KR20210107548A - Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor - Google Patents

Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor Download PDF

Info

Publication number
KR20210107548A
KR20210107548A KR1020210022880A KR20210022880A KR20210107548A KR 20210107548 A KR20210107548 A KR 20210107548A KR 1020210022880 A KR1020210022880 A KR 1020210022880A KR 20210022880 A KR20210022880 A KR 20210022880A KR 20210107548 A KR20210107548 A KR 20210107548A
Authority
KR
South Korea
Prior art keywords
cancer
lomitapide
cells
pharmaceutical composition
tumor
Prior art date
Application number
KR1020210022880A
Other languages
Korean (ko)
Inventor
김세윤
이보아
박승주
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of KR20210107548A publication Critical patent/KR20210107548A/en
Priority to KR1020220035035A priority Critical patent/KR20220042087A/en
Priority to KR1020230020096A priority patent/KR20230028737A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4468Non condensed piperidines, e.g. piperocaine having a nitrogen directly attached in position 4, e.g. clebopride, fentanyl
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active component. A composition of the present invention inhibits the growth of cancer cells and exhibits the efficacy of killing cancer cells, thereby being able to be used as an anticancer agent.

Description

엠토르 신호전달 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물 {Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor}Pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active ingredient {Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor}

본 발명은 mTOR 신호전달 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물에 관한 것이다. The present invention relates to a pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active ingredient.

암은 인간의 건강을 위협하는 가장 흔하고 심각한 질병이며, 항암제의 연구와 개발은 암환자 수명의 연장을 위해 중요하다. 최근 몇 년 동안 암 치료방법은 암유전체학과 분자약학의 급속한 발전과 새로운 항암제 개발로 많은 발전을 이루었지만, 여전히 새로운 치료제의 개발이 필요하다. 대장암은 맹장, 결장과 직장에 생기는 악성 종양으로 대장의 가장 안쪽 표면인 점막에서 발생한다. 대장암은 우리나라에서 위암에 이어 두 번째로 흔히 발생하는 암으로 근래에 식생활의 양상이 서구화되어 가면서 그 발생 빈도가 가파르게 증가하고 있고, 최근 10년 사이 대장암에 의한 사망률은 약 80%정도 증가하여 그 상승속도가 계속 높아지고 있는 추세이다. Cancer is the most common and serious disease that threatens human health, and research and development of anticancer drugs is important for prolonging the lifespan of cancer patients. In recent years, cancer treatment methods have made a lot of progress due to the rapid development of oncogenomics and molecular pharmacology and the development of new anticancer drugs, but there is still a need for the development of new therapeutic agents. Colorectal cancer is a malignant tumor that occurs in the appendix, colon, and rectum, and occurs in the mucous membrane, the innermost surface of the large intestine. Colorectal cancer is the second most common cancer in Korea after gastric cancer, and its incidence has increased sharply with the westernization of eating habits. Its rate of increase continues to increase.

대장암의 치료는 외과적 절제, 항암 약물치료, 방사선 치료로 나눌 수 있다. 대장암의 전 단계인 용종이나 용종에 국한된 초기의 대장·직장암의 경우에는 용종절제술등으로 치료가 가능하다. 대장암의 치료에는 1970년대 개발된 플루오로우라실(Fluorouracil, 5-FU) 이후로 이리노테칸(irinotecan), 옥살리플라틴(oxaliplatin), 카페시타빈(capecitabine), TAS-102 등의 5개 항암제와 상피세포 성장인자 수용체(epidermal growth factor receptor, EGFR)나 혈관 내피 성장인자(vascular endothelial growth factor, VEGF), 혈관 내피 성장인자 수용체(VEGF-R)를 표적으로 하는 표적 항암제로 세툭시맙(cetuximab), 파니투무맙(panitumumab), 베바시주맙(bevacizumab), 애프리버셉트(aflibercept), 레고라페닙(regorafenib) 등의 5개 표적항암제가 미국 FDA에 인정받아 사용되고 있다. 그러나 여전히 항암 효과, 안정성, 체내 흡수 효과가 우수한 대장암 치료제의 개발이 시급한 실정이다. Treatment of colorectal cancer can be divided into surgical resection, chemotherapy, and radiation therapy. Polyps, which are the pre-stage of colorectal cancer, or early colon/rectal cancer limited to polyps, can be treated with polypectomy. In the treatment of colorectal cancer, since Fluorouracil (5-FU) developed in the 1970s, five anticancer drugs such as irinotecan, oxaliplatin, capecitabine, TAS-102, and epithelial cell growth cetuximab, Panitu, a targeted anticancer agent that targets epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), or vascular endothelial growth factor receptor (VEGF-R) Five targeted anticancer drugs, including panitumumab, bevacizumab, aflibercept, and regorafenib, have been approved by the US FDA and are being used. However, there is still an urgent need to develop a treatment for colorectal cancer with excellent anticancer effect, stability, and absorption into the body.

엠토르 (mTOR, mechanistic target of rapamycin) 단백질은 세린/트레오닌 카이네이즈(kinase)로서 세포의 성장, 세포주기, 단백질 합성 및 포도당 대사등을 조절하는 핵심 신호전달인자이다. 특히 세포성장 신호조절의 핵심 단백질로서 30 %의 고형암세포에서 비정상적으로 활성이 증가되어 있으며, 암세포에서 이러한 엠토르 및 상위단계 인자들 (PI3K, Akt)이 가장 많이 변화되어 있는 것으로 알려져 있다. 암에서의 엠토르 신호의 활성화는 엠토르 유전자 자체의 돌연변이, 엠토르의 활성을 높이는 상위단계의 발암유전자 (PI3K, Akt) 및 종양억제인자 (예 PTEN, TSC1/2)의 돌연변이에 의해 발생한다. 따라서 엠토르 연관 신호전달의 억제는 단백질 합성저해, 지질 합성저해, 세포 성장 억제와 더불어 세포 자가포식(autophagy)를 유발하여 세포사멸까지 초래할 수 있다. 따라서 암세포 성장의 억제와 암세포 사멸을 위한 엠토르 연관 신호전달 억제제의 개발의 필요성이 있다. mTOR (mechanistic target of rapamycin) protein is a serine/threonine kinase and is a key signaling factor that regulates cell growth, cell cycle, protein synthesis and glucose metabolism. In particular, as a key protein for regulating cell growth signaling, its activity is abnormally increased in 30% of solid cancer cells, and it is known that these emtors and higher-level factors (PI3K, Akt) are the most changed in cancer cells. Activation of emtor signals in cancer is caused by mutations in the emtor gene itself, high-level oncogenes (PI3K, Akt) that enhance the activity of emtor, and mutations in tumor suppressor factors (eg PTEN, TSC1/2). . Therefore, inhibition of emtor-associated signaling may induce cell autophagy along with protein synthesis inhibition, lipid synthesis inhibition, and cell growth inhibition, leading to cell death. Therefore, there is a need for the development of an emtor-related signaling inhibitor for the inhibition of cancer cell growth and cancer cell death.

Lomitapide for the treatment of hypercholesterolemia. Expert Opin Pharmacother. 2017 Aug;18(12):1261-1268.Lomitapide for the treatment of hypercholesterolemia. Expert Opin Pharmacother. 2017 Aug;18(12):1261-1268. Efficacy and Safety of Lomitapide in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Aug;17(4):299-309.Efficacy and Safety of Lomitapide in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Aug;17(4):299-309.

본 발명자들은 암세포 성장의 억제와 암세포 사멸을 위한 화합물을 개발하고자 예의 연구 노력하였다. 그 결과 엠토르(mTOR) 신호전달 억제제를 유효성분으로 포함하는 조성물의 경우 암 치료에 효과가 있다는 것을 규명함으로써, 본 발명을 완성하게 되었다. The present inventors made intensive research efforts to develop compounds for inhibiting cancer cell growth and killing cancer cells. As a result, the present invention was completed by identifying that the composition comprising an mTOR signaling inhibitor as an active ingredient is effective in treating cancer.

따라서, 본 발명의 목적은 엠토르(mTOR) 신호전달 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공하는 것이다. Accordingly, an object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active ingredient.

본 발명의 일 양태에 따르면, 본 발명은 엠토르(mTOR) 신호전달 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공한다.According to one aspect of the present invention, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active ingredient.

엠토르 신호전달 억제제는 엠토르 자체의 활성을 억제하거나 엠토르의 활성을 높이는 상위단계의 인자의 활성을 억제하는 물질을 의미한다. 상기 엠토르 신호전달 억제제에 의해 활성이 억제되는 표적은 엠토르, PI3K, Akt, S6K, S6 등이 있을 수 있으나 이에 한정되는 것은 아니다. The emtor signal transduction inhibitor refers to a substance that inhibits the activity of emtor itself or inhibits the activity of an upper-level factor that increases the activity of emtor. The target whose activity is inhibited by the emtor signaling inhibitor may include, but is not limited to, emtor, PI3K, Akt, S6K, and S6.

본 발명의 일 구현예에 있어서, 상기 엠토르 신호전달 억제제는 로미타파이드이다.In one embodiment of the present invention, the emtor signaling inhibitor is lomitapide.

로미타파이드(상품명 Jaxtapid(US), Lojuxta(EU))는 Aegerion 제약사에서 개발한 희귀질환 치료제로서 가족성 고콜레스테롤레증(familial hypercholesterolemia)의 치료에 콜레스테롤 강하제로 쓰이는 약이다. 미국 식품의약국(FDA)은 2012년 12월 21일, 동형접합 가족성 고콜레스롤증 (homozygous familial hypercholesterolemia) 환자의 LDL 콜레스테롤, 총 콜레스테롤, 아포지단백 B(apolipoprotein B), 비고밀도 지질단백질(non-high-density HDL) 콜레스테롤을 줄이기 위한 약으로 로미타파이드를 승인하였다. Lomitapide (trade names Jaxtapid (US), Lojuxta (EU)) is a rare disease treatment developed by Aegerion Pharmaceuticals and is used as a cholesterol lowering agent in the treatment of familial hypercholesterolemia. On December 21, 2012, the U.S. Food and Drug Administration (FDA) reported that LDL cholesterol, total cholesterol, apolipoprotein B, and non-high-density lipoprotein Lomitapide was approved as a drug to reduce high-density HDL) cholesterol.

상기 로미타파이드의 IUPAC 명은 N-(2,2,2-트리플루오로에틸)-9-[4-[4-[[[4'-(트리플루오로메틸)[1,1'-바이페닐]2-yl]카르보닐]아미노]-1-피페리디닐] 부틸]-9H-플루오렌-9-카르복사마이드이다The IUPAC name of lomitapide is N- (2,2,2-trifluoroethyl)-9-[4-[4-[[[4'-(trifluoromethyl)[1,1'-biphenyl] ] 2-yl] carbonyl] amino] -1-piperidinyl] butyl] -9 H - fluoren-9-carboxylic a copy polyimide

본 발명의 일 구체예에 있어서, 상기 로미타파이드는 하기 화학식 I로 표시된다.In one embodiment of the present invention, the lomitapide is represented by the following formula (I).

[화학식 I][Formula I]

Figure pat00001
Figure pat00001

본 발명의 일 구체예에 있어서, 상기 엠토르 신호전달 억제제는 로미타파이드, 이의 약제학적으로 허용되는 염 또는 이의 광학이성질체이다. In one embodiment of the present invention, the emtor signaling inhibitor is lomitapide, a pharmaceutically acceptable salt thereof, or an optical isomer thereof.

본 발명의 일 구현예에 있어서, 상기 암은 고형암이다.In one embodiment of the present invention, the cancer is a solid cancer.

본 명세서 상의 용어 "고형암"이란 혈액암과는 구별되는 특징을 지니고, 방광, 유방, 장, 신장, 폐, 간, 뇌, 식도, 쓸개, 난소, 췌장, 위, 자궁경부, 갑상선, 전립선 및 피부 등의 여러 고형 장기(solid organ)에서 비정상적으로 세포가 성장하여 발생한 덩어리로 이루어진 암이다. As used herein, the term "solid cancer" has characteristics distinguishing it from blood cancer, and includes bladder, breast, intestine, kidney, lung, liver, brain, esophagus, gallbladder, ovary, pancreas, stomach, cervix, thyroid, prostate and skin. It is a cancer consisting of a mass caused by abnormal cell growth in various solid organs such as

본 발명의 일 구체예에 있어서, 상기 고형암은 흑색종, 뇌종양, 양성성상세포종, 악성성상세포종, 뇌하수체 선종, 뇌수막종, 뇌림프종, 핍지교종, 상의세포종, 뇌간종양, 두경부 종양, 후두암, 구인두암, 비강/부비동암, 비인두암, 침샘암, 하인두암, 갑상선암, 구강암, 흉부종양, 소세포성 폐암, 비소세포성 폐암, 흉선암, 종격동 종양, 식도암, 유방암, 남성유방암, 복부종양, 위암, 간암, 담낭암, 담도암, 췌장암, 소장암, 대장암, 직장암, 항문암, 방광암, 신장암, 남성 생식기종양, 음경암, 전립선암, 여성생식기종양, 자궁경부암, 자궁내막암, 난소암, 자궁육종, 질암, 여성외부생식기암, 여성요도암, 골종양, 십이지장암, 섬유육종, 및 피부암으로 이루어지는 군으로부터 선택되는 것이나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the solid cancer is melanoma, brain tumor, benign astrocytoma, malignant astrocytoma, pituitary adenoma, meningioma, cerebral lymphoma, oligodendroglioma, ependymoma, brain stem tumor, head and neck tumor, laryngeal cancer, oropharyngeal cancer, nasal cavity / Sinus cancer, nasopharyngeal cancer, salivary gland cancer, hypopharyngeal cancer, thyroid cancer, oral cancer, chest tumor, small cell lung cancer, non-small cell lung cancer, thymus cancer, mediastinal tumor, esophageal cancer, breast cancer, male breast cancer, abdominal tumor, stomach cancer, liver cancer, gallbladder cancer, Biliary tract cancer, pancreatic cancer, small intestine cancer, colorectal cancer, rectal cancer, anal cancer, bladder cancer, kidney cancer, male genital tumor, penile cancer, prostate cancer, female genital tumor, cervical cancer, endometrial cancer, ovarian cancer, uterine sarcoma, vaginal cancer, It is selected from the group consisting of female external genital cancer, female urethral cancer, bone tumor, duodenal cancer, fibrosarcoma, and skin cancer, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 암은 혈액암이다. In one embodiment of the present invention, the cancer is a hematologic cancer.

본 명세서 상의 용어 "혈액암"이란 혈액을 구성하는 성분에 생긴 암을 지칭하는 것으로, 혈액, 조혈기관, 림프절, 림프기관 등에 발생한 악성 종양을 의미한다. As used herein, the term “hematologic cancer” refers to cancer occurring in components constituting blood, and refers to malignant tumors occurring in blood, hematopoietic organs, lymph nodes, lymphatic organs, and the like.

본 발명의 일 구체예에 있어서, 상기 혈액암은 급성골수구성 백혈병, 급성림프구성 백혈병, 만성골수성 백혈병, 만성림프구성 백혈병, 급성단구성 백혈병, 다발성 골수종, 호지킨림프종 및 비호지킨 림프종으로 이루어진 군으로부터 선택되는 것이나 이에 한정되는 것은 아니다. In one embodiment of the present invention, the hematologic cancer is acute myeloid leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, acute monocytic leukemia, multiple myeloma, Hodgkin's lymphoma, and non-Hodgkin's lymphoma. is selected from, but not limited thereto.

본 발명의 약제학적 조성물은 유효성분인 상기 로미타파이드, 이의 약제학적으로 허용되는 염 또는 이의 광학이성질체 외에 약제학적으로 허용되는 담체를 포함할 수 있다.The pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier in addition to the active ingredient, lomitapide, a pharmaceutically acceptable salt thereof, or an optical isomer thereof.

본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like. it's not going to be

본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.The pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like, in addition to the above components. Suitable pharmaceutically acceptable carriers and agents are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).

본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 예컨대 척추강 내 투여, 정맥내 투여, 피하 투여, 피내 투여, 근육내 투여, 복강내 투여, 흉골 내 투여, 종양 내 투여, 비내 투여, 뇌내 투여, 두개골 내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있으나 이에 한정되는 것은 아니다.The pharmaceutical composition of the present invention may be administered orally or parenterally, for example, intrathecal administration, intravenous administration, subcutaneous administration, intradermal administration, intramuscular administration, intraperitoneal administration, intrasternal administration, intratumoral administration, intranasal administration , intracerebral administration, intracranial administration, intrapulmonary administration, rectal administration, etc., but is not limited thereto.

본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량(약제학적 유효량)을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏이다. A suitable dosage of the pharmaceutical composition of the present invention varies depending on factors such as formulation method, administration mode, age, weight, sex, pathological condition, food, administration time, administration route, excretion rate and response sensitivity of the patient, An ordinarily skilled physician can readily determine and prescribe an effective dosage (a pharmaceutically effective amount) for the desired treatment or prophylaxis. According to a preferred embodiment of the present invention, the daily dose of the pharmaceutical composition of the present invention is 0.0001-100 mg/kg.

본 명세서에서 용어 "약제학적 유효량"은 상술한 질환을 예방 또는 치료하는 데 충분한 양을 의미한다.As used herein, the term “pharmaceutically effective amount” refers to an amount sufficient to prevent or treat the above-mentioned diseases.

본 명세서에서 용어 “예방”은 질환 또는 질환 상태의 방지 또는 보호적인 치료를 의미한다. 본 명세서에서 용어 “치료”는 질환 상태의 감소, 억제, 진정 또는 근절을 의미한다.As used herein, the term “prevention” refers to the prevention or protective treatment of a disease or disease state. As used herein, the term “treatment” refers to reduction, suppression, sedation or eradication of a disease state.

본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 내복약, 주사제 등 다양하게 제조될 수 있고, 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 산제, 좌제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person of ordinary skill in the art to which the present invention pertains. or may be prepared by incorporation into a multi-dose container. At this time, the dosage form may be prepared in various ways such as oral medicine, injection, etc., in the form of a solution, suspension or emulsion in oil or aqueous medium, or in the form of an extract, powder, suppository, powder, granule, tablet or capsule, dispersant or stable Additional topics may be included.

본 발명의 실시예에 따르면, 본 발명의 로미타파이드를 포함하는 약제학적 조성물은 엠토르 신호전달과정을 억제하는 효과 및 세포의 자가포식 기전에 관여하는 단백질의 발현을 증가시키는 효과가 있다. According to an embodiment of the present invention, the pharmaceutical composition comprising lomitapide of the present invention has the effect of inhibiting the emtor signaling process and increasing the expression of proteins involved in the autophagy mechanism of cells.

본 명세서에서 사용된 용어 “자가포식”은 세포의 조절과정에서 불필요하거나 기능하지 않는 세포 구성성분을 자연적으로 분해하는 파괴 과정이다.As used herein, the term “autophagy” is a destructive process that naturally decomposes unnecessary or non-functional cellular components in the control process of cells.

상기 자가포식과 관련된 유전자는 ULK1, mTOR, ATG family, DDIT4 등이 있다. The autophagy-related genes include ULK1, mTOR, ATG family, DDIT4, and the like.

ULK1은 자가포식의 개시에 필요한 단백질 카이네이즈를 암호화하는 유전자로, mTOR 단백질의 활성이 높은 조건에서는 ULK1의 활성이 억제되어 있다. mTOR 활성이 억제될 경우, ULK1의 활성이 증가됨에 따라 자가포식에 관련된 신호전달을 개시하도록 지시한다. ULK1 is a gene encoding a protein kinase required for the initiation of autophagy, and ULK1 activity is suppressed under conditions of high mTOR protein activity. When mTOR activity is inhibited, the increase in ULK1 activity directs it to initiate autophagy-related signaling.

mTOR는 단백질 카이네이즈로서 세포의 성장과 활성조절뿐 아니라 자가포식의 억제의 핵심인자이다. mTOR는 ULK1 및 다양한 자가포식 단백질들을 직접 인산화함으로써 자가포식의 억제를 매개하고 mTOR의 활성이 저해되는 조건에서는 반대로 자가포식이 활발히 촉진된다. As a protein kinase, mTOR is a key factor in the inhibition of autophagy as well as the regulation of cell growth and activity. mTOR directly phosphorylates ULK1 and various autophagy proteins to mediate the inhibition of autophagy. Conversely, autophagy is actively promoted under conditions in which mTOR activity is inhibited.

ATG family 유전자들은 30여개 이상으로 구성된 Autophagy-Related Gene으로써 자가포식의 개시와 진행에 관련된 핵심 유전자를 의미한다. 자가포식의 시작과 자가포식막의 형성, 분해대상인 기질의 인식과 자가포식막과 리소좀과의 융합반응의 자가포식 전과정에서 필요한 유전자들이다. ATG family genes are Autophagy-Related Genes composed of more than 30 key genes involved in the initiation and progression of autophagy. These genes are necessary for the entire process of autophagy, including the initiation of autophagy, the formation of the autophagy membrane, the recognition of the substrate to be degraded, and the fusion reaction between the autophagy membrane and the lysosome.

DDIT4는 REDD1이라고도 알려진 유전자로서 TSC 단백질을 통하여 mTOR를 억제하는 단백질이다. 따라서 DDIT4의 증가는 mTOR의 억제를 유도함으로써 자가포식의 활성을 높이는 유전자이다. DDIT4, also known as REDD1, is a protein that inhibits mTOR through the TSC protein. Therefore, an increase in DDIT4 is a gene that increases the activity of autophagy by inducing inhibition of mTOR.

또한, 본 발명의 실시예에 따르면, 본 발명의 상기 약제학적 조성물은 암세포의 성장을 억제하는 효과 및 생체내에서 종양의 성장을 억제하는 효과가 있다. 따라서, 본 발명의 상기 약제학적 조성물은 암, 보다 구체적으로는 흑색종, 혈액암, 피부암, 대장암, 뇌암, 난소암, 방광암, 유방암, 자궁암, 십이지장암, 섬유육종, 신장암, 간암, 폐암, 췌장암, 전립선암, 위암, 골종양, 자궁내막암 등에 대해 항암 효과가 있다. In addition, according to an embodiment of the present invention, the pharmaceutical composition of the present invention has the effect of inhibiting the growth of cancer cells and the effect of inhibiting the growth of tumors in vivo. Therefore, the pharmaceutical composition of the present invention is cancer, more specifically melanoma, blood cancer, skin cancer, colorectal cancer, brain cancer, ovarian cancer, bladder cancer, breast cancer, uterine cancer, duodenal cancer, fibrosarcoma, kidney cancer, liver cancer, lung cancer , pancreatic cancer, prostate cancer, stomach cancer, bone tumor, endometrial cancer, etc. have anticancer effects.

본 발명의 일 구현예에 있어서, 상기 조성물은 항암제를 추가적으로 포함하는 것이다. In one embodiment of the present invention, the composition will additionally include an anticancer agent.

본 발명의 일 구현예에 있어서, 상기 항암제는 플루오로우라실(Fluorouracil), 이리노테칸(Irinotecan), 항-PD1 항체, 베바시주맙(Bevacizumab), 카페시타빈(Capecitabine), 세툭시맙(Cetuximab), 라무시루맙(Ramucirumab), 옥살리플라틴(Oxaliplatin), 이필리무맙(Ipilimumab), 펨브롤리주맙(Pembrolizumab), 류코보린(Leucovorin), 트리플루리틴/티피라실(Trifluridine/Tipiracil), 니볼루맙(Nivolumab), 파니투무맙(Panitumumab), 레고라페닙(Regorafenib), 애플리버셉트 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이다. In one embodiment of the present invention, the anticancer agent is fluorouracil (Fluorouracil), irinotecan (Irinotecan), anti-PD1 antibody, bevacizumab, capecitabine (Capecitabine), cetuximab (Cetuximab), Ramucirumab, Oxaliplatin, Ipilimumab, Pembrolizumab, Leucovorin, Trifluritin/Tipiracil, Nivolumab, Nivolumab It is selected from the group consisting of panitumumab, regorafenib, aflibercept, and combinations thereof.

본 발명의 일 구현예에 있어서, 상기 항암제는 플루오로우라실 (Fluorouracil), 이리노테칸(Irinotecan), 항-PD1 항체 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이다. In one embodiment of the present invention, the anticancer agent is selected from the group consisting of fluorouracil (Fluorouracil), irinotecan (Irinotecan), anti-PD1 antibody, and combinations thereof.

본 발명의 일 구현예에 있어서, 상기 조성물은 로미타파이드를 0.5 내지 6 μM을 포함하는 것이다. In one embodiment of the present invention, the composition comprises 0.5 to 6 μM of lomitapide.

본 발명의 실시예에 따르면, 상기 로미타파이드는 0.5 내지 6 μM 및 상기 플루오로우라실은 1 내지 12 μM에서 대장암 세포 HCT116에 대해 항암 시너지 효과를 낼 수 있으며, 보다 구체적으로는 상기 로미타파이드는 0.5 내지 1.25 μM 및 상기 플루오로우라실은 1.25 내지 5 μM에서 대장암 세포 HCT116에 대해 가장 우수한 효과를 나타낸다.According to an embodiment of the present invention, the lomitapide may produce a synergistic anticancer effect against colon cancer cells HCT116 at 0.5 to 6 μM and the fluorouracil at 1 to 12 μM, and more specifically, the lomitapide shows the best effect on colon cancer cells HCT116 at 0.5 to 1.25 μM and fluorouracil at 1.25 to 5 μM.

본 발명의 실시예에 따르면, 상기 로미타파이드는 1.25 내지 6 μM 및 상기 이리노테칸은 1 내지 12 μM에서 대장암 세포 HCT116에 대해 항암 시너지 효과를 낼 수 있으며, 보다 구체적으로는 상기 로미타파이드는 2.5 내지 6 μM 및 상기 이리노테칸은 1.25 내지 5 μM에서 대장암 세포 HCT116에 대해 가장 우수한 효과를 나타낸다.According to an embodiment of the present invention, the lomitapide is 1.25 to 6 µM and the irinotecan is 1 to 12 µM to produce a synergistic anticancer effect against colon cancer cells HCT116, and more specifically, the lomitapide is 2.5 to 6 µM. to 6 μM and irinotecan exhibits the best effect on colorectal cancer cells HCT116 at 1.25 to 5 μM.

본 발명의 실시예에 따르면, 상기 로미파타이드는 0.5 내지 1.25 μM 및 상기 플루오로우라실은 10 내지 22 μM에서 대장암 세포 HT29에 대해 항암 시너지 효과를 낼 수 있다. According to an embodiment of the present invention, the lomipatide may produce a synergistic anticancer effect against colorectal cancer cells HT29 at 0.5 to 1.25 μM and the fluorouracil at 10 to 22 μM.

본 발명의 실시예에 따르면, 상기 로미파타이드는 0.5 내지 2.75 μM 및 상기 이리노테칸은 4 내지 22 μM에서 대장암 세포 HT29에 대해 항암 시너지 효과를 낼 수 있으며, 보다 구체적으로 상기 로미타파이드는 0.625 내지 2.5 μM 및 상기 이리노테칸은 5 내지 20 μM에서 대장암 세포 HT29에 대해 가장 우수한 효과를 나타낸다.According to an embodiment of the present invention, the lomipatide may exert an anticancer synergistic effect on colorectal cancer cells HT29 at 0.5 to 2.75 μM and the irinotecan at 4 to 22 μM, and more specifically, the lomitapide at 0.625 to 2.5 μM. μM and the irinotecan show the best effect on colorectal cancer cells HT29 at 5 to 20 μM.

본 발명의 실시예에 따르면, 상기 로미타파이드는 2 내지 3 μM 및 상기 플루오로우라실은 12.5 내지 110 μM에서 대장암 세포 SW480에 대해 항암 시너지 효과를 낼 수 있다. According to an embodiment of the present invention, the lomitapide at 2-3 μM and the fluorouracil at 12.5 to 110 μM can produce an anticancer synergistic effect against colorectal cancer cells SW480.

본 발명의 실시예에 따르면, 상기 로미타파이드는 2 내지 3 μM 및 상기 이리노테칸은 0.6 내지 60 μM에서 대장암 세포 SW480에 대해 항암 시너지 효과를 낼 수 있으며, 보다 구체적으로 상기 로미타파이드는 2 내지 3 μM 및 상기 이리노테칸은 0.6 내지 1.56 μM 또는 6.25 내지 60 μM에서 대장암 세포 SW480에 대해 가장 우수한 효과를 나타낸다.According to an embodiment of the present invention, the lomitapide can produce a synergistic anticancer effect against colorectal cancer cells SW480 at 2 to 3 μM and the irinotecan at 0.6 to 60 μM, and more specifically, the lomitapide is 2 to 3 μM. 3 μM and the irinotecan show the best effect on colorectal cancer cells SW480 at 0.6 to 1.56 μM or 6.25 to 60 μM.

PD-1은 활성화된 T 및 B 세포에 의해 발현된 주요 면역 체크포인트 수용체이고, 면역억제를 매개한다. PD-1은 CD28, CTLA-4, ICOS, PD-1, 및 BTLA를 포함하는, CD28 계열 수용체의 한 구성원이다. PD-1에 대한 2개의 세포 표면 당단백질 리간드, 즉 프로그램된 사멸 리간드-1 (PD-L1) 및 프로그램된 사멸 리간드-2 (PD-L2)가 확인되었 는데, 이들은 항원-제시 세포뿐만 아니라 많은 인간 암 상에서 발현되고, PD-1과의 결합시 시토카인 분비 및 T 세포 활성화를 하향 조절하는 것으로 밝혀졌다. PD-1/PD-L1 상호 작용을 억제하면, 전임상 모델에서 강력한 항종양 활성이 매개된다. PD-1 is a major immune checkpoint receptor expressed by activated T and B cells and mediates immunosuppression. PD-1 is a member of the CD28 family of receptors, including CD28, CTLA-4, ICOS, PD-1, and BTLA. Two cell surface glycoprotein ligands for PD-1 have been identified: programmed death ligand-1 (PD-L1) and programmed death ligand-2 (PD-L2), which contain antigen-presenting cells as well as many It is expressed on human cancers and has been shown to down-regulate cytokine secretion and T cell activation upon binding to PD-1. Inhibition of the PD-1/PD-L1 interaction mediates potent antitumor activity in preclinical models.

본 발명의 다른 일 양태에 따르면, 본 발명은 상술한 본 발명의 엠토르(mTOR) 신호전달 억제제를 유효성분으로 포함하는 약제학적 조성물을 대상체(subject)에 투여하는 단계를 포함하는 암의 예방 또는 치료방법을 제공한다. According to another aspect of the present invention, the present invention provides a method for preventing or preventing cancer comprising administering to a subject a pharmaceutical composition comprising the above-described mTOR signaling inhibitor of the present invention as an active ingredient. provide a treatment method.

본 명세서에서 사용된 용어, "투여" 또는 "투여하다"는 본 발명의 조성물의 치료적, 또는 예방적 유효량을 상기 대상 질환을 겪거나, 겪을 가능성이 있는 대상체(개체)에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다. As used herein, the term "administration" or "administer" refers to directly administering a therapeutically or prophylactically effective amount of a composition of the present invention to a subject (individual) suffering from, or likely to suffer from, the subject disease. It means that the same amount is formed in the body of

상기 조성물의 "치료적 유효량"은 조성물을 투여하고자 하는 대상체에게 치료적 또는 예방적 효과를 제공하기에 충분한 조성물의 함량을 의미하며, 이에 "예방적 유효량"을 포함하는 의미이다.The "therapeutically effective amount" of the composition means an amount of the composition sufficient to provide a therapeutic or prophylactic effect to a subject to which the composition is administered, and includes a "prophylactically effective amount".

또한, 본 명세서에서 사용된 용어, "대상체(개체)"는 인간, 마우스, 랫트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 및 붉은털 원숭이 등을 포함하는 포유류이다. 가장 구체적으로는, 본 발명의 대상체는 인간이다.In addition, as used herein, the term "subject (subject)" is a mammal, including humans, mice, rats, guinea pigs, dogs, cats, horses, cattle, pigs, monkeys, chimpanzees, baboons and rhesus monkeys. . Most specifically, the subject of the present invention is a human.

본 발명의 일 구현예에 있어서, 상기 약제학적 조성물을 대상체에 투여하는 단계는 상기 조성물과 항암제를 병용하여 투여하는 것이다. In one embodiment of the present invention, the step of administering the pharmaceutical composition to the subject is to administer the composition and the anticancer agent in combination.

본 발명의 일 구현예에 있어서, 상기 항암제는 플루오로우라실(Fluorouracil), 이리노테칸(Irinotecan), 항-PD1 항체 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이다. In one embodiment of the present invention, the anticancer agent is selected from the group consisting of fluorouracil, irinotecan, anti-PD1 antibody, and combinations thereof.

본 발명의 상기 암의 예방, 또는 치료방법은, 본 발명의 일 양태인 약제학적 조성물을 투여하는 단계를 포함하는 방법이므로, 중복되는 내용에 대해서는 본 명세서의 과도한 중복성을 피하기 위하여 그 기재를 생략한다.Since the method for preventing or treating cancer of the present invention includes administering the pharmaceutical composition according to an aspect of the present invention, the description thereof is omitted to avoid excessive redundancy of the present specification for overlapping content. .

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

본 발명은 엠토르(mTOR) 신호전달 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공한다. The present invention provides a pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active ingredient.

본 발명의 조성물은 암 세포의 성장을 억제하고 암 세포를 사멸시키는 효능을 나타내어 항암제로 사용이 가능하다. The composition of the present invention can be used as an anticancer agent by inhibiting the growth of cancer cells and exhibiting the efficacy of killing cancer cells.

도 1은 로미타파이드의 화학식을 나타낸다.
도 2는 인간 정상 장 상피세포와 대장암세포주 HCT116에 각각 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 모양을 분석한 결과를 나타낸다.
도 3은 인간 정상 장 상피세포와 대장암세포주 HCT116에 각각 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 4는 대표 대장암 세포주 3 종 (HCT116, HT29, SW480)에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5a는 뇌암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5b는 유방암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5c는 혈액암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5d는 결장암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5e는 폐암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5f는 난소암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5g는 위암 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 5h는 방광암, 골암, 십이지장암, 자궁내막암, 섬유육종, 신장암, 간암, 췌장암, 전립선암, 피부암, 흑색종 세포주를 대상으로 로미타파이드를 처리한 후 세포의 생존율을 분석한 결과를 나타낸다.
도 6은 웨스턴 블롯을 통해 대장암 세포 HCT116에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달과 관련된 단백질을 분석한 결과를 나타낸다.
도 7a는 웨스턴 블롯을 통해 대장암 세포 SW480에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 7b는 웨스턴 블롯을 통해 대장암 세포 HT29에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 7c는 웨스턴 블롯을 통해 유방암 세포 MDA-MB-231에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 7d는 웨스턴 블롯을 통해 유방암 세포 MDA-MB-468에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 7e는 웨스턴 블롯을 통해 위암 세포 HS746T에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 7f는 웨스턴 블롯을 통해 위암 세포 SNU1에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 7g는 웨스턴 블롯을 통해 위암 세포 SNU216에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 엠토르 신호전달 및 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 8은 웨스턴 블롯을 통해 대장암 세포 HCT116에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 세포의 자가포식과 관련된 단백질을 분석한 결과를 나타낸다.
도 9는 웨스턴 블롯을 통해 인간 대장암세포주 HCT116에 각각 DMSO 대조군 약물과 로미타파이드, 3-methylamine(3-MA)를 처리한 후 자가포식에 의한 세포 사멸을 분석한 결과를 나타낸다.
도 10은 현미경을 통해 인간 대장암세포주 HCT116에 각각 DMSO 대조군 약물과 로미타파이드, 3-methylamine(3-MA)를 처리한 후 자가포식에 의한 세포 사멸을 분석한 결과를 나타낸다.
도 11은 인간 대장암세포주 HCT116에 각각 DMSO 대조군 약물과 로미타파이드를 처리한 후 RNA-seq 분석을 이용하여 유의한 유전자-기전 관계를 분석한 결과를 나타낸다.
도 12는 인간 대장암세포주 HCT116에 각각 DMSO 대조군 약물과 로미타파이드를 처리한 후 RNA-seq 분석을 이용하여 자가포식기전 관련 유의한 유전자를 분석한 결과를 나타낸다.
도 13은 대장암 세포 HCT116에 대하여 DMSO 대조군 약물과 로미타파이드를 처리한 후 암세포 콜로니 증식 정도를 측정한 결과를 나타낸다.
도 14a는 생쥐에 이종이식한 대장암세포 HCT116를 로미타파이드(50 mg/Kg)로 처리한 후 종양의 크기 변화를 대조군과 비교 분석한 결과를 나타낸다.
도 14b는 생쥐에 이종이식한 대장암세포 HCT116를 로미타파이드(25, 50 mg/Kg)로 처리한 후 종양의 크기 변화를 분석한 결과를 나타낸다.
도 14c는 생쥐에 이종이식한 대장암세포 HCT116를 로미타파이드(10 mg/Kg)로 처리한 후 종양의 크기 변화를 분석한 결과를 나타낸다.
도 15a는 대장암 세포 HCT116 세포에 대하여 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 15b는 대장암 세포 HCT116 세포에 대하여 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 15c는 대장암 세포 HCT116 세포에 대하여 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 16a는 대장암 세포 HT29 세포에서의 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 16b는 대장암 세포 HT29 세포에서의 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 16c는 대장암 세포 HT29 세포에서의 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 17a는 대장암 세포 SW480 세포에서의 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 17b는 대장암 세포 SW480 세포에서의 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 17c는 대장암 세포 SW480 세포에서의 5-FU 또는 이리노테칸과 로미타파이드의 약물 시너지 효능을 분석한 결과를 나타낸다.
도 18a는 생쥐에 이식한 대장암세포 MC38를 로미타파이드와 Anti-PD1 병용 처리한 후 시너지 효과를 육안으로 분석한 결과를 나타낸다.
도 18b는 생쥐에 이식한 대장암세포 MC38를 로미타파이드와 Anti-PD1 병용 처리한 후 시너지 효과를 종양 부피를 측정하여 분석한 결과를 나타낸다.
도 18c는 생쥐에 이식한 대장세포 MC38를 로미타파이드와 Anti-PD1 병용 처리한 후 시너지 효과를 면역세포(CD4+, CD4+/CD44+, CD8+, CD8+/IFNγ, Foxp3, NK, NK/IFNγ)를 분석하여 확인한 결과를 나타낸다.
도 19a는 생쥐에 이식한 피부 흑색종세포 B16F10를 로미타파이드와 Anti-PD1 병용 처리한 후 시너지 효과를 육안으로 분석한 결과를 나타낸다.
도 19b는 생쥐에 이식한 피부 흑색종세포 B16F10를 로미타파이드와 Anti-PD1 병용 처리한 후 시너지 효과를 종양 부피를 측정하여 분석한 결과를 나타낸다.
도 20은 로미타파이드가 처리된 대장암 환자 유래 오가노이드의 생존력을 분석한 결과를 나타낸다.
1 shows the chemical formula of lomitapide.
Figure 2 shows the results of analyzing the shape of the cells after treating the normal human intestinal epithelial cells and colon cancer cell line HCT116 with DMSO control drug and lomitapide, respectively.
Figure 3 shows the results of analyzing the cell viability after treating the normal human intestinal epithelial cells and colon cancer cell line HCT116 with DMSO control drug and lomitapide, respectively.
4 shows the results of analysis of cell viability after treatment with DMSO control drug and lomitapide for three representative colorectal cancer cell lines (HCT116, HT29, SW480).
Figure 5a shows the results of analyzing the cell viability after lomitapide treatment for brain cancer cell lines.
Figure 5b shows the results of analyzing the viability of cells after treatment with lomitapide targeting breast cancer cell lines.
Figure 5c shows the results of analyzing the viability of the cells after lomitapide treatment on a blood cancer cell line.
Figure 5d shows the results of analyzing the cell viability after treatment with lomitapide targeting colon cancer cell lines.
Figure 5e shows the results of analyzing the viability of cells after treatment with lomitapide targeting lung cancer cell lines.
Figure 5f shows the results of analyzing the viability of the ovarian cancer cell line after treatment with lomitapide.
5g shows the results of analyzing the cell viability of gastric cancer cell lines after treatment with lomitapide.
Figure 5h shows the results of analyzing the survival rate of cells after treatment with lomitapide in bladder cancer, bone cancer, duodenal cancer, endometrial cancer, fibrosarcoma, kidney cancer, liver cancer, pancreatic cancer, prostate cancer, skin cancer, and melanoma cell lines. indicates.
6 shows the results of analyzing proteins related to emtor signaling in cells after treatment with a DMSO control drug and lomitapide for colon cancer cells HCT116 through Western blot.
Figure 7a shows the results of analysis of proteins related to emtor signaling and autophagy in the colon cancer cells SW480 after treatment with DMSO control drug and lomitapide through Western blot.
Figure 7b shows the results of analysis of proteins related to emtor signaling and autophagy in cells after treatment with DMSO control drug and lomitapide for colorectal cancer cells HT29 through western blot.
Figure 7c shows the results of analyzing the proteins related to emtor signaling and autophagy in the cells after treatment with DMSO control drug and lomitapide for breast cancer cells MDA-MB-231 through Western blot.
Figure 7d shows the results of analyzing the proteins related to emtor signaling and autophagy in the cells after treatment with DMSO control drug and lomitapide for breast cancer cells MDA-MB-468 through Western blot.
FIG. 7e shows the results of analyzing proteins related to emtor signaling and autophagy in gastric cancer cells after treatment with DMSO control drug and lomitapide for HS746T gastric cancer cells through Western blot.
FIG. 7f shows the results of analyzing proteins related to emtor signaling and autophagy in gastric cancer cells after treatment with DMSO control drug and lomitapide for SNU1 gastric cancer cells through Western blot.
Figure 7g shows the results of analyzing the proteins related to emtor signaling and autophagy in the cells after treatment with DMSO control drug and lomitapide for gastric cancer cells SNU216 through Western blot.
8 shows the results of analyzing the protein related to autophagy of cells after treatment with DMSO control drug and lomitapide for colon cancer cells HCT116 through Western blot.
Figure 9 shows the results of analysis of apoptosis by autophagy after treating the human colorectal cancer cell line HCT116 with DMSO control drug, lomitapide, and 3-methylamine (3-MA), respectively, through Western blot.
10 shows the results of analysis of apoptosis by autophagy after the human colon cancer cell line HCT116 was treated with a DMSO control drug, lomitapide, and 3-methylamine (3-MA), respectively, through a microscope.
11 shows the results of analyzing the significant gene-mechanism relationship using RNA-seq analysis after treating the human colon cancer cell line HCT116 with DMSO control drug and lomitapide, respectively.
12 shows the results of analyzing significant genes related to the autophagy mechanism using RNA-seq analysis after treating the human colon cancer cell line HCT116 with a DMSO control drug and lomitapide, respectively.
13 shows the results of measuring the degree of cancer cell colony proliferation after treatment with a DMSO control drug and lomitapide for colorectal cancer cells HCT116.
Figure 14a shows the results of comparing and analyzing the change in tumor size with the control group after treatment with lomitapide (50 mg/Kg) of colorectal cancer cells HCT116 xenografted into mice.
Figure 14b shows the results of analyzing the change in tumor size after treatment with lomitapide (25, 50 mg/Kg) of colorectal cancer cells HCT116 xenografted into mice.
Figure 14c shows the results of analyzing the change in tumor size after treatment with lomitapide (10 mg/Kg) of colon cancer cells xenografted to mice HCT116.
Figure 15a shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide on colon cancer cells HCT116 cells.
Figure 15b shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide on colon cancer cells HCT116 cells.
Figure 15c shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide on colon cancer cells HCT116 cells.
Figure 16a shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide in colorectal cancer cells HT29 cells.
Figure 16b shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide in colorectal cancer cells HT29 cells.
Figure 16c shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide in colorectal cancer cells HT29 cells.
Figure 17a shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide in colorectal cancer cells SW480 cells.
Figure 17b shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide in colorectal cancer cells SW480 cells.
Figure 17c shows the results of analyzing the drug synergistic efficacy of 5-FU or irinotecan and lomitapide in colorectal cancer cells SW480 cells.
Figure 18a shows the results of visual analysis of the synergistic effect after treatment with lomitapide and Anti-PD1 combination of colon cancer cells transplanted into mice MC38.
Figure 18b shows the results of analyzing the synergistic effect by measuring the tumor volume after lomitapide and Anti-PD1 combined treatment with colorectal cancer cells transplanted into mice MC38.
Figure 18c shows the synergistic effect of immune cells (CD4+, CD4+/CD44+, CD8+, CD8+/IFNγ, Foxp3, NK, NK/IFNγ) analysis of colon cells transplanted into mice MC38 after combined treatment with lomitapide and Anti-PD1 shows the confirmed results.
Figure 19a shows the results of visual analysis of synergistic effects after treatment with lomitapide and Anti-PD1 in combination with skin melanoma cells B16F10 transplanted into mice.
Figure 19b shows the results of analyzing the synergistic effect by measuring the tumor volume after lomitapide and Anti-PD1 combination treatment with skin melanoma cells transplanted into mice B16F10.
20 shows the results of analyzing the viability of organoids derived from colorectal cancer patients treated with lomitapide.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.Throughout this specification, "%" used to indicate the concentration of a specific substance is (weight/weight) % for solid/solid, (weight/volume) % for solid/liquid, and Liquid/liquid is (volume/volume) %.

실시예 1: 세포의 배양 방법Example 1: Cell culture method

NCM460 세포 (인간 결장 정상 세포), HCT116 세포(인간 결장암 세포, p53 야생형), HT29 세포(인간 결장암 세포, p53 돌연변이체), SW480 세포(인간 결장암 세포, p53 돌연변이체), MDA-MB-231세포(인간 유방암 세포), MDA-MB-468세포(인간 유방암 세포), HS746T 세포(인간 위암 세포), SNU1 세포(인간 위암 세포), SNU2 세포(인간 위암 세포), MC38 세포(쥐 대장암 세포), B16F10 세포(쥐 흑색종 세포), 를 ATCC(American Type Culture Collection, Virginia, USA)로부터 구입하여 사용하였다.NCM460 cells (human colon normal cells), HCT116 cells (human colon cancer cells, p53 wild-type), HT29 cells (human colon cancer cells, p53 mutant), SW480 cells (human colon cancer cells, p53 mutant), MDA-MB-231 cells (human breast cancer cells), MDA-MB-468 cells (human breast cancer cells), HS746T cells (human gastric cancer cells), SNU1 cells (human gastric cancer cells), SNU2 cells (human gastric cancer cells), MC38 cells (murine colorectal cancer cells) , B16F10 cells (murine melanoma cells), were purchased from ATCC (American Type Culture Collection, Virginia, USA) and used.

NCM460, HCT116 세포는 2 mM 글루타민, 1% 페니실린-스트렙토마이신 및 10% 소태아 혈청(FBS)이 보충된 McCoy's 5a 배지(Sigma Aldrich, Missouri, USA)에서 37 ℃, 5% CO2의 조건으로 배양하였다. HT29, SW480 세포는 2 mM 글루타민, 1% 페니실린-스트렙토마이신 및 10% 소태아 혈청(FBS)이 보충된 RPMI 배지(Sigma Aldrich, Missouri, USA)에서 37 ℃, 5% CO2의 조건으로 배양하였다. MDA-MB-231, MDA-MB-468, HS746T, MC38, B16F10 세포는 2 mM 글루타민, 1% 페니실린-스트렙토마이신 및 10% 소태아 혈청(FBS)이 보충된 DMEM배지(Sigma Aldrich, Missouri, USA)에서 37 ℃, 5% CO2의 조건으로 배양하였다. SNU1, SNU2 세포는 2 mM 글루타민, 1% 페니실린-스트렙토마이신, 25 mM HEPES, 25 mM NaHCO3 및 10% 소태아 혈청(FBS)이 보충된 RPMI 배지(Sigma Aldrich, Missouri, USA)에서 37 ℃, 5% CO2의 조건으로 배양하였다.NCM460 and HCT116 cells were cultured in McCoy's 5a medium (Sigma Aldrich, Missouri, USA) supplemented with 2 mM glutamine, 1% penicillin-streptomycin, and 10% fetal bovine serum (FBS) at 37 °C and 5% CO 2 conditions. did. HT29 and SW480 cells were cultured in RPMI medium (Sigma Aldrich, Missouri, USA) supplemented with 2 mM glutamine, 1% penicillin-streptomycin, and 10% fetal bovine serum (FBS) at 37° C. and 5% CO 2 conditions. . MDA-MB-231, MDA-MB-468, HS746T, MC38, B16F10 cells were cultured in DMEM medium supplemented with 2 mM glutamine, 1% penicillin-streptomycin and 10% fetal bovine serum (FBS) (Sigma Aldrich, Missouri, USA). ) at 37 ℃, 5% CO 2 Incubated under conditions. SNU1, SNU2 cells were cultured in RPMI medium (Sigma Aldrich, Missouri, USA) supplemented with 2 mM glutamine, 1% penicillin-streptomycin, 25 mM HEPES, 25 mM NaHCO 3 and 10% fetal bovine serum (FBS) at 37 °C, It was cultured under the conditions of 5% CO 2 .

실시예 2: 로미타파이드가 처리된 세포의 생존력 분석(viability assay)Example 2: Viability assay of cells treated with lomitapide

실시예 2-1. 로미타파이드가 처리된 대장암 세포의 생존력 분석Example 2-1. Viability analysis of lomitapide-treated colon cancer cells

NCM460, HCT116, HT29, SW480 세포를 96 웰 플레이트에 104 세포/웰의 밀도로 접종하고, 24시간 동안 37 ℃에서 배양한 후, 다양한 농도(0, 1, 2, 5, 10 μM)의 로미타파이드(Sigma Aldrich, Missouri, USA)로 처리하였다. 로미타파이드 처리 후 플레이트를 5% CO2, 37 ℃에서 24시간 동안 배양하였다. 그 후, 세포를 분석 시약 (CellTiter-Glo® Reagent) 100 μL을 각 웰에 첨가한 후 VICTOR X Multilabel Reader (PerkinElmer, Massachusetts, USA)를 사용하여 발광(luminescence)을 측정하여 이로부터 세포의 생존율(%)을 계산하였다. 결과는 도 2 내지 4에 나타내었다.NCM460, HCT116, HT29, SW480 cells were seeded in 96-well plates at a density of 10 4 cells/well, incubated at 37 °C for 24 hours, and then at various concentrations (0, 1, 2, 5, 10 μM) of Lomi It was treated with tapide (Sigma Aldrich, Missouri, USA). After lomitapide treatment Plates were incubated at 5% CO 2 , 37° C. for 24 hours. Thereafter, 100 μL of assay reagent (CellTiter-Glo® Reagent) was added to each well, and luminescence was measured using a VICTOR X Multilabel Reader (PerkinElmer, Massachusetts, USA). %) was calculated. The results are shown in FIGS. 2 to 4 .

상기 실험을 통해, 로미타파이드를 처리한 항암세포의 경우 정상세포와 비교하였을 때 세포의 생존율이 감소함을 확인하였다(도 2). 상기 결과는 로미타파이드가 암세포 특이적으로 항암효과를 가지는 것을 나타낸다. Through the above experiment, it was confirmed that in the case of the anticancer cells treated with lomitapide, the survival rate of the cells was decreased compared to that of the normal cells ( FIG. 2 ). The above results indicate that lomitapide has a cancer cell-specific anticancer effect.

또한 상기 실험을 통해, 대표 대장암 세포주 3 종 (HCT116, HT29, SW480)에서 로미타파이드의 용량이 증가할수록 세포의 생존율이 감소함을 확인하였다(도 3, 4). In addition, through the above experiment, it was confirmed that the cell viability decreased as the dose of lomitapide increased in three representative colorectal cancer cell lines (HCT116, HT29, SW480) ( FIGS. 3 and 4 ).

상기 결과는 로미타파이드가 다양한 대장암 세포를 사멸시키는데 매우 효과적인 것을 나타낸다. The above results indicate that lomitapide is very effective in killing various colorectal cancer cells.

실시예 2-2. 로미타파이드가 처리된 암 세포의 생존력 분석Example 2-2. Viability analysis of lomitapide-treated cancer cells

대장암 세포 이외의 다양한 120종의 암세포에 대해 다양한 농도의 로미타파이드를 처리하여 세포 생존력을 분석하였다. Cell viability was analyzed by treatment with various concentrations of lomitapide for 120 cancer cells other than colon cancer cells.

세포의 생존력을 분석하기 위해, 세포에 로미타파이드 처리 후 37 ℃에서 5 % CO2 또는 10 % CO2 조건으로 72 시간 동안 배양한 후 1 시간 동안 실온으로 평형화시키고, CellTiterGlo 시약 (Promega)을 첨가하고 1시간 후 발광(luminescence)을 측정하여 이로부터 세포의 생존율(%)을 계산하였다. 120종의 세포는 ATCC(American Type Culture Collection, Virginia, USA)로부터 구입하여 사용하였다.To analyze the viability of cells, cells were treated with lomitapide and incubated for 72 hours at 37 °C in 5% CO 2 or 10% CO 2 conditions, equilibrated to room temperature for 1 hour, and CellTiterGlo reagent (Promega) was added. After 1 hour, the luminescence was measured, and the cell viability (%) was calculated therefrom. 120 types of cells were purchased from ATCC (American Type Culture Collection, Virginia, USA) and used.

다양한 암세포에 대해 세포 생존력을 분석한 결과는 다음과 같다 (표 1, 도 5a 내지 도 5h).The results of analyzing cell viability for various cancer cells are as follows (Table 1, FIGS. 5A to 5H).

구분division 세포명cell name IC50 (μM)IC50 (μM) 표적 장기target organ 1One A172A172 1.901.90 brain 22 A2058A2058 1.401.40 피부skin 33 A2780A2780 2.702.70 난소ovary 44 A375A375 1.801.80 피부skin 55 A498A498 2.902.90 신장kidney 66 A549A549 3.603.60 lung 77 AsPC-1AsPC-1 3.603.60 췌장pancreas 88 BENBEN 4.204.20 lung 99 BT-20BT-20 5.005.00 유방breast 1010 BxPC-3BxPC-3 5.705.70 췌장pancreas 1111 Caki-1Caki-1 3.603.60 신장kidney 1212 Caki-2Caki-2 2.802.80 신장kidney 1313 Colo 205Colo 205 3.403.40 결장colon 1414 COR-L279COR-L279 2.702.70 lung 1515 COV434COV434 3.103.10 난소ovary 1616 DLD-1DLD-1 4.504.50 결장colon 1717 DU-145DU-145 5.005.00 전립선prostate 1818 DV90DV90 5.205.20 lung 1919 EFM-19EFM-19 3.603.60 유방breast 2020 EFM-192AEFM-192A 4.004.00 유방breast 2121 EFO-27EFO-27 4.004.00 난소ovary 2222 EPLC-272HEPLC-272H 3.103.10 lung 2323 H1299H1299 4.804.80 lung 2424 H2228H2228 5.305.30 lung 2525 H4 H4 4.604.60 brain 2626 H460H460 3.803.80 lung 2727 HCC 1569HCC 1569 2.902.90 유방breast 2828 HCC38HCC38 6.006.00 유방breast 2929 HCC827HCC827 4.104.10 lung 3030 HCT116HCT116 5.005.00 결장colon 3131 HCT-15HCT-15 3.503.50 결장colon 3232 HEC-1-AHEC-1-A 4.904.90 자궁내막endometrium 3333 HEC-1-BHEC-1-B 6.906.90 자궁내막endometrium 3434 Hep3B2.1-7Hep3B2.1-7 2.702.70 liver 3535 HL-60HL-60 3.303.30 혈액blood 3636 Hs 746THs 746T 2.502.50 stomach 3737 HT-1080HT-1080 3.903.90 섬유육종fibrosarcoma 3838 HT-29HT-29 1.601.60 결장colon 3939 Hutu 80Hutu 80 3.003.00 십이지장duodenum 4040 IshikawaIshikawa 3.603.60 자궁내막endometrium 4141 J82J82 3.603.60 방광bladder 4242 JIMT-1JIMT-1 3.303.30 유방breast 4343 JurkatJurkat 3.003.00 혈액blood 4444 JVM-3JVM-3 4.004.00 혈액blood 4545 K562K562 2.102.10 혈액blood 4646 KARPAS 299KARPAS 299 1.401.40 혈액blood 4747 Kato IIIKato III 5.405.40 stomach 4848 KG-1KG-1 5.705.70 혈액blood 4949 KMS-12-BMKMS-12-BM 3.503.50 혈액blood 5050 LN229LN229 2.702.70 brain 5151 LnCapLnCap 3.503.50 전립선prostate 5252 LOU-NH91LOU-NH91 5.705.70 lung 5353 LOVOLOVO 3.403.40 결장colon 5454 LP-1LP-1 5.405.40 혈액blood 5555 M07eM07e 4.204.20 혈액blood 5656 MCASMCAS 4.504.50 난소ovary 5757 MCF-7MCF-7 2.802.80 유방breast 5858 MDA MB 231MDA MB 231 3.203.20 유방breast 5959 MDA MB 435MDA MB 435 3.003.00 피부skin 6060 MEC-1MEC-1 3.303.30 혈액blood 6161 Mia PaCA 2Mia PaCA 2 2.902.90 췌장pancreas 6262 MKN-1MKN-1 3.703.70 stomach 6363 MKN-45MKN-45 3.903.90 stomach 6464 MOLM-13MOLM-13 6.306.30 혈액blood 6565 MOLT-4MOLT-4 3.603.60 혈액blood 6666 MV4-11MV4-11 6.206.20 혈액blood 6767 NCI-H1048NCI-H1048 5.505.50 lung 6868 NCI-H1437NCI-H1437 3.103.10 lung 6969 NCI-H1563NCI-H1563 5.305.30 lung 7070 NCI-H1573NCI-H1573 4.704.70 lung 7171 NCI-H1581NCI-H1581 3.703.70 lung 7272 NCI-H1703NCI-H1703 5.705.70 lung 7373 NCI-H1838NCI-H1838 4.004.00 lung 7474 NCI-H2009NCI-H2009 3.303.30 lung 7575 NCI-H2110NCI-H2110 3.303.30 lung 7676 NCI-H2286NCI-H2286 3.403.40 lung 7777 NCI-H292NCI-H292 3.003.00 lung 7878 NCI-H441NCI-H441 3.203.20 lung 7979 NCI-H82NCI-H82 3.203.20 lung 8080 NCI-H838NCI-H838 3.803.80 lung 8181 NCI-N87NCI-N87 3.303.30 stomach 8282 OCI-AML3OCI-AML3 2.102.10 혈액blood 8383 OCI-AML5OCI-AML5 2.702.70 혈액blood 8484 OCI-LY19OCI-LY19 2.802.80 혈액blood 8585 OPM-2OPM-2 4.404.40 혈액blood 8686 OV56OV56 4.804.80 난소ovary 8787 OVCAR-3OVCAR-3 5.305.30 난소ovary 8888 OVK18OVK18 3.303.30 난소ovary 8989 P31/FUJP31/FUJ 3.103.10 혈액blood 9090 PANC-1PANC-1 4.504.50 췌장pancreas 9191 PC3PC3 4.304.30 전립선prostate 9292 RERF-LC-Ad2RERF-LC-Ad2 2.602.60 lung 9393 RERF-LC-MSRERF-LC-MS 3.203.20 lung 9494 RKORKO 3.303.30 결장colon 9595 RL95-2RL95-2 3.203.20 자궁내막endometrium 9696 RPMI 8226RPMI 8226 2.102.10 혈액blood 9797 Saos-2 ECSaos-2 EC 3.603.60 bone 9898 SCLC-21HSCLC-21H 3.003.00 lung 9999 SJSA-1SJSA-1 3.103.10 bone 100100 SK.BR-3SK.BR-3 3.903.90 유방breast 101101 SK-ES-1SK-ES-1 3.503.50 bone 102102 SK-LU-1SK-LU-1 4.604.60 lung 103103 SK-MEL-3SK-MEL-3 1.601.60 피부skin 104104 SK-N-FISK-N-FI 3.403.40 brain 105105 SK-N-MCSK-N-MC 2.402.40 brain 106106 SK-N-SHSK-N-SH 3.203.20 brain 107107 SK-OV3SK-OV3 3.303.30 난소ovary 108108 SNU-1SNU-1 2.802.80 stomach 109109 SNU-216SNU-216 3.103.10 stomach 110110 SNU840SNU840 2.302.30 난소ovary 111111 SW480SW480 2.502.50 결장colon 112112 SW620SW620 3.603.60 결장colon 113113 SW948SW948 4.504.50 결장colon 114114 T84T84 3.203.20 결장colon 115115 T98GT98G 3.803.80 brain 116116 U118MGU118MG 2.502.50 brain 117117 U251MGU251MG 5.405.40 brain 118118 U2OSU2OS 2.802.80 bone 119119 U87MGU87MG 3.103.10 brain 120120 U-937U-937 2.302.30 혈액blood

상기 실험을 통해 로미타파이드가 다양한 암종 및 암세포주에서 매우 저농도로 항암 효과를 일으키는 것을 확인하였으며, 그 종류는 흑색종, 혈액암, 피부암, 대장암, 뇌암, 난소암, 방광암, 유방암, 자궁암, 십이지장암, 섬유육종, 신장암, 간암, 폐암, 췌장암, 전립선암, 위암, 골종양, 자궁내막암 등이 포함된다.Through the above experiment, it was confirmed that lomitapide produced anticancer effects at very low concentrations in various carcinomas and cancer cell lines, and the types were melanoma, blood cancer, skin cancer, colorectal cancer, brain cancer, ovarian cancer, bladder cancer, breast cancer, uterine cancer, These include duodenal cancer, fibrosarcoma, kidney cancer, liver cancer, lung cancer, pancreatic cancer, prostate cancer, gastric cancer, bone tumor, endometrial cancer, and the like.

실시예 3: 로미타파이드가 처리된 세포의 신호전달 분석 (cell signaling assay)Example 3: Cell signaling assay of lomitapide-treated cells

실시예 3-1. 로미타파이드가 처리된 대장암 세포 및 유방암 세포의 신호전달 분석Example 3-1. Signal transduction analysis of lomitapide-treated colon cancer cells and breast cancer cells

HCT116, SW480, HT29, MDA-MB-231, MDA-MB-468 세포주에서의 로미타파이드의 기능을 확인하기 위해, 로미타파이드 첨가 시 세포의 신호전달 효과를 살펴보았다. In order to confirm the function of lomitapide in HCT116, SW480, HT29, MDA-MB-231, and MDA-MB-468 cell lines, the signaling effect of cells when lomitapide was added was examined.

다양한 농도(0, 5, 10 μM)로 로미타파이드가 처리된 세포를 프로테아제-억제제 칵테일을 함유하는 RIPA 완충액으로 용해하였다. 전체 세포 용해물(Whole-cell lysate)을 얼음 위에서 30분 동안 인큐베이션한 후 4 ℃, 13,300xg에서 15분 동안 원심분리하고 상등액을 수집하였다. 대조군으로 mTOR 억제 성분으로 알려진 토린(Torin)을 1 μM만큼 처리한 HCT116, SW480, HT29, MDA-MB-231, MDA-MB-468 세포를 사용하였다.Lomitapide-treated at various concentrations (0, 5, 10 μM) Cells were lysed with RIPA buffer containing a protease-inhibitor cocktail. Whole-cell lysate was incubated on ice for 30 minutes, then centrifuged at 4 °C, 13,300xg for 15 minutes, and the supernatant was collected. As a control, HCT116, SW480, HT29, MDA-MB-231, and MDA-MB-468 cells treated with 1 μM of Torin, known as an mTOR inhibitory component, were used.

웨스턴 블롯 분석을 위해, 상기에서 수득된 상등액을 10% SDS-PAGE 젤에 로딩하여 분리하고, 분리된 단백질을 PVDF 막에 블로팅하였다. 그 다음 블롯에 다음(표 2)과 같이 항체를 첨가하고, 4 ℃에서, 12시간 동안 인큐베이션하였다.For Western blot analysis, the supernatant obtained above was loaded on a 10% SDS-PAGE gel to separate, and the separated protein was blotted on a PVDF membrane. Then, the antibody was added to the blot as follows (Table 2), and incubated at 4° C. for 12 hours.

세포cell 항체antibody HCT116HCT116 항-p-AKT, 항-p-mTOR, 항-p-S6K, 항-p-S6, 항-p-ERK, 항-AKT, 항-S6K, 항-S6 (Cell Signaling Technology, Massachusetts, USA), 항-alpha-tublin 항체(Sigma Aldrich, Missouri, USA)anti-p-AKT, anti-p-mTOR, anti-p-S6K, anti-p-S6, anti-p-ERK, anti-AKT, anti-S6K, anti-S6 (Cell Signaling Technology, Massachusetts, USA) , anti-alpha-tublin antibody (Sigma Aldrich, Missouri, USA) SW480SW480 항-p-S6K, 항-p-S6, 항-S6K, 항-S6, 항-LC3(Cell Signaling Technology), 항-alpha-tublin 항체 (Sigma Aldrich)Anti-p-S6K, anti-p-S6, anti-S6K, anti-S6, anti-LC3 (Cell Signaling Technology), anti-alpha-tublin antibody (Sigma Aldrich) HT29HT29 MDA-MB-231MDA-MB-231 MDA-MB-468MDA-MB-468

그 후 블롯을 TBST (a mixture of tris-buffered saline (TBS) and Tween 20)로 세척하고 호스래디쉬 퍼옥시다제-결합(horseradish peroxidase-conjugated) 2차 항체(Cell signaling)와 37 ℃에서, 1시간 동안 인큐베이션하고 세척한 후, 강화된 화학발광(ECL; Amersham)을 검출하였다.Then, the blot was washed with TBST (a mixture of tris-buffered saline (TBS) and Tween 20), and horseradish peroxidase-conjugated secondary antibody (Cell signaling) and 1 for time After incubation and washing, enhanced chemiluminescence (ECL; Amersham) was detected.

상기 실험을 통해, 로미타파이드는 HCT116에서 농도 의존적으로 표적 단백질들(p-AKT, p-mTOR, p-S6K, p-S6)의 인산화 수준을 현저하게 감소시킴을 확인하였다 (도 6). 또한, SW480, HT29, MDA-MB-231, MDA-MB-468에서 로미타파이드가 표적 단백질들(p-S6K, p-S6)의 인산화 수준을 현저하게 감소시킴을 확인하였으며, 로미타파이드가 LC3I의 LC3II로의 유도를 증가시킴을 확인하였다(도 7a 내지 7d). 이러한 결과는 로미타파이드가 엠토르(mTOR) 및 엠토르의 상위 신호전달경로(AKT, p-S6K, p-S6)를 억제하는 효과가 매우 뛰어남을 나타낸다. Through the above experiment, it was confirmed that lomitapide significantly reduced phosphorylation levels of target proteins (p-AKT, p-mTOR, p-S6K, p-S6) in a concentration-dependent manner in HCT116 ( FIG. 6 ). In addition, it was confirmed that lomitapide significantly reduced phosphorylation levels of target proteins (p-S6K, p-S6) in SW480, HT29, MDA-MB-231, and MDA-MB-468. It was confirmed that the induction of LC3I to LC3II was increased ( FIGS. 7A to 7D ). These results indicate that lomitapide is very effective in inhibiting emtor (mTOR) and the upper signaling pathways of emtor (AKT, p-S6K, p-S6).

실시예 3-2. 로미타파이드가 처리된 위암 세포의 신호전달 분석Example 3-2. Signal transduction analysis of lomitapide-treated gastric cancer cells

HS746T, SNU1, SNU2 세포주에서의 로미타파이드의 기능을 확인하기 위해, 로미타파이드 첨가 시 세포의 신호전달 효과를 살펴보았다. In order to confirm the function of lomitapide in HS746T, SNU1, and SNU2 cell lines, the signaling effect of cells when lomitapide was added was examined.

다양한 농도(0, 5, 10 μM)로 로미타파이드가 처리된 세포를 프로테아제-억제제 칵테일을 함유하는 RIPA 완충액으로 용해하였다. 전체 세포 용해물(Whole-cell lysate)을 얼음 위에서 30분 동안 인큐베이션한 후 4 ℃, 13,300xg에서 15분 동안 원심분리하고 상등액을 수집하였다. 대조군으로 mTOR 억제 성분으로 알려진 토린(Torin)을 1 μM만큼 처리한 세포를 사용하였다.Lomitapide-treated at various concentrations (0, 5, 10 μM) Cells were lysed with RIPA buffer containing a protease-inhibitor cocktail. Whole-cell lysate was incubated on ice for 30 minutes, then centrifuged at 4 °C, 13,300xg for 15 minutes, and the supernatant was collected. As a control, 1 μM of Torin, known as an mTOR inhibitory component, was treated. cells were used.

웨스턴 블롯 분석을 위해, 상기에서 수득된 상등액을 10% SDS-PAGE 젤에 로딩하여 분리하고, 분리된 단백질을 PVDF 막에 블로팅하였다. 그 다음 블롯에 다음(표 3)과 같이 항체를 첨가하고, 4 ℃에서, 12시간 동안 인큐베이션하였다.For Western blot analysis, the supernatant obtained above was separated by loading on a 10% SDS-PAGE gel, and the separated protein was blotted on a PVDF membrane. Then, the antibody was added to the blot as follows (Table 3), and incubated at 4° C. for 12 hours.

세포cell 항체antibody HS746THS746T 항-p-S6K, 항-p-S6, 항-S6K, 항-S6, 항-LC3(Cell Signaling Technology), 항-alpha-tublin 항체 (Sigma Aldrich)Anti-p-S6K, anti-p-S6, anti-S6K, anti-S6, anti-LC3 (Cell Signaling Technology), anti-alpha-tublin antibody (Sigma Aldrich) SNU1SNU1 SNU2SNU2

그 후 블롯을 TBST (a mixture of tris-buffered saline (TBS) and Tween 20)로 세척하고 호스래디쉬 퍼옥시다제-결합(horseradish peroxidase-conjugated) 2차 항체(Cell signaling)와 37 ℃에서, 1시간 동안 인큐베이션하고 세척한 후, 강화된 화학발광(ECL; Amersham)을 검출하였다.Then, the blot was washed with TBST (a mixture of tris-buffered saline (TBS) and Tween 20), and horseradish peroxidase-conjugated secondary antibody (Cell signaling) and 1 for time After incubation and washing, enhanced chemiluminescence (ECL; Amersham) was detected.

상기 실험을 통해, 로미타파이드는 농도 의존적으로 표적 단백질들의 p-S6K, p-S6)의 인산화 수준을 현저하게 감소시킴을 확인하였으며, 로미타파이드가 LC3I의 LC3II로의 유도를 증가시킴을 확인하였다 (도 7e 내지 7g). 이러한 결과는 로미타파이드가 엠토르(mTOR) 및 엠토르의 상위 신호전달경로(AKT, p-S6K, p-S6)를 억제하는 효과가 매우 뛰어남을 나타낸다. Through the above experiment, it was confirmed that lomitapide significantly reduced the phosphorylation level of p-S6K, p-S6) of target proteins in a concentration-dependent manner, and it was confirmed that lomitapide increased the induction of LC3I to LC3II. (FIGS. 7E-7G). These results indicate that lomitapide is very effective in inhibiting emtor (mTOR) and the upper signaling pathways of emtor (AKT, p-S6K, p-S6).

실시예 4: 로미타파이드가 처리된 세포의 자가포식 분석(autophagy assay)Example 4: Autophagy assay of cells treated with lomitapide

HCT116 세포주에서의 로미타파이드의 세포 자가포식 기능의 연관성을 확인하기 위해, 로미타파이드 첨가 시 세포의 신호전달 효과를 살펴보았다.In order to confirm the correlation between the cellular autophagy function of lomitapide in the HCT116 cell line, the signaling effect of cells when lomitapide was added was examined.

세포 자가포식에 연관된 세포 신호전달 변화 분석을 위한 다양한 농도(0, 5, 10 μM)로 로미타파이드가 처리된 HCT116 세포를 웨스턴 블롯으로 분석하였다. 웨스턴 블롯을 위해 실시예 3에서 수득된 상등액을 10% SDS-PAGE 젤에 로딩하여 분리하고, 분리된 단백질을 PVDF 막에 블로팅하였다. 그 다음 블롯에 항-p-AMPK, 항-LC3, 항-p-ULK1 항체(Cell Signaling Technology, Massachusetts, USA)를 첨가하고, 4 ℃에서, 12시간 동안 인큐베이션하였다. 그 후 블롯을 TBST (a mixture of tris-buffered saline (TBS) and Tween 20)로 세척하고 호스래디쉬 퍼옥시다제-결합(horseradish peroxidase-conjugated) 2차 항체(Cell signaling)와 37 ℃에서, 1시간 동안 인큐베이션하고 세척한 후, 강화된 화학발광(ECL; Amersham)을 검출하였다. Lomitapide-treated at various concentrations (0, 5, 10 μM) for analysis of changes in cell signaling involved in cell autophagy HCT116 cells were analyzed by Western blot. For Western blotting, the supernatant obtained in Example 3 was loaded on a 10% SDS-PAGE gel to separate, and the separated protein was blotted on a PVDF membrane. Then, anti-p-AMPK, anti-LC3, and anti-p-ULK1 antibodies (Cell Signaling Technology, Massachusetts, USA) were added to the blot, and incubated at 4° C. for 12 hours. Then, the blot was washed with TBST (a mixture of tris-buffered saline (TBS) and Tween 20), and horseradish peroxidase-conjugated secondary antibody (Cell signaling) and 1 for time After incubation and washing, enhanced chemiluminescence (ECL; Amersham) was detected.

상기 실험을 통해, 로미타파이드는 농도 의존적으로 AMPK의 인산화 수준을 현저하게 증가시키고, ULK1의 인산화 수준을 감소시키며 LC3I의 LC3II로의 유도를 뚜렷이 증가시킴을 확인하였다 (도 8). 이러한 결과는 로미타파이드가 자가포식 기전에 관여하는 단백질의 발현을 크게 증가시키는 효과를 가짐을 나타낸다. Through the above experiment, it was confirmed that lomitapide significantly increased the phosphorylation level of AMPK, decreased the phosphorylation level of ULK1, and significantly increased the induction of LC3I to LC3II in a concentration-dependent manner ( FIG. 8 ). These results indicate that lomitapide has the effect of greatly increasing the expression of proteins involved in the autophagy mechanism.

또한, HCT116 세포주에서의 로미타파이드의 세포 자가포식 기능의 연관성을 확인하기 위해 로미타파이드 및 자가포식 기능 억제제인 3-methylamine(3-MA, Sigma Aldrich, Missouri, USA)를 동시에 처리하는 경우의 세포의 신호전달 효과 및 세포의 생존력을 살펴보았다.In addition, in the case of simultaneous treatment of lomitapide and 3-methylamine (3-MA, Sigma Aldrich, Missouri, USA), which is an autophagy function inhibitor, in order to confirm the correlation between the cellular autophagy function of lomitapide in the HCT116 cell line. The signaling effect of the cells and the viability of the cells were examined.

세포 자가포식에 연관된 세포 신호전달 변화 분석을 위해 5 μM로 로미타파이드가 처리된 HCT116 세포 및 3-MA 1mM과 로미타파이드 5 μM 를 동시에 처리한 HCT116 세포를 웨스턴 블롯으로 분석하였다. 웨스턴 블롯 과정은 항체로 항-LC3를 사용한 것을 제외하고는 상술한 웨스턴블롯 과정과 동일하다. Lomitapide-treated at 5 μM for analysis of changes in cell signaling involved in cell autophagy HCT116 cells and HCT116 cells treated with 1-mM 3-MA and 5 μM of lomitapide were analyzed by Western blot. The Western blotting procedure is the same as the Western blotting procedure described above except that anti-LC3 was used as the antibody.

또한, 세포의 생존능 분석을 위해 HCT116 세포를 96 웰 플레이트에 104 세포/웰의 밀도로 접종하고, 24시간 동안 37 ℃에서 배양한 후, 5 μM의 로미타파이드, 3-MA 1 mM 또는 5 μM의 로미타파이드와 3-MA 1 mM로 처리하였다. 처리 후 플레이트를 5% CO2, 37 ℃에서 24시간 동안 배양하였다. 그 후, 세포를 분석 시약 (CellTiter-Glo® Reagent) 100 μL을 각 웰에 첨가한 후 결과를 현미경으로 관찰하였다.In addition, for cell viability analysis, HCT116 cells were inoculated into a 96-well plate at a density of 10 4 cells/well, and after incubation at 37°C for 24 hours, 5 μM of lomitapide, 3-MA 1 mM or 5 It was treated with μM lomitapide and 1-mM 3-MA. after processing Plates were incubated at 5% CO 2 , 37° C. for 24 hours. Thereafter, 100 μL of an assay reagent (CellTiter-Glo® Reagent) was added to each well and the results were observed under a microscope.

상기 실험을 통해, 로미타파이드와 3-MA를 함께 처리한 HCT116세포는 LC3I의 LC3II로의 유도를 뚜렷히 감소시킴이 확인하였다 (도 9). 또한, 세포 생존능 분석을 통해 로미타파이드와 3-MA를 함께 처리한 HCT116세포의 경우 세포의 사멸이 억제됨을 확인하였다 (도 10).Through the above experiment, it was confirmed that HCT116 cells treated with lomitapide and 3-MA significantly reduced the induction of LC3I to LC3II ( FIG. 9 ). In addition, it was confirmed that cell death was inhibited in the case of HCT116 cells treated with lomitapide and 3-MA through cell viability analysis (FIG. 10).

상기 결과는 본 발명의 로미타파이드가 AMPK 및 mTOR 신호전달 과정을 억제하고, 그로 인해 세포 자가포식 기전 단백질의 발현을 증가시키는 것을 나타낸다.The above results indicate that lomitapide of the present invention inhibits AMPK and mTOR signaling processes, thereby increasing the expression of cellular autophagy mechanism proteins.

실시예 5: 로미타파이드가 처리된 세포의 유의 유전자 발현 및 기전 분석(RNA-seq assay)Example 5: Analysis of significant gene expression and mechanism of lomitapide-treated cells (RNA-seq assay)

로미타파이드의 약물 기전과 유전자간의 연관성을 확인하기 위해 RNA-seq 실험을 통해 유의하게 발현하는 유전자 및 관련 기전에 대한 분석을 Gene set enrichment analysis (GSEA) 및 Pathway enrichment analysis를 통해 수행하였다. Gene set enrichment analysis (GSEA) and Pathway enrichment analysis were performed to analyze genes significantly expressed through RNA-seq experiments and related mechanisms to confirm the relationship between the drug mechanism of lomitapide and genes. was carried out through

GSEA는 생물학적 특징을 기반으로 구성된 다양한 유전자-집합 중에서, 두 클래스의 발현값들이 통계적으로 중요한 차이를 나타내는 유의한 유전자-집합을 추출하기 위한 분석 방법이다. GSEA is an analysis method for extracting a significant gene-set in which expression values of two classes show a statistically significant difference from among various gene-sets constructed based on biological characteristics.

유의한 유전자-집합들을 최종 검출하기 위해, 유전자에 대한 다양한 생물학적인 정보를 지닌 유전자 주석 데이터베이스(KEGG pathway, Gene Ontology 등)를 이용하여 RNA-seq 실험에 사용된 전체 유전자 중 특정 기능을 가지는 유전자들을 그룹화하여 다양한 유전자-집합을 발굴하고, 각 유전자-집합 내에서 두 클래스 간에 발현값의 차이를 참조하여 유의한 유전자들을 결정하여, 이를 기반으로 통계적으로 유의한 유전자-집합들을 최종 검출하였다. In order to finally detect significant gene-sets, genes with specific functions among all genes used in RNA-seq experiments using a gene annotation database (KEGG pathway, Gene Ontology, etc.) with various biological information about genes were identified. Various gene-sets were discovered by grouping, and significant genes were determined by referring to the difference in expression values between two classes within each gene-set, and statistically significant gene-sets were finally detected based on this.

유의한 유전자 집합이 속한 기전들은 자가포식을 포함한 엠토르 기전과 연관된 암 관련 기전이 검출되었고, 그 외에 면역, 노화 및 당뇨 관련 기전 등이 검출되었다(도 11, 표 4). As for the mechanisms to which a significant gene set belongs, cancer-related mechanisms related to the Emtor mechanism including autophagy were detected, and in addition, immune, aging, and diabetes-related mechanisms were detected ( FIG. 11 , Table 4).

구분division 유전자 기능gene function GeneRatioGeneRatio 연관 질병associated disease 1One MAPK signaling pathwayMAPK signaling pathway 0.310.31 cancer 22 Kaposi sarcoma-associated herpesvirus infectionKaposi sarcoma-associated herpesvirus infection 0.40.4 cancer 33 Viral carcinogenesisViral carcinogenesis 0.420.42 cancer 44 Breast cancerbreast cancer 0.370.37 유방암breast cancer 55 FoxO signaling pathwayFoxO signaling pathway 0.520.52 cancer 66 ApoptosisApoptosis 0.350.35 cancer 77 TNF signaling pathwayTNF signaling pathway 0.620.62 염증Inflammation 88 Osteoclast differentiationosteoclast differentiation 0.810.81 골다공증osteoporosis 99 IL-17 signaling pathwayIL-17 signaling pathway 0.450.45 염증, 암inflammation, cancer 1010 Colorectal cancercolorectal cancer 0.580.58 대장암colorectal cancer 1111 Transcriptional misregulation in cancerTranscriptional misregulation in cancer 0.40.4 cancer 1212 Hepatitis BHepatitis B 0.330.33 염증, 암inflammation, cancer 1313 Non-alcoholic fatty liver disease (NAFLD)Non-alcoholic fatty liver disease (NAFLD) 0.330.33 비알콜성 간염, 간경변 및 간부전Nonalcoholic hepatitis, cirrhosis and liver failure 1414 Parathyroid hormone synthesis, secretion and actionParathyroid hormone synthesis, secretion and action 0.530.53 칼슘대사, 암Calcium metabolism, cancer 1515 Adrenergic signaling in cardiomyocytesAdrenergic signaling in cardiomyocytes 0.620.62 심장질환heart disease 1616 Epithelial cell signaling in Helicobacter pylori infectionEpithelial cell signaling in Helicobacter pylori infection 0.380.38 위염, 위암gastritis, stomach cancer 1717 Human T-cell leukemia virus 1 infectionHuman T-cell leukemia virus 1 infection 0.350.35 백혈병leukemia 1818 Cytokine-cytokine receptor interactionCytokine-cytokine receptor interaction 0.370.37 염증, 암inflammation, cancer 1919 Autophagy - animalAutophagy - animal 0.60.6 암, 대사질환Cancer, metabolic disease 2020 C-type lectin receptor signaling pathwayC-type lectin receptor signaling pathway 0.160.16 면역, 암immunity, cancer 2121 SpliceosomeSpliceosome 0.880.88 -- 2222 Relaxin signaling pathwayRelaxin signaling pathway 0.60.6 심장질환heart disease 2323 AGE-RAGE signaling pathway in diabetic complicationsAGE-RAGE signaling pathway in diabetic complications 0.530.53 당뇨합병증diabetic complications 2424 PertussisPertussis 0.330.33 백일해whooping cough 2525 PI3K-Akt signaling pathwayPI3K-Akt signaling pathway 0.240.24 cancer 2626 Fluid shear stress and atherosclerosisFluid shear stress and atherosclerosis 0.310.31 동맥경화arteriosclerosis 2727 ErbB signaling pathwayErbB signaling pathway 0.690.69 cancer 2828 NF-kappa B signaling pathwayNF-kappa B signaling pathway 0.460.46 염증, 암inflammation, cancer 2929 Pathways in cancerPathways in cancer 0.30.3 cancer 3030 Neuroactive ligand-receptor interactionNeuroactive ligand-receptor interaction 0.520.52 -- 3131 Endocrine resistanceEndocrine resistance 0.410.41 대사질환metabolic disease 3232 Signaling pathways regulating pluripotency of stem cellsSignaling pathways regulating pluripotency of stem cells 0.390.39 cancer 3333 PeroxisomePeroxisome 0.830.83 -- 3434 Protein processing in endoplasmic reticulumProtein processing in endoplasmic reticulum 0.260.26 -- 3535 ShigellosisShigellosis 0.380.38 세균성이질bacterial dysentery

또한, 자가포식 기전관련 유의 유전자 분석(Differentially Expressed Genes analysis, DEG analysis)을 통해 자가포식에 관련된 유전자인 ATG family, ULK1, DDIT4등이 유의하게 발현됨을 알 수 있었다(도 12). DEG 분석은 유전자의 발현값을 측정하고 통계적으로 처리하여 대조군과 비교군 간에 발현이 차이가 나는 유의한 유전자(Differentially Expressed Genes) 후보군을 선발하는 분석이다. In addition, it was found that autophagy-related genes, such as ATG family, ULK1, and DDIT4, were significantly expressed through Differentially Expressed Genes analysis (DEG analysis) related to the autophagy mechanism (FIG. 12). DEG analysis is an analysis that selects a candidate group for a significant gene (Differentially Expressed Genes) with a difference in expression between the control group and the control group by measuring and statistically processing the expression value of the gene.

상기 결과에서 확인할 수 있듯이, 로미타파이드의 암세포에 대한 효과는 i) 엠토르 신호전달 기전의 억제 및 ii) 자가포식과 관련된 유전자 발현을 통해 나타낸다.As can be seen from the above results, the effect of lomitapide on cancer cells is shown through i) inhibition of the emtor signaling mechanism and ii) gene expression related to autophagy.

실시예 6: 로미타파이드가 처리된 세포의 콜로니 증식 분석(cell colony forming assay)Example 6: Cell colony forming assay of lomitapide-treated cells

HCT116 세포주에서 로미타파이드와 암세포 콜로니 증식율의 연관성을 확인하기 위해, HCT116 세포를 배양하는 웰에 로미타파이드 첨가 시 암세포 콜로니 증식율을 살펴보았다.In order to confirm the correlation between lomitapide and cancer cell colony growth rate in HCT116 cell line, the cancer cell colony growth rate was examined when lomitapide was added to the wells culturing HCT116 cells.

HCT116 세포를 12 웰 플레이트에 105 세포/웰의 밀도로 접종하고 24시간 동안 37 ℃에서 배양한 후 세포를 0, 5 μM 농도의 로미타파이드로 처리하였다. 로미타파이드 처리 후 플레이트를 5 % CO2, 37 ℃에서 48시간 동안 배양하였다. 그 후, 크리스탈 바이올렛 500 μL을 각 웰에 첨가한 후 10분동안 상온에서 세포를 염색하여 이로부터 세포의 증식력을 분석하였다.HCT116 cells were seeded in a 12-well plate at a density of 10 5 cells/well, and after incubation at 37° C. for 24 hours, the cells were treated with 0, 5 μM lomitapide. After lomitapide treatment Plates were incubated at 5% CO 2 , 37° C. for 48 hours. After that, 500 μL of crystal violet was added to each well, and the cells were stained at room temperature for 10 minutes to analyze the proliferation of the cells.

실험을 통해, 로미타파이드를 처리한 웰에서의 세포 증식율이 로미타파이드를 처리하지 않은 웰에서의 증식율보다 현저히 낮다는 것을 확인하였다 (도 13). Through the experiment, it was confirmed that the cell proliferation rate in the wells treated with lomitapide was significantly lower than that in the wells not treated with lomitapide ( FIG. 13 ).

이러한 결과는 로미타파이드가 매우 뛰어난 항암 효과를 갖고 있음을 나타낸다.These results indicate that lomitapide has a very good anticancer effect.

실시예 7: 동물 실험을 통해 확인한 로미타파이드의 항암 효과 분석Example 7: Analysis of the anticancer effect of lomitapide confirmed through animal experiments

생쥐 이종이식 모델에서의 로미타파이드 항암 효과를 확인하기 위해, 종양이 이식된 생쥐에 로미타파이드를 처리한 후 종양의 크기 변화를 살펴보았다.In order to confirm the anticancer effect of lomitapide in the mouse xenograft model, the size of the tumor was examined after lomitapide was treated in the tumor-transplanted mice.

동물실험을 한국과학기술원 동물실험윤리위원회가 승인한 가이드라인을 통해 수행하였다. HCT116 세포(4x106)를 8-12주령의 수컷 BALB/c 누드 마우스에 피하주사하여 이식하였다. 평균 종양 부피가 50 mm3에 도달한 후, 마우스를 무작위로 2개의 다른 그룹(5 마리/그룹)에 할당하였다. 마우스의 체중과 종양의 직경을 이틀에 한 번씩 측정하였다. 종양 부피는 캘리퍼스를 이용하여 일반식 0.5x(width)2x(Length)에 따라 평가하였고, P-values를 결정하기 위해 스튜던트 T 검정을 이용하였다. 로미타파이드 처리를 위해 실험개시 후 1일, 2일, 3일, 7일, 8일, 9일, 13일, 14일, 15일, 16일에 50 mg/kg 의 로미타파이드를 마우스의 복강에 주사하였다. 대조군으로 DMSO를 마우스의 복강에 주사하였다(도 14a). Animal experiments were performed according to guidelines approved by the Animal Experimental Ethics Committee of the Korea Advanced Institute of Science and Technology. HCT116 cells (4x10 6 ) were implanted by subcutaneous injection into male BALB/c nude mice aged 8-12 weeks. After the mean tumor volume reached 50 mm 3 , mice were randomly assigned to two different groups (5 mice/group). The mouse body weight and tumor diameter were measured once every two days. Tumor volume was evaluated according to the general formula 0.5x(width) 2 x(Length) using calipers, and Student's T test was used to determine P-values. For lomitapide treatment, 1, 2, 3, 7, 8, 9, 13, 14, 15, and 16 days after the start of the experiment, 50 mg/kg of lomitapide was administered to the mouse. Injected into the abdominal cavity. As a control, DMSO was injected intraperitoneally into mice ( FIG. 14A ).

또한, 추가 동물실험을 수행하여, 실험 개시 후 2일 간격으로 총 5회에 걸쳐 25, 50 mg/kg의 로미타파이드를 마우스의 복강에 주사하였다. 대조군으로 DMSO를 마우스의 복강에 주사하였다 (도 14b). In addition, additional animal experiments were performed, and 25, 50 mg/kg of lomitapide was injected into the abdominal cavity of mice over a total of 5 times at intervals of 2 days after the start of the experiment. As a control, DMSO was injected intraperitoneally into mice ( FIG. 14b ).

또한, 추가 동물실험을 수행하여, 실험 개시 후 2일 간격으로 총 5회에 걸쳐 10 mg/kg의 로미타파이드를 마우스의 종양 내 주사하였다. 대조군으로 DMSO를 마우스의 종양 내 주사하였다 (도 14c). In addition, additional animal experiments were performed, and 10 mg/kg of lomitapide was intratumoral injection of 10 mg/kg of lomitapide for a total of 5 times at an interval of 2 days after the start of the experiment. As a control, DMSO was injected intratumorally in mice ( FIG. 14c ).

실험을 통해 로미타파이드를 처리한 생쥐 이종이식 모델의 종양의 성장은 대조군과 비교하였을 때 성장이 억제되는 것을 확인하였다 (도 14).Through the experiment, it was confirmed that the growth of the tumor in the lomitapide-treated mouse xenograft model was inhibited when compared to the control group (FIG. 14).

이러한 결과는 로미타파이드가 매우 뛰어난 항암 효과를 갖고 있음을 나타낸다.These results indicate that lomitapide has a very good anticancer effect.

실시예 8: 항암 약물 병용 처리에 따는 시너지 효과 분석 (Drug synergy)Example 8: Analysis of synergistic effects following anticancer drug combination treatment (Drug synergy)

HCT116, HT29, SW480 세포를 96 웰 플레이트에 시딩하고 약물없이 또는 단일 약물로 처리하거나 지정된 농도에서 조합하여 48 시간 동안 처리하였다. 각 웰에서 DMSO의 최종 농도는 <0.01 %였으며, 처리된 양은 세포에서 관찰 가능한 독성이 없는 것으로 확인하였으며, 분석을 위해 다음과 같은 약물을 사용하였다. HCT116, HT29, SW480 cells were seeded in 96-well plates and treated without drug or with single drugs or in combination at the indicated concentrations for 48 hours. The final concentration of DMSO in each well was <0.01%, and it was confirmed that the treated amount had no observable toxicity in cells, and the following drugs were used for analysis.

약물명drug name 제조사 및 Cat num.Manufacturer and Cat num. LomitapideLomitapide Sellekchem, S7635Sellekchem, S7635 5-FU5-FU Sigma Aldrich, F6627-1GSigma Aldrich, F6627-1G IrinotecanIrinotecan Sellekchem, S2217Sellekchem, S2217

HCT116세포는 10,000 개 세포/웰로, HT29 및 SW480세포는 5,000 개 세포/웰로 접종하였다. 48 시간 인큐베이션 후, 세포를 분석 시약 (CellTiter-Glo® Reagent) 100 μL을 각 웰에 첨가한 후 VICTOR X Multilabel Reader(PerkinElmer, Massachusetts, USA)를 사용하여 발광(luminescence)을 측정하여 이로부터 세포의 생존율(%)을 계산하였다.HCT116 cells were seeded at 10,000 cells/well, and HT29 and SW480 cells were seeded at 5,000 cells/well. After 48 hours of incubation, 100 μL of assay reagent (CellTiter-Glo® Reagent) was added to each well and luminescence was measured using a VICTOR X Multilabel Reader (PerkinElmer, Massachusetts, USA). The percent survival was calculated.

약물 시너지는 HSA 모델을 사용하여 평가하였다. HSA 점수는 > 10, -10 ~ 10, < -10 의 범위로 나누고 이는 각각 시너지(synergy), 가산적(additive) 및 길항작용(antagonism)을 나타낸다. 점수는 약물 용량의 4 x 4, 3 x 3, 2 x 7 매트릭스에서 개별 점수로 나타내었으며 전체적인 약물 반응 효과의 분포는 2차 및 3차원 등고선 그래프로 나타내었다. Drug synergy was assessed using the HSA model. HSA scores were divided into the ranges of > 10, -10 to 10, and < -10, indicating synergy, additive and antagonistic effects, respectively. Scores were expressed as individual scores in 4 x 4, 3 x 3, 2 x 7 matrices of drug dose, and the distribution of the overall drug response effect was shown in 2D and 3D contour graphs.

상기 실험을 통해 로미타파이드가 기존의 대장암 약물로 사용되고 있는 두가지 약물, 즉 5-FU 또는 이리노테칸과 병용 처리를 하였을 때 시너지 효과가 나타남을 확인하였다 (도 15 내지 17).Through the above experiment, it was confirmed that synergistic effect appeared when lomitapide was treated in combination with two drugs used as conventional colorectal cancer drugs, that is, 5-FU or irinotecan ( FIGS. 15 to 17 ).

실시예 9: 동물 실험을 통한 로미타파이드와 Anti-PD1 병용 처리에 따는 시너지 효과 분석Example 9: Analysis of synergistic effects according to combination treatment of lomitapide and Anti-PD1 through animal experiments

동종 이식 종양 마우스 모델의 경우, 암컷 C57B6/N 마우스 (야생형, 6 주령)에 2가지의 MC38 대장암과 B16F10 피부 흑색종 세포주를 이용하여 실험을 진행하였다. MC38 대장암과 B16F10 피부 흑색종 세포는 2 x 105를 피하 주사하였다. 두 모델에서 사용한 로미타파이드는 45 % 식염수, 40 % PEG300, 5 % Tween-80, 10 % DMSO로 제형화하였다. For the allograft tumor mouse model, two types of MC38 colorectal cancer and B16F10 skin melanoma cell lines were used in female C57B6/N mice (wild-type, 6 weeks old). MC38 colorectal cancer and B16F10 cutaneous melanoma cells were injected subcutaneously at 2 x 10 5 . Lomitapide used in both models was formulated with 45% saline, 40% PEG300, 5% Tween-80, and 10% DMSO.

MC38 대장암의 경우 5 회 용량 동안 종양 주입 후 10 일 후부터 로미타파이드를 20mg/kg 용량으로 복강 내 투여하였고, 10mg/kg 항-PD-1 mAb (클론 RMP1-14, BioXCell, West Lebanon, NH, USA) 또는 랫트 IgG2a 이소 형 대조군 (클론 2A3, BioXCell, BE0089)을 PBS에서 1, 4, 7, 10 일에 투여하였다 (도 18a 및 18b). For MC38 colorectal cancer, lomitapide was administered intraperitoneally at a dose of 20 mg/kg from 10 days after tumor injection for 5 doses, and 10 mg/kg anti-PD-1 mAb (clone RMP1-14, BioXCell, West Lebanon, NH , USA) or a rat IgG2a isotype control (clone 2A3, BioXCell, BE0089) were administered in PBS on days 1, 4, 7, and 10 ( FIGS. 18A and 18B ).

B16F10 피부 흑색종의 경우 종양 주입 후 10 일 후부터 로미타파이드를 40mg/kg 용량으로 복강 내 3 회 3, 5, 7일에 투여하였고, 20mg/kg 항-PD-1 mAb (클론 RMP1-14, BioXCell, West Lebanon, NH, USA) 또는 랫트 IgG2a 이소 형 대조군 (클론 2A3, BioXCell, BE0089)을 PBS에서 1, 3, 5, 7 일에 투여하였다. 고통의 징후가 관찰되거나 정상 체중의 20% 체중 감소를 보이거나 종양 부피가 1000mm3를 초과하면 마우스를 즉시 안락사하였다 (도 19a 및 도 19b). In the case of B16F10 cutaneous melanoma, lomitapide was administered at a dose of 40 mg/kg three times intraperitoneally on days 3, 5, and 7 from 10 days after tumor injection, and 20 mg/kg anti-PD-1 mAb (clone RMP1-14, BioXCell, West Lebanon, NH, USA) or rat IgG2a isotype control (clone 2A3, BioXCell, BE0089) were administered on days 1, 3, 5, and 7 in PBS. Mice were immediately euthanized when signs of distress were observed, 20% weight loss of normal body weight, or tumor volume exceeded 1000 mm 3 ( FIGS. 19A and 19B ).

두가지 실험을 통해 로미타파이드를 처리한 생쥐 동종이식 모델의 종양의 성장은 대조군과 비교하였을 때 뚜렷한 종양의 성장이 억제 및 감소되는 것을 확인하였고, 항-PD-1 mAb를 처리한 실험군과 비교하였을 경우에도 더 뛰어난 성장 억제 및 감소 현상이 나타났으며, 로미타파이드와 항-PD-1 mAb를 같이 처리한 실험군에서는 시너지 현상에 의한 종양 크기의 감소 효과를 확인할 수 있었다. Through the two experiments, it was confirmed that the tumor growth of the lomitapide-treated mouse allograft model was inhibited and decreased when compared to the control group, and compared with the experimental group treated with anti-PD-1 mAb. In this case, even more excellent growth inhibition and reduction were observed, and in the experimental group treated with lomitapide and anti-PD-1 mAb, a synergistic effect on tumor size reduction was confirmed.

또한 MC38 대장암의 종양 세포에서의 면역세포(CD4+, CD4+/CD44+, CD8+, CD8+/IFNγ, Foxp3, NK, NK/IFNγ) 분석에 따르면 로미타파이드 단독 처리군에서와 항-PD-1 mAb를 처리한 실험군을 비교하면 로미타파이드 단독 처리군에서 항-PD-1 mAb를 처리한 실험군보다 더 높거나 (CD4+, NK, NK/IFNγ) 유사한 수준 (CD4+/CD44+, CD8+, CD8+/IFNγ, Foxp3)의 면역세포 발현이 확인이 되었으며 두가지 약물을 동시에 처리한 실험군에서는 모든 면역세포의 발현이 현저하게 증가되어 있음을 확인할 수 있었다(도 18c). In addition, according to the analysis of immune cells (CD4+, CD4+/CD44+, CD8+, CD8+/IFNγ, Foxp3, NK, NK/IFNγ) in tumor cells of MC38 colorectal cancer, lomitapide alone and anti-PD-1 mAb When comparing the treated experimental groups, the lomitapide alone treated group had higher (CD4+, NK, NK/IFNγ) or similar levels (CD4+/CD44+, CD8+, CD8+/IFNγ, Foxp3) than the experimental group treated with anti-PD-1 mAb. ) was confirmed, and it was confirmed that the expression of all immune cells was significantly increased in the experimental group treated with both drugs at the same time (FIG. 18c).

실시예 10: 로미타파이드가 처리된 대장암 환자 유래 오가노이드의 생존력Example 10: Viability of organoids from colorectal cancer patients treated with lomitapide 분석analysis

아래와 같은 방법으로 2종류의 대장암 환자 유래 오가노이드(오가노이드 01-46세 남성, 오가노이드 02-74세 여성)를 이용하여 로미타파이드 처리에 의한 오가노이드의 생존력을 분석한 결과 로미타파이드의 용량이 증가할수록 오가노이드의 생존율이 감소함을 확인하였다 (도 20). 상기 결과는 로미타파이드가 다양한 대장암 세포를 사멸시키는데 매우 효과적인 것을 나타낸다. As a result of analyzing the viability of organoids by lomitapide treatment using two types of colon cancer patient-derived organoids (organoids 01-46 years old male, organoid 02-74 years old female), lomitapide It was confirmed that as the dose of the organoid increased, the survival rate of the organoid decreased (FIG. 20). The above results indicate that lomitapide is very effective in killing various colorectal cancer cells.

1. 영상기반 평가 (Imaging based evaluation of drugs)1. Imaging based evaluation of drugs

대장암 환자 유래 오가노이드를 48well 플레이트(SPL, cat 32048)에서 5-7일 배양한다.Organoids derived from colorectal cancer patients are cultured in 48 well plates (SPL, cat 32048) for 5-7 days.

인산완충생리식염수(DPBS; Welgene LB001-02) 200μL을 사용하여 파이펫팅을 통해 오가노이드를 플레이트에서 분리하여 새로운 튜브에 옮겨준다.Remove the organoids from the plate by pipetting using 200 μL of phosphate buffered saline (DPBS; Welgene LB001-02) and transfer to a new tube.

오가노이드를 Hoechst (Thermo, #H-1399)를 1:2,000비율로 배양액에 넣어준 뒤, 30분간 37 ℃, 5% CO2 배양기에서 반응시켜 염색시킨다. Hoechst (Thermo, #H-1399) was put into the culture medium at a ratio of 1:2,000 for organoids, and then reacted for 30 minutes at 37 ° C., 5% CO 2 in an incubator for staining.

Staining된 오가노이드는 1,350 rpm/3 min간 원심분리 하여 상층액을 제거한다.Stained organoids are centrifuged for 1,350 rpm/3 min to remove the supernatant.

96well plate에 동일한 양의 오가노이드를 넣어준뒤, 동일한 부피의 약물을 넣어준다.After putting the same amount of organoids in a 96-well plate, add the same volume of drugs.

분주 후 High Contents 이미징 기반 스크리닝 장비인 Cytation5 (Biotek사)를 활용하여 오가노이드 수, 상태 및 면적을 DAPI신호를 통해 확인한다. After dispensing, the number, state, and area of organoids are checked through DAPI signals using Cytation5 (Biotek), a high-contents imaging-based screening equipment.

이후 배양액 교환없이 24시간마다 총 3회/72시간동안 오가노이드 면적의 변화를 관찰한다.Thereafter, the change of the organoid area was observed for a total of 3 times/72 hours every 24 hours without changing the culture medium.

Cytation5 장비에서 도출된 원자료(raw data)를 바탕으로 아래 공식을 적용시켜 약물의 효능을 산출하였다. 또한 특정 농도에서의 약물 전체 효능은 오가노이드 성장 저해와 오가노이드 사멸의 합으로 정의 내린다.Based on the raw data derived from the Cytation5 equipment, the following formula was applied to calculate the efficacy of the drug. In addition, the overall efficacy of a drug at a specific concentration is defined as the sum of organoid growth inhibition and organoid death.

Cytation5을 이용하여 Hoechst로 염색된 각 오가노이드의 면적(μm2)을 확인하고 각 well에 있는 모든 오가노이드의 면적을 합산하였다. The area (μm 2 ) of each organoid stained with Hoechst was confirmed using Cytation5, and the area of all organoids in each well was summed.

72시간동안 약물 처리 후 오가노이드의 면적과 처음 0시간에서의 오가노이드의 면적의 차이를 값으로 산출하였다.The difference between the area of the organoid after drug treatment for 72 hours and the area of the organoid at the first 0 hour was calculated as a value.

2. 평가 산출 공식 2. Evaluation calculation formula

특정 농도의 약물로 인한 오가노이드의 사멸을 관찰하기 위하여 오가노이드의 사멸에 의한 크기 변화를 산출하였으며, 이를 위해 오가노이드 초기 면적 대비 약물 처리 후 72시간에서 관찰되는 오가노이드 면적의 비율로 산출하였다 (공식 1). To observe organoid death due to a specific concentration of drug, the size change due to organoid death was calculated. Formula 1).

전체 효능 평가는 약물 처리 72시간 후, 비처리군의 손상된 오가노이드 비율 대비 약물 처리군의 손상된 오가노이드 비율로 산출될 수 있다 (공식 2). The overall efficacy evaluation can be calculated as the ratio of damaged organoids in the drug-treated group to the ratio of damaged organoids in the untreated group after 72 hours of drug treatment (Formula 2).

Figure pat00002
Figure pat00002

결론적으로, 상기 실시예에 기재된 실험은 로미타파이드가 엠토르 관련 신호 전달을 억제하고 세포의 자가포식 기전을 활성화하여 항암 효과를 일으키며, 로미타파이드가 기존의 항암제와 병용되어 투여되는 경우 시너지 효과를 일으키는 것을 나타낸다. In conclusion, the experiments described in the above Examples show that lomitapide inhibits emtor-related signal transduction and activates the autophagy mechanism of cells to produce an anticancer effect, and synergistic effect when lomitapide is administered in combination with an existing anticancer agent. indicates that it causes

Claims (10)

엠토르(mTOR) 신호전달 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물.
A pharmaceutical composition for preventing or treating cancer comprising an mTOR signaling inhibitor as an active ingredient.
제1항에 있어서, 상기 엠토르 신호전달 억제제는 로미타파이드, 이의 약제학적으로 허용되는 염 또는 이의 광학이성질체인 것인, 암의 예방 또는 치료용 약제학적 조성물.
The pharmaceutical composition for preventing or treating cancer according to claim 1, wherein the emtor signaling inhibitor is lomitapide, a pharmaceutically acceptable salt thereof, or an optical isomer thereof.
제2항에 있어서, 상기 로미타파이드는 하기 화학식 I로 표시되는 것인, 암의 예방 또는 치료용 약제학적 조성물:
[화학식 I]
Figure pat00003

The pharmaceutical composition for preventing or treating cancer according to claim 2, wherein the lomitapide is represented by the following formula (I):
[Formula I]
Figure pat00003

제1항에 있어서, 상기 암은 고형암인 것인, 암의 예방 또는 치료용 약제학적 조성물.
The pharmaceutical composition for preventing or treating cancer according to claim 1, wherein the cancer is a solid cancer.
제4항에 있어서, 상기 고형암은 흑색종, 뇌종양, 양성성상세포종, 악성성상세포종, 뇌하수체 선종, 뇌수막종, 뇌림프종, 핍지교종, 상의세포종, 뇌간종양, 두경부 종양, 후두암, 구인두암, 비강/부비동암, 비인두암, 침샘암, 하인두암, 갑상선암, 구강암, 흉부종양, 소세포성 폐암, 비소세포성 폐암, 흉선암, 종격동 종양, 식도암, 유방암, 남성유방암, 복부종양, 위암, 간암, 담낭암, 담도암, 췌장암, 소장암, 대장암, 직장암, 항문암, 방광암, 신장암, 남성 생식기종양, 음경암, 전립선암, 여성생식기종양, 자궁경부암, 자궁내막암, 난소암, 자궁육종, 질암, 여성외부생식기암, 여성요도암, 골종양, 십이지장암, 섬유육종, 및 피부암으로 이루어지는 군으로부터 선택되는 것인, 암의 예방 또는 치료용 약제학적 조성물.
5. The method of claim 4, wherein the solid cancer is melanoma, brain tumor, benign astrocytoma, malignant astrocytoma, pituitary adenoma, meningioma, brain lymphoma, oligodendroglioma, ependymoma, brainstem tumor, head and neck tumor, laryngeal cancer, oropharyngeal cancer, nasal/sinus cancer , nasopharyngeal cancer, salivary gland cancer, hypopharyngeal cancer, thyroid cancer, oral cancer, chest tumor, small cell lung cancer, non-small cell lung cancer, thymus cancer, mediastinal tumor, esophageal cancer, breast cancer, male breast cancer, abdominal cancer, stomach cancer, liver cancer, gallbladder cancer, biliary tract cancer, Pancreatic cancer, small intestine cancer, colorectal cancer, rectal cancer, anal cancer, bladder cancer, kidney cancer, male genital tumor, penile cancer, prostate cancer, female genital tumor, cervical cancer, endometrial cancer, ovarian cancer, uterine sarcoma, vaginal cancer, female external reproductive system Stage cancer, female urethral cancer, bone tumor, duodenal cancer, fibrosarcoma, and will be selected from the group consisting of skin cancer, a pharmaceutical composition for the prevention or treatment of cancer.
제1항에 있어서, 상기 암은 혈액암인 것인, 암의 예방 또는 치료용 약제학적 조성물.
The pharmaceutical composition for preventing or treating cancer according to claim 1, wherein the cancer is a blood cancer.
제6항에 있어서, 상기 혈액암은 급성골수구성 백혈병, 급성림프구성 백혈병, 만성골수성 백혈병, 만성림프구성 백혈병, 급성단구성 백혈병, 다발성 골수종, 호지킨림프종 및 비호지킨 림프종으로 이루어진 군으로부터 선택되는 것인, 암의 예방 또는 치료용 약제학적 조성물.
7. The method of claim 6, wherein the hematologic cancer is selected from the group consisting of acute myeloid leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, acute monocytic leukemia, multiple myeloma, Hodgkin's lymphoma and non-Hodgkin's lymphoma. The pharmaceutical composition for the prevention or treatment of cancer.
제1항에 있어서, 상기 조성물은 항암제를 추가적으로 포함하는 것인, 암의 예방 또는 치료용 약제학적 조성물.
The pharmaceutical composition for preventing or treating cancer according to claim 1, wherein the composition further comprises an anticancer agent.
제8항에 있어서, 상기 항암제는 플루오로우라실(Fluorouracil), 이리노테칸(Irinotecan), 항-PD1 항체, 베바시주맙(Bevacizumab), 카페시타빈(Capecitabine), 세툭시맙(Cetuximab), 라무시루맙(Ramucirumab), 옥살리플라틴(Oxaliplatin), 이필리무맙(Ipilimumab), 펨브롤리주맙(Pembrolizumab), 류코보린(Leucovorin), 트리플루리틴/티피라실(Trifluridine/Tipiracil), 니볼루맙(Nivolumab), 파니투무맙(Panitumumab), 레고라페닙(Regorafenib), 애플리버셉트 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것인, 암의 예방 또는 치료용 약제학적 조성물.
The method of claim 8, wherein the anticancer agent is fluorouracil, irinotecan, anti-PD1 antibody, bevacizumab, capecitabine, cetuximab, ramucirumab (Ramucirumab), Oxaliplatin, Ipilimumab, Pembrolizumab, Leucovorin, Trifluritin/Tipiracil, Nivolumab, Panitumumab (Panitumumab), regorafenib (Regorafenib), aflibercept, and a pharmaceutical composition for the prevention or treatment of cancer, which is selected from the group consisting of a combination thereof.
제9항에 있어서, 상기 항암제는 플루오로우라실(Fluorouracil), 이리노테칸(Irinotecan), 항-PD1 항체 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것인, 암의 예방 또는 치료용 약제학적 조성물.


The pharmaceutical composition for preventing or treating cancer according to claim 9, wherein the anticancer agent is selected from the group consisting of fluorouracil, irinotecan, anti-PD1 antibody, and combinations thereof.


KR1020210022880A 2020-02-21 2021-02-19 Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor KR20210107548A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220035035A KR20220042087A (en) 2020-02-21 2022-03-21 Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor
KR1020230020096A KR20230028737A (en) 2020-02-21 2023-02-15 Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200021549 2020-02-21
KR20200021549 2020-02-21
KRPCT/KR2020/007922 2020-06-18
PCT/KR2020/007922 WO2021167175A1 (en) 2020-02-21 2020-06-18 Pharmaceutical composition for preventing or treating cancer, comprising mtor-signaling inhibitor as active ingredient

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020220035035A Division KR20220042087A (en) 2020-02-21 2022-03-21 Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor
KR1020230020096A Division KR20230028737A (en) 2020-02-21 2023-02-15 Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor

Publications (1)

Publication Number Publication Date
KR20210107548A true KR20210107548A (en) 2021-09-01

Family

ID=77391998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210022880A KR20210107548A (en) 2020-02-21 2021-02-19 Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor

Country Status (2)

Country Link
KR (1) KR20210107548A (en)
WO (1) WO2021167175A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114209698A (en) * 2021-12-31 2022-03-22 中国药科大学 Application of lomitapide in preparation of medicine for treating ulcerative colitis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659274B2 (en) * 2006-01-25 2010-02-09 Osi Pharmaceuticals, Inc. Unsaturated mTOR inhibitors
US8901142B2 (en) * 2011-07-26 2014-12-02 Merck Sharp & Dohme Corp. Fused tricyclic compounds as mTOR inhibitors
KR101274986B1 (en) * 2011-07-27 2013-06-17 한국과학기술원 Imidazopyridine derivatives, PI3K and/or mTOR inhibiting composition and composition used in diseases linked to PI3K and/or mTOR comprising the same
US20180125812A1 (en) * 2016-11-04 2018-05-10 Emory University Dehydroacetic Acid (DHAA) and Derivative for Uses in Treating Cancer
CA3061907A1 (en) * 2017-05-02 2018-11-08 Revolution Medicines, Inc. Rapamycin analogs as mtor inhibitors
KR102297501B1 (en) * 2018-06-08 2021-09-02 재단법인 의약바이오컨버젼스연구단 Composition for preventing or treating cancer comprising novel mTOR inhibitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Efficacy and Safety of Lomitapide in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Aug;17(4):299-309.
Lomitapide for the treatment of hypercholesterolemia. Expert Opin Pharmacother. 2017 Aug;18(12):1261-1268.

Also Published As

Publication number Publication date
WO2021167175A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
KR20220042087A (en) Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor
McCubrey et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance
CN108464981B (en) Use of composition for inhibiting TIE2 kinase in preparing medicine for treating cancer
Zagon et al. Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers
RU2738934C2 (en) Methods of treating cancer using apilimod
US20040167139A1 (en) Methods of treating cancer
KR101877840B1 (en) Process for the identification of compounds for treating cancer
CN109153722A (en) Method for treating cancer
Tomita et al. Roxatidine-and cimetidine-induced angiogenesis inhibition suppresses growth of colon cancer implants in syngeneic mice
KR20070050918A (en) Treatment of cancer
CN109195600A (en) Trans--[tetrachloro bis- (1H- indazoles) ruthenium (III) hydrochlorate] is used for the purposes for the treatment of cancer
TW201609094A (en) Novel methods for treating cancer
CN111343984A (en) Pharmaceutical composition for preventing or treating cancer comprising streptonigrin and rapamycin as active ingredients
CN112022871A (en) Application of auranofin in preparing medicine for treating castration-resistant prostate cancer
Jiang et al. Small molecule nAS‐E targeting cAMP response element binding protein (CREB) and CREB‐binding protein interaction inhibits breast cancer bone metastasis
WO2020234454A1 (en) Combination treatment of cancer targeting energy metabolism and intracellular ph
CN110462401A (en) The purposes that the reversal reinforcing agent of cell is used to keep tumour sensitive to radiotherapy
KR20210107548A (en) Pharmaceutical Composition for Preventing or Treating Cancer Comprising mTOR pathway inhibitor
JP2021138739A (en) Composition for inhibiting cancer metastasis and treating cancer
CN107820426A (en) Method for treating cancer
Deng et al. Capsaicin orchestrates metastasis in gastric cancer via modulating expression of TRPV1 channels and driving gut microbiota disorder
KR20230029360A (en) Composition for enhancing cancer treatment effect containing C19 and use thereof
CN111208283A (en) Synergistic tumor inhibiting composition and application thereof
CN116390757A (en) Pharmaceutical composition for treating tumors
CN115243719A (en) CTB006 and Ponatinib combined application

Legal Events

Date Code Title Description
AMND Amendment
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination