KR20210119749A - Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same - Google Patents

Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same Download PDF

Info

Publication number
KR20210119749A
KR20210119749A KR1020200036283A KR20200036283A KR20210119749A KR 20210119749 A KR20210119749 A KR 20210119749A KR 1020200036283 A KR1020200036283 A KR 1020200036283A KR 20200036283 A KR20200036283 A KR 20200036283A KR 20210119749 A KR20210119749 A KR 20210119749A
Authority
KR
South Korea
Prior art keywords
adsorbent
oxygen vacancy
formaldehyde
manganese dioxide
solution
Prior art date
Application number
KR1020200036283A
Other languages
Korean (ko)
Inventor
김태오
조상준
김성훈
우상원
김세현
Original Assignee
금오공과대학교 산학협력단
주식회사 창명산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단, 주식회사 창명산업 filed Critical 금오공과대학교 산학협력단
Priority to KR1020200036283A priority Critical patent/KR20210119749A/en
Publication of KR20210119749A publication Critical patent/KR20210119749A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention relates to an oxygen vacancy adsorbent comprising a calcined product obtained by calcining manganese dioxide to which calcined glucose is bound and relates to an oxygen vacancy adsorbent in which glucose performs a role of nano carbon to improve adsorption capacity, and an oxygen vacancy structure performs a role of activating an oxidation reaction of formaldehyde to show excellent formaldehyde removal rate. Also, the manufacturing cost is low, and thus economic feasibility is excellent. The present invention also relates to a method of manufacturing the adsorbent, a formaldehyde adsorption coating solution comprising the same, and a nonwoven filter.

Description

포름알데하이드 제거용 산소 공공 흡착제, 그의 제조방법 및 이를 포함하는 포름알데하이드 흡착 코팅액, 부직포 필터 {Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same}Oxygen vacancy adsorbent for removing formaldehyde, manufacturing method thereof, and formaldehyde adsorption coating solution comprising same, non-woven filter

본 발명은 글루코오스가 결합된 이산화망간을 소성시킨 소성물로 이루어진 흡착제에 관한 것으로, 포름알데하이드와 같은 가스상 오염물질의 제거효율이 높은 산소 공공 흡착제 및 그의 제조 방법, 이를 적용한 포름알데하이드 흡착 코팅액, 부직포 필터에 관한 것이다. The present invention relates to an adsorbent composed of a calcined product obtained by calcining manganese dioxide bound with glucose, an oxygen vacancy adsorbent with high removal efficiency of gaseous pollutants such as formaldehyde, a method for manufacturing the same, a formaldehyde adsorption coating solution to which the same is applied, and a nonwoven filter it's about

최근 고농도 미세먼지 발생으로 인해 실내의 공기 정화가 주목받고 있다. 이에 따라, 실내에서 자체적으로 공기를 정화할 수 있는 공기청정장치가 개발되었고, 제거율을 높이기 위한 연구가 진행되고 있다. 종래의 개발된 공기청정장치는 미세먼지와 같은 입자상 오염물질의 제거에는 효율적이나, 포름알데하이드 및 휘발성 유기화합물(VOCs)와 같은 가스상 오염물질의 제거 효율은 낮아 이에 대한 연구가 필요한 실정이다.Recently, due to the high concentration of fine dust, indoor air purification is attracting attention. Accordingly, an air purifier capable of purifying air indoors has been developed, and research is being conducted to increase the removal rate. The conventionally developed air purifier is effective in removing particulate pollutants such as fine dust, but the removal efficiency of gaseous pollutants such as formaldehyde and volatile organic compounds (VOCs) is low, so research on this is required.

상기의 가스상 오염물질 중 포름알데하이드는 실내 공기질에서 호흡기 질환 및 발암 물질로 알려져 있으며, 새집증후군의 원인 물질로 알려져 있다. 이를 제거하기 위해 다양한 합성 흡착제들이 개발되고 있는데, 합성 흡착제란 두 가지 이상의 다공성 구조를 결합시켜 제조된 중합체 또는 구체 입자들을 의미한다. 합성 흡착제는 화합물을 쉽게 제거할 수 있고 활성탄보다 오래 사용할 수 있는 장점이 있으나 비용이 많이 드는 단점이 있어, 경제성과 효율성을 모두 만족하는 흡착제의 개발이 요구되고 있다. 일례로 일본 등록특허 5212992에 의하면, 알루미늄 규산염복합체를 제조하여 흡착제로도 이용하였는데 비용이 상대적으로 많이 발생하는 문제가 있었다.Among the gaseous pollutants, formaldehyde is known as a respiratory disease and carcinogen in indoor air quality, and is known as a causative agent of sick house syndrome. To remove this, various synthetic adsorbents have been developed. Synthetic adsorbents refer to polymers or spherical particles prepared by combining two or more porous structures. Synthetic adsorbents have the advantage of being able to easily remove compounds and being able to use them longer than activated carbon, but they have the disadvantage of being expensive. For example, according to Japanese Patent No. 5212992, an aluminum silicate composite was manufactured and used as an adsorbent, but there was a problem in that the cost was relatively high.

한편, 이산화망간(MnO2)과 같은 금속산화물은 대기 중의 산소와 접촉시 잔류물이 탈착되어 재생되는 것을 보고되고 있어 합성 흡착제의 재료로 적합하다.On the other hand, it has been reported that metal oxides such as manganese dioxide (MnO 2 ) are regenerated by desorption of residues when they come into contact with oxygen in the atmosphere, so they are suitable as materials for synthetic adsorbents.

일본 등록특허 5212992 (등록번호 : 2013.03.08)Japanese registered patent 5212992 (registration number: 2013.03.08)

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 제안된 것으로, 가스상 오염물질을 제거하는 데 아주 높은 제거율을 보일 뿐만 아니라, 제조단가가 저렴하여 경제성 또한 좋은 포름알데하이드 제거용 산소 공공 흡착제 및 그의 제조방법을 제공하고, 이를 적용한 부직포 필터를 제조하는 데 목적이 있다.The present invention has been proposed to solve the above problems, and it not only shows a very high removal rate for removing gaseous pollutants, but also has good economic feasibility due to low manufacturing cost, and an oxygen vacancy adsorbent for removing formaldehyde and a method for manufacturing the same An object of the present invention is to provide a non-woven fabric filter applied thereto.

상기의 목적을 달성하기 위한 본 발명에 따른 포름알데하이드 제거용 산소 공공 흡착제의 제조방법은 다음과 같다.A method for producing an oxygen vacancy adsorbent for removing formaldehyde according to the present invention for achieving the above object is as follows.

포름알데하이드 제거용 산소 공공 흡착제는 글루코오스(Glucose), 이산화망간 전구체 및 물을 포함한 용액을 준비하는 1단계; 상기 용액을 반응시켜 반응생성물인 글루코오스가 결합된 이산화망간(MnO2)을 합성하는 2단계; 2단계를 수행한 반응생성물을 포함하는 용액을 여과하여 여과물을 수득하는 3단계; 상기 여과물을 증류수로 세척하는 4단계; 세척한 여과물을 건조시켜 건조물을 수득하는 5단계; 및 상기 건조물을 불활성 기체 하에서, 200 ~ 280℃ 하에서 20 ~ 60분 동안 소성시켜서 산소 공공(Oxygen vacancy) 흡착제를 제조하는 6단계; 를 포함하는 제조방법으로 제조된다.Oxygen vacancy adsorbent for formaldehyde removal is a first step of preparing a solution containing glucose, a manganese dioxide precursor, and water; a second step of reacting the solution to synthesize manganese dioxide (MnO 2 ) to which glucose, which is a reaction product, is bound; Step 3 to obtain a filtrate by filtering the solution containing the reaction product performed in Step 2; 4 step of washing the filtrate with distilled water; Step 5 of drying the washed filtrate to obtain a dry product; and calcining the dried material under an inert gas under 200 to 280° C. for 20 to 60 minutes to prepare an oxygen vacancy adsorbent; It is manufactured by a manufacturing method comprising a.

1단계에 있어서, 상기 용액은 상기 글루코오스 및 이산화망간 전구체를 1 : 5 ~ 1 : 7 중량비로 포함할 수 있다.In step 1, the solution may contain the glucose and the manganese dioxide precursor in a weight ratio of 1:5 to 1:7.

본 발명의 바람직한 일실시예에 있어, 상기 이산화망간 전구체는 과망간산칼륨(KMnO4), 망간아세테이트(Mn(CH3CO2)2), 과망간산나트륨(NaMnO4) 및 황산망간(MnSO4) 중 1종 이상인 것을 포함할 수 있다.In a preferred embodiment of the present invention, the manganese dioxide precursor is potassium permanganate (KMnO 4 ), manganese acetate (Mn(CH 3 CO 2 ) 2 ), sodium permanganate (NaMnO 4 ) and manganese sulfate (MnSO 4 ) Among It may include one or more types.

본 발명의 바람직한 일실시예에 있어, 2단계의 반응은 60 ~ 100℃ 하에서 5 ~ 25분 동안 중탕 및 교반하여 수행될 수 있다.In a preferred embodiment of the present invention, the reaction of the second step may be carried out by bathing and stirring for 5 to 25 minutes under 60 to 100 °C.

본 발명의 바람직한 일실시예에 있어, 4단계의 건조는 80 ~ 130℃ 하에서 10 ~ 14시간 수행될 수 있다.In a preferred embodiment of the present invention, the drying in the 4 steps may be performed for 10 to 14 hours under 80 ~ 130 ℃.

본 발명의 다른 목적으로, 상기한 제조방법을 통해 포름알데하이드 제거용 산소 공공 흡착제를 제조할 수 있다.As another object of the present invention, it is possible to prepare an oxygen vacancy adsorbent for removing formaldehyde through the above-described manufacturing method.

상기의 산소 공공 흡착제는 글루코오스가 결합된 이산화망간(MnO2)을 소성시킨 소성물을 포함하며, 비표면적은 191.5 ~ 210.0 m2·g-1일 수 있다.The oxygen vacancy adsorbent includes a calcined product obtained by calcining glucose-bound manganese dioxide (MnO 2 ), and may have a specific surface area of 191.5 to 210.0 m 2 ·g −1 .

본 발명의 바람직한 일실시예에 있어, 상기 산소 공공 흡착제는 KCM 1802 규격에 의해 측정한 경도가 95.0 ~ 99.0%인 것일 수 있다.In a preferred embodiment of the present invention, the oxygen vacancy adsorbent may have a hardness of 95.0 to 99.0% as measured by the KCM 1802 standard.

본 발명의 바람직한 일실시예에 있어, 상기 산소 공공 흡착제는 포름알데하이드 제거율이 50 ~ 90%일 수 있다.In a preferred embodiment of the present invention, the oxygen vacancy adsorbent may have a formaldehyde removal rate of 50 to 90%.

본 발명의 또 다른 목적으로, 산소 공공 흡착제 0.5 ~ 5.0 중량% 및 잔량의 바인더 용액을 포함하는 포름알데하이드 흡착 코팅액을 제조할 수 있다.As another object of the present invention, it is possible to prepare a formaldehyde adsorption coating solution comprising 0.5 to 5.0 wt% of an oxygen vacancy adsorbent and the remaining amount of the binder solution.

또한, 상기의 포름알데하이드 흡착 코팅액을 포함하는 포름알데하이드 제거용 부직포 필터를 제조할 수 있다.In addition, a non-woven fabric filter for removing formaldehyde including the formaldehyde adsorption coating solution can be prepared.

본 발명을 통해 포름알데하이드 등 가스상 오염물질 제거에 효율적일 뿐만 아니라, 제조 단가가 상대적으로 낮아 경제적인 흡착제를 제조할 수 있고, 이를 포함하는 포름알데하이드 흡착 코팅액 및 부직포 필터를 제조할 수 있다.Through the present invention, it is possible to manufacture an economical adsorbent that is not only efficient in removing gaseous pollutants such as formaldehyde, but also has a relatively low manufacturing cost, and a formaldehyde adsorption coating solution and a nonwoven filter containing the same can be manufactured.

도 1의 (a)는 실시예 1에서 제조된 산소 공공(Oxygen vacancy) 흡착제를 촬영한 이미지이고, (b)는 비교예 1에서 제조된 흡착제를 촬영한 이미지이며, (c)는 비교예 2에서 제조된 흡착제를 촬영한 이미지이고, (d)는 비교예 3에서 제조된 흡착제를 촬영한 이미지이며, (e)는 비교예 4에서 제조된 흡착제를 촬영한 이미지이다.
도 2는 정적 평가에 이용되는 챔버(chamber)의 설계도로, 구체적으로는 160L의 부피를 가지는 아크릴 재질의 직육면체이고, 고무 패킹과 리벳으로 처리된 문을 닫을 경우 밀폐된 조건을 이룬다.
도 3은 부직포 필터 성능 평가에 이용되는 챔버의 설계도로, 구체적으로는 1m3의 부피를 가지는 아크릴 재질의 정육면체이고, 내부에는 내부 밀폐를 위해 고무 패킹 및 리벳으로 문 부분을 마감 처리한 것이다.
도 4는 부직포 필터 성능 평가에 이용되는 챔버를 촬영한 사진으로, 챔버의 내부에는 환풍구(실험 종료 후 후드로 연결시켜 챔버 내부를 환기시키는 용도임.), 가열기(포름알데하이드를 기화시키는 용도임.), 순환용 선풍기(기화된 포름알데하이드가 챔버 내 골고루 퍼지게 하기 위한 용도임), 공기청정기가 있다.
도 5는 실험예 5에서 수행한 포름알데하이드 제거 실험 결과 그래프이다.
1 (a) is an image taken of the oxygen vacancy adsorbent prepared in Example 1, (b) is an image taken of the adsorbent prepared in Comparative Example 1, (c) is Comparative Example 2 is an image taken of the adsorbent prepared in (d) is an image taken of the adsorbent prepared in Comparative Example 3, (e) is an image taken of the adsorbent prepared in Comparative Example 4.
2 is a design diagram of a chamber used for static evaluation, specifically, a cuboid made of an acrylic material having a volume of 160L, and forms a sealed condition when the door treated with rubber packing and rivets is closed.
3 is a design diagram of a chamber used for evaluating the performance of a nonwoven filter, specifically, an acrylic cube having a volume of 1 m 3 , and the door portion is finished with rubber packing and rivets for internal sealing.
4 is a photograph taken of a chamber used for evaluating the performance of a nonwoven filter. Inside the chamber, a vent (used to ventilate the inside of the chamber by connecting it to a hood after the end of the experiment), a heater (for vaporizing formaldehyde). ), a circulation fan (used to spread the vaporized formaldehyde evenly in the chamber), and an air purifier.
5 is a graph showing the results of a formaldehyde removal experiment performed in Experimental Example 5;

본 발명의 포름알데하이드 제거용 산소 공공 흡착제 제조방법을 통해 본 발명에 대해 더 구체적으로 설명한다. The present invention will be described in more detail through the method for preparing an oxygen vacancy adsorbent for removing formaldehyde of the present invention.

포름알데하이드 제거용 산소 공공 흡착제의 제조 방법은 글루코오스(Glucose), 이산화망간 전구체 및 물을 포함한 용액을 준비하는 1단계; 상기 용액을 반응시켜 반응생성물인 글루코오스가 결합된 이산화망간(MnO2)을 합성하는 2단계; 2단계를 수행한 반응생성물을 포함하는 용액을 여과하여 여과물을 수득하는 3단계; 상기 여과물을 증류수로 세척하는 4단계; 세척한 여과물을 건조시켜 건조물을 수득하는 5단계; 및 상기 건조물을 소성시켜서 산소 공공(Oxygen vacancy) 흡착제를 제조하는 6단계; 를 통해 제조된다.A method for preparing an oxygen vacancy adsorbent for formaldehyde removal includes a first step of preparing a solution containing glucose, a manganese dioxide precursor, and water; a second step of reacting the solution to synthesize manganese dioxide (MnO 2 ) to which glucose, which is a reaction product, is bound; Step 3 to obtain a filtrate by filtering the solution containing the reaction product performed in Step 2; 4 step of washing the filtrate with distilled water; Step 5 of drying the washed filtrate to obtain a dry product; and calcining the dried material to prepare an oxygen vacancy adsorbent; manufactured through

1단계의 용액은 글루코오스(Glucose) 및 이산화망간 전구체를 1 : 5 ~ 1 : 7 중량비로 투입하고, 바람직하게는 1 : 5.2 ~ 1 : 6.8 중량비로 투입하는 것을 특징으로 할 수 있다. 만일, 글루코오스가 상대적으로 적게 투입될 경우 이산화망간의 반응성이 떨어지는 문제가 있을 수 있고, 이산화망간 전구체가 상대적으로 적게 투입될 경우 포름알데하이드 제거율이 감소하는 문제가 있을 수 있다.The solution of step 1 may be characterized in that glucose and the manganese dioxide precursor are added in a weight ratio of 1: 5 to 1: 7, preferably 1: 5.2 to 1: 6.8 by weight. If a relatively small amount of glucose is added, there may be a problem in that the reactivity of manganese dioxide is lowered, and when a relatively small amount of the manganese dioxide precursor is added, there may be a problem in that the formaldehyde removal rate is reduced.

또한, 상기 이산화망간 전구체는 과망간산칼륨(KMnO4), 망간아세테이트(Mn(CH3CO2)2), 과망간산나트륨(NaMnO4) 및 황산망간(MnSO4) 중 1종 이상인 것을 특징으로 할 수 있으나, 이에 특별히 제한하는 것은 아니다.In addition, the manganese dioxide precursor is potassium permanganate (KMnO 4 ), manganese acetate (Mn(CH 3 CO 2 ) 2 ), sodium permanganate (NaMnO 4 ) and manganese sulfate (MnSO 4 ) It may be characterized as one or more, but is not particularly limited thereto.

2단계의 반응은 60 ~ 100℃ 하에서 5 ~ 25분 동안 중탕 및 교반하여 수행되고, 바람직하게는 65 ~ 95℃ 하에서 10 ~ 20분 동안 수행될 수 있다.The reaction of step 2 is carried out by bathing and stirring for 5 to 25 minutes at 60 to 100° C., preferably, it may be carried out at 65 to 95° C. for 10 to 20 minutes.

4단계의 건조는 80 ~ 130℃ 하에서 10 ~ 14시간 건조시킬 수 있으며, 바람직하게는 75 ~ 125℃ 하에서 11 ~ 13시간 건조시킬 수 있다.Drying in step 4 may be dried at 80 ~ 130 ℃ for 10 ~ 14 hours, preferably at 75 ~ 125 ℃ may be dried for 11 ~ 13 hours.

6단계의 소성은 불활성 기체 하에서 이루어지며, 200 ~ 280℃ 하에서 수행되고, 바람직하게는 210 ~ 270℃ 하에서 수행되며, 200 ~ 280℃ 하에서 20 ~ 60분 동안 수행되고, 바람직하게는 25 ~ 55분 동안 소성하여 산소 공공(Oxygen Vacancy) 흡착제를 수득할 수 있다. 만일 200℃ 미만의 온도에서 소성할 경우 입자의 구조가 변형되지 않는 문제가 있을 수 있고, 280℃를 초과하는 온도로 소성할 경우 산소 공공 구조가 형성되지 않는 문제가 있을 수 있다. 또한 소성 시간이 20분 미만이면 입자의 구조가 변형되지 않는 문제가 있을 수 있고, 소성 시간이 60분을 초과하면 산소 공공 구조가 형성되지 문제가 있을 수 있다.The calcination of step 6 is carried out under an inert gas, and is carried out under 200 to 280 ° C., preferably under 210 to 270 ° C., and is carried out under 200 to 280 ° C. for 20 to 60 minutes, preferably 25 to 55 minutes. During calcination, an oxygen vacancy adsorbent can be obtained. If calcined at a temperature of less than 200 ℃, there may be a problem that the structure of the particle is not deformed, when calcined at a temperature exceeding 280 ℃, there may be a problem that the oxygen vacancy structure is not formed. In addition, if the firing time is less than 20 minutes, there may be a problem that the structure of the particles is not deformed, and if the firing time exceeds 60 minutes, there may be a problem in that oxygen vacancy structures are not formed.

상술한 방법으로 제조한 포름알데하이드 제거용 산소 공공 흡착제는 글루코오스가 결합된 이산화망간(MnO2)을 소성시킨 소성물을 포함하는 것일 수 있다. The oxygen vacancy adsorbent for formaldehyde removal prepared by the above-described method may include a calcined product obtained by calcining glucose-bound manganese dioxide (MnO 2 ).

상기의 산소 공공(Oxygen vacancy)은 분자 구조 내에 산소가 부족한 형태로, 반응성이 강해 포름알데하이드 산화 반응을 활발하게 일으킨다. 이러한 산소 공공의 존재는 비표면적으로 확인 할 수 있는데, 상기 산소 공공 흡착제는 191.5 ~ 210.0 m2·g-1의 비표면적을 가지고, 바람직하게는 192.0 ~ 209.5 m2·g-1의 비표면적을 가지는 것일 수 있다. 비표면적이 191.5 m2·g-1 미만일 경우 흡착제의 흡착 성능이 떨어지는 문제가 생길 수 있다.The oxygen vacancy is in the form of insufficient oxygen in the molecular structure, and has strong reactivity to actively cause the formaldehyde oxidation reaction. The presence of such oxygen vacancies can be confirmed with a specific surface area, and the oxygen vacancy adsorbent has a specific surface area of 191.5 to 210.0 m 2 ·g -1 , and preferably has a specific surface area of 192.0 to 209.5 m 2 ·g -1 may be having If the specific surface area is less than 191.5 m 2 ·g -1 , there may be a problem in that the adsorption performance of the adsorbent is deteriorated.

이에 더해, 상기 산소 공공 흡착제는 KCM 1802 규격에 의해 측정한 경도가 95.0 ~ 99.0%일 수 있고, 바람직하게는 96.0 ~ 99.0%일 수 있으며, 더욱 바람직하게는 96.5 ~ 99.0%일 수 있다.In addition, the oxygen vacancy adsorbent may have a hardness of 95.0 to 99.0%, preferably 96.0 to 99.0%, and more preferably 96.5 to 99.0%, as measured by the KCM 1802 standard.

또한, 상기 산소 공공 흡착제는 포름알데하이드 제거율이 50 ~ 90%이고, 바람직하게는 55 ~ 85%일 수 있다.In addition, the oxygen vacancy adsorbent may have a formaldehyde removal rate of 50 to 90%, preferably 55 to 85%.

본 발명의 다른 목적으로, 상기의 산소 공공 흡착제 및 바인더 용액을 포함하는 포름알데하이드 흡착 코팅액을 제조할 수 있다.As another object of the present invention, it is possible to prepare a formaldehyde adsorption coating solution comprising the oxygen vacancy adsorbent and the binder solution.

이때, 산소 공공 흡착제 0.5 ~ 5.0 중량% 및 잔량의 바인더 용액을 포함될 수 있고, 바람직하게는 산소 공공 흡착제를 1.0 ~ 4.0 중량% 포함할 수 있다. 만일 0.5 중량% 미만으로 포함될 경우 포름알데하이드 제거율이 현격하게 떨어지는 문제점이 있고, 5.0 중량%를 초과하여 포함될 경우 경제성의 문제가 있을 수 있다.In this case, 0.5 to 5.0 wt% of the oxygen vacancy adsorbent and the remaining amount of the binder solution may be included, and preferably 1.0 to 4.0 wt% of the oxygen vacancy adsorbent. If it is included in less than 0.5 wt %, there is a problem in that the formaldehyde removal rate is significantly reduced, and if it is included in excess of 5.0 wt %, there may be a problem of economic feasibility.

또한, 상기의 바인더 용액은 아크릴계 바인더 용액, 폴리에스테르계 및 폴리아미드계 중 선택된 1종 이상일 수 있으나, 이를 특별히 한정하는 것은 아니다.In addition, the binder solution may be at least one selected from an acrylic binder solution, a polyester-based solution, and a polyamide-based solution, but is not particularly limited thereto.

본 발명의 또 다른 목적으로, 상기 포름알데하이드 흡착 코팅액을 부직포에 도포하여 포름알데하이드 제거용 부직포 필터를 제조할 수 있다.As another object of the present invention, a nonwoven fabric filter for removing formaldehyde may be manufactured by applying the formaldehyde adsorption coating solution to a nonwoven fabric.

상기의 포름알데하이드 제거용 부직포 필터는 공기청정기, 에어컨 등에 적용할 수 있으나, 이에 한정하는 것은 아니다.The non-woven fabric filter for removing formaldehyde may be applied to an air purifier, an air conditioner, and the like, but is not limited thereto.

상술한 과제를 해결하기 위하여, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.In order to solve the above problems, embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.

[실시예][Example]

실시예 1 : 산소 공공 흡착제(OV-G/MnOExample 1: Oxygen Vacancy Adsorbent (OV-G/MnO) 22 ) 제조) Produce

(1)이산화망간 전구체로 KMnO4 12g, 글루코오스 1.8g을 증류수 100mL에 첨가하여 용액을 준비했다.(1) As a manganese dioxide precursor, 12 g of KMnO 4 and 1.8 g of glucose were added to 100 mL of distilled water to prepare a solution.

(2)상기 용액을 80℃ 하에서 15분 동안 중탕 및 교반하여 반응시켰다. (2) The solution was reacted by bathing and stirring at 80° C. for 15 minutes.

(3)상기 단계에서 반응시킨 용액을 여과하여 여과물을 수득하였다.(3) The solution reacted in the above step was filtered to obtain a filtrate.

(4)상기 여과물을 증류수로 세척하였다.(4) The filtrate was washed with distilled water.

(5)(4)단계를 수행한 여과물을 105℃ 하에서 12시간 동안 건조시켜 건조물을 수득하였다.(5) The filtrate obtained in step (4) was dried at 105° C. for 12 hours to obtain a dried product.

(6)상기 건조물을 아르곤(Ar) 기체 하에서, 240℃의 소성 온도로 40분 동안 소성시켜 산소 공공 흡착제를 수득하였다.(6) The dried product was calcined under argon (Ar) gas at a calcination temperature of 240° C. for 40 minutes to obtain an oxygen vacancy adsorbent.

또한, 수득된 산소 공공 흡착제를 촬영한 이미지를 도 1의 (a)에 나타냈다.In addition, an image of the obtained oxygen vacancy adsorbent is shown in Fig. 1 (a).

실시예 2 ~ 실시예 7 : 흡착제 제조Example 2 ~ Example 7: Preparation of adsorbent

실시예 1과 동일한 방법으로 제조하였으나, 소성 온도 및 소성 시간 및 글루코오스와 KMnO4의 중량비를 하기 표 1과 같이 하여 제조하였다.It was prepared in the same manner as in Example 1, but the calcination temperature and calcination time, and the weight ratio of glucose and KMnO 4 were prepared as shown in Table 1 below.

비교예 1 : 이산화망간(MnOComparative Example 1: Manganese dioxide (MnO 22 ) 흡착제 제조) adsorbent manufacturing

(1)이산화망간 전구체로 KMnO4 20g, (NH4)2C2O4H2O 8g을 증류수 260mL에 투입하여 용액을 제조했다.(1) As a manganese dioxide precursor, KMnO 4 20 g, (NH 4 ) 2 C 2 O 4 H 2 O 8 g was added to 260 mL of distilled water to prepare a solution.

(2)상기 용액을 가열교반기를 사용하여 90℃의 가열온도에서 150rpm의 회전 속도로 교반했다.(2) The solution was stirred at a heating temperature of 90 DEG C using a heating stirrer at a rotation speed of 150 rpm.

(3)상기 단계에서 교반된 용액을 여과시켜 여과물을 수득했다.(3) The solution stirred in the above step was filtered to obtain a filtrate.

(4)상기 여과물을 30℃의 온도에서 10시간 건조하여 고체 타입의 여과물을 수득하였다.(4) The filtrate was dried at a temperature of 30° C. for 10 hours to obtain a solid-type filtrate.

(5)상기 고체 타입의 여과물을 500℃의 소성온도에서 3시간 동안 소성하여 이산화망간(MnO2) 흡착제를 수득하였다.(5) The solid-type filtrate was calcined at a calcination temperature of 500° C. for 3 hours to obtain a manganese dioxide (MnO 2 ) adsorbent.

또한, 수득된 이산화망간(MnO2) 흡착제를 촬영한 이미지를 도 1의 (b)에 나타냈다.In addition, an image of the obtained manganese dioxide (MnO 2 ) adsorbent is shown in FIG. 1 ( b ).

비교예 1 : 이산화망간(MnOComparative Example 1: Manganese dioxide (MnO 22 ) 흡착제 제조) adsorbent manufacturing

(1)이산화망간 전구체로 KMnO4 20g, (NH4)2C2O4H2O 8g을 증류수 260mL에 투입하여 용액을 제조했다.(1) As a manganese dioxide precursor, KMnO 4 20 g, (NH 4 ) 2 C 2 O 4 H 2 O 8 g was added to 260 mL of distilled water to prepare a solution.

(2)상기 용액을 가열교반기를 사용하여 90℃의 가열온도에서 150rpm의 회전 속도로 교반했다.(2) The solution was stirred at a heating temperature of 90 DEG C using a heating stirrer at a rotation speed of 150 rpm.

(3)상기 단계에서 교반된 용액을 여과시켜 여과물을 수득했다.(3) The solution stirred in the above step was filtered to obtain a filtrate.

(4)상기 여과물을 30℃의 온도에서 10시간 건조하여 고체 타입의 여과물을 수득하였다.(4) The filtrate was dried at a temperature of 30° C. for 10 hours to obtain a solid-type filtrate.

(5)상기 고체 타입의 여과물을 500℃의 소성온도에서 3시간 동안 소성하여 이산화망간(MnO2) 흡착제를 수득하였다.(5) The solid-type filtrate was calcined at a calcination temperature of 500° C. for 3 hours to obtain a manganese dioxide (MnO 2 ) adsorbent.

또한, 수득된 이산화망간(MnO2) 흡착제를 촬영한 이미지를 도 1의 (b)에 나타냈다.In addition, an image of the obtained manganese dioxide (MnO 2 ) adsorbent is shown in FIG. 1 ( b ).

비교예 2 : 글루코오스-이산화망간(G/MnOComparative Example 2: Glucose-manganese dioxide (G/MnO 22 ) 흡착제 제조) adsorbent manufacturing

(1)이산화망간 전구체로 KMnO4 12g, 글루코오스 1.8g을 증류수 100mL에 첨가하여 용액을 준비했다.(1) As a manganese dioxide precursor, 12 g of KMnO 4 and 1.8 g of glucose were added to 100 mL of distilled water to prepare a solution.

(2)상기 용액을 수조에 옮겨 80℃의 온도에서 15분 동안 중탕하였다. (2) The solution was transferred to a water bath and bathed at a temperature of 80° C. for 15 minutes.

(3)상기 단계에서 중탕한 용액을 여과하여 여과물을 수득하였다.(3) The solution obtained in the above step was filtered to obtain a filtrate.

(4)상기 여과물을 증류수로 세척하였다.(4) The filtrate was washed with distilled water.

(5)(4)단계를 수행한 여과물을 105℃의 건조 온도에서 12시간 동안 건조시켜 글루코오스-이산화망간(G/MnO2) 흡착제를 수득하였다.(5) (4) The filtrate was dried at a drying temperature of 105° C. for 12 hours to obtain a glucose-manganese dioxide (G/MnO 2 ) adsorbent.

또한, 수득된 글루코오스-이산화망간(G/MnO2) 흡착제를 촬영한 이미지를 도 1의 (c)에 나타냈다.Also, the obtained glucose-manganese dioxide (G/MnO 2 ) image of the adsorbent is shown in FIG. 1 ( c ).

비교예 3 : 이산화망간(MnOComparative Example 3: Manganese dioxide (MnO 22 ) + CeO) + CeO 22 흡착제 제조 Adsorbent manufacturing

Sigma Aldrich 사에서 구입한 CeO2 분말(<5μm, 99.9% trace metals)과 비교예 1의 이산화망간(MnO2)을 1 : 1 비율로 투입하고, 이를 5분 동안 혼합하여 흡착제(이산화망간(MnO2) + CeO2)를 제조하였다. CeO 2 powder purchased from Sigma Aldrich (<5 μm, 99.9% trace metals) and manganese dioxide (MnO 2 ) of Comparative Example 1 were added in a 1:1 ratio, and the adsorbent (manganese dioxide (MnO 2 ) + CeO 2 ) was prepared.

또한, 제조된 흡착제(이산화망간(MnO2) + CeO2)를 촬영한 이미지를 도 1의 (d)에 나타냈다.In addition, an image obtained by photographing the prepared adsorbent (manganese dioxide (MnO 2 ) + CeO 2 ) is shown in FIG. 1(d).

비교예 4 : 이산화망간(MnOComparative Example 4: Manganese dioxide (MnO 22 ) + FeSiO) + FeSiO 22 흡착제 제조 Adsorbent manufacturing

(1)사이클로헥산(Cyclohexane) 100mL에 폴리에틸렌글리콜(Polyethylene glycol, PEG 400) 20.35g을 투입한 용액을 50℃에서 10분 동안 가열 및 교반시켰다.(1) A solution of 20.35 g of polyethylene glycol (PEG 400) in 100 mL of cyclohexane was heated and stirred at 50° C. for 10 minutes.

(2)(1)단계를 수행한 용액에 FeCl3 수용액 20mL 및 NH3 수용액 3.20g을 첨가한 후, 3시간동안 숙성시킨다. (2) 20mL of FeCl 3 aqueous solution and 3.20 g of NH 3 aqueous solution were added to the solution in which step (1) was performed, and then aged for 3 hours.

(3)(2)단계를 수행한 용액에 에틸 실리케이트(Tetraethyl orthosilicate) 5.4g을 첨가하였다.(3) 5.4 g of tetraethyl orthosilicate was added to the solution in which step (2) was performed.

(4)(3)단계를 수행한 용액에 이소프로판올(Isopropanol) 30mL을 첨가하였다.(4) 30 mL of isopropanol was added to the solution in which step (3) was performed.

(5)(4)단계를 수행한 용액을 원심 분리하여 침전물을 얻었다.(5) The solution obtained in step (4) was centrifuged to obtain a precipitate.

(6)상기 침전물을 60℃에서 24시간 동안 건조하여 FeSiO2를 수득하였다.(6) The precipitate was dried at 60° C. for 24 hours to obtain FeSiO 2 .

(7)상기 FeSiO2 및 비교예 1의 이산화망간(MnO2)을 1 : 1 비율로 투입하고, 이를 5분 동안 혼합하여 흡착제(이산화망간(MnO2) + FeSiO2)를 수득하였다.(7) The FeSiO 2 and the manganese dioxide (MnO 2 ) of Comparative Example 1 were added in a 1:1 ratio, and the mixture was mixed for 5 minutes to obtain an adsorbent (manganese dioxide (MnO 2 ) + FeSiO 2 ).

또한, 제조된 흡착제(이산화망간(MnO2) + FeSiO2)를 촬영한 이미지를 도 1의 (e)에 나타냈다.In addition, an image obtained by photographing the prepared adsorbent (manganese dioxide (MnO 2 ) + FeSiO 2 ) is shown in FIG. 1(e).

비교예 5 : 이산화망간(MnOComparative Example 5: Manganese dioxide (MnO 22 ) 흡착제) adsorbent

㈜퓨어스피어사의 이산화망간(MnO2) 흡착제(Purelyst MD-101)를 사용했다.Pure Spear's manganese dioxide (MnO 2 ) adsorbent (Purelyst MD-101) was used.

비교예 6 : 이산화망간(MnOComparative Example 6: Manganese dioxide (MnO 22 ) 흡착제) adsorbent

Hunan Minstrong Technology사의 이산화망간(MnO2) 흡착제(Activate MnO2)를 사용했다. Manganese dioxide (MnO 2 ) adsorbent (Activate MnO 2 ) manufactured by Hunan Minstrong Technology was used.

비교예 7 ~ 비교예 12 : 흡착제 제조Comparative Example 7 to Comparative Example 12: Preparation of adsorbent

실시예 1과 동일한 방법으로 제조하였으나, 소성 온도 및 소성 시간 및 글루코오스와 KMnO4의 중량비를 하기 표 1과 같이 하여 제조하였다.It was prepared in the same manner as in Example 1, but the calcination temperature and calcination time, and the weight ratio of glucose and KMnO 4 were prepared as shown in Table 1 below.

소성 온도(℃)Firing temperature (℃) 소성 시간(분)Firing time (min) 글루코오스 : KMnO4 중량비Glucose: KMnO 4 weight ratio 실시예2Example 2 200200 4040 1 : 6.671: 6.67 실시예3Example 3 280280 4040 1 : 6.671: 6.67 실시예4Example 4 260260 2020 1 : 6.671: 6.67 실시예5Example 5 260260 6060 1 : 6.671: 6.67 실시예6Example 6 260260 4040 1 : 51: 5 실시예7Example 7 260260 4040 1 : 71:7 비교예7Comparative Example 7 150150 4040 1 : 6.671: 6.67 비교예8Comparative Example 8 320320 4040 1 : 6.671: 6.67 비교예9Comparative Example 9 260260 1010 1 : 6.671: 6.67 비교예10Comparative Example 10 260260 7070 1 : 6.671: 6.67 비교예11Comparative Example 11 260260 4040 1 : 41: 4 비교예12Comparative Example 12 260260 4040 1 : 81:8

실험예 1 : 흡착제 성능 평가 - 정적 평가Experimental Example 1: Adsorbent Performance Evaluation - Static Evaluation

실시예 1 ~ 실시예 7 및 비교예 1 ~ 비교예 12의 흡착제 성능을 평가하기 위하여 정적 평가를 수행하여 흡착제의 포름알데하이드 제거율을 비교하여 하기 표 2 및 표 3에 나타냈다.In order to evaluate the adsorbent performance of Examples 1 to 7 and Comparative Examples 1 to 12, static evaluation was performed, and the formaldehyde removal rates of the adsorbents were compared and shown in Tables 2 and 3 below.

상기 정적 평가 방법은 다음과 같다.The static evaluation method is as follows.

(1)일본 Jema1467 규격이 따라 제조된 챔버를 준비했다.(1) A chamber manufactured according to the Japanese Jema1467 standard was prepared.

(2)상기 챔버에 포름알데하이드 가스를 주입한 후 30분 간격으로 2시간 동안 측정하여 새어 나가는 부분이 있는지 확인하는 누출 실험(leak test)를 수행했다.(2) After injecting formaldehyde gas into the chamber, a leak test was performed to check whether there was a leak by measuring at 30-minute intervals for 2 hours.

(3)상기 (2)단계에서 누출되는 부분이 없을 경우, 포름알데하이드를 챔버(chamber) 내에 초기 농도 40ppm이 되도록 기화시켰다.(3) When there is no leakage in step (2), formaldehyde was vaporized to an initial concentration of 40 ppm in a chamber.

(4)(3)단계를 수행한 챔버의 포름알데하이드 농도를 30분 뒤에 측정하여 초기 농도와 비교하였다.(4) (3) The concentration of formaldehyde in the chamber was measured after 30 minutes and compared with the initial concentration.

이때, 측정에 사용된 가스검지관은 Gastec사의 No.91, No.91M을 사용하였으며, 상기 챔버의 설계도는 도면 2에 나타내었다. At this time, the gas detection tubes used for the measurement were Gastec's No.91 and No.91M, and the design of the chamber is shown in FIG. 2 .

실시예1Example 1 첨가량(g)Addition (g) 초기농도(ppm)Initial concentration (ppm) 30분 후 농도(ppm)Concentration (ppm) after 30 minutes 제거율(%)Removal rate (%) 33 4040 2020 50.050.0 55 4040 1515 62.562.5 88 4040 88 80.080.0 1515 4040 88 80.080.0 2020 4040 88 80.080.0 비교예1Comparative Example 1 첨가량(g)Addition (g) 초기농도(ppm)Initial concentration (ppm) 30분 후 농도(ppm)Concentration (ppm) after 30 minutes 제거율(%)Removal rate (%) 2.52.5 4040 3030 25.025.0 4.44.4 4040 2525 37.537.5 6.96.9 4040 2525 37.537.5 10.510.5 4040 2828 30.030.0 비교예2Comparative Example 2 첨가량(g)Addition (g) 초기농도(ppm)Initial concentration (ppm) 30분 후 농도(ppm)Concentration (ppm) after 30 minutes 제거율(%)Removal rate (%) 22 4040 2525 37.537.5 44 4040 2020 50.050.0 66 4040 2020 50.050.0 1212 4040 2020 50.050.0 2323 4040 2020 50.050.0 비교예3Comparative Example 3 MnO2 첨가량(g)MnO 2 addition amount (g) CeO2 첨가량(g)CeO 2 addition amount (g) 초기농도(ppm)Initial concentration (ppm) 30분 후(ppm)After 30 minutes (ppm) 제거율(%)Removal rate (%) 44 44 4040 2525 37.537.5 77 77 4040 2525 37.537.5 1010 1010 4040 2525 37.537.5 2525 2525 4040 2525 37.537.5 비교예4Comparative Example 4 MnO2 첨가량(g)MnO 2 addition amount (g) FeSiO2 첨가량(g)FeSiO 2 addition amount (g) 초기농도(ppm)Initial concentration (ppm) 30분 후(ppm)After 30 minutes (ppm) 제거율(%)Removal rate (%) 44 44 4040 2525 37.537.5 77 77 4040 2525 37.537.5 1010 1010 4040 2525 37.537.5 2525 2525 4040 2525 37.537.5

구분division 첨가량(g)Addition (g) 초기농도(ppm)Initial concentration (ppm) 30분 후 농도(ppm)Concentration (ppm) after 30 minutes 제거율(%)Removal rate (%) 실시예2Example 2 88 4040 1212 70.070.0 실시예3Example 3 88 4040 9.59.5 76.276.2 실시예4Example 4 88 4040 1111 72.572.5 실시예5Example 5 88 4040 8.58.5 78.778.7 실시예6Example 6 88 4040 1010 75.075.0 실시예7Example 7 88 4040 9.59.5 76.276.2 비교예7Comparative Example 7 88 4040 1818 55.055.0 비교예8Comparative Example 8 88 4040 1515 62.562.5 비교예9Comparative Example 9 88 4040 2020 50.050.0 비교예10Comparative Example 10 88 4040 1616 60.060.0 비교예11Comparative Example 11 88 4040 2323 42.542.5 비교예12Comparative Example 12 88 4040 2121 47.547.5

상기 표 2에 의하면 본 발명의 실시예 1을 5g 이상 첨가하여 정적 평가를 수행할 경우, 실시예 1의 포름알데하이드 제거율은 비교예 1 ~ 비교예 4의 흡착제에 비해 높게 나타나, 실시예 1이 우수한 성능을 가지는 흡착제임을 알 수 있었다. 반면에, 비교예 1 ~ 비교예 4의 흡착제는 첨가량을 달리 해도 실시예 1의 흡착제보다 낮은 포름알데하이드 제거율을 보였다.According to Table 2, when the static evaluation was performed by adding 5 g or more of Example 1 of the present invention, the formaldehyde removal rate of Example 1 was higher than that of the adsorbents of Comparative Examples 1 to 4, and Example 1 was excellent. It was found to be an adsorbent with performance. On the other hand, the adsorbents of Comparative Examples 1 to 4 showed a lower formaldehyde removal rate than the adsorbent of Example 1 even when the amount of the adsorbent was changed.

상기 표 3를 살펴보면, 실시예 2 ~ 실시예 7은 포름알데하이드 제거율이 70% 이상으로 높은 제거율을 보임을 확인할 수 있었다. Referring to Table 3, it was confirmed that Examples 2 to 7 showed a high removal rate of formaldehyde removal rate of 70% or more.

이에 반해, 소성온도를 200℃ 미만에서 수행한 비교예 7의 경우, 실시예 1 및 실시예 2(200℃)와 비교할 때, 포름알데하이드 제거율이 급격하게 감소하는 문제가 있었는데, 이는 흡착제 내 공공이 적절하게 형성되지 않았기 때문으로 판단되며, 소성온도 280℃를 초과해서 수행한 비교예 8의 경우, 실시예 1 및 실시예 3(280℃)와 비교할 때, 포름알데하이드 제거율이 오히려 급격하게 감소하였는데, 이는 흡착제 내 공공의 크기가 너무 커서 오히려 포름알데하이드 제거율이 감소한 것으로 판단된다.On the other hand, in the case of Comparative Example 7, in which the calcination temperature was carried out at less than 200°C, there was a problem in that the formaldehyde removal rate was sharply decreased, compared to Examples 1 and 2 (200°C), which was that the pores in the adsorbent were It is judged that this is because it was not properly formed, and in the case of Comparative Example 8, which was carried out at a calcination temperature of 280 ° C., when compared with Examples 1 and 3 (280 ° C), the formaldehyde removal rate was rather sharply decreased, It is considered that the size of the pores in the adsorbent is too large, and the formaldehyde removal rate is rather decreased.

또한, 소성 시간을 20분 미만에서 수행한 비교예 9의 경우, 실시예 1 및 실시예 4(20분)와 비교할 때, 포름알데하이드 제거율이 급격하게 감소하는 문제가 있었는데, 이는 소성 시간이 너무 짧아 흡착제 내 공공이 적절하게 형성되지 않았기 때문으로 판단되며, 소성 시간 60분을 초과해서 수행한 비교예 10의 경우, 실시예 1 및 실시예 5(60분)와 비교할 때, 포름알데히드 제거율이 오히려 급격하게 감소하였는데, 이는 소성 시간이 과도하게 길어 흡착제 내 공공의 크기가 너무 커져 오히려 포름알데이드 제거율이 감소한 것으로 판단된다.In addition, in the case of Comparative Example 9, in which the calcination time was carried out for less than 20 minutes, there was a problem in that the formaldehyde removal rate was sharply decreased as compared to Examples 1 and 4 (20 minutes), which was because the calcination time was too short. It is judged that it is because the pores in the adsorbent were not properly formed, and in Comparative Example 10, which was carried out for a calcination time of more than 60 minutes, the formaldehyde removal rate was rather rapid compared to Examples 1 and 5 (60 minutes). However, it is judged that the formaldehyde removal rate was rather decreased because the pore size in the adsorbent became too large because the calcination time was excessively long.

또한, 비교예 11은 흡착제 내 글루코오스 함량은 높으나, 상대적으로 MnO2 양이 적어서 흡착시킬 수 있는 포름알데히드 양이 적고 그 결과 제거율이 감소한 것으로 판단된다.In Comparative Example 11, although the glucose content in the adsorbent is high, the amount of formaldehyde that can be adsorbed is small because the amount of MnO 2 is relatively small, and as a result, it is determined that the removal rate is reduced.

또한, 비교예 12는 흡착제 내 MnO2 양은 많으나, 상대적으로 나노탄소로써 MnO2의 보조 역할을 수행하는 글루코오스 양이 적어서 포름알데하이드 제거율이 급격하게 감소하는 문제가 있음을 확인할 수 있었다.In Comparative Example 12 , although the amount of MnO 2 in the adsorbent was large, it was confirmed that there was a problem in that the amount of glucose performing an auxiliary role of MnO 2 as nano-carbon was relatively small, so that the removal rate of formaldehyde was rapidly reduced.

실험예 2 : 비표면적 측정Experimental Example 2: Measurement of specific surface area

실시예 1 및 비교예 1 ~ 비교예 2 및 비교예 5 ~ 비교예 6의 흡착제를 가스 흡착식 비표면적 분석 방법을 이용하여 비표면적을 측정하였고, 구체적으로는, 시료에 질소 가스를 흡착시켜 시료 표면에 존재하는 기체의 양을 측정하여 비표면적을 측정하였다. 이때, 측정 장치로는 BEL INC사의 BELSORP-max 비표면적 기공율 분석기를 사용하였다.The specific surface areas of the adsorbents of Example 1 and Comparative Examples 1 to 2 and Comparative Examples 5 to 6 were measured using a gas adsorption specific surface area analysis method. Specifically, nitrogen gas was adsorbed to the sample to determine the sample surface. The specific surface area was measured by measuring the amount of gas present in the . In this case, as a measuring device, a BELSORP-max specific surface area porosity analyzer manufactured by BEL INC was used.

그 결과로써, 실시예 1은 192.64 m2·g-1, 비교예 1은 2.48 m2·g-1, 비교예 2는 28.44 m2·g-1, 비교예 5는 91.95 m2·g-1, 비교예 6은 191.23m2·g-1의 비표면적을 가지는 것으로 나타났다. 이를 통해 실시예 1이 가장 높은 비표면적을 갖고, 실시예 1은 비교예보다 더 높은 흡착 성능을 가지는 흡착제임을 알 수 있었다.As a result, Example 1, 192.64 m 2 · g -1, Comparative Example 1 is 2.48 m 2 · g -1, comparative example 2 is 28.44 m 2 · g -1, in Comparative Example 5 is 91.95 m 2 · g - 1 , Comparative Example 6 was found to have a specific surface area of 191.23m 2 ·g -1 . Through this, it was found that Example 1 had the highest specific surface area, and Example 1 was an adsorbent having higher adsorption performance than Comparative Example.

실험예 3 : 경도 측정Experimental Example 3: Measurement of hardness

실시예 1 ~ 실시예 5 및 비교예 7 ~ 비교예 10 흡착제의 내구성을 평가하기 위하여, 경도를 측정하여 하기 표 4 및 표 5에 나타내었다.Examples 1 to 5 and Comparative Examples 7 to 10 In order to evaluate the durability of the adsorbent, hardness was measured and shown in Tables 4 and 5 below.

경도 측정은 KSM 1802 규격에 의한 방식으로 평가되었는데, 구체적으로는, 입자상 시료를 강구와 함께 체거름 하고, 체 위에 남는 시료의 무게를 구하여 원래 시료 무게의 비로 경도를 계산한다. 경도 측정에는 4×8mesh의 체를 사용하였으며, 20~21℃의 온도 및 20~30%의 습도에서 수행되었다. 경도 측정의 신뢰도를 높이기 위하여 5번 실험 수행하였다. 경도를 구하는 식은 하기와 같다.The hardness measurement was evaluated according to the KSM 1802 standard. Specifically, a particulate sample is sieved together with a steel ball, the weight of the sample remaining on the sieve is calculated, and the hardness is calculated by the ratio of the original sample weight. A 4×8 mesh sieve was used for hardness measurement, and it was performed at a temperature of 20 to 21° C. and a humidity of 20 to 30%. In order to increase the reliability of hardness measurement, experiments were performed 5 times. The formula for calculating the hardness is as follows.

Figure pat00001
Figure pat00001

상기의 식에서, H는 경도(%)를 의미하고, W는 체 위의 남은 시료 무게를 의미하며, S는 진탕 전의 시료 무게를 의미한다.In the above formula, H means hardness (%), W means the weight of the remaining sample on the sieve, and S means the weight of the sample before shaking.

구분/경도(%)Classification/Hardness (%) 1차Primary 2차Secondary 3차tertiary 4차4th 5차5th 평균average 실시예1Example 1 98.298.2 97.597.5 96.896.8 97.397.3 97.197.1 97.4%97.4%

상기 표 4에 나타낸 바와 같이, 실시예 1의 흡착제는 평균 97.4%의 경도를 나타냈으며, 단단하여 입자 간의 충돌로 인해 마모되거나 부서지지 않는 내구성 높은 흡착제임을 알 수 있었다.As shown in Table 4, the adsorbent of Example 1 exhibited an average hardness of 97.4%, and it was found that it was a highly durable adsorbent that was hard and does not abrade or break due to collisions between particles.

구분division 경도 평균hardness average 실시예2Example 2 98.1%98.1% 실시예3Example 3 96.3%96.3% 실시예4Example 4 97.9%97.9% 실시예5Example 5 96.7%96.7% 비교예7Comparative Example 7 98.8%98.8% 비교예8Comparative Example 8 87.5%87.5% 비교예9Comparative Example 9 98.2%98.2% 비교예10Comparative Example 10 89.7%89.7%

상기 표 5를 살펴보면, 실시예 2 ~ 실시예 5는 실시예 1과 함께 우수한 경도를 가지는 것으로 나타났다.Referring to Table 5, Examples 2 to 5 were found to have excellent hardness together with Example 1.

반면에, 소성온도를 200℃ 미만에서 수행한 비교예 7은, 실시예 1 및 실시예 2(200℃)와 비교할 때, 소성이 덜 되어 산소 공공이 덜 생기므로 경도가 높게 나타났으나, 포름알데하이드 제거율이 낮은 문제가 있었고, 소성온도 280℃를 초과해서 수행한 비교예 8의 경우, 실시예 1 및 실시예 3(280℃)와 비교할 때, 경도가 급격하게 떨어지는 것으로 나타났는데, 이는 소성 온도가 너무 높아 산소 공공이 과하게 생겼기 때문으로 판단된다.On the other hand, Comparative Example 7, in which the calcination temperature was carried out at less than 200 ° C., was less calcined and less oxygen vacancies were generated, so that the hardness was high, compared with Examples 1 and 2 (200 ° C.), but the form There was a problem with the low aldehyde removal rate, and in the case of Comparative Example 8, which was carried out at a calcination temperature of 280 ° C., when compared with Examples 1 and 3 (280 ° C.), it was found that the hardness dropped sharply, which was the calcination temperature is too high, and oxygen vacancies are excessively formed.

또한, 소성 시간을 20분 미만에서 수행한 비교예 9의 경우, 실시예 1 및 실시예 4(20분)와 비교할 때, 소성이 덜 되어 산소 공공이 덜 생기므로 경도가 높게 나타났으나, 포름알데하이드 제거율이 낮은 문제가 있었고, 소성 시간 60분을 초과해서 수행한 비교예 10의 경우, 실시예 1 및 실시예 5(60분)와 비교할 때, 경도가 급격하게 떨어지는 것으로 나타났는데, 이는 소성 시간이 너무 길어 산소 공공이 과하게 생겼기 때문으로 판단된다.In addition, in the case of Comparative Example 9, in which the firing time was less than 20 minutes, compared with Examples 1 and 4 (20 minutes), the hardness was high because the firing was less and oxygen vacancies were less generated, but the form There was a problem in that the aldehyde removal rate was low, and in the case of Comparative Example 10, which was carried out for a calcination time of more than 60 minutes, when compared with Examples 1 and 5 (60 minutes), it was found that the hardness dropped sharply, which was the calcination time It is thought that this is because the oxygen vacancy is excessively long.

제조예 1 : 부직포 필터 제조Preparation Example 1: Preparation of non-woven filter

(1)부직포를 공기청정기 내부에 들어갈 크기(300mm×400mm)로 잘라서 준비했다.(1) Prepared by cutting the non-woven fabric into the size (300mm×400mm) to fit inside the air purifier.

(2)실시예 1의 흡착제 1.575 중량% 및 잔량의 수성 아크릴계 바인더 용액(영우킴텍, AK-9117+AK-990) 500mL를 280rpm의 회전속도로 교반시켜 포름알데하이드 흡착 코팅액을 제조하였다.(2) 1.575 wt% of the adsorbent of Example 1 and 500 mL of an aqueous acrylic binder solution (Youngwoo Kimtech, AK-9117+AK-990) of the remaining amount were stirred at a rotation speed of 280 rpm to prepare a formaldehyde adsorption coating solution.

(3)상기 포름알데하이드 흡착 코팅액을 상기 부직포에 골고루 도포했다.(3) The formaldehyde adsorption coating solution was evenly applied to the nonwoven fabric.

(4)(3)단계를 수행한 부직포를 상온에서 24시간 동안 건조하여 부직포 필터를 제조하였다.(4) The nonwoven fabric subjected to step (3) was dried at room temperature for 24 hours to prepare a nonwoven fabric filter.

비교제조예 1 : 부직포 필터 제조Comparative Preparation Example 1: Preparation of non-woven filter

제조예 1과 동일한 방법으로 제조하나, 비교예 1의 흡착제를 사용하여 제조하였다.It was prepared in the same manner as in Preparation Example 1, but using the adsorbent of Comparative Example 1.

비교제조예 2 : 부직포 필터 제조Comparative Preparation Example 2: Preparation of non-woven filter

제조예 1과 동일한 방법으로 제조하나, 비교예 2의 흡착제를 사용하여 제조하였다.It was prepared in the same manner as in Preparation Example 1, but using the adsorbent of Comparative Example 2.

실험예 5 : 부직포 필터 성능 평가Experimental Example 5: Evaluation of non-woven filter performance

제조예 1 및 비교제조예 1 ~ 비교제조예 2의 부직포 필터를 다음과 같은 방법으로 포름알데하이드 제거 성능을 평가하여 하기 표 6 및 도 5에 나타냈다. Formaldehyde removal performance of the nonwoven fabric filters of Preparation Example 1 and Comparative Preparation Example 1 to Comparative Preparation Example 2 were evaluated in the following manner, and are shown in Tables 6 and 5 below.

(1)장비 및 장치에 이상이 있는지 확인한 후 누출 실험(leak test)를 진행하였다. (1) After checking whether there are any abnormalities in the equipment and equipment, a leak test was performed.

(2)부직포 필터를 공기청정장치(웅진코웨이, AP-1009JH)에 장착하였다. (2) A non-woven filter was installed in an air purifier (Woongjin Coway, AP-1009JH).

(3)포름알데하이드 용액 0.3mL를 챔버 내에 넣었다.(3) 0.3 mL of formaldehyde solution was put into the chamber.

(4)상기 포름알데하이드 용액을 가열기를 사용하여 65℃의 온도에서 기화시켰다.(4) The formaldehyde solution was vaporized at a temperature of 65° C. using a heater.

(5)기화 후 가열기를 껐다.(5) Turn off the heater after vaporization.

(6)디니트로페닐하이드라진(dinitrophenylhydrazine, DNPH) 카트리지를 이용하여 초기 포름알데하이드 가스 농도를 측정하였다.(6) The initial formaldehyde gas concentration was measured using a dinitrophenylhydrazine (DNPH) cartridge.

(7)상기 공기청정장치를 가동시키고 30분 간격으로 4번 측정하였다.(7) The air purifier was operated and measurements were made 4 times at 30-minute intervals.

또한, 상기 챔버의 설계도를 도 3에 나타냈으며, 실제 제조된 챔버의 이미지를 도 4에 나타냈다.In addition, a design diagram of the chamber is shown in FIG. 3 , and an image of the actually manufactured chamber is shown in FIG. 4 .

구분division 포집 시간capture time 초기Early 30분 후30 minutes later 60분 후after 60 minutes 90분 후after 90 minutes 120분 후after 120 minutes 제조예1Preparation Example 1 포름알데하이드 농도
(ppm)
formaldehyde concentration
(ppm)
5.0825.082 1.8761.876 0.8630.863 0.6910.691 0.0700.070
제거율 (%)Removal rate (%) 00 63.0963.09 83.0283.02 86.4086.40 98.6298.62 비교제조예1Comparative Preparation Example 1 포름알데하이드 농도
(ppm)
formaldehyde concentration
(ppm)
6.2846.284 6.0516.051 5.3415.341 4.8054.805 4.3204.320
제거율 (%)Removal rate (%) 00 3.73.7 15.0015.00 23.5423.54 31.2631.26 비교제조예2Comparative Preparation Example 2 포름알데하이드 농도
(ppm)
formaldehyde concentration
(ppm)
7.4467.446 5.9475.947 3.9673.967 3.3343.334 2.9052.905
제거율 (%)Removal rate (%) 00 20.1420.14 46.7346.73 55.2355.23 60.9960.99

상기 표 6에 나타낸 바와 같이, 제조예 1의 부직포 필터는 60분 이후부터 80% 이상의 포름알데하이드 제거율을 보였으나, 비교제조예 1 및 비교제조예 2는 이보다 현격하게 낮은 제거율을 보였다.As shown in Table 6, the nonwoven filter of Preparation Example 1 showed a formaldehyde removal rate of 80% or more after 60 minutes, but Comparative Preparation Example 1 and Comparative Preparation Example 2 showed a significantly lower removal rate than this.

또한, 도 5에서 알 수 있듯이, 포름알데하이드 초기 농도 약 5ppm에서 30분 후 1.876ppm, 1시간 후 0.863ppm, 1시간 30분 후 0.691ppm, 2시간 후 0.070ppm으로 초기 30분 후 대략 63%의 제거율을 달성하였으며 2시간 후에는 최대 약 98%로 100%에 가까운 제거율을 보임을 알 수 있었다. 이를 통해 제조예 1의 부직포 필터의 성능이 좋은 것은, 글루코오스가 나노탄소 역할로서 활성탄처럼 흡착 능력을 향상시켜주고 산소 공공(oxygen vacancy) 구조가 포름알데하이드를 빠르게 산화 시킨 것으로 판단된다.In addition, as can be seen from FIG. 5, the initial concentration of formaldehyde was about 5 ppm at 1.876 ppm after 30 minutes, 0.863 ppm after 1 hour, 0.691 ppm after 1 hour and 30 minutes, and 0.070 ppm after 2 hours, about 63% of the initial concentration after 30 minutes. The removal rate was achieved, and it was found that the removal rate was close to 100% with a maximum of about 98% after 2 hours. Through this, it is judged that the good performance of the nonwoven filter of Preparation Example 1 is that glucose improves the adsorption capacity like activated carbon as nano-carbon, and the oxygen vacancy structure oxidizes formaldehyde quickly.

본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (10)

글루코오스(Glucose), 이산화망간 전구체 및 물을 포함한 용액을 준비하는 1단계;
상기 용액을 반응시켜 반응생성물인 글루코오스가 결합된 이산화망간(MnO2)을 합성하는 2단계;
2단계를 수행한 반응생성물을 포함하는 용액을 여과하여 여과물을 수득하는 3단계;
상기 여과물을 증류수로 세척하는 4단계;
세척한 여과물을 건조시켜 건조물을 수득하는 5단계; 및
상기 건조물을 불활성 기체 하에서, 200 ~ 280℃ 하에서 20 ~ 60분 동안 소성시켜서 산소 공공(Oxygen vacancy) 흡착제를 제조하는 6단계;
를 포함하는 포름알데하이드 제거용 산소 공공 흡착제 제조방법.
Step 1 of preparing a solution containing glucose, a manganese dioxide precursor, and water;
a second step of reacting the solution to synthesize manganese dioxide (MnO 2 ) to which glucose, which is a reaction product, is bound;
Step 3 to obtain a filtrate by filtering the solution containing the reaction product performed in Step 2;
4 step of washing the filtrate with distilled water;
Step 5 of drying the washed filtrate to obtain a dry product; and
Step 6 of calcining the dried material under an inert gas under 200 to 280° C. for 20 to 60 minutes to prepare an oxygen vacancy adsorbent;
A method for producing an oxygen vacancy adsorbent for removing formaldehyde comprising a.
제1항에 있어서, 1단계에 있어서, 상기 용액은 상기 글루코오스 및 이산화망간 전구체를 1 : 5 ~ 1 : 7 중량비로 포함하는 것을 특징으로 하는 포름알데하이드 제거용 산소 공공 흡착제 제조방법.
The method of claim 1, wherein the solution comprises the glucose and the manganese dioxide precursor in a weight ratio of 1:5 to 1:7.
제1항에 있어서, 상기 이산화망간 전구체는 과망간산칼륨(KMnO4), 망간아세테이트(Mn(CH3CO2)2), 과망간산나트륨(NaMnO4) 및 황산망간(MnSO4) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 포름알데하이드 제거용 산소 공공 흡착제 제조방법.
According to claim 1, wherein the manganese dioxide precursor is potassium permanganate (KMnO 4 ), manganese acetate (Mn(CH 3 CO 2 ) 2 ), sodium permanganate (NaMnO 4 ) and manganese sulfate (MnSO 4 ) Among A method for producing an oxygen vacancy adsorbent for removing formaldehyde, comprising at least one selected type.
제1항에 있어서, 2단계의 반응은 60 ~ 100℃ 하에서 5 ~ 25분 동안 중탕 및 교반하여 수행되고,
4단계의 건조는 80 ~ 130℃ 하에서 10 ~ 14시간 수행되는 것을 특징으로 하는 포름알데하이드 제거용 산소 공공 흡착제 제조방법.
The method of claim 1, wherein the reaction of step 2 is carried out by bathing and stirring for 5 to 25 minutes under 60 ~ 100 ℃,
Step 4 drying is a method for producing an oxygen vacancy adsorbent for removing formaldehyde, characterized in that it is carried out for 10 to 14 hours under 80 to 130 ℃.
제1항 내지 제4항 중에서 선택된 어느 한 항의 제조방법으로 제조한 포름알데하이드 제거용 산소 공공 흡착제.
An oxygen vacancy adsorbent for removing formaldehyde prepared by the method of any one of claims 1 to 4.
제5항에 있어서, 글루코오스가 결합된 이산화망간(MnO2)을 소성시킨 소성물을 포함하며,
비표면적 191.5 ~ 210.0 m2·g-1인 것을 포름알데하이드 제거용 산소 공공 흡착제.
According to claim 5, Glucose-coupled manganese dioxide (MnO 2 ) Includes a calcined product,
Oxygen vacancy adsorbent for formaldehyde removal with specific surface area of 191.5 ~ 210.0 m 2 ·g -1.
제6항에 있어서, 상기 산소 공공 흡착제는 KCM 1802 규격에 의해 측정한 경도가 95.0 ~ 99.0%인 것을 특징으로 하는 포름알데하이드 제거용 산소 공공 흡착제.
The oxygen vacancy adsorbent for removing formaldehyde according to claim 6, wherein the oxygen vacancy adsorbent has a hardness of 95.0 to 99.0% measured according to KCM 1802 standard.
제6항에 있어서, 상기 산소 공공 흡착제는 포름알데하이드 제거율이 50 ~ 90%인 것을 특징으로 하는 포름알데하이드 제거용 산소 공공 흡착제.
The oxygen vacancy adsorbent for removing formaldehyde according to claim 6, wherein the oxygen vacancy adsorbent has a formaldehyde removal rate of 50 to 90%.
제6항 내지 제8항 중에서 선택된 어느 한 항의 산소 공공 흡착제 0.5 ~ 5.0 중량% 및 잔량의 바인더 용액을 포함하는 것을 특징으로 하는 포름알데하이드 흡착 코팅액.
A formaldehyde adsorption coating solution comprising 0.5 to 5.0 wt% of the oxygen vacancy adsorbent of any one of claims 6 to 8 and the remaining amount of the binder solution.
제9항의 포름알데하이드 흡착 코팅액을 포함하는 것을 특징으로 하는 포름알데하이드 제거용 부직포 필터.A nonwoven fabric filter for removing formaldehyde, characterized in that it contains the formaldehyde adsorption coating solution of claim 9.
KR1020200036283A 2020-03-25 2020-03-25 Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same KR20210119749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200036283A KR20210119749A (en) 2020-03-25 2020-03-25 Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200036283A KR20210119749A (en) 2020-03-25 2020-03-25 Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same

Publications (1)

Publication Number Publication Date
KR20210119749A true KR20210119749A (en) 2021-10-06

Family

ID=78077245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200036283A KR20210119749A (en) 2020-03-25 2020-03-25 Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same

Country Status (1)

Country Link
KR (1) KR20210119749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392735A (en) * 2022-02-08 2022-04-26 中国科学院城市环境研究所 alpha-MnO2Catalyst, preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212992A (en) 1992-02-06 1993-08-24 Dainippon Printing Co Ltd Document paper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212992A (en) 1992-02-06 1993-08-24 Dainippon Printing Co Ltd Document paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392735A (en) * 2022-02-08 2022-04-26 中国科学院城市环境研究所 alpha-MnO2Catalyst, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP7203110B2 (en) Catalyst for catalyzing formaldehyde oxidation and its preparation and use
JP7344270B2 (en) Surface-modified carbon and adsorbents for improved efficiency in removing gaseous pollutants
JP5048328B2 (en) A wide range filter system that contains tungsten-based impregnants and is useful for filtering contaminants from air or other gases
CN113797925A (en) Formaldehyde removal catalyst and preparation method and application thereof
KR20210119749A (en) Absorbent with oxygen vacancy for removing formaldehyde, A method of manufacturing the same and Absorption coating solution, Non-woven filter using the same
EP2841182B1 (en) Filtering material and use thereof
JP6405718B2 (en) Acid gas adsorption / removal agent and adsorption / removal filter using the same
JP2007014857A (en) Adsorbent and its production method
KR102438589B1 (en) Adsorptive-catalytic for removing formaldehyde, a metod of manufacturing the same, adsorbent and non-woven filter using the same
JP6264859B2 (en) Siloxane removal agent and siloxane removal filter using the same
US20200188874A1 (en) A sorbent and a filter
KR20210126576A (en) Filter media for nitrogen oxide separation
JP2000317271A (en) Adsorbent
KR102369193B1 (en) Manufacturing method of metal-impregnated material through room temperature oxidation
KR102365539B1 (en) Carbon dioxide absorbent and air purifier including the same
JP2000044248A (en) Manganate, its preparation and oxidation catalyst
JP2002028489A (en) Adsorption and decomposition agent of aldehydes and producing method thereof
JP2002028486A (en) Adsorption and decomposition agent of aldehydes and producing method thereof
CN117884115A (en) Manganese dioxide coated active carbon composite catalyst, preparation method thereof, filter screen and air purifier
JP2009061405A (en) Catalyst loading sorbent, catalyst loading aeration structure, air cleaning device, and dehumidification/deodorization device
JP4007680B2 (en) Oxidation removal method of acetaldehyde
JP4007727B2 (en) Oxidation removal method of acetaldehyde
JPH05269375A (en) Carrier active carbon for deodrization and production thereof
JP2002079079A (en) Aldehydes adsorbing and decomposing agent and its production method