KR20210127282A - Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network - Google Patents

Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network Download PDF

Info

Publication number
KR20210127282A
KR20210127282A KR1020200044639A KR20200044639A KR20210127282A KR 20210127282 A KR20210127282 A KR 20210127282A KR 1020200044639 A KR1020200044639 A KR 1020200044639A KR 20200044639 A KR20200044639 A KR 20200044639A KR 20210127282 A KR20210127282 A KR 20210127282A
Authority
KR
South Korea
Prior art keywords
sidelink
transmission
terminal
reception
resource
Prior art date
Application number
KR1020200044639A
Other languages
Korean (ko)
Inventor
박규진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020200044639A priority Critical patent/KR20210127282A/en
Publication of KR20210127282A publication Critical patent/KR20210127282A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • H04W72/1242
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • H04W72/1257
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Abstract

The present disclosure provides a method for performing an operation having a higher priority based on a predetermined priority when sidelink transmission or reception and uplink transmission overlap in a time domain in a terminal, in a method for sidelink transmission and reception of a terminal.

Description

차세대 무선망에서 단말의 사이드링크 송수신 방법 및 장치{METHOD AND APPARATUS FOR SIDELINK TRANSMISSION AND RECEPTION OF TERMINAL IN A NEXT GENERATION WIRELESS NETWORK}A method and apparatus for transmitting and receiving a sidelink of a terminal in a next-generation wireless network

본 개시는 5G 무선 액세스 기반의 단말의 사이드링크 송수신 방법 및 장치에 관한 것이다. The present disclosure relates to a method and apparatus for transmitting and receiving a sidelink of a 5G radio access-based terminal.

일 측면에서, 본 실시예들은 단말의 사이드링크 송수신 방법에 있어서, 단말에서 사이드링크 전송 또는 수신과 상향링크 전송이 시간 영역에서 중첩(overlap)되는 경우, 소정의 우선 순위에 기초하여 우선 순위가 더 높은 동작을 수행하는 방법을 제공할 수 있다.In one aspect, the present embodiments, in the sidelink transmission and reception method of the terminal, when the sidelink transmission or reception and the uplink transmission in the terminal overlap in the time domain, the priority is further based on a predetermined priority It can provide a way to perform a high action.

도 1은 본 실시예가 적용될 수 있는 NR 무선 통신 시스템에 대한 구조를 간략하게 도시한 도면이다.
도 2는 본 실시예가 적용될 수 있는 NR 시스템에서의 프레임 구조를 설명하기 위한 도면이다.
도 3은 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 자원 그리드를 설명하기 위한 도면이다.
도 4는 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 대역폭 파트를 설명하기 위한 도면이다.
도 5는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 동기 신호 블록을 예시적으로 도시한 도면이다.
도 6는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 CORESET에 대해서 설명하기 위한 도면이다.
도 8은 종래 사이드링크를 위한 DMRS 구조와 본 실시예가 적용될 수 있는 사이드링크를 위한 DMRS 구조를 예를 들어 설명하기 위한 도면이다.
도 9는 V2X 통신을 위한 다양한 시나리오를 설명하기 위한 도면이다.
도 10은 사이드링크 통신을 수행하는 단말 1(UE1), 단말 2(UE2) 및 이들이 사용하는 사이드링크 리소스 풀의 예를 도시한 도면이다.
도 11은 V2X에서 HARQ 피드백 정보를 번들링하여 전송하는 방법을 설명하기 위한 도면이다.
도 12는 V2X와 관련된 PSCCH와 연관된 PSSCH의 다중화의 예를 도시한 도면이다.
도 13은 Example of symbol level alignment among different SCS를 설명하기 위한 도면이다 .
도 14는 Bandwidth part에 대한 개념적 예시를 설명하기 위한 도면이다.
도 15는 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 16은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
1 is a diagram schematically illustrating a structure of an NR wireless communication system to which this embodiment can be applied.
2 is a diagram for explaining a frame structure in an NR system to which this embodiment can be applied.
3 is a diagram for explaining a resource grid supported by a radio access technology to which this embodiment can be applied.
4 is a diagram for explaining a bandwidth part supported by a radio access technology to which the present embodiment can be applied.
5 is a diagram exemplarily illustrating a synchronization signal block in a radio access technology to which the present embodiment can be applied.
6 is a diagram for explaining a random access procedure in a radio access technology to which the present embodiment can be applied.
7 is a diagram for explaining CORESET.
8 is a diagram for explaining, for example, a DMRS structure for a conventional sidelink and a DMRS structure for a sidelink to which this embodiment can be applied.
9 is a diagram for explaining various scenarios for V2X communication.
10 is a diagram illustrating an example of terminal 1 (UE1) and terminal 2 (UE2) performing sidelink communication and a sidelink resource pool used by them.
11 is a diagram for explaining a method of bundling and transmitting HARQ feedback information in V2X.
12 is a diagram illustrating an example of multiplexing PSSCH associated with PSCCH associated with V2X.
13 is a diagram for explaining Example of symbol level alignment among different SCS.
14 is a diagram for explaining a conceptual example of a bandwidth part.
15 is a diagram showing the configuration of a base station according to another embodiment.
16 is a diagram showing the configuration of a user terminal according to another embodiment.

이하, 본 개시의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성 요소들에 참조부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 실시예들을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 기술 사상의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다. 본 명세서 상에서 언급된 "포함한다", "갖는다", "이루어진다" 등이 사용되는 경우 "~만"이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별한 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함할 수 있다.Hereinafter, some embodiments of the present disclosure will be described in detail with reference to exemplary drawings. In adding reference numerals to components of each drawing, the same components may have the same reference numerals as much as possible even though they are indicated in different drawings. In addition, in describing the present embodiments, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present technical idea, the detailed description thereof may be omitted. When "includes", "having", "consisting of", etc. mentioned in this specification are used, other parts may be added unless "only" is used. When a component is expressed in a singular, it may include a case in which the plural is included unless otherwise explicitly stated.

또한, 본 개시의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. In addition, in describing the components of the present disclosure, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the elements from other elements, and the essence, order, order, or number of the elements are not limited by the terms.

구성 요소들의 위치 관계에 대한 설명에 있어서, 둘 이상의 구성 요소가 "연결", "결합" 또는 "접속" 등이 된다고 기재된 경우, 둘 이상의 구성 요소가 직접적으로 "연결", "결합" 또는 "접속" 될 수 있지만, 둘 이상의 구성 요소와 다른 구성 요소가 더 "개재"되어 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다. 여기서, 다른 구성 요소는 서로 "연결", "결합" 또는 "접속" 되는 둘 이상의 구성 요소 중 하나 이상에 포함될 수도 있다. In the description of the positional relationship of the components, when two or more components are described as being "connected", "coupled" or "connected", the two or more components are directly "connected", "coupled" or "connected" ", but it will be understood that two or more components and other components may be further "interposed" and "connected," "coupled," or "connected." Here, other components may be included in one or more of two or more components that are “connected”, “coupled” or “connected” to each other.

구성 요소들이나, 동작 방법이나 제작 방법 등과 관련한 시간적 흐름 관계에 대한 설명에 있어서, 예를 들어, "~후에", "~에 이어서", "~다음에", "~전에" 등으로 시간적 선후 관계 또는 흐름적 선후 관계가 설명되는 경우, "바로" 또는 "직접"이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In the description of the temporal flow relation related to the components, the operation method, the manufacturing method, etc., for example, a temporal precedence relationship such as "after", "after", "after", "before", etc. Or, when a flow precedence relationship is described, it may include a case where it is not continuous unless "immediately" or "directly" is used.

한편, 구성 요소에 대한 수치 또는 그 대응 정보(예: 레벨 등)가 언급된 경우, 별도의 명시적 기재가 없더라도, 수치 또는 그 대응 정보는 각종 요인(예: 공정상의 요인, 내부 또는 외부 충격, 노이즈 등)에 의해 발생할 수 있는 오차 범위를 포함하는 것으로 해석될 수 있다.On the other hand, when numerical values or corresponding information (eg, level, etc.) for a component are mentioned, even if there is no explicit description, the numerical value or the corresponding information is based on various factors (eg, process factors, internal or external shock, Noise, etc.) may be interpreted as including an error range that may occur.

본 명세서에서의 무선 통신 시스템은 음성, 데이터 패킷 등과 같은 다양한 통신 서비스를 무선자원을 이용하여 제공하기 위한 시스템을 의미하며, 단말과 기지국 또는 코어 네트워크 등을 포함할 수 있다. A wireless communication system in the present specification refers to a system for providing various communication services such as voice and data packets using radio resources, and may include a terminal, a base station, or a core network.

이하에서 개시하는 본 실시예들은 다양한 무선 접속 기술을 사용하는 무선 통신 시스템에 적용될 수 있다. 예를 들어, 본 실시예들은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(timedivision multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(singlecarrier frequency division multiple access) 또는 NOMA(non-orthogonal multiple access) 등과 같은 다양한 다양한 무선 접속 기술에 적용될 수 있다. 또한, 무선 접속 기술은 특정 접속 기술을 의미하는 것뿐만 아니라 3GPP, 3GPP2, WiFi, Bluetooth, IEEE, ITU 등 다양한 통신 협의기구에서 제정하는 각 세대 별 통신 기술을 의미할 수 있다. 예를 들어, CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced datarates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical andelectronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTSterrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. 이와 같이 본 실시예들은 현재 개시되거나 상용화된 무선 접속 기술에 적용될 수 있고, 현재 개발 중이거나 향후 개발될 무선 접속 기술에 적용될 수도 있다. The present embodiments disclosed below may be applied to a wireless communication system using various wireless access technologies. For example, the present embodiments are CDMA (code division multiple access), FDMA (frequency division multiple access), TDMA (time division multiple access), OFDMA (orthogonal frequency division multiple access), SC-FDMA (single carrier frequency division multiple access) Alternatively, it may be applied to various various radio access technologies such as non-orthogonal multiple access (NOMA). In addition, the wireless access technology may mean not only a specific access technology, but also a communication technology for each generation established by various communication consultation organizations such as 3GPP, 3GPP2, WiFi, Bluetooth, IEEE, and ITU. For example, CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced datarates for GSM evolution (EDGE). OFDMA may be implemented with a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA). IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e. UTRA is part of the universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTSterrestrial radio access (E-UTRA), and employs OFDMA in the downlink and SC- in the uplink. FDMA is employed. As such, the present embodiments may be applied to currently disclosed or commercialized radio access technologies, or may be applied to radio access technologies currently under development or to be developed in the future.

한편, 본 명세서에서의 단말은 무선 통신 시스템에서 기지국과 통신을 수행하는 무선 통신 모듈을 포함하는 장치를 의미하는 포괄적 개념으로서, WCDMA, LTE, NR, HSPA 및 IMT-2020(5G 또는 New Radio) 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선 기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다. 또한, 단말은 사용 형태에 따라 스마트 폰과 같은 사용자 휴대 기기가 될 수도 있고, V2X 통신 시스템에서는 차량, 차량 내의 무선 통신 모듈을 포함하는 장치 등을 의미할 수도 있다. 또한, 기계 형태 통신(Machine Type Communication) 시스템의 경우에 기계 형태 통신이 수행되도록 통신 모듈을 탑재한 MTC 단말, M2M 단말, URLLC 단말 등을 의미할 수도 있다. On the other hand, the terminal in the present specification is a comprehensive concept meaning a device including a wireless communication module for performing communication with a base station in a wireless communication system, WCDMA, LTE, NR, HSPA and IMT-2020 (5G or New Radio), etc. It should be interpreted as a concept including all of UE (User Equipment), MS (Mobile Station), UT (User Terminal), SS (Subscriber Station), wireless device, and the like in GSM. In addition, the terminal may be a user portable device, such as a smart phone, depending on the type of use, and in the V2X communication system may mean a vehicle, a device including a wireless communication module in the vehicle, and the like. In addition, in the case of a machine type communication (Machine Type Communication) system, it may mean an MTC terminal, an M2M terminal, a URLLC terminal, etc. equipped with a communication module to perform machine type communication.

본 명세서의 기지국 또는 셀은 네트워크 측면에서 단말과 통신하는 종단을 지칭하며, 노드-B(Node-B), eNB(evolved Node-B), gNB(gNode-B), LPN(Low Power Node), 섹터(Sector), 싸이트(Site), 다양한 형태의 안테나, BTS(Base Transceiver System), 액세스 포인트(Access Point), 포인트(예를 들어, 송신포인트, 수신포인트, 송수신포인트), 릴레이 노드(Relay Node), 메가 셀, 매크로 셀, 마이크로 셀, 피코 셀, 펨토 셀, RRH(Remote Radio Head), RU(Radio Unit), 스몰 셀(small cell) 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. 또한, 셀은 주파수 도메인에서의 BWP(Bandwidth Part)를 포함하는 의미일 수 있다. 예를 들어, 서빙 셀은 단말의 Activation BWP를 의미할 수 있다. A base station or cell in the present specification refers to an end that communicates with a terminal in terms of a network, a Node-B (Node-B), an evolved Node-B (eNB), gNode-B (gNB), a Low Power Node (LPN), Sector, site, various types of antennas, base transceiver system (BTS), access point, point (eg, transmission point, reception point, transmission/reception point), relay node (Relay Node) ), mega cell, macro cell, micro cell, pico cell, femto cell, RRH (Remote Radio Head), RU (Radio Unit), and small cell (small cell), etc. In addition, the cell may mean including a BWP (Bandwidth Part) in the frequency domain. For example, the serving cell may mean the Activation BWP of the UE.

앞서 나열된 다양한 셀은 하나 이상의 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. 1) 무선 영역과 관련하여 메가 셀, 매크로 셀, 마이크로 셀, 피코 셀, 펨토 셀, 스몰 셀(small cell)을 제공하는 장치 그 자체이거나, 2) 무선 영역 그 자체를 지시할 수 있다. 1)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 무선 영역을 협업으로 구성하도록 상호 작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 포인트, 송수신 포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시 예가 된다. 2)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수도 있다.In the various cells listed above, since there is a base station controlling one or more cells, the base station can be interpreted in two ways. 1) in relation to the radio area, it may be the device itself providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, or a small cell, or 2) may indicate the radio area itself. In 1), the devices providing a predetermined radio area are controlled by the same entity, or all devices interacting to form a radio area cooperatively are directed to the base station. A point, a transmission/reception point, a transmission point, a reception point, etc. become an embodiment of a base station according to a configuration method of a wireless area. In 2), the radio area itself in which the signal is received or transmitted from the point of view of the user terminal or the neighboring base station may be indicated to the base station.

본 명세서에서 셀(Cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.In the present specification, a cell is a component carrier having a coverage of a signal transmitted from a transmission/reception point or a coverage of a signal transmitted from a transmission/reception point, and the transmission/reception point itself. can

상향링크(Uplink, UL, 또는 업링크)는 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 단말로 데이터를 송수신하는 방식을 의미한다. 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미할 수 있으며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미할 수 있다. 이때, 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 또한, 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.Uplink (Uplink, UL, or uplink) refers to a method of transmitting and receiving data by the terminal to and from the base station, and downlink (Downlink, DL, or downlink) refers to a method of transmitting and receiving data to and from the terminal by the base station do. A downlink may mean a communication or communication path from a multi-transmission/reception point to a terminal, and an uplink may mean a communication or communication path from the terminal to a multi-transmission/reception point. In this case, in the downlink, the transmitter may be a part of multiple transmission/reception points, and the receiver may be a part of the terminal. Also, in the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of the multi-transmission/reception point.

상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PUCCH(Physical Uplink Control CHannel) 등과 같은 제어 채널을 통하여 제어 정보를 송수신하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터 채널을 구성하여 데이터를 송수신한다.이하에서는 PUCCH, PUSCH, PDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.The uplink and downlink transmit and receive control information through a control channel such as a Physical Downlink Control CHannel (PDCCH), a Physical Uplink Control CHannel (PUCCH), etc., and a Physical Downlink Shared CHannel (PDSCH), a Physical Uplink Shared CHannel (PUSCH), etc Data is transmitted and received by configuring the same data channel. Hereinafter, a situation in which signals are transmitted and received through channels such as PUCCH, PUSCH, PDCCH and PDSCH may be expressed in the form of 'transmitting and receiving PUCCH, PUSCH, PDCCH and PDSCH'. do.

설명을 명확하게 하기 위해, 이하에서는 본 기술 사상을 3GPP LTE/LTE-A/NR(New RAT) 통신 시스템을 위주로 기술하지만 본 기술적 특징이 해당 통신 시스템에 제한되는 것은 아니다.For clarity of explanation, the present technical idea will be mainly described below for a 3GPP LTE/LTE-A/NR (New RAT) communication system, but the present technical features are not limited to the corresponding communication system.

3GPP에서는 4G(4th-Generation) 통신 기술에 대한 연구 이후에 ITU-R의 차세대 무선 접속 기술의 요구사항에 맞추기 위한 5G(5th-Generation)통신 기술을 개발한다. 구체적으로, 3GPP는 5G 통신 기술로 LTE-Advanced 기술을 ITU-R의 요구사항에 맞추어 향상 시킨 LTE-A pro와 4G 통신 기술과는 별개의 새로운 NR 통신 기술을 개발한다. LTE-A pro와 NR은 모두 5G 통신 기술을 의미하는 것으로, 이하에서는 특정 통신 기술을 특정하는 경우가 아닌 경우에 NR을 중심으로 5G 통신 기술을 설명한다. In 3GPP, after research on 4G (4th-Generation) communication technology, 5G (5th-Generation) communication technology is developed to meet the requirements of ITU-R's next-generation wireless access technology. Specifically, 3GPP develops LTE-A pro, which improves LTE-Advanced technology according to the requirements of ITU-R as a 5G communication technology, and a new NR communication technology separate from 4G communication technology. LTE-A pro and NR both refer to 5G communication technology. Hereinafter, 5G communication technology will be described focusing on NR unless a specific communication technology is specified.

NR에서의 운영 시나리오는 기존 4G LTE의 시나리오에서 위성, 자동차, 그리고 새로운 버티컬 등에 대한 고려를 추가하여 다양한 동작 시나리오를 정의하였으며, 서비스 측면에서 eMBB(Enhanced Mobile Broadband) 시나리오, 높은 단말 밀도를 가지되 넓은 범위에 전개되어 낮은 데이터 레이트(data rate)와 비동기식 접속이 요구되는 mMTC(Massive Machine Communication) 시나리오, 높은 응답성과 신뢰성이 요구되고 고속 이동성을 지원할 수 있는 URLLC(Ultra Reliability and Low Latency) 시나리오를 지원한다.In the NR operation scenario, various operation scenarios were defined by adding consideration of satellites, automobiles, and new verticals to the existing 4G LTE scenarios. It is deployed in a range and supports the mMTC (Massive Machine Communication) scenario that requires a low data rate and asynchronous connection, and the URLLC (Ultra Reliability and Low Latency) scenario that requires high responsiveness and reliability and supports high-speed mobility. .

이러한 시나리오를 만족하기 위해서 NR은 새로운 waveform 및 프레임 구조 기술, 낮은 지연속도(Low latency) 기술, 초고주파 대역(mmWave) 지원 기술, 순방향 호환성(Forward compatible) 제공 기술이 적용된 무선 통신 시스템을 개시한다. 특히, NR 시스템에서는 순방향(Forard) 호환성을 제공하기 위해서 유연성 측면에서 다양한 기술적 변화를 제시하고 있다. NR의 주요 기술적 특징은 아래에서 도면을 참조하여 설명한다.To satisfy this scenario, NR discloses a wireless communication system to which a new waveform and frame structure technology, low latency technology, mmWave support technology, and forward compatible technology are applied. In particular, in the NR system, various technical changes are presented in terms of flexibility in order to provide forward compatibility. The main technical features of NR will be described with reference to the drawings below.

<NR 시스템 일반><Normal NR system>

도 1은 본 실시예가 적용될 수 있는 NR 시스템에 대한 구조를 간략하게 도시한 도면이다. 1 is a diagram schematically illustrating a structure of an NR system to which this embodiment can be applied.

도 1을 참조하면, NR 시스템은 5GC(5G Core Network)와 NR-RAN파트로 구분되며, NG-RAN은 사용자 평면(SDAP/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB와 ng-eNB들로 구성된다.gNB 상호 또는 gNB와 ng-eNB는 Xn 인터페이스를 통해 상호 연결된다. gNB와 ng-eNB는 각각 NG 인터페이스를 통해 5GC로 연결된다. 5GC는 단말 접속 및 이동성 제어 기능 등의 제어 평면을 담당하는 AMF (Access and Mobility Management Function)와 사용자 데이터에 제어 기능을 담당하는 UPF (User Plane Function)를 포함하여 구성될 수 있다. NR에서는 6GHz 이하 주파수 대역(FR1, Frequency Range 1)과 6GHz 이상 주파수 대역(FR2, Frequency Range 2)에 대한 지원을 모두 포함한다.1, the NR system is divided into a 5G Core Network (5GC) and an NR-RAN part, and the NG-RAN controls the user plane (SDAP/PDCP/RLC/MAC/PHY) and UE (User Equipment) It consists of gNBs and ng-eNBs that provide planar (RRC) protocol termination. The gNB interconnects or gNBs and ng-eNBs are interconnected via an Xn interface. gNB and ng-eNB are each connected to 5GC through the NG interface. 5GC may be configured to include an Access and Mobility Management Function (AMF) in charge of a control plane such as terminal access and mobility control functions, and a User Plane Function (UPF) in charge of a control function for user data. NR includes support for both frequency bands below 6 GHz (FR1, Frequency Range 1) and frequency bands above 6 GHz (FR2, Frequency Range 2).

gNB는 단말로 NR 사용자 평면 및 제어 평면 프로토콜 종단을 제공하는 기지국을 의미하고, ng-eNB는 단말로 E-UTRA 사용자 평면 및 제어 평면 프로토콜 종단을 제공하는 기지국을 의미한다. 본 명세서에서 기재하는 기지국은 gNB및 ng-eNB를 포괄하는 의미로 이해되어야 하며, 필요에 따라 gNB 또는 ng-eNB를 구분하여 지칭하는 의미로 사용될 수도 있다. gNB means a base station that provides NR user plane and control plane protocol termination to a terminal, and ng-eNB means a base station that provides E-UTRA user plane and control plane protocol termination to a terminal. The base station described in this specification should be understood as encompassing gNB and ng-eNB, and may be used as a meaning to refer to gNB or ng-eNB separately if necessary.

<NR 웨이브 폼,뉴머롤러지 및 프레임 구조><NR Waveform, Pneumologic and Frame Structure>

NR에서는 하향링크 전송을 위해서 Cyclic prefix를 사용하는 CP-OFDM 웨이브 폼을 사용하고, 상향링크 전송을 위해서 CP-OFDM 또는 DFT-s-OFDM을 사용한다. OFDM 기술은 MIMO(Multiple Input Multiple Output)와 결합이 용이하며, 높은 주파수 효율과 함께 저 복잡도의 수신기를 사용할 수 있다는 장점을 가지고 있다. In NR, a CP-OFDM waveform using a cyclic prefix is used for downlink transmission, and CP-OFDM or DFT-s-OFDM is used for uplink transmission. OFDM technology is easy to combine with MIMO (Multiple Input Multiple Output), and has advantages of using a low-complexity receiver with high frequency efficiency.

한편, NR에서는 전술한 3가지 시나리오 별로 데이터 속도, 지연속도, 커버리지 등에 대한 요구가 서로 상이하기 때문에 임의의 NR 시스템을 구성하는 주파수 대역을 통해 각각의 시나리오 별 요구사항을 효율적으로 만족시킬 필요가 있다. 이를 위해서, 서로 다른 복수의 뉴머롤러지(numerology) 기반의 무선 자원을 효율적으로 멀티플렉싱(multiplexing)하기 위한 기술이 제안되었다. Meanwhile, in NR, since the requirements for data rate, delay rate, coverage, etc. are different for each of the three scenarios described above, it is necessary to efficiently satisfy the requirements for each scenario through the frequency band constituting an arbitrary NR system. . To this end, a technique for efficiently multiplexing a plurality of different numerology-based radio resources has been proposed.

구체적으로, NR 전송 뉴머롤러지는 서브캐리어 간격(sub-carrier spacing)과 CP(Cyclic prefix)에 기초하여 결정되며, 아래 표 1과 같이 15kHz를 기준으로 μ 값이 2의 지수 값으로 사용되어 지수적으로 변경된다.Specifically, the NR transmission numerology is determined based on sub-carrier spacing and cyclic prefix (CP), and the μ value is used as an exponential value of 2 based on 15 kHz as shown in Table 1 below. is changed to

μμ 서브캐리어 간격subcarrier spacing Cyclic prefixCyclic prefix Supported for dataSupported for data Supported for synchSupported for synch 00 1515 NormalNormal YesYes YesYes 1One 3030 NormalNormal YesYes YesYes 22 6060 Normal, ExtendedNormal, Extended YesYes NoNo 33 120120 NormalNormal YesYes YesYes 44 240240 NormalNormal NoNo YesYes

위 표 1과 같이 NR의 뉴머롤러지는 서브캐리어 간격에 따라 5가지로 구분될 수 있다. 이는 4G 통신 기술 중 하나인 LTE의 서브캐리어 간격이 15kHz로 고정되는 것과는 차이가 있다. 구체적으로, NR에서 데이터 전송을 위해서 사용되는 서브캐리어 간격은 15, 30, 60, 120kHz이고, 동기 신호 전송을 위해서 사용되는 서브캐리어 간격은 15, 30, 120, 240kHz이다. 또한, 확장 CP는 60kHz 서브캐리어 간격에만 적용된다. 한편, NR에서의 프레임 구조(frame structure)는 1ms의 동일한 길이를 가지는 10개의 서브프레임(subframe)으로 구성되는 10ms의 길이를 가지는 프레임(frame)이 정의된다. 하나의 프레임은 5ms의 하프 프레임으로 나뉠 수 있으며, 각 하프 프레임은 5개의 서브프레임을 포함한다. 15kHz 서브캐리어 간격의 경우에 하나의 서브프레임은 1개의 슬롯(slot)으로 구성되고, 각 슬롯은 14개의 OFDM 심볼(symbol)로 구성된다.As shown in Table 1 above, the NR pneumatology can be divided into five types according to the subcarrier spacing. This is different from the fact that the subcarrier interval of LTE, one of the 4G communication technologies, is fixed at 15 kHz. Specifically, subcarrier intervals used for data transmission in NR are 15, 30, 60, and 120 kHz, and subcarrier intervals used for synchronization signal transmission are 15, 30, 120, 240 kHz. In addition, the extended CP is applied only to the 60 kHz subcarrier interval. On the other hand, as for the frame structure in NR, a frame having a length of 10 ms is defined, which is composed of 10 subframes having the same length of 1 ms. One frame can be divided into half frames of 5 ms, and each half frame includes 5 subframes. In the case of a 15 kHz subcarrier interval, one subframe consists of one slot, and each slot consists of 14 OFDM symbols.

도 2는 본 실시예가 적용될 수 있는 NR 시스템에서의 프레임 구조를 설명하기 위한 도면이다. 2 is a diagram for explaining a frame structure in an NR system to which this embodiment can be applied.

도 2를 참조하면, 슬롯은 노멀 CP의 경우에 고정적으로 14개의 OFDM 심볼로 구성되나, 슬롯의 시간 도메인에서 길이는 서브캐리어 간격에 따라 달라질 수 있다. 예를 들어, 15kHz 서브캐리어 간격을 가지는 뉴머롤러지의 경우에 슬롯은 1ms 길이로 서브프레임과 동일한 길이로 구성된다. 이와 달리, 30kHz 서브캐리어 간격을 가지는 뉴머롤러지의 경우에 슬롯은 14개의 OFDM 심볼로 구성되나, 0.5ms의 길이로 하나의 서브프레임에 두 개의 슬롯이 포함될 수 있다. 즉, 서브프레임과 프레임은 고정된 시간 길이를 가지고 정의되며, 슬롯은 심볼의 개수로 정의되어 서브캐리어 간격에 따라 시간 길이가 달라질 수 있다. Referring to FIG. 2 , a slot is fixedly composed of 14 OFDM symbols in the case of a normal CP, but the length in the time domain of the slot may vary according to the subcarrier interval. For example, in the case of a numerology having a 15 kHz subcarrier interval, the slot is 1 ms long and is composed of the same length as the subframe. On the other hand, in the case of numerology having a 30 kHz subcarrier interval, a slot consists of 14 OFDM symbols, but two slots may be included in one subframe with a length of 0.5 ms. That is, the subframe and the frame are defined to have a fixed time length, and the slot is defined by the number of symbols, so that the time length may vary according to the subcarrier interval.

한편, NR은 스케줄링의 기본 단위를 슬롯으로 정의하고, 무선 구간의 전송 지연을 감소시키기 위해서 미니 슬롯(또는 서브 슬롯 또는 non-slot based schedule)도 도입하였다. 넓은 서브캐리어 간격을 사용하면 하나의 슬롯의 길이가 반비례하여 짧아지기 때문에 무선 구간에서의 전송 지연을 줄일 수 있다. 미니 슬롯(또는 서브 슬롯)은 URLLC 시나리오에 대한 효율적인 지원을 위한 것으로 2, 4, 7개 심볼 단위로 스케줄링이 가능하다. On the other hand, NR defines a basic unit of scheduling as a slot, and also introduces a mini-slot (or a sub-slot or a non-slot based schedule) to reduce transmission delay in a radio section. When a wide subcarrier interval is used, the length of one slot is shortened in inverse proportion, so that transmission delay in a radio section can be reduced. The mini-slot (or sub-slot) is for efficient support of the URLLC scenario and can be scheduled in units of 2, 4, or 7 symbols.

또한, NR은 LTE와 달리 상향링크 및 하향링크 자원 할당을 하나의 슬롯 내에서 심볼 레벨로 정의하였다. HARQ 지연을 줄이기 위해 전송 슬롯 내에서 바로 HARQ ACK/NACK을 송신할 수 있는 슬롯 구조가 정의되었으며, 이러한 슬롯 구조를 자기 포함(self-contained) 구조로 명명하여 설명한다. Also, unlike LTE, NR defines uplink and downlink resource allocation at a symbol level within one slot. In order to reduce HARQ delay, a slot structure capable of transmitting HARQ ACK/NACK directly within a transmission slot is defined, and this slot structure is named as a self-contained structure and will be described.

NR에서는 총 256개의 슬롯 포맷을 지원할 수 있도록 설계되었으며, 이중 62개의 슬롯 포맷이 3GPP Rel-15에서 사용된다. 또한, 다양한 슬롯의 조합을 통해서 FDD 또는 TDD 프레임을 구성하는 공통 프레임 구조를 지원한다. 예를 들어, 슬롯의 심볼이 모두 하향링크로 설정되는 슬롯 구조와 심볼이 모두 상향링크로 설정되는 슬롯 구조 및 하향링크 심볼과 상향링크 심볼이 결합된 슬롯 구조를 지원한다. 또한, NR은 데이터 전송이 하나 이상의 슬롯에 분산되어 스케줄링됨을 지원한다. 따라서, 기지국은 슬롯 포맷 지시자(SFI, Slot Format Indicator)를 이용하여 단말에 슬롯이 하향링크 슬롯인지, 상향링크 슬롯인지 또는 플렉시블 슬롯인지를 알려줄 수 있다. 기지국은 단말 특정하게(UE-specific) RRC 시그널링을 통해서 구성된 테이블의 인덱스를 SFI를 이용하여 지시함으로써 슬롯 포맷을 지시할 수 있으며, DCI(Downlink Control Information)를 통해서 동적으로 지시하거나 RRC를 통해서 정적 또는 준정적으로 지시할 수도 있다. NR is designed to support a total of 256 slot formats, of which 62 slot formats are used in 3GPP Rel-15. In addition, a common frame structure constituting an FDD or TDD frame is supported through a combination of various slots. For example, a slot structure in which all symbols of a slot are set to downlink, a slot structure in which all symbols are set to uplink, and a slot structure in which downlink symbols and uplink symbols are combined are supported. In addition, NR supports that data transmission is scheduled to be distributed in one or more slots. Accordingly, the base station may inform the terminal whether the slot is a downlink slot, an uplink slot, or a flexible slot using a slot format indicator (SFI). The base station may indicate the slot format by indicating the index of the table configured through UE-specific RRC signaling using SFI, and may indicate dynamically through Downlink Control Information (DCI) or statically or through RRC. It can also be ordered quasi-statically.

<NR 물리 자원 ><NR Physical Resources>

NR에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 대역폭 파트(bandwidth part) 등이 고려된다.In relation to a physical resource in NR, an antenna port, a resource grid, a resource element, a resource block, a bandwidth part, etc. are considered do.

안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 시프트(Frequency shift), 평균 수신 파워(Average received power) 및 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.An antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried. When the large-scale property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC/QCL (quasi co-located or QC/QCL) quasi co-location). Here, the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.

도 3은 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 자원 그리드를 설명하기 위한 도면이다. 3 is a diagram for explaining a resource grid supported by a radio access technology to which this embodiment can be applied.

도 3을 참조하면, 자원 그리드(Resource Grid)는 NR이 동일 캐리어에서 복수의 뉴머롤러지를 지원하기 때문에 각 뉴머롤러지에 따라 자원 그리드가 존재할 수 있다. 또한, 자원 그리드는 안테나 포트, 서브캐리어 간격, 전송 방향에 따라 존재할 수 있다. Referring to FIG. 3 , in the resource grid, since NR supports a plurality of numerologies on the same carrier, a resource grid may exist according to each numerology. In addition, the resource grid may exist according to an antenna port, a subcarrier interval, and a transmission direction.

자원 블록(resource block)은 12개의 서브캐리어로 구성되며, 주파수 도메인 상에서만 정의된다. 또한, 자원 요소(resource element)는 1개의 OFDM 심볼과 1개의 서브캐리어로 구성된다. 따라서, 도 3에서와 같이 하나의 자원 블록은 서브캐리어 간격에 따라 그 크기가 달라질 수 있다. 또한, NR에서는 자원 블록 그리드를 위한 공통 참조점 역할을 수행하는 "Point A"와 공통 자원 블록, 가상 자원 블록 등을 정의한다. A resource block consists of 12 subcarriers, and is defined only in the frequency domain. In addition, a resource element is composed of one OFDM symbol and one subcarrier. Accordingly, as in FIG. 3 , the size of one resource block may vary according to the subcarrier interval. In addition, NR defines "Point A" serving as a common reference point for a resource block grid, a common resource block, a virtual resource block, and the like.

도 4는 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 대역폭 파트를 설명하기 위한 도면이다. 4 is a diagram for explaining a bandwidth part supported by a radio access technology to which the present embodiment can be applied.

NR에서는 캐리어 대역폭이 20Mhz로 고정된 LTE와 달리 서브캐리어 간격 별로 최대 캐리어 대역폭이 50Mhz에서 400Mhz로 설정된다. 따라서, 모든 단말이 이러한 캐리어 대역폭을 모두 사용하는 것을 가정하지 않는다. 이에 따라서 NR에서는 도 4에 도시된 바와 같이 캐리어 대역폭 내에서 대역폭 파트(BWP)를 지정하여 단말이 사용할 수 있다. 또한, 대역폭 파트는 하나의 뉴머롤러지와 연계되며 연속적인 공통 자원 블록의 서브 셋으로 구성되고, 시간에 따라 동적으로 활성화 될 수 있다. 단말에는 상향링크 및 하향링크 각각 최대 4개의 대역폭 파트가 구성되고, 주어진 시간에 활성화된 대역폭 파트를 이용하여 데이터가 송수신된다. In NR, unlike LTE in which the carrier bandwidth is fixed at 20Mhz, the maximum carrier bandwidth is set from 50Mhz to 400Mhz for each subcarrier interval. Therefore, it is not assumed that all terminals use all of these carrier bandwidths. Accordingly, in NR, as shown in FIG. 4 , a bandwidth part (BWP) may be designated within the carrier bandwidth and used by the terminal. In addition, the bandwidth part is associated with one numerology and is composed of a subset of continuous common resource blocks, and may be dynamically activated according to time. A maximum of four bandwidth parts are configured in the terminal, respectively, in uplink and downlink, and data is transmitted/received using the activated bandwidth part at a given time.

페어드 스펙트럼(paired spectrum)의 경우 상향링크 및 하향링크 대역폭 파트가 독립적으로 설정되며, 언페어드 스펙트럼(unpaired spectrum)의 경우 하향링크와 상향링크 동작 간에 불필요한 주파수 리튜닝(re-tunning)을 방지하기 위해서 하향링크와 상향링크의 대역폭 파트가 중심 주파수를 공유할 수 있도록 쌍을 이루어 설정된다.In the case of a paired spectrum, the uplink and downlink bandwidth parts are set independently, and in the case of an unpaired spectrum, to prevent unnecessary frequency re-tunning between downlink and uplink operations For this purpose, the downlink and uplink bandwidth parts are set in pairs to share a center frequency.

<NR 초기 접속><NR Initial Connection>

NR에서 단말은 기지국에 접속하여 통신을 수행하기 위해서 셀 검색 및 랜덤 액세스 절차를 수행한다. In NR, the terminal accesses the base station and performs a cell search and random access procedure in order to perform communication.

셀 검색은 기지국이 전송하는 동기 신호 블록(SSB, Synchronization Signal Block)를 이용하여 단말이 해당 기지국의 셀에 동기를 맞추고, 물리계층 셀 ID를 획득하며, 시스템 정보를 획득하는 절차이다. Cell search is a procedure in which the UE synchronizes the cell of the corresponding base station using a synchronization signal block (SSB) transmitted by the base station, obtains a physical layer cell ID, and obtains system information.

도 5는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 동기 신호 블록을 예시적으로 도시한 도면이다. 5 is a diagram exemplarily illustrating a synchronization signal block in a radio access technology to which the present embodiment can be applied.

도 5를 참조하면, SSB는 각각 1개 심볼 및 127개 서브 캐리어를 점유하는 PSS(primarysynchronization signal) 및 SSS(secondary synchronization signal) 및 3개의 OFDM 심볼 및 240 개의 서브캐리어에 걸쳐있는 PBCH로 구성된다. Referring to FIG. 5, the SSB consists of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) occupying 1 symbol and 127 subcarriers, respectively, and a PBCH spanning 3 OFDM symbols and 240 subcarriers.

단말은 시간 및 주파수 도메인에서 SSB를 모니터링하여 SSB를 수신한다. The UE receives the SSB by monitoring the SSB in the time and frequency domains.

SSB는 5ms 동안 최대 64번 전송될 수 있다. 다수의 SSB는 5ms 시간 내에서 서로 다른 전송 빔으로 전송되며, 단말은 전송에 사용되는 특정 하나의 빔을 기준으로 볼 때에는 20ms의 주기마다 SSB가 전송된다고 가정하고 검출을 수행한다. 5ms 시간 내에서 SSB 전송에 사용할 수 있는 빔의 개수는 주파수 대역이 높을수록 증가할 수 있다. 예를 들어, 3GHz 이하에서는 최대 4개의 SSB 빔 전송이 가능하며, 3~6GHz까지의 주파수 대역에서는 최대 8개, 6GHz 이상의 주파수 대역에서는 최대 64개의 서로 다른 빔을 사용하여 SSB를 전송할 수 있다. SSB can be transmitted up to 64 times in 5ms. A plurality of SSBs are transmitted using different transmission beams within 5 ms, and the UE performs detection on the assumption that SSBs are transmitted every 20 ms when viewed based on one specific beam used for transmission. The number of beams that can be used for SSB transmission within 5 ms time may increase as the frequency band increases. For example, up to 4 SSB beams can be transmitted in 3 GHz or less, and SSB can be transmitted using up to 8 different beams in a frequency band of 3 to 6 GHz and up to 64 different beams in a frequency band of 6 GHz or more.

SSB는 하나의 슬롯에 두 개가 포함되며, 서브캐리어 간격에 따라 아래와 같이 슬롯 내에서의 시작 심볼과 반복 횟수가 결정된다.Two SSBs are included in one slot, and the start symbol and the number of repetitions within the slot are determined according to the subcarrier interval as follows.

한편, SSB는 종래 LTE의 SS와 달리 캐리어 대역폭의 센터 주파수에서 전송되지 않는다. 즉, SSB는 시스템 대역의 중심이 아닌 곳에서도 전송될 수 있고, 광대역 운영을 지원하는 경우 주파수 도메인 상에서 복수의 SSB가 전송될 수 있다. 이에 따라서, 단말은 SSB를 모니터링 하는 후보 주파수 위치인 동기 래스터(synchronization raster)를 이용하여 SSB를 모니터링 한다. 초기 접속을 위한 채널의 중심 주파수 위치 정보인 캐리어래스터(carrier raster)와 동기 래스터는 NR에서 새롭게 정의되었으며, 동기 래스터는 캐리어래스터에 비해서, 주파수 간격이 넓게 설정되어 있어서, 단말의 빠른 SSB 검색을 지원할 수 있다. On the other hand, the SSB is not transmitted at the center frequency of the carrier bandwidth, unlike the SS of the conventional LTE. That is, the SSB may be transmitted in a place other than the center of the system band, and a plurality of SSBs may be transmitted in the frequency domain when wideband operation is supported. Accordingly, the UE monitors the SSB using a synchronization raster, which is a candidate frequency location for monitoring the SSB. The carrier raster and synchronization raster, which are the center frequency location information of the channel for initial access, are newly defined in NR, and the synchronization raster has a wider frequency interval than the carrier raster, so that the terminal can support fast SSB search. can

단말은 SSB의 PBCH를 통해서 MIB를 획득할 수 있다. MIB(Master Information Block)는 단말이 네트워크가 브로드캐스팅 하는 나머지 시스템 정보(RMSI, Remaining Minimum System Information)를 수신하기 위한 최소 정보를 포함한다. 또한, PBCH는 시간 도메인 상에서의 첫 번째 DM-RS 심볼의 위치에 대한 정보, SIB1을 단말이 모니터링하기 위한 정보(예를 들어, SIB1 뉴머롤러지 정보, SIB1 CORESET에 관련된 정보, 검색 공간 정보, PDCCH 관련 파라미터 정보 등), 공통 자원 블록과 SSB 사이의 오프셋 정보(캐리어 내에서의 절대 SSB의 위치는 SIB1을 통해서 전송) 등을 포함할 수 있다. 여기서, SIB1 뉴머롤러지 정보는 단말이 셀 검색 절차를 완료한 이후에 기지국에 접속하기 위한 랜덤 액세스 절차에서 사용되는 일부 메시지에서도 동일하게 적용된다. 예를 들어, 랜덤 액세스 절차를 위한 메시지 1 내지 4 중 적어도 하나에 SIB1의 뉴머롤러지 정보가 적용될 수 있다. The UE may acquire the MIB through the PBCH of the SSB. MIB (Master Information Block) includes minimum information for the terminal to receive the remaining system information (RMSI, Remaining Minimum System Information) broadcast by the network. In addition, the PBCH includes information on the position of the first DM-RS symbol in the time domain, information for the UE to monitor SIB1 (eg, SIB1 neurology information, information related to SIB1 CORESET, search space information, PDCCH related parameter information, etc.), offset information between the common resource block and the SSB (the position of the absolute SSB in the carrier is transmitted through SIB1), and the like. Here, the SIB1 neurology information is equally applied to some messages used in the random access procedure for accessing the base station after the UE completes the cell search procedure. For example, the neurology information of SIB1 may be applied to at least one of messages 1 to 4 for the random access procedure.

전술한 RMSI는 SIB1(System Information Block 1)을 의미할 수 있으며, SIB1은 셀에서 주기적으로(ex, 160ms) 브로드캐스팅 된다. SIB1은 단말이 초기 랜덤 액세스 절차를 수행하는데 필요한 정보를 포함하며, PDSCH를 통해서 주기적으로 전송된다. 단말이 SIB1을 수신하기 위해서는 PBCH를 통해서 SIB1 전송에 사용되는 뉴머롤러지 정보, SIB1의 스케줄링에 사용되는 CORESET(Control Resource Set) 정보를 수신해야 한다. 단말은 CORESET 내에서 SI-RNTI를 이용하여 SIB1에 대한 스케줄링 정보를 확인하고, 스케줄링 정보에 따라 SIB1을 PDSCH 상에서 획득한다. SIB1을 제외한 나머지 SIB들은 주기적으로 전송될 수도 있고, 단말의 요구에 따라 전송될 수도 있다. The aforementioned RMSI may mean System Information Block 1 (SIB1), and SIB1 is periodically broadcast (eg, 160 ms) in the cell. SIB1 includes information necessary for the UE to perform an initial random access procedure, and is periodically transmitted through the PDSCH. In order for the UE to receive SIB1, it must receive neurology information used for SIB1 transmission and CORESET (Control Resource Set) information used for scheduling SIB1 through the PBCH. The UE checks scheduling information for SIB1 by using SI-RNTI in CORESET, and acquires SIB1 on PDSCH according to the scheduling information. SIBs other than SIB1 may be transmitted periodically or may be transmitted according to the request of the terminal.

도 6는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 랜덤 액세스 절차를 설명하기 위한 도면이다. 6 is a diagram for explaining a random access procedure in a radio access technology to which the present embodiment can be applied.

도 6을 참조하면, 셀 검색이 완료되면 단말은 기지국으로 랜덤 액세스를 위한 랜덤 액세스 프리앰블을 전송한다. 랜덤 액세스 프리앰블은 PRACH를 통해서 전송된다. 구체적으로, 랜덤 액세스 프리앰블은 주기적으로 반복되는 특정 슬롯에서 연속된 무선 자원으로 구성되는 PRACH를 통해서 기지국으로 전송된다. 일반적으로, 단말이 셀에 초기 접속하는 경우에 경쟁 기반 랜덤 액세스 절차를 수행되며, 빔 실패 복구(BFR, Beam Failure Recovery)를 위해서 랜덤 액세스를 수행하는 경우에는 비경쟁 기반 랜덤 액세스 절차가 수행된다. Referring to FIG. 6 , upon completion of cell search, the terminal transmits a random access preamble for random access to the base station. The random access preamble is transmitted through the PRACH. Specifically, the random access preamble is transmitted to the base station through a PRACH consisting of continuous radio resources in a specific slot that is periodically repeated. In general, when a UE initially accesses a cell, a contention-based random access procedure is performed, and when performing random access for beam failure recovery (BFR), a contention-free random access procedure is performed.

단말은 전송한 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답을 수신한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블식별자(ID), UL Grant (상향링크 무선자원), 임시 C-RNTI(Temporary Cell - Radio Network Temporary Identifier) 그리고 TAC(Time Alignment Command) 이 포함될 수 있다. 하나의 랜덤 액세스 응답에는 하나 이상의 단말들을 위한 랜덤 액세스 응답 정보가 포함될 수 있기 때문에, 랜덤 액세스 프리앰블식별자는 포함된 UL Grant, 임시 C-RNTI 그리고 TAC가 어느 단말에게 유효한지를 알려주기 위하여 포함될 수 있다. 랜덤 액세스 프리앰블식별자는 기지국이 수신한 랜덤 액세스 프리앰블에 대한식별자일 수 있다. TAC는 단말이 상향 링크 동기를 조정하기 위한 정보로서 포함될 수 있다. 랜덤 액세스 응답은 PDCCH상의 랜덤 액세스 식별자, 즉 RA-RNTI(Random Access - Radio Network Temporary Identifier)에 의해지시될 수 있다.The terminal receives a random access response to the transmitted random access preamble. The random access response may include a random access preamble identifier (ID), a UL grant (uplink radio resource), a temporary C-RNTI (Temporary Cell - Radio Network Temporary Identifier), and a Time Alignment Command (TAC). Since one random access response may include random access response information for one or more terminals, the random access preamble identifier may be included to inform which terminal the included UL Grant, temporary C-RNTI, and TAC are valid. The random access preamble identifier may be an identifier for the random access preamble received by the base station. The TAC may be included as information for the UE to adjust uplink synchronization. The random access response may be indicated by a random access identifier on the PDCCH, that is, RA-RNTI (Random Access - Radio Network Temporary Identifier).

유효한 랜덤 액세스 응답을 수신한 단말은 랜덤 액세스 응답에 포함된 정보를 처리하고, 기지국으로스케줄링된 전송을 수행한다. 예를 들어, 단말은 TAC을 적용시키고, 임시 C-RNTI를 저장한다. 또한, UL Grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다. 이 경우 단말을 식별할 수 있는 정보가 포함되어야 한다.Upon receiving the valid random access response, the terminal processes information included in the random access response and performs scheduled transmission to the base station. For example, the UE applies the TAC and stores the temporary C-RNTI. In addition, data stored in the buffer of the terminal or newly generated data is transmitted to the base station by using the UL grant. In this case, information for identifying the terminal should be included.

마지막으로 단말은 경쟁 해소를 위한 하향링크 메시지를 수신한다.Finally, the terminal receives a downlink message for contention resolution.

<NR CORESET><NR CORESET>

NR에서의 하향링크 제어채널은 1~3 심볼의 길이를 가지는 CORESET(Control Resource Set)에서 전송되며, 상/하향 스케줄링 정보와 SFI(Slot format Index), TPC(Transmit Power Control) 정보 등을 전송한다. The downlink control channel in NR is transmitted in a control resource set (CORESET) having a length of 1 to 3 symbols, and transmits up/down scheduling information, slot format index (SFI), transmit power control (TPC) information, etc. .

이와 같이 NR에서는 시스템의 유연성을 확보하기 위해서, CORESET 개념을 도입하였다. CORESET(Control Resource Set)은 하향링크 제어 신호를 위한 시간-주파수 자원을 의미한다. 단말은 CORESET 시간-주파수 자원에서 하나 이상의 검색 공간을 사용하여 제어 채널 후보를 디코딩할 수 있다. CORESET 별 QCL(Quasi CoLocation) 가정을 설정하였으며, 이는 종래 QCL에 의해서 가정되는 특성인 지연 스프레드, 도플러 스프레드, 도플러 쉬프트, 평균 지연 외에 아날로그 빔 방향에 대한 특성을 알리기 위한 목적으로 사용된다. In this way, NR introduced the concept of CORESET in order to secure the flexibility of the system. CORESET (Control Resource Set) means a time-frequency resource for a downlink control signal. The UE may decode the control channel candidates by using one or more search spaces in the CORESET time-frequency resource. Quasi CoLocation (QCL) assumptions for each CORESET are set, and this is used for the purpose of notifying the characteristics of the analog beam direction in addition to the delay spread, Doppler spread, Doppler shift, and average delay, which are characteristics assumed by the conventional QCL.

도 7은 CORESET에 대해서 설명하기 위한 도면이다. 7 is a diagram for explaining CORESET.

도 7을 참조하면, CORESET은 하나의 슬롯 내에서 캐리어 대역폭 내에서 다양한 형태로 존재할 수 있으며, 시간 도메인 상에서 CORESET은 최대 3개의 OFDM 심볼로 구성될 수 있다. 또한, CORESET은 주파수 도메인 상에서 캐리어 대역폭까지 6개의 자원 블록의 배수로 정의된다. Referring to FIG. 7 , CORESET may exist in various forms within a carrier bandwidth within one slot, and CORESET may consist of up to three OFDM symbols in the time domain. In addition, CORESET is defined as a multiple of 6 resource blocks up to the carrier bandwidth in the frequency domain.

첫 번째 CORESET은 네트워크로부터 추가 구성 정보 및 시스템 정보를 수신할 수 있도록 초기 대역폭 파트 구성의 일부로 MIB를 통해서 지시된다. 기지국과의 연결 설정 후에 단말은 RRC 시그널링을 통해서 하나 이상의 CORESET 정보를 수신하여 구성할 수 있다.The first CORESET is indicated through the MIB as part of the initial bandwidth part configuration to receive additional configuration information and system information from the network. After establishing a connection with the base station, the terminal may receive and configure one or more pieces of CORESET information through RRC signaling.

<LTE 사이드링크><LTE side link>

기존 LTE 시스템에서는 단말 간 직접 통신 및 V2X(특히 V2V) 서비스 제공을 위해 단말 간 직접 통신(즉 사이드링크)을 위한 무선 채널 및 무선 프로토콜 설계가 이루어졌다. In the existing LTE system, a radio channel and radio protocol design for direct communication between terminals (ie, sidelink) was made to provide direct communication between terminals and V2X (particularly V2V) service.

사이드링크와 관련하여, 무선 사이드링크 송신단과 수신단 간의 동기화를 위한 동기 신호인 PSSS/SSSS 및 이와 관련한 사이드링크 MIB(Master Information Block) 송수신을 위한 PSBCH(Physical Sidelink Broadcasting Channel)이 정의되었고, 또한 디스커버리 정보 송수신을 위한 PSDCH(Physical Sidelink Discovery channel), SCI(Sidelink Control Information) 송수신을 위한 PSCCH(Physical Sidelink Control Channel), sidelink 데이터 송수신을 위한 PSSCH(Physical Sidelink Shared Channel)에 대한 설계가 이루어졌다.Regarding the sidelink, PSSS/SSSS, which is a synchronization signal for synchronization between a wireless sidelink transmitter and a receiver, and a Physical Sidelink Broadcasting Channel (PSBCH) for transmitting and receiving a sidelink MIB (Master Information Block) related thereto are defined, and also discovery information PSDCH (Physical Sidelink Discovery channel) for transmission and reception, PSCCH (Physical Sidelink Control Channel) for transmission and reception of SCI (Sidelink Control Information), and PSSCH (Physical Sidelink Shared Channel) for transmitting and receiving sidelink data were designed.

또한, 사이드링크를 위한 무선자원 할당을 위해서 기지국이 무선자원을 할당하는 mode 1과 단말이 무선자원 풀(Pool)에서 선택하여 할당하는 mode 2로 구분되어 기술이 개발되었다. 또한, LTE 시스템에는 V2X 시나리오를 만족시키기 위해서는 추가적인 기술적 진화가 요구되었다. In addition, for radio resource allocation for the sidelink, the technology was developed by dividing it into mode 1 in which the base station allocates radio resources and mode 2 in which the terminal selects and allocates radio resources from a pool of radio resources. In addition, additional technological evolution was required in order to satisfy the V2X scenario in the LTE system.

이러한 환경에서 3GPP는 Rel-14에서 차량 인식과 관련된 27가지 서비스 시나리오를 도출하고, 도로상황에 따른 주요 성능 요구사항을 결정하였다. 또한, 최근 Rel-15에서는 군집주행, 첨단운전, 원거리 차량센서 등 보다 진화된 25가지 서비스 시나리오를 도출하여 6가지 성능 요구사항을 결정하였다. In this environment, 3GPP derived 27 service scenarios related to vehicle recognition from Rel-14 and determined the main performance requirements according to road conditions. In addition, in the recent Rel-15, 25 more advanced service scenarios such as platooning, advanced driving, and long-distance vehicle sensors were derived and 6 performance requirements were determined.

이러한 성능 요구사항을 만족하기 위해서 종래 D2D 통신 기반으로 개발된 사이드링크 기술을 V2X의 요구사항에 맞추어 성능을 향상시키는 기술개발이 진행되었다. 특히, C-V2X(Cellular-V2X)에 적용하기 위해서 사이드링크의 물리계층 디자인을 고속환경에 적합하도록 향상시키는 기술과 자원할당 기술 및 동기화 기술이 주요 연구 기술로 선정될 수 있다. In order to satisfy these performance requirements, a technology development for improving the performance of the sidelink technology developed based on the conventional D2D communication according to the requirements of V2X has been progressed. In particular, for application to C-V2X (Cellular-V2X), a technology for improving the physical layer design of a sidelink to be suitable for a high-speed environment, a resource allocation technology, and a synchronization technology can be selected as major research technologies.

이하에서 설명하는 사이드링크는 3GPP Rel-12 이후에 개발된 D2D 통신, Rel-14 이후의 V2X 통신에 사용되는 링크를 의미하며, 각 채널 용어, 동기 용어, 자원 용어 등은 D2D 통신 요구사항, V2X Rel-14, 15 요구사항에 무관하게 동일한 용어로 설명한다. 다만, 이해의 편의를 위하여 필요에 따라 Rel-12/13에서의 D2D 통신을 위한 사이드링크를 기준으로 V2X 시나리오 요구사항을 만족하는 사이드링크의 차이점을 중심으로 설명한다. 따라서, 이하에서 설명하는 사이드링크와 관련된 용어는 비교 차이와 이해의 편의를 위해서 D2D 통신/V2X 통신/C-V2X 통신을 나누어 설명하는 것일 뿐, 특정 시나리오에 한정적으로 적용되는 것은 아니다. The sidelink described below means a link used for D2D communication developed after 3GPP Rel-12 and V2X communication after Rel-14, and each channel term, synchronization term, resource term, etc. Regardless of the requirements of Rel-14, 15, they are described in the same terms. However, for convenience of understanding, the difference between sidelinks satisfying the V2X scenario requirements will be mainly described based on the sidelinks for D2D communication in Rel-12/13 as needed. Therefore, the terms related to sidelink described below are only used to describe D2D communication/V2X communication/C-V2X communication separately for comparison difference and convenience of understanding, and are not limitedly applied to a specific scenario.

<사이드링크 물리계층 디자인><Sidelink Physical Layer Design>

V2X 통신을 위해서는 채널 추정 성능과 주파수 오프셋 추정 성능을 개선하기 위해 파일럿 신호인 DMRS(Demodulation Reference Signal)가 D2D 통신보다 많이 할당될 필요가 있다. For V2X communication, a demodulation reference signal (DMRS), which is a pilot signal, needs to be allocated more than D2D communication in order to improve channel estimation performance and frequency offset estimation performance.

도 8은 종래 사이드링크를 위한 DMRS 구조와 본 실시예가 적용될 수 있는 사이드링크를 위한 DMRS 구조를 예를 들어 설명하기 위한 도면이다. 8 is a diagram for explaining, for example, a DMRS structure for a conventional sidelink and a DMRS structure for a sidelink to which this embodiment can be applied.

도 8을 참조하면, 종래(Rel-12/13) DMRS는 PSCCH, PSSCH, PSBCH의 서브프레임 당 2개가 할당되어 있으며, DMRS 사이의 간격은 0.5ms이다. C-V2X 단말은 사이드링크 전송용으로 정의된 6GHz 중심 주파수 대역을 사용하며 차량 단말의 경우 상대속도를 고려해 280km/h로 이동한다. 이때 상관 시간은 0.277ms가 되고, 이 값은 Rel-12/13의 참조 신호 사이의 간격보다 짧기 때문에 채널 추정 시간이 부족하게 된다. 이러한 문제를 해결하기 위해서 V2X 통신을 위한 사이드링크에서는 서브프레임 당 DMRS의 개수를 4개로 증가하고 참조 신호 사이의 간격을 0.214ms로 감소시켜 빠른 채널 변화에도 채널 추정이 용이하도록 물리계층 디자인을 변경했다.Referring to FIG. 8 , two conventional (Rel-12/13) DMRSs are allocated per subframe of PSCCH, PSSCH, and PSBCH, and the interval between DMRSs is 0.5 ms. The C-V2X terminal uses the 6GHz center frequency band defined for sidelink transmission, and the vehicle terminal moves at 280km/h considering the relative speed. At this time, the correlation time becomes 0.277 ms, and since this value is shorter than the interval between reference signals of Rel-12/13, the channel estimation time is insufficient. To solve this problem, in the sidelink for V2X communication, the number of DMRSs per subframe was increased to 4 and the interval between reference signals was reduced to 0.214 ms, so that the physical layer design was changed to facilitate channel estimation even with rapid channel changes. .

한편, DMRS 심볼 패턴을 선택하는 방법 중 일 예는 전용 캐리어에서 PSCCH/PSSCH은 2/5/8/11번 OFDM 심볼에 DMRS를 할당하고, PSBCH는3/5/8/10번 OFDM 심볼에 DMRS를 할당한다. 2GHz 대역에서는 DMRS가 2개인 Rel-12/13 방식을 그대로 사용할 수 있다. 즉, 채널 및 캐리어 주파수 대역에 따라 DMRS 전송 개수 및 패턴이 상이하게 구성될 수 있다. On the other hand, as one example of a method of selecting a DMRS symbol pattern, in a dedicated carrier, DMRS is allocated to OFDM symbols 2/5/8/11 in PSCCH/PSSCH, and DMRS in OFDM symbols 3/5/8/10 in PSBCH. allocate In the 2GHz band, the Rel-12/13 method with two DMRSs can be used as it is. That is, the number and pattern of DMRS transmission may be configured differently according to channels and carrier frequency bands.

또한, D2D에서 사용하는 TDM(Time Division Multiplexing) 방식은 다수의 차량이 밀집되어 동시에 접속하는 C-V2X에 적합하지 않기 때문에 FDM(Frequency Division Multiplexing) 방식을 이용한다In addition, the TDM (Time Division Multiplexing) method used in D2D uses the FDM (Frequency Division Multiplexing) method because it is not suitable for C-V2X in which a large number of vehicles are densely connected at the same time.

<자원할당><Resource Allocation>

도 9는 V2X 통신을 위한 다양한 시나리오를 설명하기 위한 도면이다. 9 is a diagram for explaining various scenarios for V2X communication.

도 9를 참조하면, V2X 단말(차량으로 표기하나, 사용자 단말 등 다양하게 설정 가능함)은 기지국(eNB 또는 gNB 또는 ng-eNB) 커버리지 내에 위치할 수도 있고, 기지국 커버리지 밖에 위치할 수도 있다. 예를 들어, 기지국 커버리지 내의 단말 간(UE N-1, UE G-1, UE X)에 통신을 수행할 수도 있고, 기지국 커버리지 내의 단말과 밖의 단말 간(ex, UE N-1, UE N-2)에 통신을 수행할 수도 있다. 또는 기지국 커버리지 밖의 단말 간(ex, UE G-1, UE G-2)에 통신을 수행할 수도 있다. Referring to FIG. 9 , a V2X terminal (represented as a vehicle, but can be set in various ways such as a user terminal) may be located within the coverage of a base station (eNB or gNB or ng-eNB), or may be located outside the coverage of the base station. For example, communication may be performed between terminals within the coverage of a base station (UE N-1, UE G-1, UE X), and between terminals within coverage of a base station and terminals outside (eg, UE N-1, UE N-) 2) can also perform communication. Alternatively, communication may be performed between terminals (eg, UE G-1, UE G-2) outside the coverage of the base station.

이러한 다양한 시나리오에서 해당 단말이 사이드링크를 이용한 통신을 수행하기 위해서 통신을 위한 무선자원의 할당이 요구되며, 무선자원의 할당은 크게 기지국 핸들링 할당과 단말 자체적으로 선택하여 할당하는 방식이 있다. In order for the corresponding terminal to perform communication using the sidelink in these various scenarios, allocation of radio resources for communication is required, and allocation of radio resources is largely divided into a base station handling allocation and a method in which the terminal itself selects and allocates.

구체적으로, D2D에서 단말이 자원을 할당하는 방식은 기지국이 자원의 선택과 관리에 개입하는 centralized 방식(Mode 1)과 단말이 사전 설정된 자원을 무작위로 선택하는 distributed 방식(Mode 2)이 있다. D2D와 유사하게 C-V2X에서도 기지국이 자원의 선택과 관리에 개입하는 방식(Mode 3)과 V2X에서 차량이 직접 자원을 선택하는 방식(Mode 4)이 있다. Mode 3에서 기지국은 송신 단말에게 SA(Scheduling Assignment) pool 자원 영역과 이에 할당되는 DATA pool 자원 영역을 스케줄링 해준다.Specifically, in D2D, there are a centralized method in which the base station intervenes in resource selection and management (Mode 1) and a distributed method in which the terminal randomly selects a preset resource (Mode 2) in D2D. Similar to D2D, in C-V2X, there are a method in which a base station intervenes in resource selection and management (Mode 3) and a method in which a vehicle directly selects a resource in V2X (Mode 4). In Mode 3, the base station schedules the SA (Scheduling Assignment) pool resource area and the DATA pool resource area allocated thereto to the transmitting terminal.

도 10은 사이드링크 통신을 수행하는 단말 1(UE1), 단말 2(UE2) 및 이들이 사용하는 사이드링크 리소스 풀의 예가 도시되어 있다.10 shows an example of UE1 (UE1) and UE2 (UE2) performing sidelink communication and a sidelink resource pool used by them.

도 10을 참조하면, 기지국은 eNB로 표기하였으나, 전술한 바와 같이 gNB 또는 ng-eNB가 될 수도 있다. 또한, 단말은 휴대폰을 예시적으로 도시하였으나, 차량, 인프라장치 등 다양하게 적용될 수 있다. Referring to FIG. 10 , the base station is denoted as an eNB, but as described above, it may be a gNB or an ng-eNB. In addition, although a mobile phone is illustrated as an example, the terminal may be variously applied to a vehicle, an infrastructure device, and the like.

도 10(a)에서 송신 단말(UE1)은 일련의 자원의 집합을 의미하는 자원 풀 내에서 특정한 자원에 해당하는 자원 유닛을 선택하고 해당 자원 유닛을 사용하여 사이드링크 신호를 송신할 수 있다. 수신 단말(UE2)는 UE1이 신호를 전송할 수 있는 자원 풀을 구성(configured) 받고 해당 단말의 송신 신호를 검출할 수 있다. In FIG. 10A , the transmitting terminal UE1 may select a resource unit corresponding to a specific resource from a resource pool indicating a set of a series of resources and transmit a sidelink signal using the resource unit. The receiving terminal UE2 may receive a resource pool configured to allow the UE1 to transmit a signal and detect a transmission signal of the corresponding terminal.

여기서 자원 풀은 UE1이 기지국의 연결 범위에 있는 경우 기지국이 알려줄 수 있으며, 기지국의 연결 범위 밖에 있는 경우에는 다른 단말이 알려주거나 또는 사전에 정해진 자원으로 결정될 수도 있다. 일반적으로 자원 풀은 복수의 자원 유닛으로 구성되며 각 단말은 하나 또는 복수의 자원 유닛을 선정하여 자신의 사이드링크 신호 송신에 사용할 수 있다. Here, the resource pool may be informed by the base station when the UE1 is within the connection range of the base station, and when the UE1 is outside the connection range of the base station, another terminal may inform it or may be determined as a predetermined resource. In general, a resource pool is composed of a plurality of resource units, and each terminal can select one or a plurality of resource units to use for its own sidelink signal transmission.

도 10(b)를 참조하면, 전체 주파수 자원이 NF개로 분할되고 전체 시간 자원이 NT개로 분할되어 총 NF*NT개의 자원 유닛이 정의되는 것을 알 수 있다. 여기서는 해당 자원 풀이 NT 서브프레임을 주기로 반복된다고 할 수 있다. 특히, 하나의 자원 유닛이 도시된 바와 같이 주기적으로 반복하여 나타날 수도 있다.Referring to FIG. 10( b ), it can be seen that the total frequency resource is divided into NF and the total time resource is divided into NT, so that a total of NF * NT resource units are defined. Here, it can be said that the resource pool is repeated with an NT subframe cycle. In particular, one resource unit may appear periodically and repeatedly as shown.

한편, 자원 풀은 여러 종류로 세분화될 수 있다. 먼저 각 자원 풀에서 전송되는 사이드링크 신호의 컨텐츠(contents)에 따라서 구분될 수 있다. 예를 들어, 사이드링크 신호의 컨텐츠는 구분될 수 있으며, 각각에 대하여 별도의 자원 풀이 구성될 수 있다. 사이드링크 신호의 컨텐츠로서, SA(Scheduling assignment), 사이드링크 데이터 채널, 디스커버리 채널(Discovery channel)이 있을 수 있다. Meanwhile, the resource pool may be subdivided into several types. First, it may be classified according to the contents of a sidelink signal transmitted from each resource pool. For example, the content of the sidelink signal may be divided, and a separate resource pool may be configured for each. As the content of the sidelink signal, there may be a scheduling assignment (SA), a sidelink data channel, and a discovery channel.

SA는 송신 단말이 후행하는 사이드링크 데이터 채널의 전송으로 사용하는 자원의 위치 및 그 외 데이터 채널의 복조를 위해서 필요한 MCS(modulation and coding scheme)나 MIMO 전송 방식, TA(timing advance)등의 정보를 포함하는 신호일 수 있다. 이 신호는 동일 자원 유닛 상에서 사이드링크 데이터와 함께 멀티플렉싱되어 전송되는 것도 가능하며, 이 경우 SA 자원 풀이란 SA가 사이드링크 데이터와 멀티플렉싱되어 전송되는 자원의 풀을 의미할 수 있다. SA provides information such as the location of resources used by the transmitting terminal for transmission of the following sidelink data channel and information such as the modulation and coding scheme (MCS), MIMO transmission method, and timing advance (TA) required for demodulation of other data channels. It may be a signal including This signal may also be multiplexed and transmitted together with sidelink data on the same resource unit. In this case, the SA resource pool may mean a pool of resources in which SA is multiplexed with sidelink data and transmitted.

한편, V2X 통신에 적용되는 FDM방식은 SA 자원 할당 이후 데이터 자원이 할당되는 지연시간을 줄일 수 있다. 예를 들어, 하나의 서브프레임 내에 제어 채널 자원과 데이터 채널 자원을 시간 도메인 상에서 분리하는 non-adjacent 방식과 하나의 서브프레임 내에 제어 채널과 데이터 채널을 연속적으로 할당하는 adjacent 방식 등이 고려된다. On the other hand, the FDM method applied to V2X communication can reduce the delay time in which the data resource is allocated after the SA resource allocation. For example, a non-adjacent method of separating a control channel resource and a data channel resource within one subframe in the time domain and an adjacent method of continuously allocating a control channel and a data channel within one subframe are considered.

한편, 동일 자원 유닛 상에서 사이드링크 데이터와 함께 SA가 멀티플렉싱되어 전송되는 경우 사이드링크 데이터 채널을 위한 자원 풀에서는 SA 정보를 제외한 형태의 사이드링크 데이터 채널만이 전송될 수 있다. 다시 말하면 SA 자원 풀 내의 개별 자원 유닛 상에서 SA 정보를 전송하는데 사용되었던 자원 요소들을 사이드링크 데이터 채널 자원 풀에서는 여전히 사이드링크 데이터를 전송하는데 사용할 수 있다. 디스커버리 채널은 송신 단말이 자신의 ID 등의 정보를 전송하여 인접 단말로 하여금 자신을 발견할 수 있도록 하는 메시지를 위한 자원 풀일 수 있다. 사이드링크 신호의 컨텐츠가 동일한 경우에도 사이드링크 신호의 송수신 속성에 따라서 상이한 자원 풀을 사용할 수도 있다.On the other hand, when SA is multiplexed and transmitted together with sidelink data on the same resource unit, only a sidelink data channel of a form excluding SA information may be transmitted in the resource pool for the sidelink data channel. In other words, resource elements used to transmit SA information on individual resource units in the SA resource pool may still be used to transmit sidelink data in the sidelink data channel resource pool. The discovery channel may be a resource pool for a message in which a transmitting terminal transmits information such as its ID so that a neighboring terminal can discover itself. Even when the content of the sidelink signal is the same, different resource pools may be used according to the transmission/reception property of the sidelink signal.

예를 들어, 동일한 사이드링크 데이터 채널이나 디스커버리 메시지라 하더라도 사이드링크 신호의 송신 타이밍 결정 방식(예를 들어 동기 기준 신호의 수신 시점에서 송신되는지 아니면 거기에서 일정한 TA를 적용하여 전송되는지)이나 자원 할당 방식(예를 들어 개별 신호의 전송 자원을 기지국이 개별 송신 단말에게 지정해주는지 아니면 개별 송신 단말이 pool 내에서 자체적으로 개별 신호 전송 자원을 선택하는지), 신호 포맷(예를 들어 각 사이드링크 신호가 한 서브프레임에서 차지하는 심볼의 개수나, 한 사이드링크 신호의 전송에 사용되는 서브프레임의 개수), 기지국으로부터의 신호 세기, 사이드링크 단말의 송신 전력 세기 등에 따라서 다시 상이한 자원 풀로 구분될 수 있다.For example, even in the same sidelink data channel or discovery message, the transmission timing determination method of the sidelink signal (for example, whether it is transmitted at the reception time of the synchronization reference signal or transmitted by applying a certain TA) or the resource allocation method (For example, whether the base station designates individual signal transmission resources to individual transmitting terminals or whether individual transmitting terminals independently select individual signal transmission resources within the pool), signal format (e.g., each sidelink signal is one sub It may be divided into different resource pools again according to the number of symbols occupied by a frame or the number of subframes used for transmission of one sidelink signal), signal strength from a base station, transmission power strength of a sidelink terminal, and the like.

<동기 신호><Synchronous signal>

전술한 바와 같이 V2X 통신 단말의 경우에 기지국 커버리지 밖에 위치할 가능성이 높다. 이 경우에도 사이드링크를 이용한 통신은 수행되어야 한다. 이를 위해서는 기지국 커버리지 밖에 위치하는 단말이 동기를 획득하는 문제가 중요하다. As described above, in the case of a V2X communication terminal, it is highly likely to be located outside the base station coverage. Even in this case, communication using the sidelink must be performed. To this end, it is important that the terminal located outside the coverage of the base station acquires synchronization.

이하에서는 상술한 설명에 기초하여, 사이드링크 통신에서 특히 차량간, 차량과 다른 단말, 차량과 인프라 네트워크와의 통신에서 시간 및 주파수 동기를 잡는 방법에 대해 설명한다. Hereinafter, based on the above description, a method for synchronizing time and frequency in communication between vehicles, in particular between vehicles, between vehicles and other terminals, and between vehicles and an infrastructure network, in sidelink communication will be described.

D2D 통신은 단말간의 시간 동기를 위해 기지국에서 전송하는 동기 신호인 SLSS(Sidelink Synchronization Signal)를 이용하였다. C-V2X에서는 동기화 성능 개선을 위해 추가적으로 위성시스템(GNSS: Global Navigation Satellite System)을 고려할 수 있다. 다만, 동기 확립에 우선권이 부여되거나 기지국이 우선권에 대한 정보를 지시할 수 있다. 예를 들어, 단말은 자신의 송신 동기를 결정함에 있어서 기지국이 직접 송신하는 동기 신호를 최우선적으로 선택하고, 만일 기지국 커버리지 외곽에 위치한 경우에는 기지국 커버리지 내부의 단말이 송신하는 SLSS에 우선적으로 동기를 맞추는 것이다. D2D communication uses a sidelink synchronization signal (SLSS), which is a synchronization signal transmitted from a base station for time synchronization between terminals. In C-V2X, a Global Navigation Satellite System (GNSS) may be additionally considered to improve synchronization performance. However, priority may be given to synchronization establishment or the base station may indicate information on priority. For example, in determining its own transmission synchronization, the terminal preferentially selects a synchronization signal directly transmitted by the base station. it will match

한편, 차량에 설치된 무선 단말이나, 차량에 장착된 단말은 배터리 소모에 대한 문제가 상대적으로 덜하고, navigation 목적을 위하여 GPS와 같은 위성신호를 이용할 수 있기에 위성 신호를 단말간 시간 또는 주파수 동기를 설정하는데 사용할 수 있다. 여기서 위성 신호에는 예시된 GPS(Global Positioning System)외에 GLONAS(GLObal NAvigation Satellite System), GALILEO, BEIDOU 등과 같은 GNSS 신호가 해당될 수 있다. On the other hand, since a wireless terminal installed in a vehicle or a terminal installed in a vehicle has relatively less battery consumption and can use satellite signals such as GPS for navigation purposes, time or frequency synchronization between terminals is set for satellite signals. can be used to Here, the satellite signals may correspond to GNSS signals such as Global Navigation Satellite System (GLONAS), GALILEO, and BEIDOU in addition to the illustrated Global Positioning System (GPS).

한편, 사이드링크 동기신호에는 프라이머리 동기 신호(PSSS, Primary Sidelink synchronization signal), 세컨더리 동기 신호(SSSS, Secondary Sidelink synchronization signal)가 있을 수 있다. PSSS는 소정 길이의 자도프 추 시퀀스(Zadoff-chu 시퀀스) 또는 PSS와 유사/변형/반복된 구조 등일 수 있다. 또한 DL PSS와 달리 다른 자도프 추 루트 인덱스(예를 들어, 26, 37)를 사용할 수 있다. SSSS는 M-시퀀스 또는 SSS와 유사/변형/반복된 구조 등일 수 있다. 만약 단말들이 기지국으로부터 동기를 맞출 경우, SRN은 기지국이 되며, SLSS는 PSS/SSS가 된다. Meanwhile, the sidelink synchronization signal may include a primary sidelink synchronization signal (PSSS) and a secondary sidelink synchronization signal (SSSS). The PSSS may be a Zadoff-chu sequence of a predetermined length or a structure similar/modified/repeated to the PSS. Also, unlike DL PSS, other Zadoff Chu root indexes (eg, 26, 37) may be used. The SSSS may be an M-sequence or a structure similar to/modified/repeated with the SSS. If the terminals synchronize from the base station, the SRN becomes the base station and the SLSS becomes the PSS/SSS.

DL의 PSS/SSS와 달리 PSSS/SSSS는 UL 서브캐리어 매핑 방식을 따른다. PSSCH(Physical Sidelink synchronization channel)는 사이드링크 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 시스템 정보(예를 들어, SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, subframe offset, 브로드캐스트 정보 등)가 전송되는 채널일 수 있다. PSSCH는 SLSS와 동일한 서브프레임 상에서 또는 후행하는 서브프레임 상에서 전송될 수 있다. DM-RS는 PSSCH의 복조를 위해 사용될 수 있다.Unlike PSS/SSS of DL, PSSS/SSSS follows UL subcarrier mapping scheme. PSSCH (Physical Sidelink Synchronization Channel) is the basic system information that the UE must know first before transmitting and receiving sidelink signals (eg, SLSS-related information, Duplex Mode, DM), TDD UL/DL configuration, resources Pool-related information, SLSS-related application type, subframe offset, broadcast information, etc.) may be transmitted through a channel. The PSSCH may be transmitted on the same subframe as the SLSS or on a subsequent subframe. DM-RS may be used for demodulation of PSSCH.

SRN은 SLSS, PSSCH를 전송하는 노드일 수 있다. SLSS는 특정 시퀀스 형태일 수 있고, PSSCH는 특정 정보를 나타내는 시퀀스거나 사전에 정해진 채널 코딩을 거친 후의 코드 워드 형태일 수 있다. 여기서, SRN은 기지국 또는 특정 사이드링크 단말이 될 수 있다. 부분 네트워크 커버리지(partial network coverage) 또는 커버리지 밖(out of network coverage)의 경우에는 단말이 SRN이 될 수 있다.The SRN may be a node transmitting SLSS and PSSCH. The SLSS may be in the form of a specific sequence, and the PSSCH may be in the form of a sequence indicating specific information or a code word after undergoing predetermined channel coding. Here, the SRN may be a base station or a specific sidelink terminal. In the case of partial network coverage or out of network coverage, the UE may be the SRN.

또한, 필요에 따라 커버리지 밖(out of coverage) 단말과의 사이드링크 통신을 위해 SLSS는 릴레이 될 수 있으며, 다중 홉을 통해 릴레이될 수 있다. 이하의 설명에서 동기 신호를 릴레이 한다는 것은 직접 기지국의 동기신호를 릴레이 하는 것뿐만 아니라, 동기 신호 수신 시점에 맞추어 별도의 포맷의 사이드링크 동기신호를 전송하는 것도 포함하는 개념이다. 이와 같이, 사이드링크 동기 신호가 릴레이 됨으로써 커버리지 안 단말과 커버리지 밖 단말이 직접 통신을 수행할 수 있다.In addition, if necessary, the SLSS may be relayed for sidelink communication with an out-of-coverage terminal, and may be relayed through multiple hops. In the following description, relaying the synchronization signal is a concept including not only relaying the synchronization signal of the base station directly, but also transmitting the sidelink synchronization signal in a separate format according to the synchronization signal reception time. In this way, the in-coverage terminal and the out-of-coverage terminal can directly communicate by relaying the sidelink synchronization signal.

<NR 사이드링크><NR side link>

전술한 바와 같이 LTE 시스템에 기반한 V2X와 달리 자율주행과 같이 복잡한 요구사항을 만족하기 위해서 NR 기반의 V2X 기술에 대한 요구가 존재한다. As described above, unlike V2X based on LTE system, there is a need for NR-based V2X technology to satisfy complex requirements such as autonomous driving.

NR V2X의 경우에 NR의 프레임 구조, 뉴머롤러지, 채널 송수신 절차 등을 적용하여 보다 다양한 환경에서 유연한 V2X 서비스 제공이 가능하도록 하고자 한다. 이를 위해서, 기지국과 단말 간의 자원 공유 기술, 사이드링크 캐리어 병합(CA, Carrier Aggregation) 기술, 보행자 단말을 위한 부분 센싱 기술 및 sTTI 등의 기술 개발이 요구된다. In the case of NR V2X, NR frame structure, numerology, channel transmission/reception procedure, etc. are applied to enable flexible V2X service provision in more diverse environments. To this end, it is required to develop technologies such as a resource sharing technology between a base station and a terminal, a sidelink carrier aggregation (CA) technology, a partial sensing technology for a pedestrian terminal, and sTTI.

NR V2X에서는 LTE V2X에서 사용하는 브로드캐스트 뿐만 아니라 유니캐스트 및 그룹캐스트를 지원하기로 하였다. 이때 그룹캐스트 및 유니캐스트에 대해서는 목표 그룹 ID를 사용하기로 하였으나 소스 ID의 사용 여부는 추후 논의하기로 하였다. In NR V2X, it was decided to support unicast and groupcast as well as broadcast used in LTE V2X. At this time, it was decided to use the target group ID for groupcast and unicast, but whether to use the source ID was discussed later.

또한, QOS를 위해 HARQ를 지원하기로 함에 따라 제어 정보에는 HARQ 프레세스 ID(HARQ Process ID)도 포함하기로 하였다. LTE HARQ에서는 하향링크 전송 후 4개의 서브프레임들 후에 HARQ를 위한 PUCCH를 전송하였으나, NR HARQ에서는 피드백 타이밍을 예를 들어 DCI 포맷 1_0 또는 1_1에서 PUCCH 자원 지시자(PUCCH resource indicator)나 PDSCH에 대한 HARQ 피드백 타이밍 지시자(PDSCH-to-HARQ feedback timing indicator)로 PUCCH 자원 및 피드백 타이밍을 지시할 수 있다.In addition, as it was decided to support HARQ for QOS, it was decided to include a HARQ process ID in the control information. In LTE HARQ, PUCCH for HARQ was transmitted 4 subframes after downlink transmission, but in NR HARQ, the feedback timing is, for example, in DCI format 1_0 or 1_1 PUCCH resource indicator (PUCCH resource indicator) or HARQ feedback for PDSCH A PUCCH resource and feedback timing may be indicated by a timing indicator (PDSCH-to-HARQ feedback timing indicator).

도 11은 V2X에서 HARQ 피드백 정보를 번들링하여 전송하는 방법을 설명하기 위한 도면이다. 11 is a diagram for explaining a method of bundling and transmitting HARQ feedback information in V2X.

도 11을 참조하면, LTE V2X에서는 시스템 오버헤드를 줄이기 위해서 별도의 HARQ ACK/NACK 정보를 전송하지 않았으며, 데이터 전송 안전성을 위해서 송신 단말이 선택에 따라 데이터를 1회 재전송할 수 있도록 하였다. 그러나, NR V2X는 데이터 전송 안정성 측면에서 HARQ ACK/NACK 정보를 전송할 수 있으며, 이 경우 해당 정보를 번들링하여 전송함으로써 오버헤드를 감소시킬 수 있다. Referring to FIG. 11 , in LTE V2X, separate HARQ ACK/NACK information is not transmitted in order to reduce system overhead, and the transmitting terminal can retransmit data once according to selection for data transmission safety. However, NR V2X may transmit HARQ ACK/NACK information in terms of data transmission stability, and in this case, overhead may be reduced by bundling and transmitting the corresponding information.

즉, 송신 단말(UE1)이 수신 단말(UE2)로 3개의 데이터를 전송하고, 수신 단말이 이에 대한 HARQ ACK/NACK 정보를 생성하면, 이는 PSCCH를 통해서 번들링되어 전송될 수 있다. 도면에서는 PSCCH를 통해서 HARA ACK/NACK이 전송되는 것으로 설명하였으나, 별도의 채널 또는 다른 채널을 통해서 전송될 수도 있으며, 번들링된 HARQ 정보는 3비트 이하로 구성될 수도 있다. That is, when the transmitting terminal UE1 transmits three pieces of data to the receiving terminal UE2 and the receiving terminal generates HARQ ACK/NACK information for it, it may be bundled and transmitted through the PSCCH. Although it has been described that the HARA ACK/NACK is transmitted through the PSCCH in the drawing, it may be transmitted through a separate channel or another channel, and bundled HARQ information may consist of 3 bits or less.

한편, 3GHz 이하 주파수 영역에 대한 FR1에서는 SCS(Subcarrier spacing)으로 15 kHz, 30 kHz, 60 kHz, 120 kHz를 후보군으로 논의하기로 하였다. 또한, 3GHz 초과 주파수 영역에 대한 FR2에 대해서는 SCS(Subcarrier spacing)으로 30 kHz, 60 kHz, 120 kHz, 240 kHz를 후보군으로 논의하기로 하였다. NR V2X는 최소 스케줄링 단위로 14개 심볼들보다 작은 미니 슬롯(예를 들어 2/4/7 심볼)이 지원될 수 있다. Meanwhile, in FR1 for the frequency domain below 3 GHz, 15 kHz, 30 kHz, 60 kHz, and 120 kHz were discussed as candidates for SCS (subcarrier spacing). In addition, for FR2 in the frequency region exceeding 3 GHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz as subcarrier spacing (SCS) were decided to be discussed as candidates. For NR V2X, a mini-slot (eg, 2/4/7 symbol) smaller than 14 symbols may be supported as a minimum scheduling unit.

RS의 후보군으로는 DM-RS, PT-RS, CSI-RS, SRS, AGC training 신호들을 논의하기로 하였다. As a candidate group for RS, DM-RS, PT-RS, CSI-RS, SRS, and AGC training signals were to be discussed.

PSCCH와 연관된 PSSCH의 다중화는 도 12에 도시한 바와 같이 다음 4가지 옵션들을 논의하기로 하였다. Option 2가 LTE V2X에서 PSCCH와 PSSCH의 다중화와 유사하다. The multiplexing of the PSSCH associated with the PSCCH will discuss the following four options as shown in FIG. 12 . Option 2 is similar to multiplexing of PSCCH and PSSCH in LTE V2X.

동기화 기작Synchronization mechanism

NR V2X 사이드링크 동기화는 사이드링크 동기 신호(들) 및 PSBCH를 포함하고, 사이드링크 소스는 GNSS, gNB와 함께 UE를 포함할 수 있다. NR V2X sidelink synchronization includes sidelink synchronization signal(s) and PSBCH, and the sidelink source may include a UE along with GNSS and gNB.

자원 할당(resource allocation) resource allocation

NR V2X 사이드링크 통신은 적어도 두 개의 사이드링크 자원 할당 모드들, 즉 모드 3 및 모드 4가 정의될 수 있다. 모드 3에서 기지국은 사이드링크 전송을 위해 단말에 의해 사용되는 사이드링크 자원(들)을 스케줄링 한다. 모드 4에서 단말은 기지국 에 의해 구성된 사이드링크 자원들 또는 미리 구성된 사이드링크 자원들 내에서 사이드링크 전송 자원(들)을 결정한다. In NR V2X sidelink communication, at least two sidelink resource allocation modes, ie, mode 3 and mode 4, may be defined. In mode 3, the base station schedules sidelink resource(s) used by the terminal for sidelink transmission. In mode 4, the UE determines sidelink transmission resource(s) within the sidelink resources configured by the base station or preconfigured sidelink resources.

모드 4는 다음과 같은 자원 할당 서브-모드들을 커버할 수 있다. 즉, UE가 전송을 위한 사이드링크 자원을 자동적으로 선택하거나, 다른 UE(들)을 위한 사이드링크 자원 선택을 돕거나, 사이드링크 전송을 위한 구성된 그랜트로 구성되거나, 다른 단말(들)의 사이드링크 전송을 스케줄링 할 수 있다.Mode 4 may cover the following resource allocation sub-modes. That is, the UE automatically selects a sidelink resource for transmission, helps the sidelink resource selection for other UE(s), is configured with a configured grant for sidelink transmission, or a sidelink of another UE(s) Transmissions can be scheduled.

NR preemtionNR preemtion

URLLC 단말과 같이 지연에 크리티컬한 단말의 경우, 이미 다른 eMBB 단말 등에 할당된 데이터 자원이라도 선점(preemption)하여 데이터 자원을 사용할 수 있다. 또한, group common DCI를 통해 데이터 자원의 어느 영역이 선점되었는지 정보를 단말에 지시할 수 있다. In the case of a terminal that is critical to delay, such as a URLLC terminal, even a data resource already allocated to another eMBB terminal or the like may be preempted to use the data resource. In addition, information on which area of the data resource is occupied may be indicated to the terminal through the group common DCI.

Uu 인터페이스 기반 사이드링크 자원 할당/구성Uu interface based sidelink resource allocation/configuration

NR Uu는 Uu와 NR 사이드링크 사이 공유된 licensed 캐리어 및/또는 전용 NR 사이드링크 캐리어를 위한 NR 사이드링크 자원들을 할당할 수 있다. 이때 자원 할당은 동적인 자원 할당과 활성화/비활성화 기반 자원 할당을 지원할 수 있다. 활성화/비활성화 기반 자원 할당은 SPS 할당 또는 NR grant free type-2를 재사용할 수 있다.The NR Uu may allocate NR sidelink resources for a shared licensed carrier and/or a dedicated NR sidelink carrier between the Uu and the NR sidelink. In this case, resource allocation may support dynamic resource allocation and activation/deactivation-based resource allocation. Activation/deactivation-based resource allocation may reuse SPS allocation or NR grant free type-2.

본 명세서에서 NR(New Radio)과 관련한 주파수, 프레임, 서브프레임, 자원, 자원블럭, 영역(region), 밴드, 서브밴드, 제어채널, 데이터채널, 동기신호, 각종 참조신호, 각종 신호 또는 각종 메시지는 과거 또는 현재 사용되는 의미 또는 장래 사용되는 다양한 의미로 해석될 수 있다.In this specification, frequencies, frames, subframes, resources, resource blocks, regions, bands, subbands, control channels, data channels, synchronization signals, various reference signals, various signals or various messages related to NR (New Radio) can be interpreted in various meanings used in the past or present or used in the future.

NR(New Radio)New Radio (NR)

최근 3GPP에서 진행된 NR은 LTE 대비 향상된 데이터 전송율 뿐 아니라, 세분화되고 구체화된 usage scenario 별로 요구되는 다양한 QoS requirements를 만족시킬 수 있는 설계가 이루어졌다. 특히 NR의 대표적 usage scenario로서 eMBB(enhancement Mobile BroadBand), mMTC(massive MTC) 및 URLLC(Ultra Reliable and Low Latency Communications)가 정의되었으며, 각각의 usage scenario별 requirements를 만족하기 위한 방법으로서 LTE 대비 flexible한 frame structure 설계가 요구되고 있다. 각각의 usage scenario는 data rates, latency, reliability, coverage 등에 대한 requirements가 서로 상이하기 때문에 임의의 NR 시스템을 구성하는 주파수 대역을 통해 각각의 usage scenario 별 requirements를 효율적으로 만족시키기 위한 방법으로서 서로 다른 numerology(e.g. subcarrier spacing, subframe, TTI, etc.) 기반의 무선 자원 유닛(unit)을 효율적으로 multiplexing하도록 설계되었다.Recently, NR conducted in 3GPP was designed to satisfy various QoS requirements required for each segmented and detailed usage scenario as well as an improved data rate compared to LTE. In particular, eMBB (enhancement Mobile BroadBand), mMTC (massive MTC), and URLLC (Ultra Reliable and Low Latency Communications) are defined as representative usage scenarios of NR. Structural design is required. Since each usage scenario has different requirements for data rates, latency, reliability, coverage, etc., different numerology ( eg subcarrier spacing, subframe, TTI, etc.) based radio resource unit (unit) is designed to efficiently multiplex.

이를 위한 한 방법으로서, 서로 다른 subcarrier spacing값을 갖는 numerology에 대해 하나 혹은 복수의 NR component carrier(s)를 통해 TDM, FDM 혹은 TDM/FDM 기반으로 다중화하여 지원하는 방법 및 time domain에서의 스케줄링 단위를 구성함에 있어서 하나 이상의 time unit을 지원하는 방안에 대한 논의가 이루어졌다. 이와 관련하여 NR에서는 time domain structure의 한 종류로서 subframe에 대한 정의가 이루어졌으며, 해당 subframe duration을 정의하기 위한 reference numerology로서 LTE와 동일한 15kHz SCS(Sub-Carrier Spacing) 기반 normal CP overhead의 14개의 OFDM symbols로 구성된 단일한 subframe duration을 정의하기로 결정하였다. 이에 따라 NR에서 subframe은 1ms의 time duration을 가진다. 단, LTE와 달리 NR의 subframe은 절대적인 reference time duration으로서, 실제 상/하향 링크 데이터 스케줄링의 기반의 되는 time unit으로서 slot 및 mini-slot이 정의될 수 있다. 이 경우, 해당 slot을 구성하는 OFDM 심볼의 개수, y값은 normal CP의 경우, SCS값에 관계 없이 y=14의 값을 갖도록 결정되었다.As a method for this, a method for supporting multiplexing based on TDM, FDM or TDM/FDM through one or a plurality of NR component carrier(s) for numerology having different subcarrier spacing values and a scheduling unit in the time domain In the configuration, there was a discussion about how to support more than one time unit. In this regard, in NR, a subframe is defined as a type of time domain structure, and as a reference numerology for defining the corresponding subframe duration, 14 OFDM symbols of the same 15 kHz Sub-Carrier Spacing (SCS)-based normal CP overhead as in LTE It was decided to define a single subframe duration composed of Accordingly, in NR, a subframe has a time duration of 1 ms. However, unlike LTE, the NR subframe is an absolute reference time duration, and slots and mini-slots may be defined as time units that are the basis of actual uplink/downlink data scheduling. In this case, the number of OFDM symbols constituting the corresponding slot, y value, is determined to have a value of y=14 irrespective of the SCS value in the case of normal CP.

이에 따라 임의의 slot은 14개의 심볼로 구성되며, 또한 해당 slot의 transmission direction에 따라 모든 심볼이 DL transmission을 위해 이용되거나, 혹은 모든 심볼이 UL transmission을 위해 이용되거나, 혹은 DL portion + (gap) + UL portion의 형태로 이용될 수 있다.Accordingly, any slot is composed of 14 symbols, and depending on the transmission direction of the slot, all symbols are used for DL transmission, or all symbols are used for UL transmission, or DL portion + (gap) + It may be used in the form of a UL portion.

또한 임의의 numerology(혹은 SCS)에서 상기 slot보다 적은 수의 심볼로 구성된 mini-slot이 정의되어 이를 기반으로 상/하향 링크 데이터 송수신을 위한 짧은 길이의 time-domain scheduling interval이 설정되거나, 혹은 slot aggregation을 통해 상/하향 링크 데이터 송수신을 위한 긴 길이의 time-domain scheduling interval이 구성될 수 있다. 특히 URLLC와 같이 latency critical한 데이터에 대한 송수신의 경우, 15kHz와 같이 SCS값이 작은 numerology 기반의 frame 구조에서 정의된 1ms(14 symbols) 기반의 slot 단위로 스케줄링이 이루어질 경우, latency requirement를 만족시키기 힘들 수 있기 때문에 이를 위해서 해당 slot보다 적은 수의 OFDM 심볼로 구성된 mini-slot을 정의하여 이를 기반으로 해당 URLLC와 같은 latency critical한 데이터에 대한 스케줄링이 이루어지도록 정의할 수 있다. In addition, a mini-slot composed of fewer symbols than the slot is defined in an arbitrary numerology (or SCS), and a short time-domain scheduling interval for uplink/downlink data transmission/reception is set based on this, or slot aggregation A long time-domain scheduling interval for uplink/downlink data transmission/reception can be configured through . In particular, in the case of transmission and reception of latency-critical data such as URLLC, it is difficult to satisfy the latency requirement when scheduling is performed in 1ms (14 symbols)-based slot units defined in a numerology-based frame structure with a small SCS value such as 15kHz. For this, it is possible to define a mini-slot composed of a number of OFDM symbols smaller than the corresponding slot, and define scheduling for latency-critical data such as the corresponding URLLC based on this.

또는 상기에서 서술한 바와 같이 하나의 NR Carrier 내에서 서로 다른 SCS값을 갖는 numerology를 TDM and/or FDM 방식으로 다중화하여 지원함으로써, 각각의 numerology 별로 정의된 slot(혹은 mini-slot) length를 기반으로 latency requirement에 맞추어 데이터를 스케줄링하는 방안도 고려되고 있다. 예를 들어 아래의 도 13과 같이 SCS가 60kHz인 경우, SCS 15kHz인 경우보다 심볼 길이가 1/4정도로 줄어들기 때문에 동일하게 14개의 OFDM 심볼로 하나의 slot을 구성할 경우, 해당 15kHz 기반의 slot length는 1ms이 되는 반면, 60kHz 기반의 slot length는 약 0.25ms으로 줄어들게 된다.Alternatively, as described above, by multiplexing and supporting numerology having different SCS values in one NR carrier using TDM and/or FDM methods, based on the slot (or mini-slot) length defined for each numerology. A method of scheduling data according to latency requirements is also being considered. For example, as shown in FIG. 13 below, when SCS is 60 kHz, since the symbol length is reduced by about 1/4 compared to when SCS is 15 kHz, when one slot is configured with 14 OFDM symbols, the corresponding 15 kHz-based slot The length becomes 1ms, while the slot length based on 60kHz is reduced to about 0.25ms.

이처럼 NR에서는 서로 다른 SCS 혹은 서로 다른 TTI length를 정의함으로써, URLLC와 eMBB 각각의 requirement를 만족시키는 방법에 대한 논의가 진행되고 있다.As such, in NR, by defining different SCS or different TTI lengths, discussion is ongoing on a method of satisfying the requirements of URLLC and eMBB.

Wider bandwidth operationsWider bandwidth operations

기존 LTE system의 경우, 임의의 LTC CC(Component Carrier)에 대한 scalable bandwidth operation을 지원하였다. 즉, 주파수 deployment scenario에 따라 임의의 LTE 사업자는 하나의 LTE CC를 구성함에 있어서, 최소 1.4 MHz부터 최대 20 MHz의 대역폭을 구성할 수 있었고, normal LTE 단말은 하나의 LTE CC에 대해 20 MHz bandwidth의 송수신 capability를 지원하였다. In the case of the existing LTE system, scalable bandwidth operation for an arbitrary LTC CC (Component Carrier) was supported. That is, according to the frequency deployment scenario, any LTE operator was able to configure a bandwidth of at least 1.4 MHz to a maximum of 20 MHz in configuring one LTE CC, and a normal LTE terminal can configure a bandwidth of 20 MHz for one LTE CC. Transmitting/receiving capability is supported.

하지만, NR의 경우, 하나의 wideband NR CC를 통해 서로 다른 송수신 bandwidth capability를 갖는 NR 단말에 대한 지원이 가능하도록 그 설계가 이루어지고 있으며, 이에 따라 아래의 도 14와 같이 임의의 NR CC에 대해 세분화된 대역폭으로 구성된 하나 이상의 bandwidth part(s)를 구성하여, 단말 별로 서로 다른 bandwidth part configuration 및 activation을 통해 flexible한 wider bandwidth operation을 지원하도록 요구되고 있다. However, in the case of NR, the design is made to enable support for NR terminals having different transmission/reception bandwidth capabilities through one wideband NR CC, and accordingly, it is subdivided for any NR CC as shown in FIG. 14 below. It is required to support flexible wider bandwidth operation through different bandwidth part configurations and activations for each terminal by configuring one or more bandwidth part(s) composed of the selected bandwidth.

구체적으로 NR에서는 단말 관점에서 구성된 하나의 serving cell을 통해 하나 이상의 bandwidth part를 구성할 수 있으며, 해당 단말은 해당 serving cell에서 하나의 DL bandwidth part와 하나의 UL bandwidth part를 activation하여 상/하향 링크 데이터 송수신을 위해 사용하도록 정의되었다. 또한 해당 단말에서 복수의 serving cell이 설정된 경우, 즉 CA이 적용된 단말에 대해서도 각각의 serving cell 별로 하나의 DL bandwidth part 그리고/혹은 UL bandwidth part를 activation하여 해당 serving cell의 무선 자원을 이용하여 상/하향 링크 데이터 송수신을 위해 사용하도록 정의되었다.Specifically, in NR, one or more bandwidth parts can be configured through one serving cell configured from the viewpoint of the UE, and the UE activates one DL bandwidth part and one UL bandwidth part in the corresponding serving cell to obtain uplink/downlink data It is defined to be used for sending and receiving. In addition, when multiple serving cells are configured in the corresponding UE, that is, even for the UE to which CA is applied, one DL bandwidth part and/or UL bandwidth part is activated for each serving cell and up/down using the radio resource of the corresponding serving cell. It is defined to be used for sending and receiving link data.

구체적으로 임의의 serving cell에서 단말의 initial access procedure를 위한 initial bandwidth part가 정의되며, 각각의 단말 별로 dedicated RRC signaling을 통해 하나 이상의 UE-specific bandwidth part(s)가 구성되고, 또한 각각의 단말 별로 fallback operation을 위한 default bandwidth part가 정의될 수 있다.Specifically, an initial bandwidth part for an initial access procedure of a UE is defined in a serving cell, and one or more UE-specific bandwidth part(s) are configured through dedicated RRC signaling for each UE, and fallback for each UE A default bandwidth part for operation can be defined.

단, 임의의 serving cell에서 단말의 capability 및 bandwidth part(s) 구성에 따라 동시에 복수의 DL and/or UL bandwidth parts를 activation하여 사용하도록 정의할 수 있으나, NR rel-15에서는 임의의 단말에서 임의의 시간에 하나의 DL bandwidth part 및 UL bandwidth part만을 activation하여 사용하도록 정의되었다.However, it can be defined to activate and use a plurality of DL and/or UL bandwidth parts at the same time according to the capability and bandwidth part(s) configuration of the UE in any serving cell, but in NR rel-15, any UE It was defined to activate and use only one DL bandwidth part and UL bandwidth part at a time.

NR에서 정의된 구체적인 BWP 구성 및 활성화 방법은 appendix [1]의 TS 38.213을 통해 첨부하도록 한다.The specific BWP configuration and activation method defined in NR is attached through TS 38.213 of appendix [1].

NR sidelinkNR sidelink

LTE 및 NR 기반의 V2X 서비스 제공을 위해 LTE 혹은 NR framework 기반의 단말 간 직접 통신 프로토콜 설계가 이루어졌다. 특히 NR 기반 단말 간 직접 통신을 위한 NR sidelink 관련 무선 통신 프로토콜 설계가 3GPP Rel-16에서 작업 중이다. NR 사이드링크는 기존 broadcast 기반의 LTE 사이드링크 전송 방법에 더해, unicast 및 groupcast 기반의 사이드링크 송신을 지원하며, 또한 이를 위해 HARQ operation 과 CSI 기반의 link adaptation 등을 지원한다. 이에 따라 기존 LTE 사이드링크 통신에서 설계된 관련 무선 신호/채널들, 즉, 무선 sidelink 송신단과 수신단 간의 동기화를 위한 동기 신호인 PSSS/SSSS 및 이와 관련한 sidelink MIB(Master Information Block) 송수신을 위한 PSBCH(Physical Sidelink Broadcasting Channel)와 사이드링크 스케줄링 제어 정보를 포함하는 SCI(Sidelink Control Information) 송수신을 위한 PSCCH(Physical Sidelink Control Channel), sidelink 데이터 송수신을 위한 PSSCH(Physical Sidelink Shared Channel)에 대한 설계 뿐만 아니라, 사이드링크 피드백 제어 정보인 HARQ ACK/NACK 피드백을 위한 PSFCH(Physical Sidelink Feedback Channel)의 설계가 추가적으로 이루어졌다. 또한 unicast 및 groupcast 기반의 다양한 HARQ ACK/NACK 피드백 방법들에 대한 정의도 이루어졌다. In order to provide LTE and NR-based V2X service, a direct communication protocol design between terminals based on LTE or NR framework was made. In particular, the design of a radio communication protocol related to NR sidelink for direct communication between NR-based terminals is working in 3GPP Rel-16. The NR sidelink supports unicast and groupcast-based sidelink transmission in addition to the existing broadcast-based LTE sidelink transmission method, and also supports HARQ operation and CSI-based link adaptation for this purpose. Accordingly, related radio signals/channels designed in the existing LTE sidelink communication, that is, PSSS/SSSS, which is a synchronization signal for synchronization between a wireless sidelink transmitting end and a receiving end, and a related sidelink MIB (Master Information Block) transmit/receive PSBCH (Physical Sidelink) A Physical Sidelink Control Channel (PSCCH) for transmission and reception of Sidelink Control Information (SCI) including Broadcasting Channel) and sidelink scheduling control information, a Physical Sidelink Shared Channel (PSSCH) for transmission and reception of sidelink data, as well as design for sidelink feedback A Physical Sidelink Feedback Channel (PSFCH) for HARQ ACK/NACK feedback, which is control information, was additionally designed. In addition, various HARQ ACK/NACK feedback methods based on unicast and groupcast were defined.

본 발명에서는 임의의 한 단말에서 사이드링크 송신 혹은 수신과 상향 링크 송신 간의 collision 혹은 overlap 발생 시 이에 대한 처리 방법에 대해 제안한다.The present invention proposes a processing method for collision or overlap between sidelink transmission or reception and uplink transmission in an arbitrary terminal.

이를 위해 본 발명에서는 해당 사이드링크와 상향 링크 간 collision 혹은 overlap 이벤트 발생에 대한 정의 및 또한 해당 overlap 이벤트 발생 시 단말 동작 방법을 각각 제안하도록 한다.To this end, the present invention proposes a definition of the occurrence of a collision or overlap event between the corresponding sidelink and the uplink and a method of operating a terminal when the corresponding overlap event occurs, respectively.

Point 1. 단말에서의 사이드링크와 상향 링크 간의 collision 이벤트 정의Point 1. Definition of collision event between sidelink and uplink in terminal

임의의 한 단말에서 기지국으로의 상향 링크 전송과 사이드링크 전송이 시간 축에서 fully 혹은 partially overlap되는 경우, 또는 상향 링크 전송과 사이드링크 수신이 시간 축에서 fully 혹은 partially overlap되는 경우, 해당 단말은 상향 링크와 사이드 링크 간의 collision 혹은 overlap 이벤트 발생을 감지하고 이에 따라 아래의 point 2에서 제안하는 단말 동작을 수행하도록 할 수 있다. When the uplink transmission and the sidelink transmission from any one terminal to the base station fully or partially overlap in the time axis, or when the uplink transmission and the sidelink reception fully or partially overlap in the time axis, the terminal is the uplink It is possible to detect the occurrence of a collision or overlap event between the side link and the side link, and perform the terminal operation suggested in point 2 below accordingly.

단, 상기의 시간 축에서의 overlap은 실제 전송 혹은 수신이 이루어지는 슬롯의 심볼들뿐만 아니라, 해당 단말 내에서의 transition time도 포함하도록 한다. 즉, 해당 단말에서 송신 동작에서 수신 동작으로 전환하기 위한 Tx-to-Rx transition time 또는 수신 동작에서 송신 동작으로 전환하기 위한 Rx-to-Tx transition time 또는 추가적으로 송수신 대역폭을 전환하기 위한 transition time 등을 포함하도록 정의할 수 있다. 송수신 대역폭을 전환하기 위한 transition time은 해당 단말을 위해 설정되거나, 혹은 활성화된 UL bandwidth part에서 sidelink bandwidth part로의 transition time 또는 반대로 sidelink bandwidth part에서 UL bandwidth part로의 transition time 등이 해당될 수 있다. However, the overlap on the time axis is to include not only the symbols of the slot in which the actual transmission or reception is made, but also the transition time within the corresponding terminal. That is, the Tx-to-Rx transition time for switching from the transmission operation to the reception operation in the corresponding terminal, the Rx-to-Tx transition time for switching from the reception operation to the transmission operation, or a transition time for additionally switching the transmission/reception bandwidth, etc. It can be defined to include The transition time for switching the transmission/reception bandwidth is set for the corresponding terminal, or may correspond to a transition time from the activated UL bandwidth part to the sidelink bandwidth part or, conversely, a transition time from the sidelink bandwidth part to the UL bandwidth part.

Tx-to-Rx transition time은 UL transmission에서 sidelink reception으로 전환하는데 필요한 transition time 등이 해당될 수 있으며, 반대로 Rx-to-Tx transition time은 sidelink reception에서 UL transmission으로 전환하는데 필요한 transition time 등이 해당될 수 있다. The Tx-to-Rx transition time may correspond to a transition time required for switching from UL transmission to sidelink reception, and vice versa. can

구체적으로 이하의 2가지 케이스가 상기 UL Tx와 sidelink Tx 혹은 UL Tx와 sidelink Rx 간의 collision 혹은 overlap case로 정의될 수 있다.Specifically, the following two cases may be defined as a collision or overlap case between the UL Tx and the sidelink Tx or the UL Tx and the sidelink Rx.

Case 1: 선행하는 사이드링크 전송 구간 + BWP(Bandwidth Part) transition 구간(사이드링크 BWP에서 UL BWP로의 transition 구간)과 후속의 상향 링크 전송 구간 간 fully 혹은 partially overlap 되는 경우 혹은 반대로 선행하는 상향 링크 전송 구간 + BWP transition 구간(UL BWP에서 sidelink BWP로의 transition 구간)과 후속의 사이드링크 전송 구간 간 fully 혹은 partially overlap되는 경우.Case 1: When the preceding sidelink transmission section + BWP (Bandwidth Part) transition section (the transition section from sidelink BWP to UL BWP) and the subsequent uplink transmission section fully or partially overlap, or conversely, the preceding uplink transmission section + If the BWP transition period (transition period from UL BWP to sidelink BWP) and the subsequent sidelink transmission period fully or partially overlap.

Case 2: 선행하는 사이드링크 수신 구간 + Rx-to-Tx transition 구간과 후속의 상향링크 전송 구간 간 fully overlap 혹은 partially overlap 되는 경우, 혹은 반대로 선행하는 상향링크 전송 구간 + Tx-to-Rx transition 구간과 후속의 사이드링크 수신 구간 간 fully 혹은 partially overlap 되는 경우.Case 2: In case of fully overlap or partially overlap between the preceding sidelink reception section + Rx-to-Tx transition section and the subsequent uplink transmission section, or conversely, the preceding uplink transmission section + Tx-to-Rx transition section and In the case of fully or partially overlapping between the subsequent sidelink reception sections.

이처럼, 단순 송수신 관점에서의 overlap 뿐 아니라, 단말에서 Tx/Rx 간 혹은 BWP 간 transition time을 고려한, 즉, 단말에서의 processing time도 고려한 time requirement를 만족하는 경우에 대해서만 이하에서 제안하는 단말 동작 방안이 적용되도록 정의할 수 있다.In this way, not only overlap in terms of simple transmission and reception, but also in consideration of the transition time between Tx/Rx or BWP in the terminal, that is, the terminal operation method proposed below only for the case that satisfies the time requirement in consideration of the processing time in the terminal. It can be defined to be applied.

Point 2. 상향링크와 사이드링크 간 collision 혹은 overlap 발생 시 단말 동작 방안Point 2. Terminal operation plan in case of collision or overlap between uplink and sidelink

방안 1: 특정 link에 우선 순위를 정의하는 방법Method 1: How to define priority for a specific link

본 방안에 따르면, 단말은 상향링크 전송과 사이드링크 전송 혹은 수신 간의 overlap 발생 시, 즉 상기의 case 1 혹은 case 2에 해당하는 event 발생 시, 특정 링크에 우선 순위를 두어 해당 전송 혹은 수신을 수행하고, 다른 링크의 전송 혹은 수신은 drop하도록 정의할 수 있다. 즉, 임의의 한 슬롯 혹은 연속하는 슬롯들에서 상기의 case 1 혹은 case 2에 해당하는 이벤트 발생 시, 특정 링크에서의 전송 혹은 수신을 우선하도록 정의할 수 있다. 예를 들어, 기지국으로의 상향 링크 전송을 사이드링크 송수신에 비해 우선하도록 정의할 수 있다. 이 경우, 단말은 상기 overlap 발생 case들에 대해 상향 링크 전송을 우선적으로 수행하며, 사이드링크에서의 전송 혹은 수신은 drop하도록 한다. 반대로 사이드링크에서의 송수신을 기지국으로의 상향 링크 전송에 비해 우선하도록 정의할 수 있다. 이 경우, 단말은 상기 overlap 발생 case들에 대해 사이드링크 전송 혹은 사이드링크 수신을 우선적으로 수행하며, 상향 링크 전송은 drop하도록 한다. According to this method, when an overlap occurs between uplink transmission and sidelink transmission or reception, that is, when an event corresponding to case 1 or case 2 occurs, the terminal prioritizes a specific link and performs the transmission or reception and , it can be defined to drop the transmission or reception of other links. That is, when an event corresponding to case 1 or case 2 occurs in any one slot or consecutive slots, it can be defined to give priority to transmission or reception in a specific link. For example, it may be defined that uplink transmission to the base station is prioritized over sidelink transmission/reception. In this case, the terminal preferentially performs the uplink transmission for the overlap occurrence cases, and the transmission or reception in the sidelink is dropped. Conversely, it can be defined to give priority to transmission/reception in the sidelink over uplink transmission to the base station. In this case, the terminal preferentially performs sidelink transmission or sidelink reception for the overlap occurrence cases, and the uplink transmission is dropped.

단, 이처럼 특정 링크에서의 전송 혹은 수신 동작을 우선하는 경우에 대해서도, 해당 우선하는 링크에서의 전송 혹은 수신에 대한 설정/지시 정보가 우선 순위가 낮은 링크에서의 전송 혹은 수신 중에 발생한 경우, 해당 단말은 우선 순위가 낮은 링크에서의 전송 혹은 수신을 중지하고, 우선 순위가 높은 링크에서의 전송 혹은 수신을 수행하도록 정의할 수 있다. 또는 상기 경우에 대해서는 상기의 링크에 따른 우선 순위를 적용하지 않고, 선행하는 링크에서의 전송 혹은 수신을 지속하도록 정의할 수 있다.However, even in the case of prioritizing the transmission or reception operation on a specific link, if the setting/instruction information for transmission or reception on the priority link occurs during transmission or reception on a link with a lower priority, the corresponding terminal can be defined to stop transmission or reception in a link having a lower priority and to perform transmission or reception in a link having a higher priority. Alternatively, in this case, it may be defined to continue transmission or reception in the preceding link without applying the priority according to the link.

방안 2: 전송 혹은 수신이 선행하는 link에 우선 순위를 정의하는 방법Method 2: How to define a priority in a link preceding transmission or reception

본 방안에 따르면, 링크나 무선 채널, 정보 등에 관계 없이, 선행하는 전송 혹은 수신 동작을 우선하도록 정의할 수 있다. 즉, 사이드링크 전송 혹은 수신이 선행할 경우, 해당 사이드링크 전송 혹은 수신을 지속하고, 후속하는 상향 링크 전송을 drop하도록 하며, 반대로 상향 링크 전송이 선행할 경우, 해당 상향 링크 전송을 지속하고 후속하는 사이드링크 전송 혹은 수신을 drop하도록 정의할 수 있다. 단, 동시에 발생하는 경우, 즉 시작 심볼이 동일한 경우, 다른 방안 1, 3, 4 등이 적용될 수 있다.According to this method, it can be defined to give priority to a preceding transmission or reception operation regardless of a link, a radio channel, information, or the like. That is, when sidelink transmission or reception precedes, the corresponding sidelink transmission or reception is continued, and the subsequent uplink transmission is dropped. It can be defined to drop sidelink transmission or reception. However, when they occur simultaneously, that is, when the start symbols are the same, other methods 1, 3, 4, etc. may be applied.

방안 3: 특정 채널 혹은 정보에 우선 순위를 두는 방법Option 3: Prioritize specific channels or information

물리 채널 별로 우선 순위를 정의할 수 있다. 즉, 상향링크 전송 물리 채널인 PUSCH, PUCCH 및 사이드링크 전송 및 수신 채널인 PSCCH, PSSCH 및 PSFCH에 대해 각각 우선 순위를 정의할 수 있다. 또는 상향링크 전송 정보, 즉, PUSCH의 경우, UL-SCH만을 포함한 PUSCH 전송인지 혹은 UCI(e.g. HARQ ACK. CSI 등)을 포함한 PUSCH 전송인지 여부와 PUCCH 전송의 경우 UCI type, 즉, HARQ ACK, CSI 피드백 혹은 SR인지 등에 따라 사이드링크 PSSCH 혹은 PSFCH 송수신과의 우선순위가 결정되도록 정의할 수 있다. Priority may be defined for each physical channel. That is, priorities may be defined for PUSCH, PUCCH, which are uplink transmission physical channels, and PSCCH, PSSCH, and PSFCH, which are sidelink transmission and reception channels, respectively. Or uplink transmission information, that is, in the case of PUSCH, whether PUSCH transmission including only UL-SCH or PUSCH transmission including UCI (eg HARQ ACK, CSI, etc.) It can be defined to determine the priority of the sidelink PSSCH or PSFCH transmission/reception according to whether it is feedback or SR.

방안 4: 기지국에 의해 지시되는 priority 정보에 따르는 방법Method 4: Method according to the priority information indicated by the base station

기지국에 의해 explicitly 혹은 implicitly 지시되는 priority 정보에 의해 단말 동작이 결정될 수 있다. 이 경우, sidelink 전송 혹은 수신의 경우, SCI를 통해 지시되는 priority 지시값이나, UL 전송의 경우 DCI를 통해 지시되는 priority indicator 값이 상기 UL 전송과 사이드링크 전송 혹은 수신 간의 priority를 결정하는데 사용되도록 정의할 수 있다. 구체적으로 1-st stage SCI의 SCI format 0-1은 3 bits의 priority값을 포함하도록 정의되어 있으며, DCI format 0_1 혹은 DCI format 0_2는 1 bit의 priority indicator를 포함하도록 설정될 수 있다. 이 경우, 해당 단말은 SCI의 priority 값을 해당 SCI에 의해 할당된 PSSCH 전송 혹은 수신이나, 해당 PSSCH에 대응하는 PSFCH 전송 혹은 수신의 우선순위 값으로 이용하도록 하며, DCI format 0_1 혹은 DCI format 0_2에 포함된 priority indicator를 해당 DCI에 의해 스케줄링 되는 PUSCH 전송의 우선순위 값으로 사용하도록 정의할 수 있다. 또한 DCI format 1_1 혹은 DCI format 1_2에 의해 전송하는 PUCCH/PUSCH나 SRS의 경우, 해당 DCI format 1_1 혹은 DCI format 1_2에 포함된 1 bit priority indicator를 해당 PUSCH/PUCCH 혹은 SRS의 우선순위값으로 이용하도록 정의할 수 있다. 즉, 임의의 사이드링크 전송 혹은 수신을 지시하는 SCI에 포함된 priority 값과 임의의 상향링크 전송을 지시하는 DCI format에 포함된 priority indicator값에 의해 해당 사이드링크 전송 혹은 수신과 상향 링크 전송 간의 우선순위를 결정하도록 정의할 수 있다. 이 때 구체적인 SCI의 priority 값과 DCI의 priority indicator 설정값에 따른 우선순위는 기지국에 의해 설정되거나, 혹은 해당 값들에 따른 고정된 우선순위가 정의될 수 있다. A terminal operation may be determined by priority information explicitly or implicitly indicated by the base station. In this case, in the case of sidelink transmission or reception, a priority indicator value indicated through SCI or, in the case of UL transmission, a priority indicator value indicated through DCI is defined to be used to determine the priority between the UL transmission and sidelink transmission or reception can do. Specifically, SCI format 0-1 of 1-st stage SCI is defined to include a priority value of 3 bits, and DCI format 0_1 or DCI format 0_2 may be configured to include a priority indicator of 1 bit. In this case, the UE uses the priority value of the SCI as a priority value for PSSCH transmission or reception allocated by the corresponding SCI or PSFCH transmission or reception corresponding to the PSSCH, and is included in DCI format 0_1 or DCI format 0_2 It can be defined to use the assigned priority indicator as a priority value of PUSCH transmission scheduled by the corresponding DCI. In addition, in the case of PUCCH/PUSCH or SRS transmitted by DCI format 1_1 or DCI format 1_2, the 1-bit priority indicator included in the corresponding DCI format 1_1 or DCI format 1_2 is defined to be used as a priority value of the corresponding PUSCH/PUCCH or SRS. can do. That is, the priority between the corresponding sidelink transmission or reception and the uplink transmission by the priority value included in the SCI indicating any sidelink transmission or reception and the priority indicator value included in the DCI format indicating any uplink transmission can be defined to determine In this case, the priority according to the specific SCI priority value and the DCI priority indicator setting value may be set by the base station, or a fixed priority according to the corresponding values may be defined.

단, 상향 링크 전송을 지시하는 DCI가 상기 priority indicator 값을 포함하지 않을 경우에 대해서도 SCI에 포함된 priority값과 priority indicator를 포함하지 않는 상향링크 전송 간의 우선순위가 결정될 수 있으며, 이 때 구체적인 SCI의 priority 값과 priority indicator를 포함하지 않는 DCI에 의한 상향 링크 전송 간의 우선순위는 기지국에 의해 설정되거나, 혹은 고정된 우선순위가 정의될 수 있다.However, even when the DCI indicating the uplink transmission does not include the priority indicator value, the priority between the priority value included in the SCI and the uplink transmission not including the priority indicator can be determined. Priority between uplink transmission by DCI that does not include a priority value and a priority indicator may be set by the base station or a fixed priority may be defined.

추가적으로 상기의 방안들의 조합의 형태로 사이드링크 송수신과 상향 링크 전송 간의 우선순위가 정의될 수 있다. 예를 들어, 방안 3과 4의 조합의 형태로서 각각의 물리 채널 별로 우선순위가 결정되고, (e.g. PSFCH와 PUCCH 혹은 UCI를 포함한 PUSCH의 경우 PSSCH 및 UCI를 포함하지 않는 PUSCH 전송에 우선하도록 정의) 동일 우선순위 물리 채널에 대해서는 해당 물리 채널 전송 혹은 수신을 지시하는 SCI에 포함된 priority값 혹은 DCI에 포함된 priority indicator에 의해 그 우선순위가 결정되도록 정의할 수 있다.Additionally, a priority between sidelink transmission/reception and uplink transmission may be defined in the form of a combination of the above methods. For example, in the form of a combination of methods 3 and 4, a priority is determined for each physical channel (eg, in the case of a PUSCH including a PSFCH and a PUCCH or UCI, it is defined to prioritize transmission of a PUSCH not including a PSSCH and UCI) For the same priority physical channel, it can be defined so that the priority is determined by the priority value included in the SCI indicating transmission or reception of the corresponding physical channel or the priority indicator included in the DCI.

또한 case 3와 같이 UL BWP와 sidelink BWP가 identical 한 경우, 또는 UL BWP와 sidelink BWP가 주파수 축에서 중첩되지 않는 경우, 사이드링크와 상향 링크 전송 간의 simultaneous TX 혹은 Rx가 단말 capability에 의해 지원되도록 정의할 수 있으며, 추가적으로 기지국에 의해 해당 UL과 sidelink 간의 simultaneous TX 혹은 Rx가 설정되도록 정의할 수 있다. 이 경우, 임의의 단말에 대해 UL과 sidelink에 대한 simultaneous TX 혹은 Rx capability를 갖추고, 기지국에 의해 설정된 경우, 해당 단말은 sidelink 송수신과 UL 송신 간 시간축에서 overlap되더라도 주파수 축에서 overlap되지 않으면 동시 송수신을 지원하도록 정의할 수 있다. 단, 주파수 축에서 overlap되는 경우 상기의 방안 1~4에 따라 그 우선순위를 결정하도록 할 수 있다.Also, as in case 3, when UL BWP and sidelink BWP are identical, or when UL BWP and sidelink BWP do not overlap on the frequency axis, simultaneous TX or Rx between sidelink and uplink transmission can be defined to be supported by UE capability. In addition, it may be defined that simultaneous TX or Rx between the corresponding UL and the sidelink is configured by the base station. In this case, when equipped with simultaneous TX or Rx capability for UL and sidelink for any terminal and configured by the base station, the terminal supports simultaneous transmission and reception if it does not overlap on the frequency axis even if it overlaps in the time axis between sidelink transmission and reception and UL transmission can be defined to However, in the case of overlap on the frequency axis, the priority can be determined according to the above methods 1-4.

도 15는 또 다른 실시예에 의한 기지국(1000)의 구성을 보여주는 도면이다.15 is a diagram showing the configuration of the base station 1000 according to another embodiment.

도 15를 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)를 포함한다.Referring to FIG. 15 , the base station 1000 according to another embodiment includes a controller 1010 , a transmitter 1020 , and a receiver 1030 .

제어부(1010)는 전술한 본 발명을 수행하기에 필요한 단말의 사이드링크 송수신 방법에 있어서, 단말에서 사이드링크 전송 또는 수신과 상향링크 전송이 시간 영역에서 중첩(overlap)되는 경우, 소정의 우선 순위에 기초하여 우선 순위가 더 높은 동작을 수행하는 방법에 따른 전반적인 기지국(1000)의 동작을 제어한다.In the sidelink transmission/reception method of the terminal necessary for carrying out the above-described present invention, the control unit 1010 is configured to give a predetermined priority when the sidelink transmission or reception in the terminal overlaps with the uplink transmission in the time domain. Controls the overall operation of the base station 1000 according to a method of performing an operation having a higher priority based on the method.

송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다. The transmitter 1020 and the receiver 1030 are used to transmit/receive signals, messages, and data necessary for carrying out the present invention to and from the terminal.

도 16은 또 다른 실시예에 의한 사용자 단말(1100)의 구성을 보여주는 도면이다.16 is a diagram showing the configuration of a user terminal 1100 according to another embodiment.

도 16을 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)를 포함한다.Referring to FIG. 16 , the user terminal 1100 according to another embodiment includes a receiver 1110 , a controller 1120 , and a transmitter 1130 .

수신부(1110)는 기지국으로부터 하향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiver 1110 receives downlink control information, data, and a message from the base station through a corresponding channel.

또한 제어부(1120)는 전술한 본 발명을 수행하기에 필요한 단말의 사이드링크 송수신 방법에 있어서, 단말에서 사이드링크 전송 또는 수신과 상향링크 전송이 시간 영역에서 중첩(overlap)되는 경우, 소정의 우선 순위에 기초하여 우선 순위가 더 높은 동작을 수행하는 방법에 따른 전반적인 사용자 단말(1100)의 동작을 제어한다.In addition, in the sidelink transmission/reception method of the terminal necessary for carrying out the above-described present invention, the control unit 1120 determines a predetermined priority when the sidelink transmission or reception and the uplink transmission overlap in the time domain in the terminal. Controls the overall operation of the user terminal 1100 according to a method of performing an operation with a higher priority based on .

송신부(1130)는 기지국에 상향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 1130 transmits uplink control information, data, and a message to the base station through a corresponding channel.

전술한 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 실시 예들 중 본 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계, 구성, 부분들은 전술한 표준 문서들에 의해 뒷받침될 수 있다. 또한, 본 명세서에서 개시하고 있는 모든 용어들은위에서 개시한 표준 문서들에 의해 설명될 수 있다.The above-described embodiments may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP and 3GPP2, which are wireless access systems. That is, steps, configurations, and parts not described in order to clearly reveal the technical idea of the present embodiments may be supported by the above-described standard documents. In addition, all terms disclosed in this specification can be explained by the standard documents disclosed above.

상술한 본 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.The above-described embodiments may be implemented through various means. For example, the present embodiments may be implemented by hardware, firmware, software, or a combination thereof.

하드웨어에 의한 구현의 경우, 본 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러 또는 마이크로 프로세서 등에 의해 구현될 수 있다.In the case of implementation by hardware, the method according to the present embodiments may include one or more ASICs (Application Specific Integrated Circuits), DSPs (Digital Signal Processors), DSPDs (Digital Signal Processing Devices), PLDs (Programmable Logic Devices), FPGAs (Field Programmable Gate Arrays), may be implemented by a processor, a controller, a microcontroller or a microprocessor.

펌웨어나 소프트웨어에 의한 구현의 경우, 본 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, the method according to the present embodiments may be implemented in the form of an apparatus, procedure, or function that performs the functions or operations described above. The software code may be stored in the memory unit and driven by the processor. The memory unit may be located inside or outside the processor, and may transmit and receive data to and from the processor by various known means.

또한, 위에서 설명한 "시스템", "프로세서", "컨트롤러", "컴포넌트", "모듈", "인터페이스", "모델", 또는 "유닛" 등의 용어는 일반적으로 컴퓨터 관련 엔티티 하드웨어, 하드웨어와 소프트웨어의 조합, 소프트웨어 또는 실행 중인 소프트웨어를 의미할 수 있다. 예를 들어, 전술한 구성요소는 프로세서에 의해서 구동되는 프로세스, 프로세서, 컨트롤러, 제어 프로세서, 개체, 실행 스레드, 프로그램 및/또는 컴퓨터일 수 있지만 이에 국한되지 않는다. 예를 들어, 컨트롤러 또는 프로세서에서 실행 중인 애플리케이션과 컨트롤러 또는 프로세서가 모두 구성 요소가 될 수 있다. 하나 이상의 구성 요소가 프로세스 및/또는 실행 스레드 내에 있을 수 있으며, 구성 요소들은 하나의 장치(예: 시스템, 컴퓨팅 디바이스 등)에 위치하거나 둘 이상의 장치에 분산되어 위치할 수 있다.Also, as described above, terms such as "system", "processor", "controller", "component", "module", "interface", "model", or "unit" generally refer to computer-related entities hardware, hardware and software. may mean a combination of, software, or running software. For example, the aforementioned component may be, but is not limited to being, a process run by a processor, a processor, a controller, a controlling processor, an object, a thread of execution, a program, and/or a computer. For example, both an application running on a controller or processor and a controller or processor can be a component. One or more components may reside within a process and/or thread of execution, and the components may be located on one device (eg, a system, computing device, etc.) or distributed across two or more devices.

이상의 설명은 본 개시의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 기술 사상의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 또한, 본 실시예들은 본 개시의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로 이러한 실시예에 의하여 본 기술 사상의 범위가 한정되는 것은 아니다. 본 개시의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 개시의 권리 범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical spirit of the present disclosure, and various modifications and variations will be possible without departing from the essential characteristics of the present disclosure by those skilled in the art to which the present disclosure pertains. In addition, the present embodiments are not intended to limit the technical spirit of the present disclosure, but rather to explain, so the scope of the present technical spirit is not limited by these embodiments. The protection scope of the present disclosure should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present disclosure.

Claims (1)

단말의 사이드링크 송수신 방법에 있어서,
단말에서 사이드링크 전송 또는 수신과 상향링크 전송이 시간 영역에서 중첩(overlap)되는 경우, 소정의 우선 순위에 기초하여 우선 순위가 더 높은 동작을 수행하는 방법.

In the sidelink transmission/reception method of the terminal,
When sidelink transmission or reception and uplink transmission overlap in a time domain in a terminal, a method of performing an operation having a higher priority based on a predetermined priority.

KR1020200044639A 2020-04-13 2020-04-13 Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network KR20210127282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200044639A KR20210127282A (en) 2020-04-13 2020-04-13 Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200044639A KR20210127282A (en) 2020-04-13 2020-04-13 Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network

Publications (1)

Publication Number Publication Date
KR20210127282A true KR20210127282A (en) 2021-10-22

Family

ID=78275821

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200044639A KR20210127282A (en) 2020-04-13 2020-04-13 Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network

Country Status (1)

Country Link
KR (1) KR20210127282A (en)

Similar Documents

Publication Publication Date Title
US11539475B2 (en) Method and apparatus for transmitting sidelink HARQ feedback information
US20200099479A1 (en) Method and apparatus for transmitting sidelink harq feedback information
KR20200120534A (en) Methods for performing sidelink communication and appratuses thereof
US20230024314A1 (en) Method and apparatus for transmitting and receiving reference signal for sidelink channel state information acquisition
KR102539350B1 (en) Transmitting and receiving method for side link and appratus thereof
KR20210002002A (en) Methods for transmitting sidelink harq feedback and appratuses thereof
KR102246074B1 (en) Sidelink frame structure and physical resources for NR-V2X communication
KR20220034763A (en) Method and apparatus for transmitting and receiving information regarding modulation and demodulation in sidelink communication
KR102338792B1 (en) Method and apparatus for transmitting sidelink harq feedback information
KR102412491B1 (en) Method and apparatus for transmitting and receiving sidelink harq feedback information
KR102160789B1 (en) Method and apparatus for harq feedback with dynamically enabling or disabliing harq in nr v2x
KR102155204B1 (en) Group Based Beam Reporting Method and Apparatus using Uncorrelated Beam on 5G mobile communication
EP4030850A1 (en) Method and apparatus for transmitting and receiving coordination information for sidelink communication
KR102188882B1 (en) Method and apparatus for harq feedback with dynamically enabling or disabliing harq in nr v2x
KR102434619B1 (en) Method and apparatus for transmitting sidelink harq feedback information
KR102467308B1 (en) Method and apparatus for transmitting and receiving sidelink harq feedback information
KR20220057449A (en) Method for controlling sidelink communication and apparatus thereof
KR20210049673A (en) Methods for controlling sidelink communication and apparatuses thereof
KR20200085643A (en) Method and apparatus for transmitting sidelink harq feedback information
KR102454293B1 (en) Method and apparatus for harq feedback in nr v2x
KR20210127282A (en) Method and apparatus for sidelink transmission and reception of terminal in a next generation wireless network
KR102338799B1 (en) Method and apparatus for transmitting and receiving sidelink data
KR102195867B1 (en) Method and apparatus for transmitting and receiving sidelink harq feedback information
KR20220103620A (en) Method and apparatus for transmitting and receiving coordination information for sidelink communication
KR20220138809A (en) Method and apparatus for performing sidelink communication using coordination information