KR20210095309A - Production method of fermented rice cake enriched with the sea pineapple shell extract - Google Patents

Production method of fermented rice cake enriched with the sea pineapple shell extract Download PDF

Info

Publication number
KR20210095309A
KR20210095309A KR1020200008981A KR20200008981A KR20210095309A KR 20210095309 A KR20210095309 A KR 20210095309A KR 1020200008981 A KR1020200008981 A KR 1020200008981A KR 20200008981 A KR20200008981 A KR 20200008981A KR 20210095309 A KR20210095309 A KR 20210095309A
Authority
KR
South Korea
Prior art keywords
sea
extract
rice cake
sea squirt
frc
Prior art date
Application number
KR1020200008981A
Other languages
Korean (ko)
Other versions
KR102336009B1 (en
Inventor
김상무
왕효
이정은
Original Assignee
강릉원주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강릉원주대학교산학협력단 filed Critical 강릉원주대학교산학협력단
Priority to KR1020200008981A priority Critical patent/KR102336009B1/en
Publication of KR20210095309A publication Critical patent/KR20210095309A/en
Application granted granted Critical
Publication of KR102336009B1 publication Critical patent/KR102336009B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/40Shell-fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/44Freeze-drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/13General methods of cooking foods, e.g. by roasting or frying using water or steam
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/23Removal of unwanted matter, e.g. deodorisation or detoxification by extraction with solvents

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a method for manufacturing steamed fermented rice cake rich in a sea squirt shell extract and, more specifically, to a method for manufacturing steamed fermented rice cake rich in a sea squirt shell extract and steamed fermented rice cake rich in a sea squirt shell extract manufactured thereby. According to the present invention, the method comprises the following steps: 1) separating shells from sea squirts to pulverize the shells; 2) dissolving the sea squirt shell powder in alcohol to manufacture an extract; 3) lyophilizing the extract to perform concentration and forming of the extract into powder; and 4) manufacturing steamed fermented rice cake containing the sea squirt shell powder. According to the present invention, it is confirmed that sea squirt shells discarded as conventional processing waste can be used as a functional ingredient for food production due to high levels of carotenoids and polyphenols in the sea squirt shells, the sea squirt shells can increase the content of pigment, polysaccharide, and lipid of the steamed fermented rice cake, and the sea squirt shells are practical in increasing nutritional and functional quality along with new dietary characteristics.

Description

멍게 껍질 추출액이 풍부한 기정떡의 제조 방법 {Production method of fermented rice cake enriched with the sea pineapple shell extract}{Production method of fermented rice cake enriched with the sea pineapple shell extract}

본 발명은 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법에 관한 것으로서, 보다 상세하게는 멍게 껍질에서 생체 활성 화합물의 추출 조건을 최적화하여 멍게 껍질 추출액(SPSE)이 풍부한 기정떡(FRC)의 제조와 함께 SPSE가 FRC의 품질에 미치는 효과에 관한 것이다.The present invention relates to a method for producing rice cakes rich in sea squirt shell extract, and more particularly, by optimizing extraction conditions for bioactive compounds from sea squirt shells, along with the preparation of rice cakes (FRC) rich in sea squirt shell extract (SPSE) It relates to the effect of SPSE on the quality of FRC.

기능성 식품은 전형적인 음식으로 비타민, 미네랄, 섬유, 폴리페놀 또는 다당류와 같은 특정 영양소가 풍부하다. 기능성 식품은 일반 식품보다 생리적 기능에 있어서 보다 구체적이고 표적화된 영양학적 가치가 있다. 기정떡 (FRC)은 동아시아 국가에서 수분 함량이 높고 (약 50%) 영양 가치가 높은 인기 있는 전통 발효식품 중 하나이다 (Meng and Kim. 2019. Journal of Food Processing and Preservation, 43(3), 1-11). FRC는 쌀가루, 막걸리, 물과 설탕을 혼합하고 발효시킨 후 증기찜(steaming)하여 제조되므로 독특하고 신맛이 나는 부드러운 막걸리 향을 갖는다.Functional foods are typical foods that are rich in vitamins, minerals, fiber, and certain nutrients such as polyphenols or polysaccharides. Functional food has more specific and targeted nutritional value in physiological function than general food. Kijeong rice cake (FRC) is one of the popular traditional fermented foods with high water content (about 50%) and high nutritional value in East Asian countries (Meng and Kim. 2019. Journal of Food Processing and Preservation , 43(3), 1- 11). FRC is made by mixing rice flour, makgeolli, water and sugar, fermenting it, and steaming it, so it has a unique and sour taste of soft makgeolli.

해양 생물은 기능성 성분으로 사용될 수 있는 유익한 천연 화합물의 가장 큰 공급원이다. 해양 무척추 동물은 대양에서 대부분의 거시적 생명체를 구성하는데, 이는 종종 색소 및 폴리페놀과 같은 많은 생체활성 화합물로 화려하게 착색된다. 카로티노이드는 가장 생생한 착색을 담당하는 주요 색소로 간주되며 (Hamed et al. 2015. Comprehensive Reviews in Food Science and Food Safety, 14(4), 46-465) 무척추 동물의 표면이나 껍질에 널리 분포되어 있다 (Delgado-Vargas et al. 2000. Critical reviews in food science and nutrition, 40(3), 173-289; Matsuno and Takao. 1985. Pure and Applied Chemistry, 57(5), 659-666). 가장 풍부한 카로티노이드 중 하나인 푸코잔틴(Fucoxanthin)은 항산화 (Yan et al. 1999. Bioscience, Biotechnology, and Biochemistry, 63(3), 605-607), 항암 (Kotake-Nara et al. 2005. Bioscience, bBiotechnology, and Biochemistry, 69(1), 224-227), 항염증 (Heo et al. 2010. Food and Chemical Toxicology, 48(8-9), 2045-2051), 항비만 및 항당뇨 (Maeda et al. 2009. Molecular Medicine Reports, 2(6), 897-902) 활성을 갖고 있음이 입증되어 왔다. 아스타잔틴(Astaxanthin)은 또한 항산화 (Rao et al. 2013. Journal of Agricultural and Food Chemistry, 61(16), 3842-3851), 항염증 (Chew et al. 2013. Am. J. Adv. Food Sci. Technol, 1, 1-17) 및 항당뇨 (Chan et al. 2012. Journal of Food Science, 77(2), H76-H80) 활성을 갖고 있다. 루테인(Lutein)과 제아잔틴(zeaxanthin)은 항당뇨 활성을 갖는다 (Qi and Kim. 2018. Journal of Ocean University of China, 17(4), 983-989). β-카로틴 (Godic et al. 2014. Oxidative Medicine and Cellular Longevity, 2014) 및 루테인과 제아잔틴 (Pellegrini et al. 2000. Nutrition 16(4), 268-271)은 항산화 활성을 갖는다. 플라보노이드, 페놀산 및 탄닌과 같은 폴리페놀은 또한 항산화 (Zaragoza et al. 2008. Journal of Agricultural and Food Chemistry, 56(17), 7773-7780), 항고혈당 (Eo et al. 2014. Journal of Agricultural and Food Chemistry, 63(1), 349-359; Shin et al. 2012. Phytotherapy Research, 26(3), 363-368), 항고지혈 (Eo et al. 2014. Journal of Agricultural and Food Chemistry, 63(1), 349-359; Shin et al. 2012. Phytotherapy Research, 26(3), 363-368) 및 항염증 (Eo et al. 2014. Journal of Agricultural and Food Chemistry, 63(1), 349-359; Yang et al. 2014. Asian Pacific Journal of Tropical Biomedicine, 4(7), 529-537) 활성을 갖는다.Marine life is the largest source of beneficial natural compounds that can be used as functional ingredients. Marine invertebrates make up most macroscopic life in the oceans, which are often colorfully colored with many bioactive compounds such as pigments and polyphenols. Carotenoids are considered to be the main pigments responsible for the most vivid coloration (Hamed et al. 2015. Comprehensive Reviews in Food Science and Food Safety, 14 (4), 46-465) and are widely distributed on the surface or shell of invertebrates ( Delgado-Vargas et al. 2000. Critical reviews in food science and nutrition, 40 (3), 173-289; Matsuno and Takao. 1985. Pure and Applied Chemistry, 57 (5), 659-666). Fucoxanthin, one of the most abundant carotenoids, is an antioxidant (Yan et al. 1999. Bioscience, Biotechnology, and Biochemistry, 63 (3), 605-607), anticancer (Kotake-Nara et al. 2005. Bioscience, bBiotechnology). , and Biochemistry, 69 (1), 224-227), anti-inflammatory (Heo et al. 2010. Food and Chemical Toxicology, 48 (8-9), 2045-2051), anti-obesity and anti-diabetes (Maeda et al. 2009. Molecular Medicine Reports, 2 (6), 897-902) has been demonstrated to have activity. Astaxanthin is also an antioxidant (Rao et al. 2013. Journal of Agricultural and Food Chemistry, 61 (16), 3842-3851), anti-inflammatory (Chew et al. 2013. Am. J. Adv. Food Sci). Technol, 1 , 1-17) and antidiabetic (Chan et al. 2012. Journal of Food Science, 77 (2), H76-H80) activity. Lutein and zeaxanthin have antidiabetic activity (Qi and Kim. 2018. Journal of Ocean University of China, 17 (4), 983-989). β-carotene (Godic et al. 2014. Oxidative Medicine and Cellular Longevity, 2014 ) and lutein and zeaxanthin (Pellegrini et al. 2000. Nutrition 16 (4), 268-271) have antioxidant activity. Polyphenols such as flavonoids, phenolic acids and tannins are also antioxidants (Zaragoza et al. 2008. Journal of Agricultural and Food Chemistry, 56 (17), 7773-7780), antihyperglycemic (Eo et al. 2014. Journal of Agricultural and Food Chemistry, 63 (1), 349-359;.. Shin et al 2012. Phytotherapy Research, 26 (3), 363-368), wherein gojihyeol (Eo et al 2014. Journal of Agricultural and Food Chemistry, 63 (1 ), 349-359;. Shin et al 2012. Phytotherapy Research, 26 (3), 363-368) and anti-inflammatory (Eo et al 2014. Journal of Agricultural and Food Chemistry, 63 (1), 349-359.; Yang et al. 2014. Asian Pacific Journal of Tropical Biomedicine, 4 (7), 529-537) has activity.

피낭동물(tunicate)은 해양 무척추 동물이며 풍부한 카로티노이드 공급원이다 (Tsuchiya and Suzuki. 1960. Tohoku Journal of Agricultural Research, 10(4), 397-407). 멍게 (Halocynthia roretzi, tunicates)는 대부분의 해안 지역에 서식하는 식용 해양 피낭동물이다. 그러나, 멍게 육을 섭취한 후 많은 양의 멍게 껍질은 가공 폐기물로 폐기된다. Nishibori (1958, Studies on the pigments of marine animals-VI. Carotenoids of some tunicates)는 멍게에서 높은 수준의 카로티노이드를 분리했으며, 주요 성분은 알로잔틴, 할로신티아잔틴 및 아스타잔틴이라고 보고하였다. Ookubo와 Matsuno (1985, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81(1), 137-141)는 멍게의 총 카로티노이드 함량이 다른 해양 피낭동물보다 높다고 보고했다. Choi 등 (1994, Korean Journal of Fisheries and Aquatic Sciences, 27(4), 344-350)은 멍게 외피(tunic)의 카로티노이드 함량이 멍게 근육보다 훨씬 높다고 보고했다. 따라서, 영양가 및 건강 관리 기능을 향상시키기 위해, 멍게 껍질은 식품, 화장품 및 약학적 약물의 제조를 위한 기능성 성분으로서 사용될 수 있다.Tunicates are marine invertebrates and are a rich source of carotenoids (Tsuchiya and Suzuki. 1960. Tohoku Journal of Agricultural Research, 10 (4), 397-407). The sea squirt ( Halocynthia roretzi , tunicates ) is an edible marine metastasis that inhabits most coastal areas. However, a large amount of sea urchin shells are discarded as processing waste after ingestion of sea squirt meat. Nishibori (1958, Studies on the pigments of marine animals-VI. Carotenoids of some tunicates) isolated high levels of carotenoids from sea squirts, and reported that the main components were alloxanthin, halosinthiaxanthin and astaxanthin. Ookubo and Matsuno (1985, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81 (1), 137-141) reported that the total carotenoid content of sea squirts was higher than that of other marine metastases. Choi et al. (1994, Korean Journal of Fisheries and Aquatic Sciences, 27 (4), 344-350) reported that the carotenoid content of sea tunic was much higher than that of sea sea muscle. Therefore, in order to improve the nutritional value and health care function, the sea urchin shell can be used as a functional ingredient for the manufacture of food, cosmetics and pharmaceutical drugs.

이에, 본 발명자들은 그동안 멍게 육만 이용되어 왔으며, 멍게 껍질 등은 색소(carotenoid) 및 폴리페놀 함량이 높아 이용가능성이 높음에도 폐기되어 왔으므로 이의 활용 방안을 고민하던 중, 멍게껍질 추출액을 기정떡에 첨가하여 기능성 및 색깔을 변화시킨 제품을 개발하였고, 그 결과 멍게 껍질의 유효한 기능성 성분을 기정떡에 포함시켰을 뿐만 아니라 통상의 기정떡은 흰색으로 젊은이들이 다소 기피하였으나, 본 발명에 의해 제조된 노란색 기정떡은 오히려 소비자들이 좋은 반응을 보임을 확인함으로써 본 발명을 완성하였다.Therefore, the present inventors have been using only sea squirt meat, and sea squirt shells have been discarded despite high availability due to high carotenoid and polyphenol contents. We developed a product that changed the functionality and color by adding it, and as a result, effective functional ingredients of sea squirt shell were included in the regular rice cake, and the normal rice cake was white, which was somewhat avoided by young people. Rather, the rice cake completed the present invention by confirming that consumers show a good response.

본 발명의 목적은 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing kijeongtteok rich in sea squirt shell extract.

본 발명의 또 다른 목적은 응답 표면 방법론을 사용하여 멍게 껍질에서 생체 활성 화합물의 추출 조건을 최적화하고 기정떡(FRC)의 품질에 대한 멍게 껍질 추출액(SPSE) 효과를 정량적으로 제공하는 것이다.Another object of the present invention is to optimize the extraction conditions for bioactive compounds from sea squirt shells using a response surface methodology and to provide quantitatively the effect of sea squirt shell extract (SPSE) on the quality of fermented rice cake (FRC).

상기 목적을 달성하기 위하여, 본 발명은 1) 멍게에서 껍질을 분리하여 분말화하는 단계; 2) 상기 멍게 껍질 분말을 알콜에 용해하여 추출액을 제조하는 단계; 3) 상기 추출액을 동결건조하여 농축 및 분말화하는 단계; 및 4) 상기 분말화된 멍게 껍질 분말을 포함하는 기정떡을 제조하는 단계;를 포함하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of 1) separating the shells from sea squirts and pulverizing them; 2) preparing an extract by dissolving the sea squirt shell powder in alcohol; 3) lyophilizing the extract to concentrate and powder; and 4) preparing a rice cake containing the powdered sea squirt shell powder;

또한, 본 발명은 상기 방법으로 제조된 멍게 껍질 추출액이 풍부한 기정떡을 제공한다.In addition, the present invention provides a kijeong rice cake rich in sea urchin shell extract prepared by the above method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 멍게 껍질 추출액은 SPSE(sea pineapple shell extract)로, 기정떡은 FRC(fermented rice cake)로, 응답 표면 방법론은 RSM(response surface methodology) 등으로 약칭하여 기재될 수 있다. In the present invention, the sea squirt shell extract may be abbreviated as sea pineapple shell extract (SPSE), the rice cake as fermented rice cake (FRC), and the response surface methodology as RSM (response surface methodology).

본 발명은 1) 멍게에서 껍질을 분리하여 분말화하는 단계; 2) 상기 멍게 껍질 분말을 알콜에 용해하여 추출액을 제조하는 단계; 3) 상기 추출액을 동결건조하여 농축 및 분말화하는 단계; 및 4) 상기 분말화된 멍게 껍질 분말을 포함하는 기정떡을 제조하는 단계;를 포함하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법을 제공한다.The present invention comprises the steps of 1) separating the shells from sea squirts and pulverizing them; 2) preparing an extract by dissolving the sea squirt shell powder in alcohol; 3) lyophilizing the extract to concentrate and powder; and 4) preparing a rice cake containing the powdered sea squirt shell powder;

본 발명의 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법에 있어서, 상기 1) 단계의 멍게 껍질의 분말은 200 메쉬의 체를 통과하는 크기인 것이 바람직하고, 상기 2) 단계의 추출액의 제조에 사용된 알콜은 70 내지 90% 에탄올(v/v)이고, 추출 온도는 40-60℃이고 추출 시간은 2-4시간인 것이 바람직하고, 아울러 상기 추출액의 제조에 사용된 에탄올은 87.0% (v/v)이고, 추출 온도는 59.7℃, 및 추출 시간은 4시간인 것이 보다 바람직하다.In the method for producing rice cake rich in sea squirt shell extract of the present invention, it is preferable that the powder of sea squirt shell in step 1) has a size that passes through a 200 mesh sieve, and is used in the preparation of the extract in step 2). The alcohol is preferably 70 to 90% ethanol (v/v), the extraction temperature is 40-60° C., and the extraction time is 2-4 hours, and the ethanol used in the preparation of the extract is 87.0% (v/v). ), the extraction temperature is more preferably 59.7 °C, and the extraction time is 4 hours.

또한, 본 발명의 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법에 있어서, 상기 4) 단계의 기정떡의 제조는 100중량부의 찹쌀 분말에 0.25 내지 0.75중량부의 멍게 껍질 분말을 사용하는 것이 바람직하고, 이때 상기 4) 단계의 기정떡의 제조는 1) 100중량부의 찹쌀 분말에 0.25 내지 0.75중량부의 멍게 껍질 분말을 혼합하는 단계; 2) 상기 혼합물에 물 90중량부를 첨가하여 20분 동안 교반하여 쌀 반죽을 제조하는 단계; 3) 상기 쌀 반죽에 막럴리 17.25중량부 및 설탕 17.5중량부를 혼합하고 교반하는 단계; 4) 상기 3) 단계의 쌀 반죽 혼합물을 30℃에서 5시간 동안 숙성한 후 교반하여 5분 동안 가스를 방출시키는 단계; 5) 상기 4) 단계의 쌀 반죽 혼합물을 30℃에서 2.5시간 동안 추가로 숙성한 후 100℃에서 18분 동안 쪄서 기정떡을 제조하는 단계; 및 6) 상기 기정떡을 1시간 동안 냉각시키는 단계;를 포함하는 것이 보다 바람직하다.In addition, in the production method of the seaweed shell extract rich in the seaweed shell extract of the present invention, in the preparation of the basic rice cake in step 4), it is preferable to use 0.25 to 0.75 parts by weight of sea urchin shell powder to 100 parts by weight of glutinous rice powder, at this time The preparation of the kijeong rice cake in step 4) includes the steps of 1) mixing 0.25 to 0.75 parts by weight of sea squirt shell powder with 100 parts by weight of glutinous rice powder; 2) adding 90 parts by weight of water to the mixture and stirring for 20 minutes to prepare a rice dough; 3) mixing and stirring 17.25 parts by weight of makrelli and 17.5 parts by weight of sugar with the rice dough; 4) Aging the rice dough mixture of step 3) at 30° C. for 5 hours and then stirring to release gas for 5 minutes; 5) manufacturing the rice cake mixture by further aging the rice dough mixture in step 4) at 30° C. for 2.5 hours and then steaming it at 100° C. for 18 minutes; and 6) cooling the kijeong rice cake for 1 hour. It is more preferable to include.

또한, 본 발명은 상기 방법으로 제조된 멍게 껍질 추출액이 풍부한 기정떡을 제공한다.In addition, the present invention provides a kijeong rice cake rich in sea urchin shell extract prepared by the above method.

본 발명에서 멍게 껍질 추출액 (SPSE)의 최적 추출 조건은 반응 표면 방법론 (RSM)을 사용하여 얻어졌으며, 상기 SPSE는 25.58 ± 0.30 μg/g 건조 중량 (DW)의 총 카로티노이드 함량 및 2.33 ± 0.03 mg/g DW의 총 페놀 함량을 함유하였다. 기정떡 (FRC)의 경도, 탄력성 및 응집성은 SPSE의 첨가량이 증가함에 따라 증가하는 반면, 비체적(specific volume)은 감소하였다. SPSE를 갖는 FRC의 표면 및 단면의 색은 더 어둡고, 더 붉고 더 황색을 띠었다. 대조군과 비교하여, 2.5 g의 SPSE/g 쌀가루를 함유한 FRC의 회분, 지방 및 탄수화물 함량은 약간 증가하였다. 관능검사에 기초하여, SPSE 2.5 g/kg 쌀가루를 함유한 FRC는 소비자가 무난히 받아들일 수 있었다. 따라서, SPSE는 2.5 g SPSE/kg 쌀가루가 최적 첨가량인 FRC 생산을 위한 기능성 성분으로 사용될 수 있다.In the present invention, the optimal extraction conditions for sea squirt shell extract (SPSE) were obtained using the reaction surface methodology (RSM), and the SPSE had a total carotenoid content of 25.58 ± 0.30 μg/g dry weight (DW) and 2.33 ± 0.03 mg/g/g. g DW total phenol content. The hardness, elasticity and cohesive properties of Gijeongdok (FRC) increased as the amount of SPSE added increased, while the specific volume decreased. The color of the surface and cross-section of the FRC with SPSE was darker, more reddish and more yellowish. Compared with the control group, the ash, fat and carbohydrate contents of FRC containing 2.5 g of SPSE/g rice flour were slightly increased. Based on the sensory test, the FRC containing SPSE 2.5 g/kg rice flour was acceptable to consumers. Therefore, SPSE can be used as a functional ingredient for the production of FRC in which 2.5 g SPSE/kg rice flour is the optimal amount added.

멍게 육을 섭취한 후 많은 양의 멍게 껍질은 가공 폐기물로 폐기된다. 그러나, 멍게 껍질은 높은 수준의 카로티노이드 및 폴리페놀로 인해 식품 제조를 위한 기능성 성분으로 사용될 수 있다. 본 발명은 멍게 껍질의 용매 추출 조건을 최적화하고, FRC의 물리적 품질에 다른 농도에서 SPSE의 영향을 조사하고, SPSE가 풍부한 FRC의 관능 특성을 평가하였다. 그 결과, 2.5 g의 SPSE/kg 쌀가루가 물리적 특성에 기초한 신제품의 최적 첨가량이며, 이는 그 관능적 품질을 저하시키지 않으면서 기정떡의 색소, 다당류 및 지질의 함량을 증가시킴을 입증하였다. 따라서, 기정떡에 멍게 껍질 추출액을 첨가하는 것은 새로운 식이 특성과 함께 영양 및 기능적 품질을 향상시킨다는 점에서 실용적이다.After consuming sea squirt meat, a large amount of sea urchin shells are discarded as processing waste. However, the sea urchin shell can be used as a functional ingredient for food preparation due to its high level of carotenoids and polyphenols. The present invention optimizes the solvent extraction conditions of sea squirt shells, investigates the effect of SPSE at different concentrations on the physical quality of FRC, and evaluates the sensory properties of SPSE-rich FRC. As a result, it was demonstrated that 2.5 g of SPSE/kg rice flour is the optimal amount to be added for a new product based on physical properties, and this increases the content of pigment, polysaccharide and lipid of Kijeong rice cake without degrading its organoleptic quality. Therefore, adding sea squirt shell extract to Kijeong-tteok is practical in that it improves nutritional and functional quality along with new dietary properties.

도 1은 에탄올 농도 및 온도 (도 1a); 에탄올 농도 및 시간 (도 1b); 온도와 시간 (도 1c)의 함수로서 멍게 껍질 추출액의 총 카로티노이드 함량 (TCC)의 반응 표면 플롯을 나타낸 그래프이다.
도 2는 기정떡의 경도 (도 2a), 탄력성 (도 2b) 및 응집성 (도 2c)을 나타낸 그래프이다. 이때, a-d 동일 열의 평균값에 이어지는 다른 위첨자는 유효 편차이다 (P <0.05). 또한, S1, 대조군 기정떡; S2, kg 쌀가루당 멍게 껍질 추출액 2.5 g을 사용한 기정떡; S3, kg 쌀가루당 멍게 껍질 추출액 5.0 g을 사용한 기정떡; S4, kg 쌀가루당 멍게 껍질 추출액 7.5 g을 사용한 기정떡이다.
도 3a 및 도 3b는 S1 기정떡 (대조군) S2. 멍게껍질 추출액을 첨가한 기정떡 (2.5 g/kg 쌀가루) S3. 멍게껍질 추출액을 첨가한 기정떡 (5.0 g/kg 쌀가루) S4. 멍게껍질 추출액을 첨가한 기정떡 (7.5 g/kg 쌀가루)의 색을 나타낸 사진으로, 멍게껍질 추출액의 첨가량이 많을 수록 노란색이 증가하나, kg 쌀가루당 2.5 g 첨가 제품이 가장 양호하였다.
Figure 1 shows ethanol concentration and temperature (Figure 1a); ethanol concentration and time (Figure 1b); A graph showing the response surface plot of the total carotenoid content (TCC) of sea squirt shell extract as a function of temperature and time ( FIG. 1C ).
2 is a graph showing the hardness (FIG. 2a), elasticity (FIG. 2b) and cohesiveness (FIG. 2c) of Gijeongtteok. In this case, the other superscript followed by the mean value of the same column ad is the effective deviation (P <0.05). In addition, S1, control group Kijeong-tteok; S2, Kijeong-tteok using 2.5 g of sea squirt shell extract per kg of rice flour; S3, Kijeongtteok using 5.0 g of sea squirt shell extract per kg of rice flour; S4, Kijeong rice cake using 7.5 g of sea squirt shell extract per kg of rice flour.
3a and 3b show S1 Kijeongtteok (control) S2. Kijeong-tteok (2.5 g/kg rice flour) S3. Kijeong-tteok (5.0 g/kg rice flour) S4. This is a photograph showing the color of Kijeong rice cake (7.5 g/kg rice flour) added with sea sea urchin extract. The yellow color increases as the amount of sea shell extract added increases, but the product with 2.5 g per kg of rice flour was the best.

이하, 본 발명에 따른 바람직한 실시예를 더욱 구체적으로 제시하여 상세하게 설명하기로 한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 상기와 같은 실시예들에 의하여 본 발명이 한정되는 것은 아니다. Hereinafter, preferred embodiments according to the present invention will be described in detail by presenting more specifically. However, the following examples are provided so that those of ordinary skill in the art can fully understand the present invention and can be modified in various other forms, and the present invention is limited by the above examples. it is not

<실시예 1> 시약 및 물질 <Example 1> Reagents and materials

Folin-Ciocalteu 시약은 Sigma-Aldrich, Co., Ltd. (미국 미주리주 세인트루이스)에서 구입하였다. 에틸알코올, 탄산나트륨 및 갈산은 대정화학공업 (인천)에서 구입하였다. 찹쌀 쌀가루 (약 6% 수분), 막걸리 (한국 전통 막걸리) 및 설탕은 Sang Hwa F & B Co., Ltd. (강릉)에서 구입하였다.Folin-Ciocalteu reagent was manufactured by Sigma-Aldrich, Co., Ltd. (St. Louis, Missouri, USA). Ethyl alcohol, sodium carbonate and gallic acid were purchased from Daejeong Chemical Industry (Incheon). Glutinous rice flour (about 6% moisture), makgeolli (Korean traditional makgeolli) and sugar are manufactured by Sang Hwa F & B Co., Ltd. It was purchased from (Gangneung).

<실시예 2> 용매 추출액의 제조<Example 2> Preparation of solvent extract

<2-1> 시료 제조<2-1> Sample preparation

2019년 8월 현지 어업 시장 (한국 강릉)에서 신선한 멍게 (Halocynthia roretzi)을 구입하여 1시간 이내 실험실로 이송했다. 멍게 껍질을 분리하여 수돗물로 두번 씻은 다음 통풍이 잘되는 실내의 실온에서 1주일 동안 건조시켰다. 건조된 껍질을 분쇄기 (SHMF-3080SS; Hauie Co., Ltd., Seoul, Korea)로 분쇄한 다음 200 메쉬 체로 분리하였다. 멍게 껍질 분말은 사용할 때까지 -40℃로 유지하였다. In August 2019, fresh sea urchin ( Halocynthia roretzi ) was purchased from a local fishery market (Gangneung, Korea) and transported to the laboratory within an hour. The sea urchin shells were separated, washed twice with tap water, and then dried at room temperature in a well-ventilated room for 1 week. The dried shells were pulverized with a grinder (SHMF-3080SS; Hauie Co., Ltd., Seoul, Korea) and then separated through a 200 mesh sieve. The sea squirt shell powder was maintained at -40°C until use.

<2-2> 멍게 껍질 추출액의 제조<2-2> Preparation of sea squirt shell extract

500mg의 멍게 껍질 분말을 50mL 원뿔형 플라스크에 넣은 다음, 다양한 농도 (70 내지 90% v/v)의 에탄올 25mL를 첨가하였다. 상기 원뿔형 플라스크를 선택된 온도 (40 내지 60℃)에서 다양한 지속 시간 (2 내지 4시간) 동안 자동 온도조절 수조에 넣은 후, 1789 ×g에서 10분 동안 원심분리하였다. 상청액을 수집하고, 여과하고 100 mL 용적플라스크로 옮겼다. 453 nm에서의 흡광도를 측정하였다.500 mg of sea urchin powder was placed in a 50 mL conical flask, and then 25 mL of ethanol of various concentrations (70 to 90% v/v) was added. The conical flask was placed in a thermostatic water bath at a selected temperature (40-60° C.) for various durations (2-4 hours) and then centrifuged at 1789×g for 10 minutes. The supernatant was collected, filtered and transferred to a 100 mL volumetric flask. The absorbance at 453 nm was measured.

SPSE는 최적 추출 조건하에서 얻어지고, 회전증발기 (RV 10B; IKA Works GmbH & Co., Staufen, Germany)에 의해 농축된 후, 진공동결 건조기 (FDU-7006; Operon Co. Kr, 한국 김포)에 의해 48시간 동안 동결건조되었다. 마지막으로, SPSE의 수율 (g/g 건조 중량)을 계산하였다.SPSE was obtained under optimal extraction conditions, concentrated by rotary evaporator (RV 10B; IKA Works GmbH & Co., Staufen, Germany), and then vacuum freeze dryer (FDU-7006; Operon Co. Kr, Gimpo, Korea). Lyophilized for 48 hours. Finally, the yield of SPSE (g/g dry weight) was calculated.

Figure pat00001
(1)
Figure pat00001
(One)

여기서, m1은 증발 플라스크의 질량이고, m2는 증발 플라스크 및 동결건조된 SPSE의 질량이며, m0은 멍게 껍질 건조 분말의 질량이다.Here, m 1 is the mass of the evaporating flask, m 2 is the mass of the evaporating flask and the freeze-dried SPSE, and m 0 is the mass of the dried sea urchin shell dry powder.

<2-3> 실험 설계<2-3> Experimental design

멍게 껍질로부터의 용매 추출액의 추출 조건은 반응 표면 방법론 (response surface methodology; RSM)을 사용하여 최적화되었다. 예비 실험에 기초하여, 용매 대 시료 비율은 50 mL/g을 선택하였다 (데이터 미기재). 3개의 독립변수의 결합 효과를 평가하기 위해, 17개의 실험 수행과 중심점의 5개의 반복 실험이 포함된 3단계-3요소 Box-Behnken 설계 (BBD)를 Design-Expert 10.0.3.1 (State-Ease, 미국 미네소타주 미니애폴리스)를 사용하여 생성하였다. 독립변수는 에탄올 농도 (X1, 70-90% v/v), 추출 온도 (X2, 40-60℃) 및 추출 시간 (X3, 2-4h)이다 (표 2). 최적의 추출 조건은 표적 반응으로서 총 카로티노이드 함량에 기초하여 결정되었다. 독립변수는 범위를 유지한 반면 반응은 최대화되었다.The extraction conditions of the solvent extract from sea squirt shells were optimized using response surface methodology (RSM). Based on preliminary experiments, a solvent to sample ratio of 50 mL/g was chosen (data not shown). To evaluate the combined effect of three independent variables, a three-step, three-element Box-Behnken design (BBD), which included 17 experiments performed and 5 replicates of the center point, was developed in Design-Expert 10.0.3.1 (State-Ease, Minneapolis, Minnesota, USA). The independent variables are ethanol concentration (X 1 , 70-90% v/v), extraction temperature (X 2 , 40-60° C.) and extraction time (X 3 , 2-4 h) (Table 2). The optimal extraction conditions were determined based on the total carotenoid content as the target reaction. The independent variable maintained its range while the response was maximized.

<2-4> SPSE 추출 최적화<2-4> SPSE extraction optimization

높은 총 카로티노이드 함량 (TCC)을 갖는 멍게 껍질로부터의 용매 추출 공정은 RSM을 사용하여 최적화되었다 (표 1). 최적 추출 조건을 위한 다음과 같은 2차 회귀 방정식이 얻어졌다.The solvent extraction process from sea squirt shells with high total carotenoid content (TCC) was optimized using RSM (Table 1). The following quadratic regression equation for optimal extraction conditions was obtained.

TCC = 25.31 + 1.03X 1 + 0.48X 2 - 0.069X 3 - 0.039X 1 X 2 + 0.047X 1 X 3 + 0.049X 2 X 3 - 0.74X 1 2 - 0.26X 2 2 + 0.11X 3 2 (4) TCC = 25.31 + 1.03 X 1 + 0.48 X 2 - 0.069 X 3 - 0.039 X 1 X 2 + 0.047 X 1 X 3 + 0.049 X 2 X 3 - 0.74 X 1 2 - 0.26 X 2 2 + 0.11 X 3 2 (4 )

여기서 X 1 , X 2 X 3 은 각각 에탄올 농도, 추출 온도 및 추출 시간이다. 2차 모델 방정식의 통계적 유의성 및 만족스러운 적합성은 분산 분석 (ANOVA)을 사용하여 결정되었다 (표 2). ANOVA 결과에 기초하여, 2개의 선형 (X 1 X 2 ) 및 1개의 2차 (X 1 2 ) 인자는 p <0.01의 수준에서 유효하였다 (표 2). 즉, 유효 항목 (X 1 , X 2 X 1 2 )은 SPSE 추출에 긍정적인 영향을 미치는 반면, 비유효 항목은 SPSE 추출에의 영향은 무시할 정도이다. F-테스트를 적용한 결과, 2차 모델은 p-수치가 매우 낮아서 (p = 0.0009), 이 모델의 좋은 적합도를 나타낸다. 적합 결여의 p-수치는 0.1793로, 모델의 좋은 적합도인 순수 오차와 비교하여 비유효 편차를 나타낸다. 1.25% (5% 미만)의 변동 계수는 수행된 실험의 우수한 정밀도 및 신뢰성을 나타냈다. 이차 반응 모델의 결정 계수 (R2)는 0.9504로, 반응의 95.04%의 변화도는 상기 모델로 설명될 수 있다. 신호 대 잡음비를 측정하는 적절한 정밀도 값 (12.640)은 2차 모델의 만족스러운 적합성을 나타내는 적절한 신호 (Deenu et al. 2013. Biotechnology and bioprocess engineering, 18(6), 1151-1162)를 제안했다.where X 1 , X 2 and X 3 are ethanol concentration, extraction temperature and extraction time, respectively. Statistical significance and satisfactory fit of the quadratic model equations were determined using analysis of variance (ANOVA) (Table 2). Based on the ANOVA results, two linear ( X 1 and X 2 ) and one quadratic ( X 1 2 ) factors were effective at the level of p <0.01 (Table 2). That is, the valid items ( X 1 , X 2 and X 1 2 ) have a positive effect on SPSE extraction, while the ineffective items have negligible effects on SPSE extraction. As a result of applying the F-test, the second-order model has a very low p-value (p = 0.0009), indicating a good fit of this model. The p-value of the lack of fit is 0.1793, indicating an ineffective deviation compared to the pure error, which is a good fit of the model. A coefficient of variation of 1.25% (less than 5%) indicated good precision and reliability of the experiments performed. The coefficient of determination (R 2 ) of the second-order response model is 0.9504, and the 95.04% gradient of the response can be explained by the model. An appropriate precision value (12.640) for measuring the signal-to-noise ratio was suggested as an appropriate signal indicating a satisfactory fit of the second-order model (Deenu et al. 2013. Biotechnology and bioprocess engineering, 18 (6), 1151-1162).

멍게 껍질에서 추출액을 추출하기 위한 Box-behnken 실험 설계Box-behnken experimental design for extracting extracts from sea squirt shells 수행Perform 추출 조건Extraction conditions TCC (μg/g) TCC (μg/g) 에탄올 농도(%)Ethanol concentration (%) 온도 (℃)Temperature (℃) 시간 (h)time (h) 실제 수치actual figure 예상 수치Expected figures 1One 7070 4040 33 22.70 ±0.8822.70 ±0.88 22.7622.76 22 7070 5050 22 23.93 ±0.9323.93 ±0.93 23.7723.77 33 7070 5050 44 23.77 ±0.3023.77 ±0.30 23.5423.54 44 7070 6060 33 23.48 ±0.4123.48 ±0.41 23.8123.81 55 8080 4040 22 24.69 ±0.4424.69 ±0.44 24.7924.79 66 8080 4040 44 24.39 ±0.8824.39 ±0.88 24.5624.56 77 8080 5050 33 25.61 ±0.2125.61 ±0.21 25.3125.31 88 8080 5050 33 24.96 ±0.1024.96 ±0.10 25.3125.31 9 9 8080 5050 33 25.38 ±0.2125.38 ±0.21 25.3125.31 1010 8080 5050 33 25.35 ±0.2125.35 ±0.21 25.3125.31 1111 8080 5050 33 25.25 ±0.2125.25 ±0.21 25.3125.31 1212 8080 6060 22 25.83 ±0.1925.83 ±0.19 25.6625.66 1313 8080 6060 44 25.73 ±0.0925.73 ±0.09 25.6225.62 1414 9090 4040 33 25.23 ±0.2925.23 ±0.29 24.9024.90 1515 9090 5050 22 25.50 ±0.3025.50 ±0.30 25.7325.73 1616 9090 5050 44 25.52 ±0.1225.52 ±0.12 25.6925.69 1717 9090 6060 33 25.85 ±0.0425.85 ±0.04 25.7925.79

멍게 껍질 추출액의 추출을 위한 회귀 모델의 분산 분석Analysis of variance of regression model for extraction of sea squirt shell extract SourceSource 제곱의 합sum of squares DFDF 평균 제곱mean square F - 수치 F - numerical P - 수치 P - numerical ModelModel 13.0813.08 99 1.451.45 14.9114.91 0.00090.0009 X1 X 1 8.468.46 1One 8.468.46 86.8186.81 <0.0001<0.0001 X2 X 2 1.881.88 1One 1.881.88 19.2919.29 0.00320.0032 X3 X 3 0.0380.038 1One 0.0380.038 0.390.39 0.55320.5532 X1X2 X 1 X 2 6.053×10-3 6.053×10 -3 1One 6.053×10-3 6.053×10 -3 0.0620.062 0.81040.8104 X1X3 X 1 X 3 8.780×10-3 8.780×10 -3 1One 8.780×10-3 8.780×10 -3 0.0900.090 0.77280.7728 X2X3 X 2 X 3 9.584×10-3 9.584×10 -3 1One 9.584×10-3 9.584×10 -3 0.0980.098 0.76300.7630 X1 2 X 1 2 2.282.28 1One 2.282.28 23.4323.43 0.00190.0019 X2 2 X 2 2 0.280.28 1One 0.280.28 2.912.91 0.13180.1318 X3 2 X 3 2 0.0490.049 1One 0.0490.049 0.500.50 0.50030.5003 Residual Residual 0.680.68 77 0.0980.098 Lack of fit Lack of fit 0.460.46 33 0.150.15 2.722.72 0.17930.1793 Pure errorpure error 0.220.22 44 0.0560.056 Cor TotalCor Total 13.7613.76 1616 Coefficient of variationCoefficient of variation 1.251.25 R2 R 2 0.95040.9504 Adjusted R2 Adjusted R 2 0.88660.8866 Adequate precisionAdequate precision 12.64012.640

다른 변수가 일정하게 유지될 때 응답과 독립변수 사이의 관계를 조사하고 최적 조건을 결정하기 위해 3차원 응답 표면 곡선을 작성했다 (도 1). 도 1a와 도 1b에 따르면, 에탄올 농도가 70에서 87.0% (v/v)로 증가함에 따라 TCC가 증가한 다음 87.0% (v/v) 이상에서 감소했다. 에탄올 농도는 종속 반응인 TCC에 유효한 영향을 미치는 것을 확인하였다. 추출 온도는 도 1a 및 도 1c에서 TCC의 두 가지 다른 인자 각각과 상호 작용했다. 추출 온도가 40℃에서 59.7℃로 증가하면 TCC가 증가하였다. 그러나, 추출 용매의 비점 및 휘발성으로 인해, 추출 온도는 60℃를 초과해서는 안된다. 최고 TCC는 59.7℃에서 수득되었다. TCC에 대한 추출 시간의 영향은 도 1b와 도 1c에 기재되어 있다. 추출 시간이 2시간에서 4시간으로 증가함에 따라, TCC는 상당한 정도로 변하지 않았다. 따라서, 추출 시간은 TCC에 유효한 정도로 영향을 미치지 않았다.A three-dimensional response surface curve was constructed to investigate the relationship between the response and the independent variable when other variables were held constant and to determine the optimal condition (Fig. 1). 1A and 1B, as the ethanol concentration increased from 70 to 87.0% (v/v), TCC increased and then decreased at more than 87.0% (v/v). It was confirmed that the ethanol concentration had an effective effect on the dependent reaction, TCC. Extraction temperature interacted with each of the two other factors of TCC in FIGS. 1A and 1C . The TCC increased when the extraction temperature was increased from 40°C to 59.7°C. However, due to the boiling point and volatility of the extraction solvent, the extraction temperature should not exceed 60°C. The highest TCC was obtained at 59.7°C. The effect of extraction time on TCC is described in Figures 1b and 1c. As the extraction time increased from 2 hours to 4 hours, the TCC did not change to a significant extent. Therefore, extraction time did not affect TCC to an effective extent.

최적 추출 조건은 에탄올 농도, 87.0% (v/v); 온도, 59.7℃; 시간, 4.0시간이었다. 실험 수치는 최적 추출하에서 25.58 ± 0.30이었으며, 예측 수치인 25.99와 잘 일치했다. 따라서 추출 모델이 매우 적합했다. SPSE의 수율은 최적 추출 조건하에서 0.262 ± 0.006 g/g 멍게 껍질의 건조된 분말이었다.Optimal extraction conditions were ethanol concentration, 87.0% (v/v); temperature, 59.7°C; hour, 4.0 hours. The experimental value was 25.58 ± 0.30 under optimal extraction, which was in good agreement with the predicted value of 25.99. Therefore, the extraction model was very suitable. The yield of SPSE was 0.262 ± 0.006 g/g dried powder of sea squirt shells under optimal extraction conditions.

<실시예 3> SPSE의 총 카로티노이드 함량 (TCC) 및 총 페놀 함량 (TPC) 결정<Example 3> Determination of total carotenoid content (TCC) and total phenol content (TPC) of SPSE

SPSE의 총 카로티노이드 함량 (μg/g 건조 중량)은 Ookubo 및 Matsuno (1985, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81(1), 137-141)의 방법에 따라 UV-Vis 분광광도계 (V-730; JASCO International Co., Ltd., 일본 도쿄)로 측정했다. 계산 공식은 다음과 같다.Total carotenoid content of the SPSE (μg / g dry weight) was Ookubo and Matsuno (1985, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81 (1), 137-141) UV-Vis spectrophotometer according to the method of (V- 730; JASCO International Co., Ltd., Tokyo, Japan). The calculation formula is as follows.

Figure pat00002
(2)
Figure pat00002
(2)

여기서, A는 453nm에서 추출액의 흡광도이고, V는 추출 용액의 부피이며,

Figure pat00003
는 카로티노이드의 비흡광계수이다.where A is the absorbance of the extract at 453 nm, V is the volume of the extract,
Figure pat00003
is the specific extinction coefficient of carotenoids.

총 페놀 함량 (TPC)은 갈산을 표준으로 사용하여 Singleton 및 Rossi (1965, American journal of Enology and Viticulture, 16(3), 144-158)의 변형된 방법에 따라 결정되었다. 수득된 추출액을 87% (v/v) 에탄올로 50 mL로 희석하였다. 5 mL의 추출액을 25 mL의 시험관으로 옮긴 다음 3 mL의 Folin-Ciocalteu 시약과 완전히 혼합하였다. 1분 동안 진탕시킨 후, 6mL의 탄산나트륨 (12%, w/v)을 첨가하고, 완전히 혼합하고 증류수로 25mL로 희석시켰다. 어둠 속에서 120분 동안 방치한 후 765 nm에서 혼합물의 흡광도를 UV-Vis 분광 광도계 (V-730; JASCO International Co., Ltd.)로 측정하였다. TPC는 멍게 껍질의 갈산 당량 (GAE)/g 건조 중량으로 표현되었다.Total phenol content (TPC) was determined according to a modified method of Singleton and Rossi (1965, American journal of Enology and Viticulture, 16(3), 144-158) using gallic acid as standard. The obtained extract was diluted to 50 mL with 87% (v/v) ethanol. 5 mL of the extract was transferred to a 25 mL test tube, and then thoroughly mixed with 3 mL of Folin-Ciocalteu reagent. After shaking for 1 minute, 6 mL of sodium carbonate (12%, w/v) was added, mixed thoroughly and diluted to 25 mL with distilled water. After standing in the dark for 120 minutes, the absorbance of the mixture at 765 nm was measured with a UV-Vis spectrophotometer (V-730; JASCO International Co., Ltd.). TPC was expressed as gallic acid equivalents (GAE)/g dry weight of sea urchin shells.

본 발명에서, 최적 추출 조건에서 멍게 껍질의 TCC는 25.58 ± 0.30 μg/g 건조 중량이었다. Ookubo와 Matsuno (1985, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81(1), 137-141)는 H. roretzi 전체의 총 카로티노이드를 아세톤으로 추출하였으며 그 함량은 10.6 mg/100g 체중이라고 보고했다. 유사하게, CHOI 등 (1994, Korean Journal of Fisheries and Aquatic Sciences, 27(4), 344-350)은 추출액 용매로서 아세톤의 사용시에 H. roretzi 외피의 TCC가 47.87 mg/100g 습식 기반이고 H. roretzi 근육의 TCC가 2.35 mg/100g 습식 기반인 반면, 추출 용매로서 아세톤과 메탄올 (1:1)을 사용할 때 H. roretzi 외피의 TCC는 53.14 mg/100g 습식 기반이었고, H. roretzi 근육의 TCC는 2.17 mg/100g 습식기반 이었음을 보고하였다. 따라서 TCC는 추출 용매 및 시료 처리와 같은 다른 추출 방법에 따라 달라질 수 있다. CHOI 등 (1994, Korean Journal of Fisheries and Aquatic Sciences, 27(4), 344-350)은 H. roretzi 외피의 카로티노이드가 알로잔틴(alloxanthin) (31.3%), 할로신티아잔틴(halocynthiaxanthin) (푸코잔틴(fucoxanthin)의 대사 산물, 15.5%), 디아토잔틴(diatoxanthin) (11.9%), 디아디노크롬(diadinochrome) (11.6%), 미틸잔틴(mytilxanthin) (푸코잔틴의 대사 산물, 10.8%) 및 아스타잔틴(astaxanthin) (7.8%)이라고 계산하였다.In the present invention, the TCC of sea squirt shells under optimal extraction conditions was 25.58 ± 0.30 μg/g dry weight. Ookubo and Matsuno (1985, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81 (1), 137-141) reported that total carotenoids of whole H. roretzi were extracted with acetone, and the content was 10.6 mg/100 g body weight. Similarly, CHOI et al. (1994, Korean Journal of Fisheries and Aquatic Sciences, 27 (4), 344-350) reported that the TCC of H. roretzi integument was 47.87 mg/100 g wet-based and H. roretzi in the use of acetone as extractant solvent. While the TCC of muscle was 2.35 mg/100 g wet-based, the TCC of H. roretzi integument was 53.14 mg/100 g wet-based when using acetone and methanol (1:1) as extraction solvents, while the TCC of H. roretzi muscle was 2.17 It was reported that it was mg/100g wet-based. Thus, the TCC may vary depending on the extraction solvent and other extraction methods such as sample treatment. CHOI et al. (1994, Korean Journal of Fisheries and Aquatic Sciences, 27 (4), 344-350) reported that the carotenoids of the H. roretzi envelope were alloxanthin (31.3%), halocynthiaxanthin (Fuucault). Metabolites of xanthine (fucoxanthin, 15.5%), diatoxanthin (11.9%), diadinochrome (11.6%), mytilxanthin (metabolite of fucoxanthin, 10.8%) and It was calculated as astaxanthin (7.8%).

최적 추출 조건에서 멍게 껍질의 TPC는 2.33 ± 0.03 mg의 갈산 당량/g 건조 중량이었다. Lee 등 (2015, Process Biochemistry, 50(11), 1977-1984)은 Styela clava (멍게) 외피(tunics)의 6가지 용매 추출액의 TPC가 14.04 mg GAE/g DW (온수), 0.83 mg GAE/g DW (에탄올), 0.53 mg GAE/g DW (아세톤), 0.48 mg GAE/g DW (에틸아세트산), 0.37 mg GAE/g 건조 추출액 (n- 부탄올) 및 0.34 mg GAE/g DW (헥산) 이라고 보고했다. 따라서, 용매의 유형은 Styela clava 외피로부터 총 페놀의 추출에 영향을 미쳤으며, Styela clava 외피의 TPC는 멍게 껍질의 TPC보다 낮았다.Under the optimal extraction conditions, the TPC of sea squirt shells was 2.33 ± 0.03 mg gallic acid equivalent/g dry weight. Lee et al. (2015, Process Biochemistry, 50 (11), 1977-1984) found that the TPC of six solvent extracts of tunics from Styela clava (sea crab) was 14.04 mg GAE/g DW (hot water), 0.83 mg GAE/g reported as DW (ethanol), 0.53 mg GAE/g DW (acetone), 0.48 mg GAE/g DW (ethylacetic acid), 0.37 mg GAE/g dry extract (n-butanol), and 0.34 mg GAE/g DW (hexane) did. Thus, the type of solvent is affected the extraction of total phenols from Styela clava shell, the TPC Styela clava sheath being lower than the TPC of sea squirt shell.

<실시예 4> FRC의 제조<Example 4> Preparation of FRC

FRC 제조 절차는 Meng 및 Kim (2019, Journal of Food Processing and Preservation, e14047)의 변형된 방법에 따라 설정되었다. 간단히, 찹쌀 분말 (200 g)을 다양한 농도 (0, 0.5, 1.0 및 1.5 g)에서 SPSE와 혼합한 다음, 혼합물 및 물 (180 g)을 기계적 스탠드 믹서 (WSS-6835P; Liantek Electrical Appliance Co., Ltd., 중국 선전)를 사용하여 20분 동안 쌀 반죽으로 교반하였다. 이후 막걸리 (34.5g)와 설탕 (35g)을 5분간 계속 혼합하였다. 쌀 반죽을 BOD 인큐베이터 (Vision Scientific Co., 한국 서울)에서 5시간 동안 30℃에서 숙성시키고, 가스를 방출하기 위해 5분 동안 천천히 휘저었고 별도의 몰드 (개당 약 400g)에 부었다. 쌀 반죽을 다시 30℃에서 2.5시간 동안 유지한 다음, 100℃에서 18분 동안 찌었다. FRC를 실온에서 1시간 동안 냉각한 후, 탈수를 방지하기 위해 밀봉된 폴리에틸렌 백 (Cleanwrap Co., Ltd., 한국 서울)으로 포장하였다. 4시간 이내에 분석을 수행하였다.The FRC manufacturing procedure was established according to a modified method of Meng and Kim (2019, Journal of Food Processing and Preservation, e14047). Briefly, glutinous rice powder (200 g) was mixed with SPSE at various concentrations (0, 0.5, 1.0, and 1.5 g), and then the mixture and water (180 g) were mixed with a mechanical stand mixer (WSS-6835P; Liantek Electrical Appliance Co., Ltd., Shenzhen, China) was used to stir the rice dough for 20 minutes. Then, makgeolli (34.5g) and sugar (35g) were continuously mixed for 5 minutes. The rice dough was aged at 30° C. for 5 hours in a BOD incubator (Vision Scientific Co., Seoul, Korea), stirred slowly for 5 minutes to release gas, and poured into separate molds (approximately 400 g each). The rice dough was again held at 30° C. for 2.5 hours and then steamed at 100° C. for 18 minutes. After cooling the FRC at room temperature for 1 hour, it was packaged in a sealed polyethylene bag (Cleanwrap Co., Ltd., Seoul, Korea) to prevent dehydration. Analysis was performed within 4 hours.

<실시예 5> FRC의 물리적 특성 평가<Example 5> Evaluation of physical properties of FRC

FRC의 조직 특성은 SUN Rheometer (Compact 100 Model CR-100; Sun Scientific Co., Ltd., 일본 도쿄)로 측정하였다. 시료 (40 × 40 × 40 mm)를 직경 50 mm 프로브를 사용하여 60 mm/분의 속도로 원래 높이의 40%로 압축한 다음, 경도, 탄력성 및 응집성을 측정하였다. FRC는 전자 저울 (AX200; Shimadzu Co., 일본 교토)로 계량되었고, 유채 변위법(rapeseed displacement method) (Ragaee & Abdel-Aal, 2006)을 사용하여 FRC의 부피가 측정되었다. 비체적 (mL/g)은 FRC의 부피 (mL)를 중량 (g)으로 나눈 것으로 정의되었다. FRC의 이미지 분석은 Rafal 등(2013, Food Hydrocolloids, 32(2), 213-220)의 변형된 방법에 따라 수행되었다. 각 조각의 내부 부분 (두께 1cm)을 레이저 다기능 프린터 (SCX-3405; 삼성전자 디지털 인쇄 유한회사, 중국 산동성)로 스캔했다. Image J software v.1.51c (National Institutes of Health, Bethesda, 미국 메릴랜드주)를 사용하여 시료의 기공률 (FRC 슬라이스의 면적으로 나눈 가스 셀 면적), 셀 밀도 (1 cm2 당 셀 수) 및 기공 백분율 (크기> 2 mm)을 분석했다. FRC의 색 파라미터는 Arufe 등 (2018, European Food Research and Technology, 244(1), 1-10)의 변형된 방법에 따라 측정되었다. FRC 표면 및 단면의 L* (밝기), a* (빨간색) 및 b* (황색) 값은 크로마미터 (CR-400; Konica Minolta Sensing, Inc., 일본 오사카)로 측정하였다. SPSE가 포함된 FRC와 대조군 사이의 총 색차 (ΔE <1.5, 작은 차이; 1.5 <ΔE <3.0, 명확; ΔE> 3.0, 매우 명확)는 ΔE 공식 (Mokrzycki & Tatol, 2011)을 사용하여 계산되었다.The tissue properties of FRC were measured with a SUN Rheometer (Compact 100 Model CR-100; Sun Scientific Co., Ltd., Tokyo, Japan). A sample (40×40×40 mm) was compressed to 40% of its original height at a rate of 60 mm/min using a 50 mm diameter probe, and then hardness, elasticity and cohesiveness were measured. The FRC was weighed with an electronic scale (AX200; Shimadzu Co., Kyoto, Japan), and the volume of the FRC was measured using the rapeeed displacement method (Ragaee & Abdel-Aal, 2006). Specific volume (mL/g) was defined as volume (mL) of FRC divided by weight (g). Image analysis of FRC was performed according to a modified method of Rafal et al. (2013, Food Hydrocolloids, 32 (2), 213-220). The inner part (1 cm thick) of each piece was scanned with a laser multifunction printer (SCX-3405; Samsung Electronics Digital Printing Co., Ltd., Shandong Province, China). Porosity (gas cell area divided by area of FRC slice), cell density (cells per cm 2 ) and porosity percentage of the sample using Image J software v.1.51c (National Institutes of Health, Bethesda, MD, USA) (size > 2 mm) were analyzed. The color parameters of FRC were measured according to the modified method of Arufe et al. (2018, European Food Research and Technology, 244 (1), 1-10). The L* (brightness), a* (red) and b* (yellow) values of the FRC surface and cross-section were measured with a chromatometer (CR-400; Konica Minolta Sensing, Inc., Osaka, Japan). Total color difference (ΔE <1.5, small difference; 1.5 <ΔE <3.0, clear; ΔE > 3.0, very clear) between FRC with SPSE and control was calculated using the ΔE formula (Mokrzycki & Tatol, 2011).

ΔE =

Figure pat00004
(3)ΔE =
Figure pat00004
(3)

여기서,

Figure pat00005
는 대조군의 색상 매개변수이며,
Figure pat00006
는 SPSE가 포함된 FRC의 색상 매개변수이다.here,
Figure pat00005
is the color parameter of the control group,
Figure pat00006
is the color parameter of FRC with SPSE.

FRC의 품질은 경도, 탄력성 및 응집성과 같은 질감 특성에 크게 의존하며 이는 소비자의 기호도에 영향을 줄 수 있다. FRC의 텍스처 매개변수는 도 2에 기재되어 있다. 경도는 크럼(crumb; 빵 속)을 특정 속도에서 특정 길이로 압축하는데 필요한 최대 힘을 측정한 것이다 (Crockett et al. 2011. Food chemistry, 129(1), 84-91). SPSE의 첨가는 FRC의 경도를 증가시켰다. 대조군과 비교하여 5.0 및 7.5g SPSE/kg 쌀가루 (S3 및 S4)의 FRC 경도는 유효하게 증가했지만 2.5g SPSE/kg 쌀가루 (S2)의 FRC 경도는 약간 증가했다 (도 2a). 탄력은 또한 빵 품질을 평가하는데 중요한 품질 요소이다 (Huang et al. 2017. RSC Advances, 7(19), 11394-11402). 탄성은 첫 번째와 두 번째 압축 사이의 FRC 높이 복구 비로 정의된다 (Crockett et al. 2011. Food chemistry, 129(1), 84-91). SPSE를 갖는 FRC의 탄력성은 대조군의 탄력성보다 높았으며 첨가량이 증가함에 따라 증가하였다 (도 2b). 경도와 탄력성과 유효하게 관련되는 응집력의 경우, 대조군 (S1) 및 2.5 g SPSE/kg 쌀가루 (S2)를 갖는 FRC에 대해 가장 낮은 값이 관찰되었다. 경도 및 탄성과 유사하게, SPSE를 갖는 FRC의 응집력은 대조군 보다 높았으며, 첨가량의 증가에 따라 유효하게 증가하였다 (도 2c). 따라서, SPSE의 첨가는 FRC의 조직 특성에 영향을 미쳤으며, 특히 높은 수준의 SPSE 첨가는 FRC의 품질을 상당히 감소시켰다. R. Wang 등(2007, Food Research International, 40(4), 470-479 )은 빵 경도와 탄력이 5.0g 녹차 추출액/kg 밀가루 수준에서 유효하게 증가하고 (P <0.05), 1.5g 녹차 추출액/kg 밀가루에서 비유효하게 증가하는 것과 같은 유사한 결과를 보고했다.The quality of FRC is highly dependent on texture properties such as hardness, elasticity and cohesiveness, which can affect consumer preference. The texture parameters of the FRC are described in FIG. 2 . Hardness is a measure of the maximum force required to compress crumb (in bread) to a specific length at a specific speed (Crockett et al. 2011. Food chemistry, 129 (1), 84-91). The addition of SPSE increased the hardness of the FRC. Compared with the control group, the FRC hardness of 5.0 and 7.5 g SPSE/kg rice flour (S3 and S4) was effectively increased, but the FRC hardness of 2.5 g SPSE/kg rice flour (S2) was slightly increased ( FIG. 2A ). Elasticity is also an important quality factor in evaluating bread quality (Huang et al. 2017. RSC Advances, 7 (19), 11394-11402). Elasticity is defined as the FRC height recovery ratio between the first and second compressions (Crockett et al. 2011. Food chemistry, 129 (1), 84-91). The elasticity of FRC with SPSE was higher than that of the control group and increased as the amount added increased (Fig. 2b). For cohesion, which is effectively related to hardness and elasticity, the lowest values were observed for the control (S1) and FRC with 2.5 g SPSE/kg rice flour (S2). Similar to hardness and elasticity, the cohesive force of FRC with SPSE was higher than that of the control group, and it effectively increased with the increase of the addition amount ( FIG. 2c ). Therefore, the addition of SPSE affected the tissue properties of FRC, and especially the high level of SPSE addition significantly reduced the quality of FRC. R. Wang et al. (2007, Food Research International, 40 (4), 470-479) found that bread hardness and elasticity were effectively increased at 5.0 g green tea extract/kg wheat flour level (P <0.05), and 1.5 g green tea extract/kg flour reported similar results, such as an ineffective increase in kg wheat flour.

다양한 농도의 SPSE를 갖는 FRC에서의 다양한 경도는 관련된 효소 활성 및 효모 성장에 의해 설명될 수 있다. Ananingsih와 Zhou (2011, Effects of green tea extract on large-deformation rheological properties of steamed bread dough and some quality attributes of steamed bread. Paper presented at the 11th International Congress on Engineering and Food "Food Process Engineering in a Changing World")는 녹차 폴리페놀이 밀가루의 아밀라제 활성을 감소시키고 효모 발효를 위한 기질 친화성을 감소시켜 가스 발생력을 억제할 수 있다고 지적했다. Turchetti 등 (2005, Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(1), 44-49)은 녹차 추출액이 효모 Saccharomyces cerevisiae (Strain DBVPG 6173)의 활성을 억제할 수 있다고 보고했다. 따라서 높은 총 폴리페놀을 함유한 SPSE는 막걸리의 효모 활성을 부분적으로 억제하고 쌀 반죽에 밀가루의 아밀라제 활성을 제한하여 효모의 가스 발생력을 저하시킬 수 있다. 따라서, SPSE를 갖는 FRC는 부피가 더 작고 비교적 단단하고 촘촘한 질감을 가졌다. 그러나 이것은 Rozylo 등 (2017, CYTA-Journal of Food, 15(2), 196-203)의 보고와는 달랐으며, 조류의 첨가는 조류의 천연의 하이드로콜로이드의 존재로 인하여 글루텐-결여된 빵의 경도 감소에 긍정적인 영향을 미쳤다.The varying hardness in FRCs with varying concentrations of SPSE can be explained by the associated enzyme activity and yeast growth. Ananingsih and Zhou (2011, Effects of green tea extract on large-deformation rheological properties of steamed bread dough and some quality attributes of steamed bread. Paper presented at the 11th International Congress on Engineering and Food "Food Process Engineering in a Changing World") pointed out that green tea polyphenols could suppress the gassing ability by reducing the amylase activity of wheat flour and reducing substrate affinity for yeast fermentation. Turchetti et al. (2005, Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19 (1), 44-49) reported that green tea extract could inhibit the activity of the yeast Saccharomyces cerevisiae (Strain DBVPG 6173). reported Therefore, SPSE containing high total polyphenols can partially inhibit the yeast activity of makgeolli and limit the amylase activity of wheat flour in rice dough, thereby lowering the gassing ability of yeast. Therefore, the FRC with SPSE was smaller in volume and had a relatively hard and dense texture. However, this was different from the report of Rozylo et al. (2017, CYTA-Journal of Food, 15 (2), 196-203), and the addition of algae resulted in the hardness of gluten-deficient bread due to the presence of natural hydrocolloids in the algae. had a positive effect on the reduction.

비체적은 FRC 제품의 또 다른 중요한 특성으로 간주된다. 대조군 및 SPSE FRC의 비체적은 표 3(기정떡의 디지털 이미지 분석, 비체적 및 색상 매개변수)에 제시되어 있다. 0.25% 미만의 SPSE의 첨가는 FRC의 비체적에 유효한 영향을 미치지 않았다. 그러나 5.0 및 7.5g SPSE/kg 쌀가루 (S3 및 S4)을 함유한 FRC의 비체적은 대조군 (S1)에 비해 상당히 감소하였으며, 7.5g SPSE/kg 쌀가루 7.5g (S4)를 함유한 FRC는 모든 시료에서 가장 낮은 비체적을 가져 왔다. 이러한 결과는 FRC의 비체적에 대한 SPSE의 효과는 FRC의 경도와 밀접한 관련이 있음을 나타냈다. 그러나, 2.5 g SPSE/kg 쌀가루의 첨가는 FRC의 비체적 및 경도를 유효하게 감소시키지 않았다. 디지털 이미지 분석에 의해 얻어진 FRC 크럼(crumb; 빵 속)의 품질 특성은 표 3에 제시되어 있다. 2.5 g SPSE/kg 쌀가루 (S2)를 함유한 FRC는 가장 큰 다공성을 가졌다. SPSE의 다량의 첨가 (0.5 및 7.5 g SPSE/kg 쌀가루)는 다공도를 유효하게 변화시키지 않았다 (P> 0.05). 대조군과 비교하여, FRC의 셀 밀도 (1/cm2)는 2.5 및 5.0 g SPSE/kg 쌀가루를 첨가하면 감소되었지만 7.5 g SPSE/kg 쌀가루를 첨가하면 증가되었다. 반대로, 2.5 g 및 5.0 g SPRC/kg 쌀가루를 첨가한 경우에 FRC의 >1 mm의 기공 백분율은 대조군에 비해 증가하였고, 2.5 g SPSE/kg 쌀가루 (S2)를 첨가한 FRC는 가장 큰 수치를 나타내었다. 그러나, 7.5 g SPSE/kg 쌀가루 (S4)를 갖는 FRC의 >1 mm의 기공의 백분율은 대조군과 비교하여 약간 감소하였다.Specific volume is considered another important characteristic of FRC products. The specific volume of the control and SPSE FRCs are presented in Table 3 (digital image analysis, specific volume, and color parameters of rice cakes). The addition of less than 0.25% SPSE had no effective effect on the specific volume of the FRC. However, the specific volume of FRCs containing 5.0 and 7.5 g SPSE/kg rice flour (S3 and S4) was significantly reduced compared to the control group (S1), and FRCs containing 7.5 g SPSE/kg rice flour 7.5 g (S4) were significantly reduced in all samples. brought the lowest specific volume. These results indicated that the effect of SPSE on the specific volume of FRC was closely related to the hardness of FRC. However, the addition of 2.5 g SPSE/kg rice flour did not effectively reduce the specific volume and hardness of FRC. The quality characteristics of FRC crumbs (in bread) obtained by digital image analysis are presented in Table 3. FRC containing 2.5 g SPSE/kg rice flour (S2) had the greatest porosity. The addition of large amounts of SPSE (0.5 and 7.5 g SPSE/kg rice flour) did not significantly change the porosity (P>0.05). Compared with the control group, the cell density (1/cm 2 ) of FRC was decreased by the addition of 2.5 and 5.0 g SPSE/kg rice flour, but increased by the addition of 7.5 g SPSE/kg rice flour. Conversely, when 2.5 g and 5.0 g SPRC/kg rice flour were added, the percentage of pores >1 mm of FRC was increased compared to the control, and FRC with 2.5 g SPSE/kg rice flour (S2) added showed the largest value. It was. However, the percentage of pores >1 mm in FRCs with 7.5 g SPSE/kg rice flour (S4) was slightly decreased compared to the control.

Figure pat00007
Figure pat00007

a-d 동일 열의 평균값에 이어진 다른 위첨자 문자는 유효 편차이다 (P < 0.05). 이때 S1, 대조군 기정떡; S2, 멍게 껍질 추출액 2.5 g/kg 쌀가루를 갖는 기정떡; S3, 멍게 껍질 추출액 5.0 g/kg 쌀가루를 갖는 기정떡; S4, 멍게 껍질 추출액 7.5 g/kg 쌀가루를 갖는 기정떡이다. ad Another superscript letter followed by the mean value in the same column is the significant deviation (P < 0.05). At this time, S1, control group Kijeong-tteok; S2, Kijeongtteok with sea squirt shell extract 2.5 g/kg rice flour; S3, Kijeongtteok with sea squirt shell extract 5.0 g/kg rice flour; S4, 7.5 g/kg of sea squirt shell extract It is a rice cake with rice flour.

다공률 및 비체적의 변화는 보강(proofing) 동안 쌀 반죽의 다양한 이산화탄소 포집력과 찌는 동안 상기 반죽내 기포의 보유력에 기인할 수 있다. 2.5g SPSE/kg 쌀가루를 함유한 FRC는 모공의 크기를 증가시키고 모공의 조밀성을 감소시켰으며, SPSE의 첨가는 쌀 반죽의 점탄성을 감소시키고 반죽내 기포의 보유력을 증가시켰다. SPSE의 첨가가 증가함에 따라, 보강 동안 점탄성 특성 및 이산화탄소 포집력 및 쌀반죽에서 찌는 동안 기포의 보유력이 감소하였으며, 이것은 보강 및 찜 동안 FRC 반죽의 구조를 붕괴시키는 원인이 될 수 있다.Changes in porosity and specific volume can be attributed to the various carbon dioxide trapping powers of the rice dough during proofing and the retention of air bubbles in the dough during steaming. FRC containing 2.5 g SPSE/kg rice flour increased the size of pores and decreased the compaction of pores. As the addition of SPSE increased, the viscoelastic properties and carbon dioxide trapping power during reinforcing and the holding power of air bubbles during steaming in rice dough decreased, which may cause collapse of the structure of FRC dough during reinforcing and steaming.

빵의 색깔은 소비자에게 중요한 관능 특성이다 (Hathorn et al. 2008. LWT-Food Science and Technology, 41(5), 803-815). L* 값은 명도를 나타낸다 (0-100은 암에서 명을 나타냄). a* 값은 적색 (>0)에서 녹색 (<0)까지의 색도를 나타낸다. b* 값은 황색 (>0)에서 청색 (<0)까지의 색도를 나타낸다 (Arufe et al. 2018. European Food Research and Technology, 244(1), 1-10). SPSE의 다양한 첨가를 갖는 FRC의 색상 값 (L*, a* 및 b*)이 표 3에 기재되어 있다. SPSE의 첨가는 농도-의존적 방식으로 FRC의 색상을 변경시켰다. SPSE를 첨가하면 유효하게 (P <0.05) FRC 표면 및 단면의 L* 값이 낮아져서 더 어두운 색이 되었다. SPRC의 양이 증가함에 따라 FRC 표면 및 단면의 L* 값은 유효하게 감소하였다. FRC 표면 및 단면의 양의 a* 값은 모든 시료의 표면 및 단면이 적색이 되는 경향이 있음을 나타내었다. SPSE의 양이 증가함에 따라, FRC 표면 및 단면의 a* 값이 크게 증가했다. b* 값의 경우, 모든 시료의 표면 및 단면이 황색으로 포장되었다. SPSE의 양이 증가함에 따라, b* 값이 유효하게 증가하였다 (P <0.05). 모든 시료의 총 색차 값 (ΔE)은 3.0보다 높았으며, 이는 SPSE의 양이 증가함에 따라 FRC의 색 변화가 매우 뚜렷하다는 것을 나타낸다. 이러한 결과는 제형에 SPSE의 첨가가 명도를 감소시키면서 FRC의 황색 및 적색을 증가시킴을 나타내었다. 멍게 껍질에는 많은 색소와 폴리페놀이 함유되어 있으므로, FRC의 색상 변화는 SPSE 자체의 원래 색상에 손쉽게 기인할 수 있다. 라 파우 (Rafal) 등. (2013, Food Hydrocolloids, 32(2), 213-220)은 콜라겐과 완두콩 단백질이 함유된 빵이 보다 기호도가 높으며, L* 값이 작고 b* 값이 더 높다고 보고했다. 따라서 색상 변화는 신제품 개발을 목적으로 소비자 선호에 긍정적인 요소가 될 수 있다 (Zhu et al. 2008. Journal of agricultural and food chemistry, 56(17), 8212-8217). 따라서, SPSE의 첨가는 신규한 FRC의 개발에 바람직하다.Bread color is an important sensory characteristic for consumers (Hathorn et al. 2008. LWT-Food Science and Technology, 41 (5), 803-815). L* values represent lightness (0-100 represents light in dark). The a* value represents the chromaticity from red (>0) to green (<0). The b* value represents the chromaticity from yellow (>0) to blue (<0) (Arufe et al. 2018. European Food Research and Technology, 244 (1), 1-10). The color values (L*, a* and b*) of FRCs with various additions of SPSE are shown in Table 3. Addition of SPSE altered the color of FRC in a concentration-dependent manner. The addition of SPSE effectively (P <0.05) lowered the L* values of the FRC surface and cross-section, resulting in a darker color. As the amount of SPRC increased, the L* values of the FRC surface and cross-section effectively decreased. The positive a* values of the FRC surfaces and cross-sections indicated that the surfaces and cross-sections of all samples tended to be red. As the amount of SPSE increased, the a* values of the FRC surface and cross-section increased significantly. For b* values, the surfaces and cross sections of all samples were paved in yellow. As the amount of SPSE increased, the b* value increased effectively (P <0.05). The total color difference value (ΔE) of all samples was higher than 3.0, indicating that the color change of FRC was very pronounced with increasing amount of SPSE. These results indicated that the addition of SPSE to the formulation increased the yellow and red color of FRC while decreasing the brightness. Since sea squirt shells contain many pigments and polyphenols, the color change of FRC can easily be attributed to the original color of SPSE itself. Rafal et al. (2013, Food Hydrocolloids, 32 (2), 213-220) reported that breads containing collagen and pea proteins were more palatable, with lower L* values and higher b* values. Therefore, color change can be a positive factor in consumer preference for the purpose of new product development (Zhu et al. 2008. Journal of agricultural and food chemistry, 56 (17), 8212-8217). Therefore, the addition of SPSE is desirable for the development of novel FRCs.

<실시예 6> SPSE를 함유한 FRC의 근접 조성<Example 6> Proximity composition of FRC containing SPSE

대조군 FRC (S1) 및 최상의 물리적 특성을 갖는 2.5 g의 SPSE/kg 쌀가루 (S2)를 갖는 FRC를 선택하여 근접 조성을 분석하였다. FRC의 수분, 회분, 조단백질 및 조지방 (% 습윤 기준)의 함량은 표준분석 방법 (international, 2000)에 따라 결정되었다. 총 탄수화물 함량은 계산 (100 - % 단백질 - % 지방 - 수분 - % 회분)에 의해 수득되었다.A control FRC (S1) and an FRC with 2.5 g of SPSE/kg rice flour (S2) with the best physical properties were selected and analyzed for proximity composition. The contents of moisture, ash, crude protein and crude fat (% wet) of FRC were determined according to standard analytical methods (international, 2000). The total carbohydrate content was obtained by calculation (100 - % protein - % fat - moisture - % ash).

FRC의 근접 조성은 표 4에 제시되어 있다. 대조군과 비교하여, 2.5 g SPSE/kg 쌀가루 (S2)를 갖는 FRC의 회분, 지방 및 탄수화물의 함량은 약간 증가한 반면, 수분 및 단백질 함량은 약간 감소하였다. T. Wang 등 (2018, Trends in Food Science & Technology, 81, 74-89)은 해양 동물과 식물에는 색소, 다당류, 지질 등과 같은 많은 영양 성분이 함유되어 있다고 지적했다. 다른 탄수화물 공급원과 비교하여 해양 다당류는 항응고제, 저지혈증, 면역 강화 및 항노화 활동을 포함한 독특한 생리 기능을 주로 나타낸다. 해양 지질은 폴리불포화 지방산 (PUFA)이 풍부하여 뇌를 강화하고 기억력과 시력을 향상시키며 인간 면역 기능을 향상시킬 수 있다 (T. Wang et al., (2018), Trends in Food Science & Technology, 81, 74-89). 따라서, SPSE는 FRC의 색소, 다당류 및 지질의 함량을 증가시켜 FRC의 영양적 가치를 향상시킬 수 있다.The proximity composition of FRC is presented in Table 4. Compared with the control, the content of ash, fat and carbohydrate of FRC with 2.5 g SPSE/kg rice flour (S2) increased slightly, while the moisture and protein content decreased slightly. (2018, Trends in Food Science & Technology, 81 , 74-89) pointed out that marine animals and plants contain many nutritional components such as pigments, polysaccharides, lipids, etc. Compared with other carbohydrate sources, marine polysaccharides mainly exhibit unique physiological functions including anticoagulant, hypolipidemic, immune enhancing and anti-aging activities. Marine lipids are rich in polyunsaturated fatty acids (PUFAs), which may strengthen the brain, improve memory and vision, and improve human immune function (T. Wang et al., (2018), Trends in Food Science & Technology, 81 , 74-89). Therefore, SPSE can improve the nutritional value of FRC by increasing the content of pigments, polysaccharides and lipids in FRC.

<실시예 7> SPSE를 함유한 FRC의 관능 평가 <Example 7> Sensory evaluation of FRC containing SPSE

관능 평가는 32명의 훈련받지 않은 패널리스트 (16 명의 남성/ 16 명의 여성; 20-40세)와 함께 Ariffin 등 (2015, American Journal of Applied Sciences, 12(11), 775. doi: 10.3844/ajassp.2015.775.784)의 방법에 따라 평가되었으며, Sang Hwa F&B Co., Ltd (한국 강릉)에 의제 제공된 FRC가 대조군으로 사용되었다. 대조군 및 2.5 g의 SPSE/kg 쌀가루를 사용한 FRC의 외관 (색상 및 다공도), 질감 (부드러움 및 씹음성), 맛, 풍미 및 전체 기호도를 평가하고, 9점 기호값 (9-극히 좋음, 8- 매우 좋음, 7- 보통 좋음, 6- 약간 좋음, 5- 좋음/싫음, 4- 약간 싫음, 3- 보통 싫음, 2- 매우 싫음, 1- 극히 싫음)에 의해 점수를 부여하였다. 전체 기호도의 평균값이 5 (좋지도 싫지도 않음) 이상인 경우, 그 시료는 허용되는 것으로 간주되었다.Sensory evaluation was conducted with 32 untrained panelists (16 males/16 females; ages 20-40) by Ariffin et al. (2015, American Journal of Applied Sciences, 12 (11), 775. doi: 10.3844/ajassp. 2015.775.784), and FRC provided by Sang Hwa F&B Co., Ltd (Gangneung, Korea) was used as a control group. Appearance (color and porosity), texture (softness and chewiness), taste, flavor and overall acceptability of FRC using control and 2.5 g of SPSE/kg rice flour were evaluated, and 9-point preference values (9-extremely good, 8- Very good, 7- Moderately good, 6- Somewhat good, 5- Like/dislike, 4- Somewhat dislike, 3- Moderately dislike, 2- Very dislike, 1- Extremely dislike). A sample was considered acceptable if the average value of the overall acceptability was 5 (neither like nor dislike) or higher.

FRC의 관능 분석은 표 4(기정떡의 근접 조성 및 관능 평가)에 제시되어 있다. 모든 시료의 색, 다공성, 향, 맛, 부드러움, 씹음성 및 전체 점수는 5점 보다 높았으며, 이는 대조군 FRC 및 2.5g SPSE/kg 쌀가루을 함유한 FRC가 소비자에게 무난할 수 있음을 의미한다. 2.5 g SPSE/kg 쌀가루를 함유한 FRC의 색, 다공성, 향, 부드러움 및 전체 점수는 대조군에 비해 유효하게 감소하였다 (p <0.05). 그러나 2.5 g SPSE/kg 쌀가루를 함유한 FRC의 맛 및 씹음성 점수는 대조군과 유의미한 차이는 없었다. 2.5g SPSE/kg 쌀가루를 함유한 FRC의 전체 점수는 6.19 (5- 좋음/싫음)로, 소비자의 선호도에 의해 충분히 무난하였다. Xu 등 (2019, Journal of functional foods, 52, 629-639)은 빵에 첨가된 페놀 성분이 빵의 관능적 특성에 영향을 미쳤다고 보고했는데, 빵의 맛, 외관 및 질감은 첨가된 페놀 화합물의 양과 질에 의존했다.The sensory analysis of FRC is presented in Table 4 (proximity composition and sensory evaluation of Kijeong-tteok). The color, porosity, aroma, taste, softness, chewability and overall score of all samples were higher than 5 points, indicating that the control FRC and FRC containing 2.5 g SPSE/kg rice flour could be safe for consumers. The color, porosity, flavor, softness and overall score of FRC containing 2.5 g SPSE/kg rice flour were effectively decreased compared to the control group (p <0.05). However, the taste and chewability scores of FRC containing 2.5 g SPSE/kg rice flour were not significantly different from those of the control group. The overall score of FRC containing 2.5g SPSE/kg rice flour was 6.19 (5-like/dislike), which was satisfactory enough according to consumer preference. Xu et al. (2019, Journal of functional foods, 52 , 629-639) reported that phenolic components added to bread had an effect on the sensory properties of bread. depended on

Figure pat00008
Figure pat00008

a-b 다른 위첨자를 갖는 동일열의 평균값의 유효 편차이다 (P <0.05) 이때, S1, 대조군 기정떡; S2, 멍게 껍질 추출액 2.5 g/kg 쌀가루를 갖는 기정떡이다. ab is the effective deviation of the mean value of the same column with different superscripts (P <0.05) In this case, S1, control group Kijeongtteok; S2, kijeongtteok with sea squirt shell extract 2.5 g/kg rice flour.

<실시예 8> 통계 분석<Example 8> Statistical analysis

데이터 분석은 Microsoft EXCEL 소프트웨어 (버전 2010; Microsoft, Redmond, WA, USA) 및 SPSS 소프트웨어 (버전 18.0; SPSS Inc, Chicago, IL, USA)를 사용하여 수행되었다. Duncan의 다중 범위 테스트를 사용하여 유효 편차를 결정하는데 사용하였다 (P <0.05).Data analysis was performed using Microsoft EXCEL software (version 2010; Microsoft, Redmond, WA, USA) and SPSS software (version 18.0; SPSS Inc, Chicago, IL, USA). Duncan's multiple range test was used to determine the effective deviation (P <0.05).

상기 실험의 결과, 다음과 같이 결론지을 수 있었다. 멍게 껍질의 용매 추출액을 에탄올을 이용한 분쇄 추출법에 의해 얻었으며, 추출 조건은 RSM을 사용하여 최적화되었다. 본 발명의 결과는 SPSE가 보다 높은 총 카로티노이드와 총 페놀을 가지고 있음을 나타내었다. 5.0 및 7.5 g SPSE/kg 쌀가루의 첨가 수준에서, SPSE를 갖는 FRC는 보다 작은 부피이고, 비교적 단단하고 조밀한 질감을 초래하였다. 그러나 SPSE 2.5 g/kg 쌀가루를 갖는 FRC의 경도, 탄력성, 응집성 및 비체적은 크게 변하지 않았다. SPSE를 갖는 FRC의 표면 및 단면의 색은 더 어둡고 (더 작은 L*), 더 붉으며 (더 큰 a*) 및 더 노란색 (더 큰 b*)이었다. 관능 평가에 기초하여, SPSE 2.5 g/kg 쌀가루를 함유한 FRC는 소비자에게 무난하였다. 따라서, SPSE는 새로운 식이 특성과 함께 영양 및 기능적 품질을 향상시키기 위한 FRC의 제조를 위한 기능성 성분으로 사용될 수 있을 것이다.As a result of the above experiment, it can be concluded as follows. Solvent extracts of sea squirt shells were obtained by pulverization extraction using ethanol, and extraction conditions were optimized using RSM. The results of the present invention showed that SPSE had higher total carotenoids and total phenols. At the addition levels of 5.0 and 7.5 g SPSE/kg rice flour, the FRC with SPSE was of a smaller volume and resulted in a relatively hard and dense texture. However, the hardness, elasticity, cohesiveness and specific volume of FRC with SPSE 2.5 g/kg rice flour did not change significantly. The colors of the surface and cross-section of FRCs with SPSE were darker (smaller L*), redder (larger a*) and more yellow (larger b*). Based on the sensory evaluation, FRC containing SPSE 2.5 g/kg rice flour was acceptable to consumers. Therefore, SPSE could be used as a functional ingredient for the preparation of FRC to improve nutritional and functional quality with novel dietary properties.

이상, 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.Above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications can be made by those skilled in the art within the scope of the technical spirit of the present invention. This is possible.

Claims (7)

1) 멍게에서 껍질을 분리하여 분말화하는 단계;
2) 상기 멍게 껍질 분말을 알콜에 용해하여 추출액을 제조하는 단계;
3) 상기 추출액을 동결건조하여 농축 및 분말화하는 단계; 및
4) 상기 분말화된 멍게 껍질 분말을 포함하는 기정떡을 제조하는 단계;를 포함하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법.
1) separating the shells from sea squirts and pulverizing them;
2) preparing an extract by dissolving the sea squirt shell powder in alcohol;
3) lyophilizing the extract to concentrate and powder; and
4) preparing a rice cake comprising the powdered sea squirt shell powder;
제 1항에 있어서, 상기 1) 단계의 멍게 껍질의 분말은 200 메쉬의 체를 통과하는 크기인 것을 특징으로 하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법.
The method according to claim 1, wherein the powder of sea squirt shell in step 1) has a size that passes through a 200-mesh sieve.
제 1항에 있어서, 상기 2) 단계의 추출액의 제조에 사용된 알콜은 70 내지 90% 에탄올(v/v)이고, 추출 온도는 40-60℃이고 추출 시간은 2-4시간인 것을 특징으로 하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법.
The method according to claim 1, wherein the alcohol used in the preparation of the extract in step 2) is 70 to 90% ethanol (v/v), the extraction temperature is 40-60° C., and the extraction time is 2-4 hours. A method of making Kijeong rice cake rich in sea squirt shell extract.
제 3항에 있어서, 상기 추출액의 제조에 사용된 에탄올은 87.0% (v/v)이고, 추출 온도는 59.7℃, 및 추출 시간은 4시간인 것을 특징으로 하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법.
The method according to claim 3, wherein the ethanol used in the preparation of the extract is 87.0% (v/v), the extraction temperature is 59.7° C., and the extraction time is 4 hours. method.
제 1항에 있어서, 상기 4) 단계의 기정떡의 제조는 100중량부의 찹쌀 분말에 0.25 내지 0.75중량부의 멍게 껍질 분말을 사용하는 것을 특징으로 하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법.
[Claim 3] The method of claim 1, wherein in step 4), 0.25 to 0.75 parts by weight of sea squirt shell powder is used in 100 parts by weight of glutinous rice powder.
제 5항에 있어서, 상기 4) 단계의 기정떡의 제조는
1) 100중량부의 찹쌀 분말에 0.25 내지 0.75중량부의 멍게 껍질 분말을 혼합하는 단계;
2) 상기 혼합물에 물 90중량부를 첨가하여 20분 동안 교반하여 쌀 반죽을 제조하는 단계;
3) 상기 쌀 반죽에 막럴리 17.25중량부 및 설탕 17.5중량부를 혼합하고 교반하는 단계;
4) 상기 3) 단계의 쌀 반죽 혼합물을 30℃에서 5시간 동안 숙성한 후 교반하여 5분 동안 가스를 방출시키는 단계;
5) 상기 4) 단계의 쌀 반죽 혼합물을 30℃에서 2.5시간 동안 추가로 숙성한 후 100℃에서 18분 동안 쪄서 기정떡을 제조하는 단계; 및
6) 상기 기정떡을 1시간 동안 냉각시키는 단계;를 포함하는 멍게 껍질 추출액이 풍부한 기정떡의 제조 방법.
The method of claim 5, wherein the production of Kijeong rice cake in step 4)
1) mixing 0.25 to 0.75 parts by weight of sea urchin powder with 100 parts by weight of glutinous rice powder;
2) adding 90 parts by weight of water to the mixture and stirring for 20 minutes to prepare a rice dough;
3) mixing and stirring 17.25 parts by weight of makrelli and 17.5 parts by weight of sugar with the rice dough;
4) Aging the rice dough mixture of step 3) at 30° C. for 5 hours and then stirring to release gas for 5 minutes;
5) manufacturing the rice cake mixture by further aging the rice dough mixture in step 4) at 30° C. for 2.5 hours and then steaming it at 100° C. for 18 minutes; and
6) Cooling the basic rice cake for 1 hour; a method of producing a rice cake rich in sea urchin shell extract comprising a.
제 1항 내지 제 6항 중 어느 한 항의 방법으로 제조된 멍게 껍질 추출액이 풍부한 기정떡.[Claim 7] Kijeong rice cake rich in sea urchin shell extract prepared by the method of any one of claims 1 to 6.
KR1020200008981A 2020-01-23 2020-01-23 Production method of fermented rice cake enriched with the sea pineapple shell extract KR102336009B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200008981A KR102336009B1 (en) 2020-01-23 2020-01-23 Production method of fermented rice cake enriched with the sea pineapple shell extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200008981A KR102336009B1 (en) 2020-01-23 2020-01-23 Production method of fermented rice cake enriched with the sea pineapple shell extract

Publications (2)

Publication Number Publication Date
KR20210095309A true KR20210095309A (en) 2021-08-02
KR102336009B1 KR102336009B1 (en) 2021-12-03

Family

ID=77315723

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200008981A KR102336009B1 (en) 2020-01-23 2020-01-23 Production method of fermented rice cake enriched with the sea pineapple shell extract

Country Status (1)

Country Link
KR (1) KR102336009B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230085518A (en) 2021-12-07 2023-06-14 나진옥 Method for manufacturing marinade using sea squirt shell
KR20240055324A (en) 2022-10-20 2024-04-29 나진옥 Method for manufacturing functional sea squirt powder and the sea squirt of the same
KR20240055329A (en) 2022-10-20 2024-04-29 나진옥 Method for manufacturing functional sea squirt juice and the sea squirt juice of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089952A (en) * 2008-02-20 2009-08-25 강릉원주대학교산학협력단 A composition comprising the powdered form or extract of ascidian (halocynthia roretzi) as an active ingredient showing anti-hyperlipidemia activity
WO2012173004A1 (en) * 2011-06-14 2012-12-20 株式会社上野忠 Mochi premix for mochi-containing bakery foods and method for producing mochi-containing bakery food
KR20190057658A (en) * 2017-11-20 2019-05-29 강릉원주대학교산학협력단 An anti-inflammatory or immunological enhancing composition comprising a Halocynthia aurantium tunic fatty acid as an active ingredient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089952A (en) * 2008-02-20 2009-08-25 강릉원주대학교산학협력단 A composition comprising the powdered form or extract of ascidian (halocynthia roretzi) as an active ingredient showing anti-hyperlipidemia activity
WO2012173004A1 (en) * 2011-06-14 2012-12-20 株式会社上野忠 Mochi premix for mochi-containing bakery foods and method for producing mochi-containing bakery food
KR20190057658A (en) * 2017-11-20 2019-05-29 강릉원주대학교산학협력단 An anti-inflammatory or immunological enhancing composition comprising a Halocynthia aurantium tunic fatty acid as an active ingredient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230085518A (en) 2021-12-07 2023-06-14 나진옥 Method for manufacturing marinade using sea squirt shell
KR20240055324A (en) 2022-10-20 2024-04-29 나진옥 Method for manufacturing functional sea squirt powder and the sea squirt of the same
KR20240055329A (en) 2022-10-20 2024-04-29 나진옥 Method for manufacturing functional sea squirt juice and the sea squirt juice of the same

Also Published As

Publication number Publication date
KR102336009B1 (en) 2021-12-03

Similar Documents

Publication Publication Date Title
KR102336009B1 (en) Production method of fermented rice cake enriched with the sea pineapple shell extract
KR101349315B1 (en) Bar rice cake containing purple sweet-potato and ginger and manufacturing method thereof
KR101148472B1 (en) The black garlic powder and its a method, a use
KR100773809B1 (en) Process for manufacturing red ginseng korean cookie using white ginseng and red ginseng extraction liquid
CN103404558B (en) Grape seed health care cake manufacturing method
KR102256073B1 (en) Preparation Method for Macaron Comprising Seaweeds
CN104366504A (en) Composition, application, flour, manufacturing method thereof and noodle
CN102440352A (en) Preparation method for maccha grains noodles
CN105475423A (en) Stomach invigorating bread and making method thereof
KR101402079B1 (en) Method for preparation of functional walnut steamed bread having blueberry
CN105146324A (en) Special low-protein potato full flour noodle for patients with diabetic nephropathy and preparation method thereof
CN102871046B (en) Ass meat and sea tangle soup noodle and preparation method of noodle
KR101822515B1 (en) Method of aronia cookies
KR101477868B1 (en) Korea cookies containing extracts of brown algae and method for preparing the same
KR20170133934A (en) Manfacturing method of functional crust of overcooked rice food comprising aronia
KR101414807B1 (en) A method of preparing black garlic with allium sativum l. f. choyeong and a food comprising the same
KR20090074386A (en) Flour food including extract of rubi fructus and method of manufacturing the same
KR101559954B1 (en) Composition for Retarding Aging of Rice Cake Containing Cashew Powder
KR20190066854A (en) Manufacturing method for korean cold noodle
KR101411698B1 (en) Method for Manufacturing Noodle Containing Blueberry, and Noodle Produced thereby
CN110613069B (en) Method for preparing apple composite cloudy juice beverage by using sweet potato powder
KR102112494B1 (en) Method for manufacturing confectionery using moringa and confectionery by the mehtod
KR102014442B1 (en) A method for preparation of seaweed fulvescens snack containing fermented glutinous rice and opuntia humifusa
KR20160018089A (en) Method for manufacturing of muffin containing fermented tumeric
KR101488462B1 (en) Acai berry added kimchi and method for production thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant