108108 적색Red 비교예 7Comparative Example 7 C-7C-7 4.094.09 16.616.6 9494 적색Red 비교예 8Comparative Example 8 C-8C-8 4.174.17 16.016.0 7575 적색Red 비교예 9Comparative Example 9 C-9C-9 4.084.08 17.117.1 9898 적색Red 비교예 10Comparative Example 10 C-10C-10 4.174.17 16.316.3 7979 적색Red 비교예 11Comparative Example 11 C-11C-11 4.224.22 15.815.8 5454 적색Red 비교예 12Comparative Example 12 C-12C-12 4.354.35 13.213.2 1717 적색Red

상기 표 1에 나타난 바와 같이, 발광층의 호스트 물질로 상기 화학식 1로 표시되는 화합물을 사용한 실시예의 유기 발광 소자는, 상기 화학식 1에 포함되지 않는 화합물을 사용한 비교예의 유기 발광 소자에 비하여 우수한 발광 효율 및 현저히 향상된 수명 특성을 나타내었다. As shown in Table 1, the organic light emitting device of the Example using the compound represented by Formula 1 as the host material of the light emitting layer has superior luminous efficiency and It exhibited significantly improved lifespan characteristics.

구체적으로, 실시예에 따른 소자는, 비교예 화합물 C-1 내지 C-12를 발광층의 호스트 물질로 채용한 비교예의 소자 대비 현저히 낮아진 구동 전압 및 향상된 효율 특성을 나타낸 것으로 보아, 호스트 물질인 상기 화학식 1로 표시되는 화합물에서 적색 도판트로의 에너지 전달이 효과적으로 이루어졌음을 알 수 있다. 또한, 상기 실시예의 유기 발광 소자가 효율뿐 아니라 수명 특성도 향상된 것으로 보아, 상기 화학식 1로 표시되는 화합물이 전자와 정공에 대한 안정도 또한 높은 것으로 판단된다. 따라서, 유기 발광 소자의 호스트 물질로 상기 화학식 1로 표시되는 물질을 사용하는 경우, 유기 발광 소자의 구동 전압, 발광 효율 및 수명 특성을 향상시킬 수 있음을 확인할 수 있었다. 이는 일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때 실시예의 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 나타낸다고 볼 수 있다.Specifically, the device according to the embodiment showed significantly lower driving voltage and improved efficiency characteristics compared to the device of Comparative Example employing Comparative Example compounds C-1 to C-12 as the host material of the light emitting layer. It can be seen that energy transfer from the compound represented by 1 to the red dopant was effectively achieved. In addition, since the organic light emitting device of the above embodiment has improved efficiency as well as lifetime characteristics, it is determined that the compound represented by Formula 1 has high stability for electrons and holes. Therefore, it was confirmed that when the material represented by Formula 1 is used as the host material of the organic light emitting device, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device can be improved. Considering that in general, the luminous efficiency and lifespan characteristics of the organic light emitting device have a trade-off relationship, it can be seen that the organic light emitting device of the embodiment exhibits significantly improved device characteristics compared to the device of the comparative example.

1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 정공저지층
9: 전자주입 및 수송층
1: Substrate 2: Anode
3: light emitting layer 4: cathode
5: hole injection layer 6: hole transport layer
7: electron blocking layer 8: hole blocking layer
9: Electron injection and transport layer

Claims (13)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112022032639135-pat00186

상기 화학식 1에서,
Y1 내지 Y9 중 하나는 N이고, 나머지는 각각 독립적으로, C-H, 또는 C-D이거나; 또는
Y1 내지 Y9 중 하나는 N이고, 나머지 중 하나는 C-L'―R이고, 그 외 나머지는 각각 독립적으로, C-H, 또는 C-D이고,
여기서, L'는 단일결합; 비치환되거나, 또는 중수소로 치환된 페닐렌; 또는 비치환되거나, 또는 중수소로 치환된 나프틸렌이고,
R은 하기로 구성되는 군으로부터 선택되는 어느 하나이고,
Figure 112022032639135-pat00284

상기에서,
X1 및 X2는 각각 독립적으로, O, S, 또는 N(페닐)이고,
Z는 중수소(D)이고,
a는 각각 독립적으로, 0 내지 5의 정수이고,
b는 각각 독립적으로, 0 내지 4의 정수이고,
c는 각각 독립적으로, 0 내지 7의 정수이고,
d는 각각 독립적으로, 0 내지 6의 정수이고,
e는 각각 독립적으로, 0 내지 3의 정수이고,
L은 단일결합; 또는 비치환되거나, 또는 중수소로 치환된 C6-20 아릴렌이고,
L1 및 L2는 각각 독립적으로, 단일결합; 또는 비치환되거나, 또는 중수소로 치환된 C6-20 아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로, C6-20 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 1개의 헤테로원자를 포함하는 C2-20 헤테로아릴이고,
여기서, Ar1 및 Ar2는 비치환되거나, 또는 중수소, C1-10 알킬 및 C6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환된다.
A compound represented by the following formula (1):
[Formula 1]
Figure 112022032639135-pat00186

In Formula 1,
one of Y 1 to Y 9 is N, and each other is independently CH, or CD; or
One of Y 1 to Y 9 is N, the other is C-L′-R, and the others are each independently CH, or CD,
Here, L' is a single bond; phenylene unsubstituted or substituted with deuterium; Or unsubstituted, or naphthylene substituted with deuterium,
R is any one selected from the group consisting of,
Figure 112022032639135-pat00284

above,
X 1 and X 2 are each independently O, S, or N (phenyl),
Z is deuterium (D),
a is each independently an integer of 0 to 5,
b is each independently an integer of 0 to 4,
c is each independently an integer from 0 to 7,
d is each independently an integer from 0 to 6,
e is each independently an integer from 0 to 3,
L is a single bond; Or unsubstituted or substituted with deuterium C 6-20 arylene,
L 1 and L 2 are each independently, a single bond; Or unsubstituted or substituted with deuterium C 6-20 arylene,
Ar 1 and Ar 2 are each independently, C 6-20 aryl; or C 2-20 heteroaryl comprising one heteroatom selected from the group consisting of N, O and S;
Here, Ar 1 and Ar 2 are unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl.
제1항에 있어서,
Y1 내지 Y9 중 하나는 N이고, 나머지는 모두 C-H이거나;
Y1 내지 Y9 중 하나는 N이고, 나머지는 모두 C-D이거나;
Y1 내지 Y9 중 하나는 N이고, 나머지 중 하나는 C-L'―R이고, 그 외 나머지는 모두 C-H이거나; 또는
Y 중 하나는 N이고, 나머지 중 하나는 C-L'―R이고, 그 외 나머지는 모두 C-D인,
화합물.
The method of claim 1,
one of Y 1 to Y 9 is N and all others are CH;
one of Y 1 to Y 9 is N and all others are CD;
one of Y 1 to Y 9 is N, the other is C-L′-R, and all others are CH; or
one of Y is N, one of the others is C-L'-R, all others are CD;
compound.
삭제delete 제1항에 있어서,
L'는 단일결합,
Figure 112022032639135-pat00285
, 또는
Figure 112022032639135-pat00286
인,
화합물.
The method of claim 1,
L' is a single bond,
Figure 112022032639135-pat00285
, or
Figure 112022032639135-pat00286
sign,
compound.
제1항에 있어서,
R은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112022032639135-pat00287
.
The method of claim 1,
R is any one selected from the group consisting of
compound:
Figure 112022032639135-pat00287
.
제1항에 있어서,
L은 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112021043118015-pat00188

상기에서,
D는 중수소를 의미하고,
f는 각각 독립적으로, 0 내지 4의 정수이고,
g는 각각 독립적으로, 0 내지 6의 정수이다.
According to claim 1,
L is a single bond, or any one selected from the group consisting of
compound:
Figure 112021043118015-pat00188

above,
D means deuterium,
f is each independently an integer from 0 to 4,
g is each independently an integer from 0 to 6.
제1항에 있어서,
L1 및 L2는 각각 독립적으로, 단일결합; 비치환되거나, 또는 중수소로 치환된 페닐렌; 비치환되거나, 또는 중수소로 치환된 비페닐디일; 또는 비치환되거나, 또는 중수소로 치환된 나프틸렌인,
화합물.
According to claim 1,
L 1 and L 2 are each independently, a single bond; phenylene unsubstituted or substituted with deuterium; biphenyldiyl unsubstituted or substituted with deuterium; or naphthylene unsubstituted or substituted with deuterium;
compound.
제1항에 있어서,
Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 벤조나프토티오페닐, 카바졸일, 또는 벤조카바졸일이고,
여기서, Ar1 및 Ar2는 비치환되거나, 또는 중수소, C1-10 알킬 및 C6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환되는,
화합물.
The method of claim 1,
Ar 1 and Ar 2 are each independently, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, fluorenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, benzonaphthothiophenyl , carbazolyl, or benzocarbazolyl,
wherein Ar 1 and Ar 2 are unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl,
compound.
제1항에 있어서,
Ar1 및 Ar2 중 하나는 페닐, 비페닐릴, 또는 나프틸인,
화합물.
The method of claim 1,
one of Ar 1 and Ar 2 is phenyl, biphenylyl, or naphthyl;
compound.
제1항에 있어서,
상기 화합물은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시되는,
화합물:
[화학식 1-1]
Figure 112021043118015-pat00189

상기 화학식 1-1에서,
Q1 내지 Q9는 각각 독립적으로, N 또는 C-H이고, 단, Q1 내지 Q9 중 하나는 N이고,
L, L1, L2, Ar1 및 Ar2는 제1항에서 정의한 바와 같고,
[화학식 1-2]
Figure 112021043118015-pat00190

상기 화학식 1-2에서,
Q1 내지 Q6, Q8 및 Q9는 각각 독립적으로, N 또는 C-H이고, 단, Q1 내지 Q6, Q8 및 Q9 중 하나는 N이고,
R, L, L1, L2, Ar1 및 Ar2는 제1항에서 정의한 바와 같고,
[화학식 1-3]
Figure 112021043118015-pat00191

상기 화학식 1-3에서,
Q1 내지 Q7 및 Q9는 각각 독립적으로, N 또는 C-H이고, 단, Q1 내지 Q7 및 Q9 중 하나는 N이고,
R, L, L1, L2, Ar1 및 Ar2는 제1항에서 정의한 바와 같다.
The method of claim 1,
The compound is represented by any one of the following formulas 1-1 to 1-3,
compound:
[Formula 1-1]
Figure 112021043118015-pat00189

In Formula 1-1,
Q 1 To Q 9 are each independently N or CH, provided that one of Q 1 To Q 9 is N,
L, L 1 , L 2 , Ar 1 and Ar 2 are as defined in claim 1,
[Formula 1-2]
Figure 112021043118015-pat00190

In Formula 1-2,
Q 1 to Q 6 , Q 8 and Q 9 are each independently N or CH, provided that one of Q 1 to Q 6 , Q 8 and Q 9 is N,
R, L, L 1 , L 2 , Ar 1 and Ar 2 are as defined in claim 1,
[Formula 1-3]
Figure 112021043118015-pat00191

In Formula 1-3,
Q 1 to Q 7 and Q 9 are each independently N or CH, provided that one of Q 1 to Q 7 and Q 9 is N,
R, L, L 1 , L 2 , Ar 1 and Ar 2 are as defined in claim 1.
제1항에 있어서,
상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:

Figure 112021043118015-pat00192

Figure 112021043118015-pat00193

Figure 112021043118015-pat00194

Figure 112021043118015-pat00195

Figure 112021043118015-pat00196

Figure 112021043118015-pat00197

Figure 112021043118015-pat00198

Figure 112021043118015-pat00199

Figure 112021043118015-pat00200

Figure 112021043118015-pat00201

Figure 112021043118015-pat00202

Figure 112021043118015-pat00203

Figure 112021043118015-pat00204

Figure 112021043118015-pat00205

Figure 112021043118015-pat00206

Figure 112021043118015-pat00207

Figure 112021043118015-pat00208

Figure 112021043118015-pat00209

Figure 112021043118015-pat00210

Figure 112021043118015-pat00211

Figure 112021043118015-pat00212


Figure 112021043118015-pat00213

Figure 112021043118015-pat00214

Figure 112021043118015-pat00215

Figure 112021043118015-pat00216

Figure 112021043118015-pat00217

Figure 112021043118015-pat00218

Figure 112021043118015-pat00219

Figure 112021043118015-pat00220

Figure 112021043118015-pat00221

Figure 112021043118015-pat00222

Figure 112021043118015-pat00223

Figure 112021043118015-pat00224

Figure 112021043118015-pat00225

Figure 112021043118015-pat00226

Figure 112021043118015-pat00227

Figure 112021043118015-pat00228

Figure 112021043118015-pat00229

Figure 112021043118015-pat00230

Figure 112021043118015-pat00231

Figure 112021043118015-pat00232

Figure 112021043118015-pat00233

Figure 112021043118015-pat00234

Figure 112021043118015-pat00235

Figure 112021043118015-pat00236

Figure 112021043118015-pat00237

Figure 112021043118015-pat00238

Figure 112021043118015-pat00239

Figure 112021043118015-pat00240

Figure 112021043118015-pat00241

Figure 112021043118015-pat00242

Figure 112021043118015-pat00243

Figure 112021043118015-pat00244

Figure 112021043118015-pat00245

Figure 112021043118015-pat00246

Figure 112021043118015-pat00247

Figure 112021043118015-pat00248

Figure 112021043118015-pat00249

Figure 112021043118015-pat00250

Figure 112021043118015-pat00251

Figure 112021043118015-pat00252

Figure 112021043118015-pat00253

Figure 112021043118015-pat00254

Figure 112021043118015-pat00255

Figure 112021043118015-pat00256

Figure 112021043118015-pat00257

Figure 112021043118015-pat00258

Figure 112021043118015-pat00259

Figure 112021043118015-pat00260

Figure 112021043118015-pat00261

Figure 112021043118015-pat00262

Figure 112021043118015-pat00263

Figure 112021043118015-pat00264

Figure 112021043118015-pat00265

Figure 112021043118015-pat00266

Figure 112021043118015-pat00267

Figure 112021043118015-pat00268

Figure 112021043118015-pat00269

Figure 112021043118015-pat00270

Figure 112021043118015-pat00271

Figure 112021043118015-pat00272

Figure 112021043118015-pat00273

Figure 112021043118015-pat00274

Figure 112021043118015-pat00275

Figure 112021043118015-pat00276

Figure 112021043118015-pat00277

Figure 112021043118015-pat00278

Figure 112021043118015-pat00279

Figure 112021043118015-pat00280

Figure 112021043118015-pat00281

.
The method of claim 1,
The compound is any one selected from the group consisting of the following compounds,
compound:

Figure 112021043118015-pat00192

Figure 112021043118015-pat00193

Figure 112021043118015-pat00194

Figure 112021043118015-pat00195

Figure 112021043118015-pat00196

Figure 112021043118015-pat00197

Figure 112021043118015-pat00198

Figure 112021043118015-pat00199

Figure 112021043118015-pat00200

Figure 112021043118015-pat00201

Figure 112021043118015-pat00202

Figure 112021043118015-pat00203

Figure 112021043118015-pat00204

Figure 112021043118015-pat00205

Figure 112021043118015-pat00206

Figure 112021043118015-pat00207

Figure 112021043118015-pat00208

Figure 112021043118015-pat00209

Figure 112021043118015-pat00210

Figure 112021043118015-pat00211

Figure 112021043118015-pat00212


Figure 112021043118015-pat00213

Figure 112021043118015-pat00214

Figure 112021043118015-pat00215

Figure 112021043118015-pat00216

Figure 112021043118015-pat00217

Figure 112021043118015-pat00218

Figure 112021043118015-pat00219

Figure 112021043118015-pat00220

Figure 112021043118015-pat00221

Figure 112021043118015-pat00222

Figure 112021043118015-pat00223

Figure 112021043118015-pat00224

Figure 112021043118015-pat00225

Figure 112021043118015-pat00226

Figure 112021043118015-pat00227

Figure 112021043118015-pat00228

Figure 112021043118015-pat00229

Figure 112021043118015-pat00230

Figure 112021043118015-pat00231

Figure 112021043118015-pat00232

Figure 112021043118015-pat00233

Figure 112021043118015-pat00234

Figure 112021043118015-pat00235

Figure 112021043118015-pat00236

Figure 112021043118015-pat00237

Figure 112021043118015-pat00238

Figure 112021043118015-pat00239

Figure 112021043118015-pat00240

Figure 112021043118015-pat00241

Figure 112021043118015-pat00242

Figure 112021043118015-pat00243

Figure 112021043118015-pat00244

Figure 112021043118015-pat00245

Figure 112021043118015-pat00246

Figure 112021043118015-pat00247

Figure 112021043118015-pat00248

Figure 112021043118015-pat00249

Figure 112021043118015-pat00250

Figure 112021043118015-pat00251

Figure 112021043118015-pat00252

Figure 112021043118015-pat00253

Figure 112021043118015-pat00254

Figure 112021043118015-pat00255

Figure 112021043118015-pat00256

Figure 112021043118015-pat00257

Figure 112021043118015-pat00258

Figure 112021043118015-pat00259

Figure 112021043118015-pat00260

Figure 112021043118015-pat00261

Figure 112021043118015-pat00262

Figure 112021043118015-pat00263

Figure 112021043118015-pat00264

Figure 112021043118015-pat00265

Figure 112021043118015-pat00266

Figure 112021043118015-pat00267

Figure 112021043118015-pat00268

Figure 112021043118015-pat00269

Figure 112021043118015-pat00270

Figure 112021043118015-pat00271

Figure 112021043118015-pat00272

Figure 112021043118015-pat00273

Figure 112021043118015-pat00274

Figure 112021043118015-pat00275

Figure 112021043118015-pat00276

Figure 112021043118015-pat00277

Figure 112021043118015-pat00278

Figure 112021043118015-pat00279

Figure 112021043118015-pat00280

Figure 112021043118015-pat00281

.
제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항, 제2항 및 제4항 내지 제11항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers is any one of claims 1, 2, and 4 to 11. An organic light-emitting device comprising the compound according to one of the claims.
제12항에 있어서,
상기 화합물을 포함하는 유기물층은 발광층인,
유기 발광 소자.
13. The method of claim 12,
The organic material layer containing the compound is a light emitting layer,
organic light emitting device.
KR1020210048072A 2020-04-14 2021-04-13 Novel compound and organic light emitting device comprising the same KR102398016B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/640,465 US20220402928A1 (en) 2020-04-14 2021-04-14 Novel compound and organic light emitting device comprising the same
CN202180005067.2A CN114341140A (en) 2020-04-14 2021-04-14 Novel compound and organic light emitting device comprising the same
PCT/KR2021/004692 WO2021210910A1 (en) 2020-04-14 2021-04-14 Novel compound and organic light emitting device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200045515 2020-04-14
KR1020200045515 2020-04-14

Publications (2)

Publication Number Publication Date
KR20210127635A KR20210127635A (en) 2021-10-22
KR102398016B1 true KR102398016B1 (en) 2022-05-16

Family

ID=78275653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210048072A KR102398016B1 (en) 2020-04-14 2021-04-13 Novel compound and organic light emitting device comprising the same

Country Status (1)

Country Link
KR (1) KR102398016B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
JP6157617B2 (en) * 2013-06-11 2017-07-05 出光興産株式会社 Material for organic electroluminescence element, organic electroluminescence element and electronic device using the same
JP2019521995A (en) * 2016-06-22 2019-08-08 出光興産株式会社 Benzofuro- or benzothienoquinoline substituted at specific positions for organic light-emitting diodes
KR101801003B1 (en) * 2016-08-23 2017-11-24 주식회사 두산 Organic compounds and organic electro luminescence device comprising the same
KR102154948B1 (en) * 2018-06-28 2020-09-10 에스케이머티리얼즈 주식회사 Compound, organic electroluminescent device and display device

Also Published As

Publication number Publication date
KR20210127635A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
KR102411143B1 (en) Novel compound and organic light emitting device comprising the same
KR20210047817A (en) Novel compound and organic light emitting device comprising the same
KR20210036304A (en) Novel compound and organic light emitting device comprising the same
KR102398015B1 (en) Novel compound and organic light emitting device comprising the same
KR102511932B1 (en) Novel compound and organic light emitting device comprising the same
KR102342249B1 (en) Novel compound and organic light emitting device comprising the same
KR102441472B1 (en) Novel compound and organic light emitting device comprising the same
KR102462985B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102424910B1 (en) Novel compound and organic light emitting device comprising the same
KR102437747B1 (en) Novel compound and organic light emitting device comprising the same
KR102437746B1 (en) Novel compound and organic light emitting device comprising the same
KR102412131B1 (en) Novel compound and organic light emitting device comprising the same
KR20210113959A (en) Novel compound and organic light emitting device comprising the same
KR20210089596A (en) Organic light emitting device
KR20210006867A (en) Novel compound and organic light emitting device comprising the same
KR20210012958A (en) Novel compound and organic light emitting device comprising the same
KR20210115596A (en) Novel compound and organic light emitting device comprising the same
KR102398016B1 (en) Novel compound and organic light emitting device comprising the same
KR102342248B1 (en) Novel compound and organic light emitting device comprising the same
KR102463816B1 (en) Novel compound and organic light emitting device comprising the same
KR102456678B1 (en) Novel compound and organic light emitting device comprising the same
KR102463815B1 (en) Novel compound and organic light emitting device comprising the same
KR102465241B1 (en) Novel compound and organic light emitting device comprising the same
KR102462986B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20210097649A (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant