KR20210109136A - 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템 - Google Patents

인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템 Download PDF

Info

Publication number
KR20210109136A
KR20210109136A KR1020200023999A KR20200023999A KR20210109136A KR 20210109136 A KR20210109136 A KR 20210109136A KR 1020200023999 A KR1020200023999 A KR 1020200023999A KR 20200023999 A KR20200023999 A KR 20200023999A KR 20210109136 A KR20210109136 A KR 20210109136A
Authority
KR
South Korea
Prior art keywords
unit
failure
emergency generator
memory
data
Prior art date
Application number
KR1020200023999A
Other languages
English (en)
Inventor
장현수
Original Assignee
장현수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장현수 filed Critical 장현수
Priority to KR1020200023999A priority Critical patent/KR20210109136A/ko
Publication of KR20210109136A publication Critical patent/KR20210109136A/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기에 있어서, 동력을 발생하는 엔진; 상기 엔진에 연결되어 전기를 생성하는 발전기; 전기를 부하 측에 공급하는 배전반; 상기 비상 발전기의 부품들 각각에 설치되는 센서부; 상기 센서부로부터 측정된 센싱값들이 저장되는 메모리; 및 상기 비상 발전기를 제어하는 제어부를 포함하고, 상기 메모리는, 상기 비상 발전기의 출하 시 규정된 성능을 발휘하는지를 점검하기 위해 초기 점검 시에 측정된 센싱값들이 저장되는 초기값 메모리; 상기 비상 발전기의 출하 이후에 일정한 주기에 따라 상기 비상 발전기의 상태를 점검하는 일상 점검 시에 측정된 센싱값들이 저장되는 점검값 메모리; 전문가가 전문적인 지식에 근거하여 상기 비상 발전기의 상태를 점검하는 전문 점검 시에 측정된 센싱값들이 저장되는 보정값 메모리; 및 상기 비상 발전기의 고장 여부의 기준값이 저장되는 기준값 메모리를 포함하고, 상기 제어부는, 상기 메모리에 저장된 센싱값들인 상태 데이터를 분석하여 상기 비상 발전기의 부품별 통계 데이터를 생성하는 데이터 처리부; 상기 센서부에 의해 측정된 센싱값들을 부품별 임계치와 비교하여 불량 여부를 판단하는 불량 판단부; 상기 데이터 처리부에 의해 생성된 상기 통계 데이터 및 불량 여부 판단을 타겟으로 하는 머신러닝 알고리즘을 이용하여, 특징 패턴과 불량 사이의 맵핑 관계를 검출하고, 상기 통계 데이터 및 상기 맵핑 관계로부터 불량 패턴 모델을 학습하는 불량 패턴 모델 학습부; 및 상기 데이터 처리부에 의해 생성된 상기 통계 데이터 및 상기 불량 패턴 모델 학습부에 의해 학습된 불량 패턴 모델을 이용하여 상기 비상 발전기의 불량을 사전에 예측하는 불량 예측부를 포함한다.

Description

인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템{EQUIPMENT AND SYSTEM INCLUDING FUNCTION FOR FAULT PREVENTION USING ARTIFICIAL INTELLIGENCE ALGORITHM}
본 발명은 기계 장치 및 그 시스템에 관한 것으로서, 보다 상세하게는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템에 관한 것이다.
기계 장치 중의 하나인 비상 발전기는 사용 전원에 이상이 생기는 비상 상황에서 사용하게 되는데 그 용량을 한없이 크게 할 수 없어서 시설의 보안 등 극히 중요한 부하에 주로 사용하게 된다. 따라서, 비상 상황에서 원만한 작동을 하게 하기 위하여 주기적으로 점검 운전을 하게 되는데, 이러한 점검 운전은 상용 전원과 비상 전원이 함께 존재하고 2가지의 전원이 공존하면서 전원을 공급하는 것은 매우 위험하다. 따라서, 엔진의 작동 여부를 주로 점검하고 실제로 비상 전원을 공급치 않는 무부하로 운전하는 경우가 많다.
또한, 이러한 점검은 비상 발전기에 대한 지식이 적은 일반 사용자가 행하게 되므로 엔진의 비정상적인 작동이나 전원의 상용 전원과 비상 전원의 교체 동작의 부적절 등을 발견하기가 어려워 막상 비상 발전기를 가동하는 비상 상황에는 비상 발전기가 제대로 가동되지 아니하거나 정확한 전원의 상용 전원과 비상 전원의 교체 동작이 담보되지 않아 보안에 문제를 가져오고 심한 경우는 인명 피해까지 일어나는 경우가 종종 일어나고 있다.
또한, 비상 발전기는 엔진과 발전기가 결합된 종합 기계로 항상 출하 시의 신제품과 같은 최상의 상태를 유지할 수는 없고, 지속적인 점검과 사용에 의해 피로가 누적된다.
이렇게 누적된 피로가 특정 한계치를 초과하는 경우 고장으로 이어지게 된다. 특히, 비상 발전기가 비정상적으로 구동하는 경우 또는 비상 발전기가 노출된 환경이 가혹한 환경인 경우, 비상 발전기의 피로가 보다 급격하게 누적될 수 있고, 비상 발전기가 고장날 확률과 시점이 보다 앞당겨지게 된다.
따라서, 어느 정도 피로가 누적되거나 일부 부품의 성능이 저하되어 비정상적인 운전이 지속되면 이를 사전에 발견하여 보수하는 것이 필요하다.
그러나, 평소에 비상 발전기의 점검은 전문적인 지식이 부족한 사용자가 행하게 되므로 고장의 징후를 발견할 수 없어 막상 비상 사용 시에 고장이 나는 경우가 많다.
이에, 본 발명이 해결하고자 하는 과제는 정기 점검 등 점검 시에 기계 장치자체의 상태 및 비상발전기 주변 환경에 대한 상태에 데이터를 수집하고, 수집된 결과를 데이터 베이스화하며, 데이터 베이스화된 데이터를 인공지능 학습 방식으로 처리하여, 비상 발전기 고장 발생 가능성과 그 위치를 사전에 판단할 수 있는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 과제는 판단된 고장 발생 가능성에 기초하여, 기계 장치에 대한 점검을 수행하여, 결과적으로 기계 장치 고장을 사전에 예방하고, 비상 상황에서 원만한 작동을 하게 하는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 기계 장치 및 그 시스템을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는 기계 장치의 센서부에 의해 측정된 센싱값들을 빅데이터화 하고, 머신러닝 알고리즘을 이용하여 불량 패턴 모델을 학습화하여, 불량을 사전에 정확하게 예측할 수 있는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 기계 장치를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 기계 장치에 있어서, 일정한 기능을 제공하는 기계 장치; 상기 기계 장치의 부품들 각각에 설치되는 센서부; 상기 센서부로부터 측정된 센싱값들이 저장되는 메모리; 및 상기 비상 발전기를 제어하는 제어부를 포함하고, 상기 메모리는, 상기 비상 발전기의 출하 시 규정된 성능을 발휘하는지를 점검하기 위해 초기 점검 시에 측정된 센싱값들이 저장되는 초기값 메모리; 상기 기계 장치의 출하 이후에 일정한 주기에 따라 상기 기계 장치의 상태를 점검하는 일상 점검 시에 측정된 센싱값들이 저장되는 점검값 메모리; 전문가가 전문적인 지식에 근거하여 상기 비상 발전기의 상태를 점검하는 전문 점검 시에 측정된 센싱값들이 저장되는 보정값 메모리; 및 상기 비상 발전기의 고장 여부의 기준값이 저장되는 기준값 메모리를 포함하고, 상기 제어부는, 상기 메모리에 저장된 센싱값들인 상태 데이터를 분석하여 상기 비상 발전기의 부품별 통계 데이터를 생성하는 데이터 처리부; 상기 센서부에 의해 측정된 센싱값들을 부품별 임계치와 비교하여 불량 여부를 판단하는 불량 판단부; 상기 데이터 처리부에 의해 생성된 상기 통계 데이터 및 불량 여부 판단을 타겟으로 하는 머신러닝 알고리즘을 이용하여, 특징 패턴과 불량 사이의 맵핑 관계를 검출하고, 상기 통계 데이터 및 상기 맵핑 관계로부터 불량 패턴 모델을 학습하는 불량 패턴 모델 학습부; 및 상기 데이터 처리부에 의해 생성된 상기 통계 데이터 및 상기 불량 패턴 모델 학습부에 의해 학습된 불량 패턴 모델을 이용하여 상기 기계 장치의 불량을 사전에 예측하는 불량 예측부를 포함한다.
본 발명의 다른 특징에 따르면, 상기 불량 예측부는, 상기 데이터 처리부에 의해 생성된 상기 통계 데이터를 입력받는 통계 데이터 입력부; 특징 패턴 검출 알고리즘을 이용하여 상기 통계 데이터 입력부에 입력된 상기 부품별 상기 통계 데이터의 특징 패턴을 검출하는 특징 패턴 검출부; 상기 특징 패턴 검출부에 의해 검출된 상기 특징 패턴과, 해당 부품에 대응되는 상기 불량 패턴 모델의 특징 패턴을 비교하여 연관성을 산출하는 연관성 산출부; 상기 연관성 산출부에 의해 산출된 연관성이 임계치 이상인 경우 상기 비상 발전기에 불량이 발생할 것으로 판단하는 불량 예측 판단부; 및 상기 불량 예측 판단부에 의해 불량이 발생할 것으로 판단될 때, 불량이 발생할 것으로 판단된 부품을 식별하기 위한 식별 정보 및 불량에 대한 내용 정보를 포함하는 불량 예측 데이터를 생성하는 불량 예측 데이터 생성부를 포함한다.
본 발명의 또 다른 특징에 따르면, 상기 센서부는 상기 엔진의 진동, 배기가스의 조성, 상기 엔진의 소음, 상기 엔진 냉각수의 온도 변화, 엔진 오일의 온도 변화, 발생 전기의 전압, 전류, 고조파 형상, 대체 부하, 상용전원과 비상 전원의 교체 동작의 속도, 상용 전원과 비상 전원의 교체 동작 후의 전압 및 전류 중의 적어도 일부를 센싱한다.
본 발명의 또 다른 특징에 따르면, 상기 기준값은 상기 기계 장치의 출하 점검 시에 상기 센서부에 의해 측정된 센싱값들의 평균값이고, 상기 보정값 메모리에 저장되는 보정값은 상기 전문 점검 시에 측정된 센싱값들의 평균값을 포함한다.
본 발명의 또 다른 특징에 따르면, 상기 센서부는 상기 기계 장치의 피로 누적 상태 및 수집된 데이터에 기초한 인공지능 학습을 위해, 상기 비상 발전기의 온도, 소음, 부하율, 이상 전류 발생 여부, 습도, 진동, 전력 품질을 센싱한다.
본 발명의 또 다른 특징에 따르면, 상기 센서부는 상기 기계 장치의 이상 상태 및 피로 누적 상태를 확인하기 위해 상기 기계 장치 주변 환경에 대한 데이터를 센싱한다.
본 발명의 또 다른 특징에 따르면, 상기 센서부는 상기 기계 장치의 외함 내부 및 외함 외부에 대한 데이터를 센싱한다.
본 발명의 또 다른 특징에 따르면, 상기 데이터 처리부는 상기 비상 발전기의 설치 위치에 따라 상기 메모리에 저장된 센싱값들을 가공하고, 상기 불량 패턴 모델 학습부는 상기 기계 장치의 설치 위치에 따른 상기 통계 데이터의 왜곡을 고려하여 학습한다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명은 정기 점검 등 점검 시에 비상 발전기 자체의 상태 및 기계 장치 주변 환경에 대한 상태에 데이터를 수집하고, 수집된 결과를 데이터 베이스화하며, 데이터 베이스화된 데이터를 인공지능 학습 방식으로 처리하여, 기계 장치 고장 발생 가능성과 그 위치를 사전에 판단할 수 있는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기를 제공할 수 있다.
또한, 본 발명은 판단된 고장 발생 가능성에 기초하여, 기계 장치에 대한 점검을 수행하여, 결과적으로 비상 발전기 고장을 사전에 예방하고, 비상 상황에서 원만한 작동을 하게 하는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한기계 장치를 제공할 수 있다.
또한, 본 발명은 기계 장치의 센서부에 의해 측정된 센싱값들을 빅데이터화 하고, 머신러닝 알고리즘을 이용하여 불량 패턴 모델을 학습화하여, 불량을 사전에 정확하게 예측할 수 있는 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 기계 장치를 제공할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 발명 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 블록도이다.
도 2는 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 메모리의 블록도이다.
도 3은 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 제어부의 블록도이다.
도 4는 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 제어부의 불량 예측부의 블록도이다.
도 5는 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기 및 관리 서버에 대한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형상으로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 면적, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 제한되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 발명 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.
소자 또는 층이 다른 소자 또는 층 "위 (on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다.
또한 제 1, 제 2 등이 다양한 구성 요소들을 서술하기 위해서 사용되나, 이들 구성 요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성 요소를 다른 구성 요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제 1 구성 요소는 본 발명의 기술적 사상 내에서 제 2 구성 요소일 수도 있다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도면에서 나타난 각 구성의 면적 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 면적 및 두께에 반드시 한정되는 것은 아니다.
본 발명에서의 기계 장치라 함은 비상발전기, 냉동기, 수처리장치 등 일정한 기능을 발휘하는 장치를 통칭하는 것이고, 시스템이라 함은 기계 장치와 운전 및 제어장치를 포함하는 전체를 의미한다. 한편 본 발명에서의 실시 예는 비상발전기를 일예로서 설명한다.
이하에서는 도면을 참조하여 본 발명에 대해 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 블록도이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)는 외함(110), 엔진(120), 발전기(130), 배전반(140), 메모리(150), 제어부(160) 및 센서부(170)를 포함한다.
비상 발전기(100)는 상시 운전하지 않고 있다가 상용 전원의 정전 시에만 가동하는 발전기로 지칭된다. 비상 발전기(100)는 동력을 발생시키는 엔진(120), 엔진(120)에 연결되어 전기를 생성하는 발전기(130), 전기를 부하 측에 공급하는 배전반(140) 및 엔진(120), 발전기(130) 및 배전반(140)을 둘러싸는 외함(110)을 포함한다. 비상 발전기(100)는 동력을 발생시키기 위한 엔진(120)의 종류에 따라 디젤 발전기, 가스 터빈 발전기, 스팀 터빈 발전기 등이 사용되는데, 일반적으로 디젤 엔진(120)을 사용하여 동력을 발생시키는 디젤 발전기가 가장 널리 사용되고 있다. 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)의 엔진(120), 발전기(130) 및 배전반(140)은 일반적인 비상 발전기(100)에서 사용되는 엔진(120), 발전기(130) 및 배전반(140)을 사용할 수 있으며, 엔진(120), 발전기(130) 및 배전반(140)의 종류 및 구조는 설계에 따라 다양하게 사용될 수 있다. 또한, 엔진(120), 발전기(130) 및 배전반(140) 이외에 일반적인 비상 발전기(100)에서 사용되는 다양한 부품들이 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)에 더 포함될 수도 있다.
센서부(170)는 비상 발전기(100)의 피로 누적 상태 및 수집된 데이터에 기초한 인공지능 학습을 위해, 비상 발전기(100)의 온도, 소음, 부하율, 이상 전류 발생 여부, 습도, 진동, 전력 품질을 센싱할 수 있다. 이에, 센서부(170)는 비상 발전기(100)의 부품들 각각에 설치될 수 있다. 예를 들어, 센서부(170)는 비상 발전기(100)의 엔진(120), 발전기(130), 배전반(140), 메모리(150), 제어부(160) 등과 같은 비상 발전기(100)의 각각의 부품들에 설치될 수 있다. 비상 발전기(100)가 엔진(120), 발전기(130), 배전반(140), 메모리(150), 제어부(160) 이외에 다른 부품들을 더 포함하는 경우, 해당 부품들 각각에도 센서부(170)가 설치될 수 있다.
센서부(170)는 비상 발전기(100)의 부품들 각각에 설치되어 부품들 각각의 상태를 센싱할 수 있다.
먼저, 센서부(170)는 엔진(120)에 설치되어 엔진(120)의 상태를 센싱할 수 있다. 구체적으로, 센서부(170)는 엔진(120)의 온도, 엔진(120)의 진동, 엔진(120)의 배기 가스의 조성, 엔진(120)의 소음, 엔진(120) 냉각수의 온도 변화, 엔진(120) 오일의 온도 변화 등과 같은 엔진(120)의 상태를 센싱할 수 있다. 센서부(170)로부터 측정된 엔지의 상태에 대한 센싱값들은 메모리(150)에 저장될 수 있다.
또한, 센서부(170)는 발전기(130)에 배치되어 발전기(130)의 상태를 센싱할 수 있다. 구체적으로, 센서부(170)는 발전기(130)의 온도, 소음, 부하율, 이상 전류 발생 여부, 습도, 진동, 전력 품질, 발생 전기의 전압, 전류, 고조파 형상, 대체 부하, 상용 전원과 비상 전원의 교체 동작의 속도, 상용 전원과 비상 전원의 교체 동작 후의 전압 및 전류 등과 같은 발전기(130)의 상태를 센싱할 수 있다. 센서부(170)로부터 측정된 발전기(130)의 상태에 대한 센싱값들은 메모리(150)에 저장될 수 있다.
또한, 센서부(170)는 배전반(140)에 배치되어 배전반(140)의 상태를 센싱할 수 있다. 구체적으로, 센서부(170)는 배전반(140)의 온도, 소음, 습도, 진동 등과 같은 배전반(140)의 상태를 센싱할 수 있다. 센서부(170)로부터 측정된 배전반(140)의 상태에 대한 센싱값들은 메모리(150)에 저장될 수 있다.
또한, 센서부(170)는 비상 발전기(100)의 이상 상태 및 피로 누적 상태를 확인하기 위해 비상 발전기(100) 주변 환경에 대한 데이터를 센싱할 수 있다. 즉, 센서부(170)는 상술한 바와 같이 비상 발전기(100)의 외함(110) 내부에 배치되는 엔진(120), 발전기(130), 배전반(140) 등과 같은 구성 요소에 대한 데이터뿐만 아니라, 외함(110) 외부와 같은 비상 발전기(100) 주변 환경에 대한 데이터를 센싱할 수 있다.
구체적으로, 센서부(170)는 외함(110) 외부와 같은 비상 발전기(100) 주변 환경의 온도, 소음, 습도, 진동 등과 같은 다양한 비상 발전기(100) 주변 환경에 대한 데이터를 센싱할 수 있다. 예를 들어, 비상 발전기(100)의 온도가 상승하는 경우, 해당 온도 상승은 비상 발전기(100) 자체의 피로 누적이나 기계적 결함에 의해 발생할 수도 있으나, 외부의 온도 상승, 외함(110)의 환풍 기능/공기 순환 기능 이상 등에 의해 발생할 수도 있다. 이와 같이, 비상 발전기(100) 주변 환경에 의해 비상 발전기(100)의 온도가 함께 상승하는 경우에도 비상 발전기(100)의 피로 누적에 영향을 줄 수 있지만, 해당 온도 상승의 원인이 외부에서 일시적으로 발생하는 것이라면, 외부 원인을 제거함에 의해 용이하게 비상 발전기(100)의 피로 누적을 방지할 수 있다. 비상 발전기(100)의 소음, 진동 등에 대한 다양한 데이터도 마찬가지이다.
이에, 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)는 비상 발전기(100) 자체에 대한 데이터뿐만 아니라 비상 발전기(100)의 주변 환경에 대한 데이터를 동시에 수집하여, 비상 발전기(100)의 피로 누적에 기여하는 다양한 팩터들을 보다 정확하게 수집할 수 있다.
메모리(150)는 센서부(170)로부터 측정된 센싱값들을 저장한다. 메모리(150)는 비상 발전기(100)의 다양한 부품에 설치되어 다양한 데이터를 측정하는 센서부(170)로부터 측정된 센싱값들을 저장할 수 있다.
이하에서는, 메모리(150)에 대한 보다 상세한 설명을 위해 도 2를 함께 참조한다.
도 2는 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 메모리의 블록도이다.
도 2를 참조하면, 메모리(150)는 초기값 메모리(151), 점검값 메모리(152), 보정값 메모리(153) 및 기준값 메모리(154)를 포함한다. 다만, 이에 제한되지 않고, 초기값 메모리(151), 점검값 메모리(152), 보정값 메모리(153) 및 기준값 메모리(154)가 혼용될 수도 있다. 또한, 메모리(150)는 다양한 값들을 저장하는 다른 메모리(150)를 더 포함할 수 있다.
먼저, 초기값 메모리(151)는 비상 발전기(100)의 출하 시 규정된 성능을 발휘하는지를 점검하기 위해 초기 점검 시에 측정된 센싱값들을 저장한다. 비상 발전기(100)의 출하 시에 정상적으로 비상 발전기(100)가 제조되었는지를 확인하기 위해 비상 발전기(100)의 부품들, 예를 들어, 엔진(120)의 상태, 발전기(130)의 상태 및 배전반(140)의 상태를 측정할 수 있다. 이러한 상태 측정은 센서부(170)를 통해 이루어질 수도 있고, 별도 측정 장비를 통해 이루어질 수도 있다. 초기 점검 시에 측정된 센싱값들을 통해 비상 발전기(100)가 정상적으로 제조되었는지를 확인할 수도 있고, 출하 이후 비상 발전기(100)의 점검 시에 사용될 수도 있다.
또한, 초기 점검 시에는 비상 발전기(100)의 부품들에 대한 데이터뿐만 아니라 비상 발전기(100)의 주변 환경에 대한 데이터도 센싱할 수 있고, 주변 환경에 대한 센싱값도 초기값 메모리(151)에 저장될 수 있다. 이에, 출하 이후 비상 발전기(100)이 점검 시에 측정되는 비상 발전기(100)의 주변 환경에 대한 센싱값과 비교할 수도 있다.
다음으로, 점검값 메모리(152)는 비상 발전기(100)의 출하 이후에 일정한 주기에 따라 비상 발전기(100)의 상태를 점검하는 일상 점검 시에 측정된 센싱값들을 저장한다. 비상 발전기(100)의 출하 이후에 정상적으로 비상 발전기(100)가 동작하는지를 확인하기 위해 비상 발전기(100)의 부품들, 예를 들어, 엔진(120)의 상태, 발전기(130)의 상태 및 배전반(140)의 상태를 측정할 수 있다. 이러한 상태 측정은 일정한 주기에 따라 이루어질 수 있으나 이에 제한되는 것은 아니다. 또한, 일상 점검은 비상 발전기(100)의 제어부(160)에 의해 자동으로 이루어질 수도 있고, 일반적인 지식을 가진 사용자 또는 점검자에 의해 이루어질 수도 있다.
또한, 일상 점검 시에는 비상 발전기(100)의 부품들에 대한 데이터뿐만 아니라 비상 발전기(100)의 주변 환경에 대한 데이터도 센싱할 수 있고, 주변 환경에 대한 센싱값도 점검값 메모리(152)에 저장될 수 있다. 이에, 초기 점검 시에 측정되는 비상 발전기(100)의 주변 환경에 대한 센싱값과 비교할 수도 있다.
다음으로, 보정값 메모리(153)는 전문가가 전문적인 지식에 근거하여 비상 발전기(100)의 상태를 점검하는 전문 점검 시에 측정된 센싱값들을 저장한다. 비상 발전기(100)의 출하 이후에 정상적으로 비상 발전기(100)가 동작하는지를 확인하기 위해 일상 점검이 수행될 수도 있으며, 필요 시 전문가에 의한 전문 점검이 수행될 수도 있다. 전문 점검 시에는 전문가가 전문적인 지식에 근거하여 비상 발전기(100)의 부품들, 예를 들어, 엔진(120)의 상태, 발전기(130)의 상태 및 배전반(140)의 상태를 측정할 수 있다. 이러한 전문 점검은 일정한 주기에 따라 이루어질 수도 있고, 비상 발전기(100)의 고장이나 불량이 예상되는 경우 이루어질 수도 있으나 이에 제한되는 것은 아니다. 전문 점검 시에는 비상 발전기(100)의 상태를 점검과 동시에 전문 점검 시에 측정된 센싱값에 기초하여 전문가에 의한 비상 발전기(100)의 수리 또한 이루어질 수 있다.
또한, 전문 점검 시에는 비상 발전기(100)의 부품들에 대한 데이터뿐만 아니라 비상 발전기(100)의 주변 환경에 대한 데이터도 센싱할 수 있고, 주변 환경에 대한 센싱값도 보정값 메모리(153)에 저장될 수 있다. 이에, 초기 점검이나 일상 점검 시에 측정되는 비상 발전기(100)의 주변 환경에 대한 센싱값과 비교할 수도 있다.
전문 점검 시 보정값 메모리(153)에 저장되는 보정값은 해당 전문 점검 시에 측정된 센싱값 및 전문 점검 시에 측정된 센싱값들의 평균값을 포함할 수 있다. 즉, 복수회 전문 점검을 수행한 경우, 각각의 전문 점검 시체 측정된 센싱값이 개별적으로 보정값 메모리(153)에 저장될 뿐만 아니라 복수회 전문 점검 시에 측정된 센싱값들의 평균값 또한 보정값 메모리(153)에 저장될 수 있다.
다음으로, 기준값 메모리(154)는 비상 발전기(100)의 고장 여부의 기준값을 저장한다. 기준값은 비상 발전기(100) 및 비상 발전기(100)의 각 부품들에 대하여 고장 여부를 판단하기 위한 값이다. 기준값은 비상 발전기(100)의 출하 점검 시에 센서부(170)에 의해 측정된 센싱값일 수 있다. 즉, 비상 발전기(100)의 부품들에 대해 출하 점검 시에 센싱된 센싱값이 기준값으로 저장될 수 있다. 또한, 기준값은 비상 발전기(100)의 출하 점검 시에 센서부(170)에 의해 측정된 센싱값에 오차 범위를 고려한 센싱값의 범위로 설정될 수도 있다. 또한, 비상 발전기(100)의 출하 점검이 복수회 이루어지는 경우 비상 발전기(100)의 출하 점검 시에 센서부(170)에 의해 측정된 센싱값들의 평균값이 기준값으로 기준값 메모리(154)에 저장될 수 있다.
도 2에서는 메모리(150)에 저장되는 센싱값들의 센싱 시점에 대해 설명한 것이며, 하나의 시점에서 센싱되는 값들의 종류는 도 1을 참조하여 설명된 센서부(170)의 센싱값의 적어도 일부를 포함할 수 있다.
다시 도 1을 참조하면, 제어부(160)는 비상 발전기(100)를 제어한다. 즉, 제어부(160)는 비상 발전기(100)의 전체적인 동작뿐만 아니라 비상 발전기(100)의 각각의 부품들에 대한 동작을 제어할 수 있다.
제어부(160)는 메모리(150)에 저장된 센싱값들에 기초하여 비상 발전기(100) 및 비상 발전기(100)의 부품들의 불량 여부를 판단하고, 인공지능 알고리즘을 이용하여 비상 발전기(100)의 불량을 사전에 예측할 수 있다.
이하에서는, 제어부(160)에 대한 보다 상세한 설명을 위해 도 3을 함께 참조한다.
도 3은 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 제어부의 블록도이다.
제어부(160)는 데이터 처리부(161), 불량 판단부(162), 불량 패턴 모델 학습부(163) 및 불량 예측부(164)를 포함한다.
먼저, 데이터 처리부(161)는 메모리(150)에 저장된 센싱값들인 상태 데이터를 분석하여 비상 발전기(100)의 부품별 통계 데이터를 생성한다. 데이터 처리부(161)는 메모리(150)에 저장된 다양한 센싱값들을 이용하여 비상 발전기(100) 및 비상 발전기(100)의 각 부품의 상태를 나타내는 상태 데이터를 분석한다. 이후, 데이터 처리부(161)는 불량 판단부(162), 불량 패턴 모델 학습부(163) 및 불량 예측부(164)에서 상태 데이터를 활용한 분석이 이루어질 수 있도록, 상태 데이터를 사용하여 비상 발전기(100)의 부품별로 통계 데이터를 생성한다.
이때, 데이터 처리부(161)는 비상 발전기(100)의 설치 위치에 따라 메모리(150)에 저장된 센싱값들을 가공할 수 있다. 비상 발전기(100)의 설치 위치에 따라 비상 발전기(100)의 주변 환경이 변화하므로, 비상 발전기(100)의 설치 위치는 센서부(170)에 의해 의해 수집되는 센싱값에 영향을 미칠 수 있다. 예를 들어, 비상 발전기(100)가 고지대에 위치한 경우, 해변가에 위치한 경우, 도심지 주변에 위치한 경우 등과 같이, 비상 발전기(100)의 다양한 설치 위치에 따라 비상 발전기(100)의 각 부품의 온도, 습도, 진동, 소음 등이 왜곡되어 측정될 수 있다. 이에, 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)에서는 비상 발전기(100) 설치 위치에 따른 센싱값에 대한 영향을 고려하여, 데이터 처리부(161)는 비상 발전기(100)의 설치 위치에 따라 메모리(150)에 저장된 센싱값들을 가공할 수 있다고, 이에 따라 정확한 데이터 수집과 함께 인공지능 학습 시에도 이를 고려한 학습이 이루어지게 할 수 있다.
불량 판단부(162)는 센서부(170)에 의해 측정된 센싱값들을 부품별 임계치와 비교하여 불량 여부를 판단한다. 불량 판단부(162)는 메모리(150)에 저장된 각 부품별 센싱값들 및 각 부품별 임계치를 사용하여 각 부품별 불량 여부를 판단할 수 있다. 예를 들어, 불량 판단부(162)는 일상 점검 시에 측정된 센싱값들이 저장된 점검값 메모리(152)로부터의 센싱값들과 임계치를 비교할 수 있다. 여기서, 임계치는 각 부품별로 설정된 값이다. 임계치는 별도로 설정될 수도 있고, 앞서 설명한 바와 같이, 기준값 메모리(154)에 저장된 기준값일 수도 있다. 또한, 임계치는 비상 발전기(100)의 주변 환경에 대한 센싱값을 고려하여 변경될 수도 있다. 예를 들어, 비상 발전기(100)의 주변 환경에 대한 센싱값 중 온도가 다른 일반적인 환경에 비해 상대적으로 2°C 높은 값을 갖는 경우, 비상 발전기(100)의 부품별로 온도에 대한 임계치도 2°C 높도록 임계치가 조정될 수 있다. 이렇게 임계치를 설정하므로별도의 정보를 입력하지 않아도 발전기 스스로 학습을 행하여 불량 여부를 판단하는 임계치를 설정할수 있다.
만약, 불량 판단부(162)의 불량 여부 판단 결과 해당 부품에 불량이 발생하였다고 판단되는 경우, 불량 판단부(162)는 해당 부품에 대해 불량이 발생하였다는 불량 메시지를 생성할 수 있다. 이때 불량 메시지는 해당 부품을 식별할 수 있는 데이터, 불량의 종류를 식별할 수 있는 데이터, 불량이 발생한 시점을 식별할 수 있는 데이터 등을 포함할 수 있다. 불량 판단부(162)가 생성한 불량 메시지는 별도의 통신 방식을 통해 관리 서버(900)나 관리자의 단말기 등으로 전송될 수 있다. 또한, 불량 메시지가 포함하는 데이터들은 불량 패턴 모델 학습부(163) 및 불량 예측부(164)로 전달되어 인공지능 알고리즘에 반영되도록 할 수도 있다.
불량 패턴 모델 학습부(163)는 데이터 처리부(161)에 의해 생성된 통계 데이터 및 불량 여부 판단을 타겟으로 하는 머신러닝 알고리즘을 이용하여, 특징 패턴과 불량 사이의 맵핑 관계를 검출하고, 통계 데이터 및 맵핑 관계로부터 불량 패턴 모델을 학습한다. 불량 패턴 모델 학습부(163)는 데이터 처리부(161)로부터 생성된 통계 데이터를 수신하여, 메모리(150)에 저장된 다양한 머신러닝 알고리즘을 사용하여 불량 패턴 모델을 학습할 수 있다. 여기서, 불량 패턴 모델은 비상 발전기(100)에 포함된 다양한 부품들에 불량이 발생하는 것을 예측하기 위한 모델일 수 있다. 불량 패턴 모델 학습부(163)는 다양한 머신러닝 알고리즘을 사용하여 통계 데이터 및 맵핑 관계를 사용하여 불량 패턴 모듈을 학습할 수 있다. 예를 들어, 불량 패턴 모델 학습부(163)는 인공 신경망 기법과 같은 머신러닝 알고리즘을 사용할 수 있으나, 이에 제한되지 않고, 다양한 기 공지된 머신러닝 알고리즘을 사용할 수도 있다. 즉, 불량 패턴 모델 학습부(163)는 데이터 처리부(161)에 의해 생성된 통계 데이터와 메모리(150)에 저장된 불량 여부 판단을 타겟으로 하는 머신 러닝 알고리즘을 사용하여 특징 패턴과 불량 간의 맵핑 관계를 학습 및 검출하여, 통계 데이터 및 맵핑 관계로부터 불량 패턴 모델을 학습할 수 있다. 또한, 이렇게 학습된 불량 패턴 모델은 메모리(150)에 저장될 수도 있다.
또한, 불량 패턴 모델 학습부(163)는 관리 서버(300)에 연결된 다수의 비상 발전기(100)의 다양한 설치 위치에 따라 통계 데이터의 왜곡을 고려하여 학습할 수 있다. 비상 발전기(100)의 설치 위치에 따라 비상 발전기(100)의 주변 환경이 변화하므로, 비상 발전기(100)의 설치 위치는 센서부(170)에 의해 의해 수집되는 센싱값에 영향을 미칠 수 있다. 이에, 각각의 비상 발전기(100)의 설치 위치에 따라 통계 데이터에 왜곡이 발생할 수 있다. 이에, 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)에서는 비상 발전기(100) 설치 위치에 따른 통계 데이터의 왜곡을 고려하여, 불량 패턴 모델 학습부(163)는 비상 발전기(100)의 설치 위치에 따라 불량 패턴 모델을 학습할 수 있다.
또한, 불량 패턴 모델 학습부(163)는 불량 판단부(162)로부터 생성되는 불량 메시지에 포함된 다양한 데이터에 기초하여 불량 패턴 모델을 학습할 수도 있다. 즉, 불량 패턴 모델 학습부(163)는 데이터 처리부(161)에 의해 생성된 통계 데이터 및 불량 여부 판단을 타겟으로 하는 머신러닝 알고리즘뿐만 아니라 불량 메시지에 포함된 해당 부품을 식별할 수 있는 데이터, 불량의 종류를 식별할 수 있는 데이터, 불량이 발생한 시점을 식별할 수 있는 데이터 등을 사용하여 불량 패턴 모델을 학습할 수 있고, 이에 따라 불량 패턴 모델이 보다 정교하게 학습될 수 있다. 이렇게 다양한 데이터에 기초하여 불량 패턴 모델을 학습하므로 각각의 비상 발전기의 출하 시 일부 부품이 완전하지 않거나 전문 점검 시에 일부 오류가 있어도 임계치에 큰 영향을 미치지 아니여 정확하게 비상 발전기에 불량이 발생할 것으로 판단할 수 있다.
불량 예측부(164)는 데이터 처리부(161)에 의해 생성된 통계 데이터 및 불량 패턴 모델 학습부(163)에 의해 학습된 불량 패턴 모델을 이용하여 비상 발전기(100)의 불량을 사전에 예측한다. 불량 예측부(164)는 센서부(170)에 의해 측정된 다양한 센싱값들을 분석하고, 비상 발전기(100)의 부품들의 특징 패턴 정보를 검출한다. 또한, 검출된 특징 패턴 정보와 불량 패턴 모델을 비교하여 특징 패턴 정보와 불량 패턴 모델의 연관도가 기 설정된 임계치 이상이면 해당 부품에 불량이 발생될 수 있다는 것을 나타내는 불량 예측 데이터를 성성할 수 있다. 여기서, 특징 패턴 정보와 불량 패턴 모델 간의 연관도를 검출하는 알고리즘은 기 공지된 다양한 알고리즘이 적용될 수 있다. 불량 예측부(164)에 의해 성성된 불량 예측 데이터는 메모리(150)에 저장될 수 있고, 불량 예측 데이터는 별도의 통신 방식을 통해 관리 서버(900)나 관리자의 단말기 등으로 전송될 수 있다.
이하에서는, 불량 예측부(164)에 대한 보다 상세한 설명을 위해 도 4를 함께 참조한다.
도 4는 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기의 제어부의 불량 예측부의 블록도이다.
불량 예측부(164)는 통계 데이터 입력부(164A), 특징 패턴 검출부(164B), 연관성 산출부(164C), 불량 예측 판단부(164D) 및 불량 예측 데이터 생성부(164E)를 포함한다.
먼저, 통계 데이터 입력부(164A)는 데이터 처리부(161)에 의해 생성된 통계 데이터를 입력받는다. 통계 데이터 입력부(164A)는 데이터 처리부(161)에서 생성된 통계 데이터를 각 부품 별로 입력받을 수 있다. 통계 데이터 입력부(164A)는 데이터 처리부(161)로부터 직접 통계 데이터를 입력받을 수도 있고, 메모리(150)를 통해 입력받을 수도 있다.
특징 패턴 검출부(164B)는 특징 패턴 검출 알고리즘을 이용하여 통계 데이터 입력부(164A)에 입력된 부품별 통계 데이터의 특징 패턴을 검출한다. 특징 패턴 검출부(164B)는 통계 데이터 입력부(164A)에 입력된 비상 발전기(100)의 부품별 통계 데이터에 대하여 특징 패턴 검출 알고리즘을 적용하고, 이에 의해 비상 발전기(100)의 부품별 통계 데이터의 특징 패턴을 검출할 수 있다. 이때 사용되는 특징 패턴 검출 알고리즘으로는 다양한 기 공지된 알고리즘을 사용할 수 있다.
연관성 산출부(164C)는 특징 패턴 검출부(164B)에 의해 검출된 특징 패턴과, 해당 부품에 대응되는 불량 패턴 모델의 특징 패턴을 비교하여 연관성을 산출한다. 연관성 산출부(164C)는 각 부품 별로 연관성을 산출할 수 있다. 즉, 연관성 산출부(164C)는 각 부품 별로 특징 패턴 검출부(164B)에 의해 검출된 특징 패턴과 불량 패턴 모델의 특징 패턴을 비교하여 연관성을 산출할 수 있다. 여기서, 특징 패턴 검출부(164B)에 의해 검출된 특징 패턴과 불량 패턴 모델의 특징 패턴을 비교하여 연관성을 검출하는 알고리즘은 기 공지된 다양한 알고리즘이 적용될 수 있다.
이때, 비상 발전기(100)의 고장 상황에 이르기 전에 비상 발전기(100)의 피로 누적 정도에 기초하여 비상 발전기(100)의 고장 여부를 미리 예측하고, 사전에 고장을 예방하는 것이 중요하다. 이에, 연관성 산출부(164C)는 비상 발전기(100)의 피로 누적 정도, 예를 들어, 비상 발전기(100)의 연식이나 비상 발전기(100)의 각 부품의 교체에 따른 연식, 비상 발전기(100)의 각 부품에서 측정된 센싱값들의 변화 양상에 기초하여, 특징 패턴 검출부(164B)에 의해 검출된 특징 패턴과 불량 패턴 모델의 특징 패턴을 비교할 수 있고, 이에 의해 연관성을 산출할 수 있다. 따라서 패턴 모델의 특징 패턴을 비교하여 연관성을 산출하는 연관성 산출부"의 구성은, 측정된 센싱 값에 오류가 있더라도 연식이 오래된 발전기나 부품의 피로 누적에 따른 고장 가능성을 좀 더 정확히 학습하게 함으로써, 부품비상 발전기가 고장 상황에 이르기 전에 비상 발전기의 피로 누적 정도에 기초하여 비상 발전기의 고장 여부를 미리 예측하고, 사전에 고장을 예방할 수 있다.
불량 예측 판단부(164D)는 연관성 산출부(164C)에 의해 산출된 연관성이 임계치 이상인 경우 비상 발전기(100)에 불량이 발생할 것으로 판단한다. 불량 예측 판단부(164D)는 연관성 산출부(164C)에 의해 산출된 연관성에 기초하여 비상 발전기(100) 및 비상 발전기(100)의 각 부품에 대한 불량 발생 여부를 판단한다. 즉, 불량 예측 판단부(164D)는 연관성 산출부(164C)에 의해 산출된 연관성이 임계치 이상일 경우, 즉, 특징 패턴 검출부(164B)에 의해 검출된 특징 패턴과 불량 패턴 모델의 특징 패턴의 연관성이 높은 경우, 비상 발전기(100)나 비상 발전기(100)의 각 부품에 불량이 발생할 것으로 예측할 수 있다. 또한, 불량 예측 판단부(164D)는 비상 발전기(100)의 피로 누적 정도를 판단하여, 미래의 피로 누적 정도를 예상하고, 비상 발전기(100)의 불량 발생에 대한 예상 시점도 예상할 수 있다.
불량 예측 데이터 생성부(164E)는 불량 예측 판단부(164D)에 의해 불량이 발생할 것으로 판단될 때, 불량이 발생할 것으로 판단된 부품을 식별하기 위한 식별 정보 및 불량에 대한 내용 정보를 포함하는 불량 예측 데이터를 생성한다. 이때 불량 예측 데이터는 해당 부품을 식별할 수 있는 데이터, 불량의 종류를 식별할 수 있는 데이터, 불량이 발생할 시점을 식별할 수 있는 데이터 등을 포함할 수 있다. 불량 예측 데이터 생성부(164E)가 생성한 불량 예측 데이터는 별도의 통신 방식을 통해 관리 서버(900)나 관리자의 단말기 등으로 전송될 수 있다. 또한, 불량 예측 데이터는 데이터들은 불량 패턴 모델 학습부(163) 및 불량 예측부(164)로 전달되어 인공지능 알고리즘에 반영되도록 할 수도 있다.
본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)에서는 비상 발전기(100) 자체에 대한 데이터뿐만 아니라 비상 발전기(100)의 주변 환경에 데이터를 수집하여 데이터 베이스화하며, 수집된 데이터에 대해 인공지능 학습을 수행하여 비상 발전기(100)의 피로 누적 정도를 판단할 수 있다. 또한, 미래의 피로 누적 정도를 예상하고, 비상 발전기(100)의 예상 수명, 고장 여부 등을 예측할 수 있다. 이에, 사용자는 비상 발전기(100)의 예상 수명이나 고장 여부를 사전에 예측할 수 있고, 예측 결과에 기초하여 비상 발전기(100)에 대한 점검 및 수리 등을 수행하여 비상 발전기(100)의 수명을 연장시키고 고장 발생을 방지할 수 있다.
또한, 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기(100)에서는 수집된 데이터에 대한 인공지능 학습 결과에 대한 정보 내용을 실시간으로 디스플레이하거나, 사용자 단말 등에 송신함으로써, 사용자는 보다 용이하고 신속하게 비상 발전기(100)의 피로 누적 상태를 확인하고, 불량 발생 여부 및 불량 예상 여부를 확인할 수 있다.
도 5는 본 발명의 일 실시예에 따른 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기 및 관리 서버에 대한 도면이다.
관리 서버(900)는 비상 발전기(100)를 관리하기 위한 원격 서버일 수 있다. 관리 서버(300)는 다수의 발전기가 연결될 수 있고, 관리서버(300)에 연결된 각각의 비상 발전기(100)는 메모리(150)에 저장될 모든 센싱값, 제어부(160)에 의해 생성되는 모든 데이터 및 모델에 대해 관리 서버(900)에 전달할 수 있으며, 관리 서버(300)에 연결된 다른 비상발전기의 데이터 및 모델에 대한 정보를 수신할 수 있다. 또한, 비상 발전기(100)는 해당 데이터 및 모델 등에 대해 사용자 단말로 송신할 수도 있다. 이에, 불량이 예측되는 경우 또는 불량이 발생한 경우 신속한 점검 및 부품 교체가 가능할 수 있다. 또한 비상 발전기를 관리하기 위한 원격 서버인 관리 서버에 연결된 설치위치가 상이한 다른 발전기의 고장시의 측정값을 포함한 데이터를 불량 예측 학습에 활용할 수 있게 할 뿐만 아니라, 설치 위치에 따른 상기 통계 데이터의 왜곡을 고려하여 학습하게 함으로써 해당 발전기가 고장나지 않아도 학습에 의해 해당 발전기의 불량이나 고장을 전확하게 예측할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 제한하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 제한되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 제한적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100: 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기
900: 관리 서버
110: 외함
120: 엔진
130: 발전기:
140: 배전반
150: 메모리
151: 초기값 메모리
152: 점검값 메모리
153: 보정값 메모리
154: 기준값 메모리
160: 제어부
161: 데이터 처리부
162: 불량 판단부
163: 불량 패턴 모델 학습부
164: 불량 예측부
164A: 통계 데이터 입력부
164B: 특징 패턴 검출부
164C: 연관성 산출부
164D: 불량 예측 판단부
164E: 불량 예측 데이터 생성부
170: 센서부

Claims (1)

  1. 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치에 있어서
    일정한 기능을 제공하는 장치;
    상기 기계 장치의 부품들 각각에 설치되는 센서부;
    상기 센서부로부터 측정된 센싱값들이 저장되는 메모리; 및
    상기 기계 장치를 제어하는 제어부를 포함하고,
    상기 메모리는,
    상기 비상 발전기의 출하 시 규정된 성능을 발휘하는지를 점검하기 위해 초기 점검 시에 측정된 센싱값들이 저장되는 초기값 메모리; -
    상기 기계 장치의 출하 이후에 일정한 주기에 따라 상기 장치의 상태를 점검하는 일상 점검 시에 측정된 센싱값들이 저장되는 점검값 메모리;
    전문가가 전문적인 지식에 근거하여 상기 기계 장치의 상태를 점검하는 전문 점검 시에 측정된 센싱값들이 저장되는 보정값 메모리; 및
    상기 기계 장치의 고장 여부의 기준값이 저장되는 기준값 메모리를 포함하고,
    상기 제어부는,
    상기 메모리에 저장된 센싱값들인 상태 데이터를 분석하여 상기 장치의 부품별 통계 데이터를 생성하는 데이터 처리부;
    상기 센서부에 의해 측정된 센싱값들을 부품별 임계치와 비교하여 불량 여부를 판단하는 불량 판단부;
    상기 데이터 처리부에 의해 생성된 상기 통계 데이터 및 불량 여부 판단을 타겟으로 하는 머신러닝 알고리즘을 이용하여, 특징 패턴과 불량 사이의 맵핑 관계를 검출하고, 상기 통계 데이터 및 상기 맵핑 관계로부터 불량 패턴 모델을 학습하는 불량 패턴 모델 학습부; 및
    상기 데이터 처리부에 의해 생성된 상기 통계 데이터 및 상기 불량 패턴 모델 학습부에 의해 학습된 불량 패턴 모델을 이용하여 상기 장치의 불량을 사전에 예측하는 불량 예측부를 포함하고,
    상기 불량 패턴 모델 학습부는 기계 장치의 출하 점검이 복수 회 이루어지는 경우 상기 초기 점검 시에 측정된 센싱값들의 평균값을 기준값으로 하고, 전문 점검 시에 측정된 센싱값들의 평균값을 보정 값으로 학습하여 불량 여부를 판단하는 임계치를 설정하고, 상기 불량 판단부는 일상 점검 시에 측정된 센싱값들이 저장된 점검값 메모리로부터의 센싱값들과 임계치를 비교하여 기계 장치에 불량이 발생할 것으로 판단하며,
    상기 불량 예측부는,
    상기 데이터 처리부에 의해 생성된 상기 통계 데이터를 입력받는 통계 데이터 입력부;
    특징 패턴 검출 알고리즘을 이용하여 상기 통계 데이터 입력부에 입력된 상기 부품별 상기 통계 데이터의 특징 패턴을 검출하는 특징 패턴 검출부;
    상기 특징 패턴 검출부에 의해 검출된 상기 특징 패턴과, 해당 부품에 대응되는 상기 불량 패턴 모델의 특징 패턴을 비교하여 연관성을 산출하는 연관성 산출부;
    상기 연관성 산출부에 의해 산출된 연관성이 임계치 이상인 경우 상기 장치에 불량이 발생할 것으로 판단하는 불량 예측 판단부; 및
    상기 불량 예측 판단부에 의해 불량이 발생할 것으로 판단될 때, 불량이 발생할 것으로 판단된 부품을 식별하기 위한 식별 정보 및 불량에 대한 내용 정보를 포함하는 불량 예측 데이터를 생성하는 불량 예측 데이터 생성부를 포함하며,
    상기 연관성 산출부는 상기 장치의 연식과 장치의 각 부품의 교체에 따른 연식, 장치의 각 부품에서 측정된 센싱값들의 변화 양상에 기초하여, 특징 패턴 검출부에 의해 검출된 특징 패턴과 불량 패턴 모델의 특징 패턴을 비교하여 연관성을 산출하며,
    상기 불량 예측 데이터 생성부가 생성한 불량 예측 데이터는 장치를 관리하기 위한 원격 서버인 관리 서버와 관리자의 단말기로 전송되고, 불량 패턴 모델 학습부 및 불량 예측부로 전달되어 인공지능 알고리즘에 반영되도록 하며,
    상기 불량 패턴 모델 학습부는 상기 기계 장치의 설치 위치에 따른 상기 통계 데이터의 왜곡을 고려하여 학습하는, 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치..
KR1020200023999A 2020-02-27 2020-02-27 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템 KR20210109136A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200023999A KR20210109136A (ko) 2020-02-27 2020-02-27 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200023999A KR20210109136A (ko) 2020-02-27 2020-02-27 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템

Publications (1)

Publication Number Publication Date
KR20210109136A true KR20210109136A (ko) 2021-09-06

Family

ID=77782326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200023999A KR20210109136A (ko) 2020-02-27 2020-02-27 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템

Country Status (1)

Country Link
KR (1) KR20210109136A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519474B1 (ko) * 2021-10-29 2023-04-10 (주) 탐진씨앤에스 설비 동작 상태 분석을 통한 건물 내 설비의 이상상태 예측 시스템 및 방법
KR102606063B1 (ko) * 2023-05-19 2023-11-24 이에스콘트롤스(주) 고장 예측 기능을 구비한 빌딩자동제어시스템
KR102637637B1 (ko) * 2022-11-30 2024-02-16 (주)위드비어 전력설비의 재제조 평가 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519474B1 (ko) * 2021-10-29 2023-04-10 (주) 탐진씨앤에스 설비 동작 상태 분석을 통한 건물 내 설비의 이상상태 예측 시스템 및 방법
KR102637637B1 (ko) * 2022-11-30 2024-02-16 (주)위드비어 전력설비의 재제조 평가 방법
KR102606063B1 (ko) * 2023-05-19 2023-11-24 이에스콘트롤스(주) 고장 예측 기능을 구비한 빌딩자동제어시스템

Similar Documents

Publication Publication Date Title
KR102136141B1 (ko) 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기
KR20210109136A (ko) 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 장치 및 그 시스템
Coble et al. Identifying optimal prognostic parameters from data: a genetic algorithms approach
JP5306902B2 (ja) 資産システムの高性能条件監視のためのシステムおよび方法
US20100102976A1 (en) System and method for monitoring vibration of power transformer
de Andrade Vieira et al. Failure risk indicators for a maintenance model based on observable life of industrial components with an application to wind turbines
KR101103131B1 (ko) 원자력발전소 예비디젤발전기의 진단장치 및 방법
EP2581753A1 (en) Systems and methods for monitoring electrical contacts
Borchersen et al. Model‐based fault detection for generator cooling system in wind turbines using SCADA data
JP6523815B2 (ja) プラント診断装置及びプラント診断方法
US9103323B2 (en) System for real time supervision of component wear in a wind turbine population
KR102262609B1 (ko) 태양광발전 노후 진단 시스템
KR102516227B1 (ko) 선박용 고장 예측진단 시스템 및 그 예측진단 방법
CN117706943B (zh) 一种换流变阀侧套管末屏分压器的自适应控制方法及系统
KR20210109753A (ko) 인공지능 알고리즘을 이용한 고장 예방 기능을 구비한 비상 발전기
CN117114454B (zh) 一种基于Apriori算法的直流套管状态评估方法及系统
KR20220096729A (ko) 전기자동차 충전기 모니터링 시스템
Han et al. Implementation strategy of predictive maintenance in nuclear power plant
EP4113539A1 (en) Method and system for intelligent monitoring of state of nuclear power plant
US20230359191A1 (en) System and method for determining a cause of an operating anomaly of a machine, computer program and electronically readable data storage device
RU2648413C1 (ru) Способ управления режимами на основе нейросетевого диагностирования неисправностей и технического состояния электроприводного газоперекачивающего агрегата
KR102572628B1 (ko) 생산설비 통합 관리 시스템
KR102561073B1 (ko) 실시간 효율 관리선을 이용한 산업용 보일러의 스마트 성능 모니터링 시스템
CN117493129B (zh) 一种计算机控制设备的运行功率监测系统
CN116821834B (zh) 基于内嵌传感器的真空断路器检修管理系统