KR20210092503A - Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration - Google Patents

Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration Download PDF

Info

Publication number
KR20210092503A
KR20210092503A KR1020200005986A KR20200005986A KR20210092503A KR 20210092503 A KR20210092503 A KR 20210092503A KR 1020200005986 A KR1020200005986 A KR 1020200005986A KR 20200005986 A KR20200005986 A KR 20200005986A KR 20210092503 A KR20210092503 A KR 20210092503A
Authority
KR
South Korea
Prior art keywords
pec
cofactor
cigs
photoelectrochemical
bivo
Prior art date
Application number
KR1020200005986A
Other languages
Korean (ko)
Other versions
KR102288193B1 (en
Inventor
박찬범
김진현
이양우
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020200005986A priority Critical patent/KR102288193B1/en
Publication of KR20210092503A publication Critical patent/KR20210092503A/en
Application granted granted Critical
Publication of KR102288193B1 publication Critical patent/KR102288193B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2072Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells comprising two or more photoelectrodes sensible to different parts of the solar spectrum, e.g. tandem cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a photoelectrochemical (PEC) device comprising a photoanode, a photocell, and a cathode and, more specifically, to a PEC device comprising a photoanode, a Cu(In,Ga)Se_2 (CIGS) photocell, and a cathode, and a cofactor regeneration method, an artificial photosynthesis method, and a hydrogen production method using the PEC device. Powerful photocell cells are essential for long-term redox biotransformation in biocatalytic PEC platforms. In accordance with the present invention, a photoanode/CIGS/cathode tandem assembly comprising a single CIGS photocell for a bias-free photo-biocatalytic reduction reaction can induce a cofactor-dependent biocatalytic reaction under visible light with high efficiency for a long time so that the PEC device is useful as a powerful PEC-PV device for realizing long-term artificial photosynthesis.

Description

CIGS 광전지-광전극 탠덤 구조를 포함하는 광전기화학(PEC) 장치{Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration}Photoelectrochemical (PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration

본 발명은 광양극(photoanode), 광전지(photovoltaic) 및 음극(cathode)을 포함하는 광전기화학(PEC) 장치에 관한 것으로, 더욱 상세하게는 광양극, CIGS(Cu(In,Ga)Se2) 광전지 및 음극을 포함하는 광전기화학(PEC) 장치, 상기 장치를 이용한 보조인자 재생방법, 인공광합성 방법 및 수소 생산방법에 관한 것이다.The present invention relates to a photoelectrochemical (PEC) device comprising a photoanode, a photovoltaic and a cathode, and more particularly, a photoanode, CIGS (Cu(In,Ga)Se 2 ) photovoltaic cell and a photoelectrochemical (PEC) device including a cathode, a cofactor regeneration method using the device, an artificial photosynthesis method, and a hydrogen production method.

광전기화학(Photoelectrochemical; PEC) 플랫폼에서 태양에너지 동력의 생체촉매 반응(biocatalysis)은 전자공여체로서 물을 사용하여 지속 가능한 태양-화학적 전환을 촉진한다. 기계적으로, 부가가치 있는 화학물질의 생산을 위해서, 광전극은 광여기된(photoexcited) 전하 운반체를 산화환원 생체촉매 반응으로 전달하는 데에 빛과 전기를 필요로 한다. 대부분의 선행 생체촉매 PEC 연구는 NADH-의존적 효소 반응을 촉진하기 위해 1.2V의 높은 외부 바이어스를 필요로 했다(S. K. et al., Angew. Chem. Int. Ed. 2017, 56, 3827-3832).Solar-powered biocatalysis in a photoelectrochemical (PEC) platform promotes a sustainable solar-chemical conversion using water as an electron donor. Mechanically, for the production of value-added chemicals, photoelectrodes require light and electricity to transfer photoexcited charge carriers to a redox biocatalytic reaction. Most prior biocatalytic PEC studies required a high external bias of 1.2 V to promote NADH-dependent enzymatic reactions (SK et al. , Angew. Chem. Int. Ed. 2017, 56 , 3827-3832).

태양에너지를 단독 에너지원(즉, 외부 바이어스가 없음)으로 사용하기 위해, PEC-광전지(PEC-photovoltaic; PEC-PV) 탠덤(tandem) 장치에서 유기-무기 할로겐 페로브스카이트 태양전지(perovskite solar cell; PSC)를 사용하여 NADH-의존적 생체촉매 반응과 H2O 산화를 동시에 구동하였다(Y. W. Lee, et al., Nat. Commun. 2018, 9, 4208). 그러나 많은 요인들, 예를 들어 수분, 빛, O2, 전기적 바이어스의 복잡한 상호작용에 의해 PSC의 변질이 야기되며, 이러한 PSC 플랫폼의 낮은 안정성은 큰 장애물이 된다(R. Wang, et al., Adv. Funct. Mater. 2019, 0, 1808843). 예를 들면, 물 분자는 유기금속 페로브스카이트의 유기 양이온을 용해시키고 PSC의 구조를 변질시킨다. UV 또는 청색광 자체의 조사는 다공성(mesoporous) TiO2의 광촉매 효과에 의해 PSC의 분해로 이어진다. O2 존재 하에서도, 광여기된 PSC는 PSC의 유기 성분을 파괴하기 위해 O2 ㆍ- 라디칼을 생성한다.To use solar energy as the sole energy source (ie no external bias), organic-inorganic halogen perovskite solar cells in PEC-photovoltaic (PEC-PV) tandem devices were used. cell; PSC) to simultaneously drive NADH-dependent biocatalytic reaction and H 2 O oxidation (YW Lee, et al. , Nat. Commun. 2018, 9 , 4208). However, deterioration of PSCs is caused by the complex interaction of many factors, such as moisture, light, O 2 , and electrical bias, and the low stability of these PSC platforms is a major obstacle (R. Wang, et al. , Adv. Funct. Mater. 2019, 0 , 1808843). For example, water molecules dissolve organic cations in organometallic perovskite and alter the structure of PSCs. Irradiation of UV or blue light itself leads to the decomposition of PSCs by the photocatalytic effect of mesoporous TiO 2 . Even in the presence of O 2 , photoexcited PSCs generate O 2 radicals to destroy organic components of PSCs.

따라서, 본 발명자들은 뛰어난 광 및 화학적 안정성을 갖는 구리 인듐 갈륨 셀레늄[Cu(In,Ga)Se2; CIGS](Q. Cao, et al., Adv. Energy Mater. 2011, 1, 845-853)과 같은 무기 광전지가 생체촉매 PEC 시스템에 더 적합할 것으로 생각했다. 특히 CIGS 태양전지는 다이렉트 밴드갭(1.12 eV), 높은 흡수 계수(105cm-1), 높은 방사선 내성, 뛰어난 작동 내구성과 같은 광물리학적 장점으로 인해 박막(thin-film) PV 기술에서 상용화된 선두 주자이다(J. Ramanujam, U. P. Singh, Energ. Environ. Sci. 2017, 10, 1306-1319).Therefore, the present inventors have found that copper indium gallium selenium [Cu(In,Ga)Se 2 ; CIGS] (Q. Cao, et al. , Adv. Energy Mater. 2011, 1 , 845-853) thought that inorganic photovoltaic cells would be more suitable for biocatalytic PEC systems. In particular, CIGS solar cells have been commercialized in thin-film PV technology due to their photophysical advantages such as direct bandgap (1.12 eV), high absorption coefficient (10 5 cm -1 ), high radiation resistance, and excellent operating durability. Leading the way (J. Ramanujam, UP Singh, Energ. Environ. Sci. 2017, 10 , 1306-1319).

이에, 본 발명자들은 태양 에너지를 단독 에너지원으로 사용하여 생체촉매 반응을 유도하는 PEC 장치를 개발하고자 예의 노력한 결과, 광양극/CIGS 광전지/음극이 탠덤 구조를 이루는 PEC 장치를 개발하였으며, 광양극을 통해 투과된 광이 CIGS 광전지를 활성화시키며, NADH와 같은 보조인자 재생과 물 산화의 바이어스-자유 커플링을 구동하기에 충분히 높은 광전압을 제공하는 것을 확인하고, 본 발명을 완성하였다.Accordingly, the inventors of the present inventors made diligent efforts to develop a PEC device that induces a biocatalytic reaction using solar energy as a sole energy source. As a result, a PEC device in which a photoanode/CIGS photocell/cathode has a tandem structure was developed. It was confirmed that the transmitted light provided a photovoltage high enough to activate the CIGS photocell and drive the bias-free coupling of water oxidation and regeneration of cofactors such as NADH, thereby completing the present invention.

본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The information described in the background section is only for improving the understanding of the background of the present invention, and it does not include information forming prior art known to those of ordinary skill in the art to which the present invention pertains. may not be

본 발명의 목적은 태양에너지를 단독 에너지원으로 사용하여 생체촉매 반응을 유도하는 광전기화학 장치를 제공하는 데 있다.An object of the present invention is to provide a photoelectrochemical device that induces a biocatalytic reaction using solar energy as a sole energy source.

본 발명의 다른 목적은 상기 광전기화학 장치를 이용한 보조인자 재생방법, 인공광합성 방법 및 수소 생산방법을 제공하는 데 있다.Another object of the present invention is to provide a cofactor regeneration method, artificial photosynthesis method, and hydrogen production method using the photoelectrochemical device.

상기 목적을 달성하기 위하여, 본 발명은 광양극(photoanode), CIGS(Cu(In,Ga)Se2) 광전지(photovoltaic) 및 음극(cathode)을 포함하는 광전기화학(PEC) 장치를 제공한다.In order to achieve the above object, the present invention provides a photoelectrochemical (PEC) device including a photoanode, CIGS (Cu(In,Ga)Se 2 ) photovoltaic and a cathode (cathode).

본 발명은 또한, 상기 광전기화학(PEC) 장치에 산화형 보조인자, 전자전달 매개체 및 전자공여체를 포함하는 용액을 첨가하는 단계; 및 광원을 조사하여 상기 산화형 보조인자를 환원형 보조인자로 재생하는 단계를 포함하는 보조인자 재생방법을 제공한다.The present invention also comprises the steps of adding a solution containing an oxidation-type cofactor, an electron transport mediator and an electron donor to the photoelectrochemical (PEC) device; and irradiating a light source to regenerate the oxidized cofactor into a reduced cofactor.

본 발명은 또한, 상기 광전기화학(PEC) 장치에 산화형 보조인자, 전자전달 매개체 및 전자공여체를 포함하는 용액을 첨가한 다음, 광원을 조사하여 보조인자를 재생시키는 단계; 및 상기 재생된 보조인자를 산화환원효소의 기질의 산화환원 반응에 사용하여 유용물질을 제조하는 단계를 포함하는 인공광합성 방법을 제공한다.The present invention also comprises the steps of adding a solution containing an oxidation-type cofactor, an electron transfer mediator and an electron donor to the photoelectrochemical (PEC) device, and then irradiating a light source to regenerate the cofactor; and using the regenerated cofactor in a redox reaction of a substrate of an oxidoreductase to prepare a useful material.

본 발명은 또한, 상기 광전기화학(PEC) 장치에 전해질 용액을 첨가한 다음, 광원을 조사하는 단계를 포함하는 수소 생산방법을 제공한다.The present invention also provides a hydrogen production method comprising adding an electrolyte solution to the photoelectrochemical (PEC) device and then irradiating a light source.

강력한 광전지는 생체촉매 광전기화학 플랫폼에서 장기적인 산화환원 생체변환(biotransformations)에 필수적이며, 본 발명에 따른 바이어스 없는 광-생체촉매 환원 반응을 위한 단일 CIGS 광전지를 포함하는 광양극/CIGS/음극 탠덤 어셈블리는 가시광 하에서 보조인자(cofactor)-의존적 생체촉매 반응을 긴 시간 동안 높은 효율로 유도할 수 있으므로, 장기적인 인공광합성을 실현하기 위한 강력한 PEC-PV 장치로서 유용하다.A powerful photovoltaic cell is essential for long-term redox biotransformations in a biocatalytic photoelectrochemical platform, and a photoanode/CIGS/cathode tandem assembly comprising a single CIGS photocell for a bias-free photo-biocatalytic reduction reaction according to the present invention It is useful as a powerful PEC-PV device for realizing long-term artificial photosynthesis because it can induce a cofactor-dependent biocatalytic reaction with high efficiency for a long time under visible light.

도 1은 바이어스 없는 광-생체촉매 CO2 환원을 위해 개발된 단일 Cu(In,Ga)Se2 태양전지 및 물-산화 광양극에 기반한 탠덤 구조를 나타낸 것으로, 하이브리드 에너지 변환 플랫폼은 태양에너지에 의한 포름산 탈수소효소-유도 CO2를 포름산염으로의 변환에 충분한 광전압을 제공한다.
도 2는 바이어스-자유 생체촉매 CO2-포름산염 변환을 위한 CIGS-기반 PEC-PV 탠덤 장치의 개략도를 나타낸 것이다. 완전 탠덤 장치는 FeOOH/BiVO4 광전극(H2O 산화용), 단일 CIGS 광전지(광전극에 추가 바이어스 공급용) 및 mesoITO 전극(NADH 재생용)으로 구성된다. 이러한 탠덤 전지는 H2O 산화로부터 전자를 얻고, 전자를 mesoITO로 전달하며, NAD+로부터 NADH의 위치특이적 재생을 위해 유기금속 전자 매개체(M)를 환원시키기에 충분히 큰 광전압을 제공한다. TsFDH의 활성 부위에서, NADH는 nicotinamide moiety에서 CO2 분자로 hydride를 전달한 후 산화된 형태로 되돌아간다. SLG는 soda-lime glass, i-ZnO는 intrinsic ZnO, FTO는 fluorine-doped tin oxide, ITO는 indium tin oxide를 의미한다.
도 3A는 FeOOH/BiVO4-여과 광을 포함하거나/포함하지 않는 조명 하에서 CIGS 및 perovskite 태양전지의 J-V 곡선을 나타낸 것이고, 도 3B는 조사(xenon lamp, λ>400nm, P: 100mW cm-2)하에 BiVO4 및 FeOOH/BiVO4J-V 프로파일을 나타낸 것이다. 도 3C는 조명(xenon lamp, λ>400nm, P: 100mW cm-2)하에서 FeOOH/BiVO4, FeOOH/BiVO4/CIGS 및 FeOOH/BiVO4/Perovskite의 J-V 곡선을 나타내 것으로, counter electrode은 stainless steel이다. 도 3D는 2-전극 구성에서 2개의 서로 다른 탠덤 장치의 바이어스-자유 CPPE를 나타낸 것이다. 도 3B, C 및 D에서 FeOOH/BiVO4, CIGS 및 perovskite의 기하학적 표면적은 각각 0.45, 0.45 및 4cm2이며, 전해질 용액은 sodium phosphate buffer(100mM, pH 7.0), 스캔 속도는 50mV s-1이다.
도 4는 20개의 CIGS 태양전지에 대한 광전지 파라미터(예를 들어, Jsc, Voc, FF 및 PCE)의 box-and-whisker plots이다.
도 5는 CIGS 광전지의 외부 양자 효율 및 통합 광전류 밀도를 나타낸 것으로, 적용된 바이어스는 0V이다.
도 6은 전면 조명 하에서 500mM Na2SO3 산화에 대한 BiVO4의 광전류에 BiOI 증착 시간이 미치는 영향을 나타낸 것으로, BiOI 필름의 두께를 변경하여 광전류를 최적화했다. BiOI의 증착 시간이 증가함에 따라 BiVO4의 광전류가 증가하였고, BiVO4의 두께가 감소했다(도 7A 및 도 7B 참조). 그러나 BiVO4의 나노구조적 형태와 결정도는 변하지 않았다(도 7C, 도 7D, 도 8 참조). 이러한 결과는 BiVO4에서 FTO로의 광여기된 전자의 짧은 이동 경로 때문에, BiVO4 광양극의 얇은 두께가 광양극 전류(전면 조명 하에서)를 증가시키는 데 유리하다는 것을 의미한다.
도 7은 BiVO4 전극의 평면도 및 단면 주사 전자 현미경(SEM) 이미지를 나타낸 것으로, 도 7A 및 도 7C에서 BiOI의 증착 시간은 1분, 도 7B 및 도 7D에서 BiOI의 증착 시간은 3분이다. 도 7A, B, C 및 D의 scale bar는 각각 2000, 2000, 800 및 800nm이다.
도 8은 1분 및 3분의 증착 시간을 갖는 BiVO4의 X-선 회절(XRD) 패턴을 나타낸 것으로, 비교를 위해 JCPDS #01-083-1699의 표준 회절 패턴을 제시하였으며, 별표(*)는 FTO의 XRD 피크를 의미한다.
도 9는 FeOOH/BiVO4, CIGS 광전지 및 PSC의 I-V 프로파일 중첩을 나타낸 것으로, 교차점의 y 값은 탠덤 장치(즉, FeOOH/BiVO4/CIGS 및 FeOOH/BiVO4/Perovskite)의 추정 광전류를 나타낸다. FeOOH/BiVO4, CIGS 및 perovskite의 기하학적 표면적은 각각 4, 0.45 및 0.45cm2이다.
도 10A는 mesoITO 음극에 의한 NADH의 전기화학적 형성을 나타낸 것으로, M은 Cp*Rh(bpy)H2O2+이다. 도 10B는 mesoITO 전극의 주사 전자 현미경 이미지이며(top view, scale bar: 100nm). 도 10C는 스캔 속도에 대한 mesoITO 및 ITO 전극의 cyclic voltammograms의 의존성을 나타낸 것이다. 도 10D는 pH 7.0에서 산화환원 생체촉매 성분(즉, M 및 NAD+)을 순차적으로 첨가함에 따라 mesoITO 음극의 linear sweep voltammograms의 변화를 나타낸 것으로, 스캔 속도는 20mV s-1이다. 도 10E는 M을 포함하거나/포함하지 않는 mesoITO 및 ITO 음극에 의해 구동되는 NADH의 전기화학적 형성의 초기 속도 비교 결과를 나타낸 것으로, 반응 조건은 250μM M 및 1mM NAD+, mesoITO 및 ITO 전극의 기하학적 표면적은 1cm2이며, 전해질 용액은 sodium phosphate buffer(100mM, pH 7.0), counter electrode은 stainless steel이고, ND는 not detected를 의미한다.
도 11은 mesoITO의 단면 SEM 이미지로, scale bar는 10μm이다.
도 12는 mesoITO의 XRD 패턴을 나타낸 것으로, 아래는 ITO standard card(JCPDS #01-083-3350)의 해당 XRD 피크이다.
도 13은 NAD+의 존재 및 부재 하에서 mesoITO 전극(기하학적 표면적: 1cm-2)의 linear sweep voltammograms을 나타낸 것으로, 스캔 속도는 20mV s-1, counter electrode는 stainless steel, 용매는 sodium phosphate buffer(100mM, pH 7.0)이다.
도 14는 M 환원을 위한 mesoITO 및 평면 ITO 전극의 chronoamperogram을 나타낸 것으로, 기하학적 표면적은 1cm2, 적용 바이어스는 -0.28V vs. RHE이다. y축의 진수의 단위는 ampere이며, counter electrode은 stainless steel, 반응 조건은 250μM M in a sodium phosphate buffer(100mM, pH 7.0) with stirring이다.
도 15는 각각 H2O 산화 및 NADH 재생을 위한 FeOOH/BiVO4/CIGS 장치 및 mesoITO 전극의 |I|-V 플롯의 중첩을 나타낸 것으로, mesoITO의 |I|-V 곡선은 다음과 같이 구했다: (i) M 및 NAD+가 없는 mesoITO의 |I|-V 곡선 및 (ii) 교반 하에서 0.5mM M 및 1mM NAD+를 갖는 mesoITO의 |I|-V 곡선을 얻었다. 그 다음, NAD+의 존재 하에서 M 환원 반응에 의한 패러데이 전류를 얻기 위해 후자의 곡선으로부터 전자의 곡선을 뺀다. FeOOH/BiVO4, CIGS 및 mesoITO의 기하학적 표면적은 각각 4, 0.45 및 1cm2이며, 광원은 xenon lamp(λ>400nm, P: 100mW cm-2)이다.
도 16A는 3시간 반응 동안 FeOOH/BiVO4/CIGS/mesoITO에 의한 NADH의 바이어스-자유 광전기화학적 생산에 대한 일련의 대조 실험 결과이며, 도 16B는 상이한 RH 하에서 CIGS- 및 perovskite-기반 완전 탠덤 장치에 의해 구동되는 NADH 형성의 비교 결과를 나타낸 것이다. 도 16C는 CIGS-기반 완전 탠덤 전지에 의한 바이어스 없는 NADH 재생의 가능한 메커니즘을 나타낸 것으로, OC는 ohmic contact, CB는 conduction band, VB는 valence band, E F,n는 quasi-Fermi level of electrons, E F,h는 quasi-Fermi level of holes을 의미한다. 도 16D는 FeOOH/BiVO4/CIGS/mesoITO를 이용한 포름산염의 생체촉매 생산을 나타낸 것이며, 도 16E는 상이한 RH 하에서 72시간 반응 동안 CIGS- 및 perovskite-기반 완전 탠덤 전지에 의해 구동되는 효소적 포름산염 생산의 비교 결과로, ND는 not detected를 의미한다.
도 17은 1시간 반응시 NADH 재생 속도 및 3시간 반응시 NADH 농도에 대한 NAD+ 농도의 영향을 나타낸 것이다. Reaction condition: 0.5mM M and NAD+ dissolved in a sodium phosphate buffer(100mM, pH 7.0). Working electrode: FeOOH/BiVO4/CIGS. Counter electrode: mesoITO. Applied bias: 0V. Light source: xenon lamp(P: 100mW cm-2, λ>400nm).
도 18은 빛, CIGS, FeOOH 또는 BiVO4의 부존재(A) 및 M, NAD+, CO2 또는 TsFDH의 부존재(B)시, 바이어스 없는 광-생체촉매 CO2-포름산염 변환에 대한 대조 실험 결과이다. 실험군 반응 조건: 0.5mM M and 0.5mM NAD+ in a sodium phosphate buffer(100mM, pH 7.0). Working electrode: FeOOH/BiVO4/CIGS. Counter electrode: mesoITO. Light source: xenon lamp(P: 100mW cm-2, λ>400nm). Applied bias: 0V. Reaction time: 4 h. ND: not detected.
도 19는 TsFDH 농도(A) 및 NAD+ 농도(B)에 대한 포름산염 생산 속도의 의존성을 나타내 것이다. 도 19A의 반응 조건: 0.5mM M, 0.5mM NAD+, and TsFDH in a sodium phosphate buffer(100mM, pH 7.0). 도 19B의 반응 조건: 0.5mM M, NAD+, and 10U ml-1 TsFDH in a sodium phosphate buffer(100mM, pH 7.0). 실험 전 또는 실험 중 기체 CO2(99.999%)는 지속적으로 제거되었다. Working electrode: FeOOH/BiVO4/CIGS. Counter electrode: mesoITO. Applied bias: 0V. Light source: xenon lamp(λ>400 nm, P: 100mW cm-2).
도 20A는 제1 및 제2 사이클에서 CIGS-기반 완전 탠덤 장치의 바이어스-제어된 잠재적 광전기분해(CPPE)를 나타낸 것이며, 도 20B는 제1 및 제2 사이클의 12시간 생체촉매 광전기화학 반응에서 포름산염 농도를 나타낸 것이다. 제1 사이클(72시간) 후, 반응 용액을 교체하고 두 번째 CPPE를 수행하였다(도 16D는 제1 사이클의 전체 I-t 곡선을 표시한다). Reaction condition: 0.5mM M, 0.5mM NAD+, and 10U ml-1 TsFDH in a sodium phosphate buffer(100mM, pH 7.0). Working electrode: FeOOH/BiVO4/CIGS. Counter electrode: mesoITO. Light source: xenon lamp(λ>400nm, P: 100mW cm-2).
1 shows a tandem structure based on a single Cu(In,Ga)Se 2 solar cell and a water-oxidation photoanode developed for photo-biocatalytic CO 2 reduction without bias. The hybrid energy conversion platform is based on solar energy. Provides sufficient photovoltage for formate dehydrogenase-induced conversion of CO 2 to formate.
2 shows a schematic diagram of a CIGS-based PEC-PV tandem apparatus for bias-free biocatalytic CO 2 -formate conversion. The fully tandem device consists of a FeOOH/BiVO 4 photoelectrode (for H 2 O oxidation), a single CIGS photocell (to supply additional bias to the photoelectrode), and a meso ITO electrode (for NADH regeneration). This tandem cell provides a photovoltage large enough to gain electrons from H 2 O oxidation, transfer electrons to meso- ITO, and reduce organometallic electron mediators (M ) for site-specific regeneration of NADH from NAD+. . At the active site of Ts FDH, NADH returns to its oxidized form after transferring the hydride from the nicotinamide moiety to the CO 2 molecule. SLG stands for soda-lime glass, i-ZnO stands for intrinsic ZnO, FTO stands for fluorine-doped tin oxide, and ITO stands for indium tin oxide.
3A is FeOOH / BiVO 4-under including a filtered light or one trillion people that do not include / J of the CIGS and perovskite solar cell - will showing a V curve, Figure 3B is irradiated (xenon lamp, λ> 400nm, P: 100mW cm - 2 ) shows the J - V profiles of BiVO 4 and FeOOH/BiVO 4 under 2). Figure 3C shows the J - V curves of FeOOH/BiVO 4 , FeOOH/BiVO 4 /CIGS and FeOOH/BiVO 4 /Perovskite under illumination (xenon lamp, λ>400nm, P : 100mW cm -2 ), the counter electrode is It is stainless steel. 3D shows the bias-free CPPE of two different tandem devices in a two-electrode configuration. 3B, C and D, the geometric surface areas of FeOOH/BiVO 4 , CIGS and perovskite are 0.45, 0.45 and 4 cm 2 , respectively, the electrolyte solution is sodium phosphate buffer (100 mM, pH 7.0), and the scan rate is 50 mV s -1 .
4 is box-and-whisker plots of photovoltaic parameters (eg, J sc, V oc, FF and PCE) for 20 CIGS solar cells.
Figure 5 shows the external quantum efficiency and integrated photocurrent density of a CIGS photovoltaic cell, with applied bias being 0V.
6 shows the effect of BiOI deposition time on the photocurrent of BiVO 4 for 500 mM Na 2 SO 3 oxidation under front illumination, and the photocurrent was optimized by changing the thickness of the BiOI film. As the deposition time of BiOI increased, the photocurrent of BiVO 4 increased, and the thickness of BiVO 4 decreased (see FIGS. 7A and 7B). However, the nanostructure morphology and crystallinity of BiVO 4 did not change (see FIGS. 7C, 7D, and 8). These results imply that the thin thickness of the BiVO 4 photoanode is advantageous for increasing the photoanode current (under front illumination) because of the short migration path of photoexcited electrons from BiVO 4 to FTO.
7 is a plan view and cross-sectional scanning electron microscope (SEM) image of the BiVO 4 electrode. In FIGS. 7A and 7C, the deposition time of BiOI is 1 minute, and in FIGS. 7B and 7D, the deposition time of BiOI is 3 minutes. The scale bars in FIGS. 7A, B, C and D are 2000, 2000, 800 and 800 nm, respectively.
8 shows the X-ray diffraction (XRD) pattern of BiVO 4 with deposition times of 1 minute and 3 minutes, and the standard diffraction pattern of JCPDS #01-083-1699 is presented for comparison, and an asterisk (*) denotes the XRD peak of FTO.
Figure 9 shows the I - V profile overlap of FeOOH/BiVO 4 , CIGS photocells and PSCs, where the y-values at the intersections are the estimated photocurrents of the tandem devices (i.e., FeOOH/BiVO 4 /CIGS and FeOOH/BiVO 4 /Perovskite). indicates. The geometric surface areas of FeOOH/BiVO 4 , CIGS and perovskite are 4, 0.45 and 0.45 cm 2 , respectively.
Figure 10A shows the electrochemical formation of NADH by meso- ITO cathode, M is Cp*Rh(bpy)H 2 O 2+ . 10B is a scanning electron microscope image of a meso ITO electrode (top view, scale bar: 100 nm). Figure 10C shows the dependence of cyclic voltammograms of meso- ITO and ITO electrodes on the scan rate. 10D shows the change of linear sweep voltammograms of the meso- ITO negative electrode according to the sequential addition of redox biocatalyst components (ie, M and NAD + ) at pH 7.0, and the scan rate is 20 mV s -1 . Figure 10E is a shows an initial velocity comparison result of the electrochemical formation of NADH which is driven by a meso ITO and ITO cathode does not contain include M or / and the reaction conditions were 250μM M and 1mM NAD +, meso ITO, and the ITO electrode The geometric surface area is 1 cm 2 , the electrolyte solution is sodium phosphate buffer (100 mM, pH 7.0), the counter electrode is stainless steel, and ND means not detected.
11 is a cross-sectional SEM image of meso ITO, and the scale bar is 10 μm.
12 shows the XRD pattern of meso- ITO, below is the corresponding XRD peak of the ITO standard card (JCPDS #01-083-3350).
13 shows linear sweep voltammograms of a meso ITO electrode (geometric surface area: 1 cm -2 ) in the presence and absence of NAD + , the scan rate is 20 mV s -1 , the counter electrode is stainless steel, and the solvent is sodium phosphate buffer (100 mM , pH 7.0).
14 shows a chronoamperogram of meso- ITO and planar ITO electrodes for M reduction, with a geometric surface area of 1 cm 2 , and an applied bias of -0.28V vs. It is RHE. The unit of the y-axis is ampere, the counter electrode is stainless steel, and the reaction conditions are 250 μM M in a sodium phosphate buffer (100 mM, pH 7.0) with stirring.
15 is a view of FeOOH/BiVO 4 /CIGS device and meso- ITO electrode for H 2 O oxidation and NADH regeneration, respectively. I |- showing the overlap of the V plots, the | of the meso ITO. I |- V curves were obtained as follows: (i) | of meso ITO without M and NAD + I |- V curves and (ii) of meso ITO with 0.5 mM M and 1 mM NAD + under stirring | I |- V curves were obtained. Then, the curve of the former is subtracted from the curve of the latter to obtain the Faraday current by the M reduction reaction in the presence of NAD + . The geometric surface areas of FeOOH/BiVO 4 , CIGS and meso- ITO are 4, 0.45 and 1 cm 2 , respectively, and the light source is a xenon lamp (λ>400 nm, P : 100 mW cm -2 ).
16A is a series of control experimental results for bias-free photoelectrochemical production of NADH by FeOOH/BiVO 4 /CIGS/ meso ITO during 3 h reaction, and FIG. 16B is CIGS- and perovskite-based full tandem apparatus under different RH. The comparative results of NADH formation driven by 16C shows a possible mechanism of NADH regeneration without bias by a CIGS-based full tandem cell, where OC is an ohmic contact, CB is a conduction band, VB is a valence band, E F,n is a quasi-Fermi level of electrons, E F,h means quasi-Fermi level of holes. FIG. 16D shows the biocatalytic production of formate using FeOOH/BiVO 4 /CIGS/ meso ITO, and FIG. 16E shows enzymatic formate driven by CIGS- and perovskite-based full tandem cells for 72 h reaction under different RH. As a result of comparison of production, ND means not detected.
17 shows the effect of the NAD + concentration on the NADH regeneration rate at the time of 1 hour reaction and the NADH concentration at the reaction time of 3 hours. Reaction condition: 0.5mM M and NAD + dissolved in a sodium phosphate buffer (100mM, pH 7.0). Working electrode: FeOOH/BiVO 4 /CIGS. Counter electrode: meso ITO. Applied bias: 0V. Light source: xenon lamp ( P : 100mW cm -2 , λ>400nm).
18 is a control experiment for photo-biocatalytic CO 2 -formate conversion without bias in the absence of light, CIGS, FeOOH or BiVO 4 (A) and in the absence of M , NAD + , CO 2 or Ts FDH (B). It is the result. Experimental group reaction conditions: 0.5mM M and 0.5mM NAD + in a sodium phosphate buffer (100mM, pH 7.0). Working electrode: FeOOH/BiVO 4 /CIGS. Counter electrode: meso ITO. Light source: xenon lamp ( P : 100mW cm -2 , λ>400nm). Applied bias: 0V. Reaction time: 4 h. ND: not detected.
19 shows the dependence of formate production rate on Ts FDH concentration (A) and NAD + concentration (B). 19A reaction conditions: 0.5 mM M, 0.5 mM NAD + , and Ts FDH in a sodium phosphate buffer (100 mM, pH 7.0). 19B reaction conditions: 0.5 mM M, NAD + , and 10U ml -1 Ts FDH in a sodium phosphate buffer (100 mM, pH 7.0). Gas CO 2 (99.999%) was continuously removed before or during the experiment. Working electrode: FeOOH/BiVO 4 /CIGS. Counter electrode: meso ITO. Applied bias: 0V. Light source: xenon lamp(λ>400 nm, P : 100mW cm -2 ).
Figure 20A shows the bias-controlled potential photoelectrolysis (CPPE) of a CIGS-based fully tandem device in the first and second cycles, and Figure 20B shows the form in a 12 h biocatalytic photoelectrochemical reaction of the first and second cycles. It indicates the acid concentration. After the first cycle (72 h), the reaction solution was changed and a second CPPE was performed ( FIG. 16D shows the overall I - t curve of the first cycle). Reaction condition: 0.5mM M, 0.5mM NAD + , and 10U ml -1 Ts FDH in a sodium phosphate buffer (100mM, pH 7.0). Working electrode: FeOOH/BiVO 4 /CIGS. Counter electrode: meso ITO. Light source: xenon lamp(λ>400nm, P : 100mW cm -2 ).

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.

본 발명에서는 광전기화학(Photoelectrochemical; PEC)-광전지(photovoltaic; PV) 탠덤(tandem) 장치에 단일 CIGS 광전지를 사용한 첫 번째 예와 상기 장치의 전자공여체로서 물을 사용하는 바이어스 없는 생체촉매 CO2 환원에의 응용을 제시한다.In the present invention, a first example of using a single CIGS photocell in a photoelectrochemical (PEC)-photovoltaic (PV) tandem device and a bias-free biocatalytic CO 2 reduction using water as an electron donor of the device presents the application of

도 2에 도시된 바와 같이, 탠덤 흡수체는 FeOOH/BiVO4 상부 전지(광극) 및 단일 CIGS 하부 전지(PV)로 구성되며, 음극인 다공성 인듐 주석 산화물(mesoporous indium tin oxide; mesoITO) 전극과 연결된다. n-형 반도체 중 H2O 산화에서 최고의 성능을 발휘하는 물질인 BiVO4 광전극은 mesoITO 음극으로의 전자 이동을 위해, H2O로부터의 전자추출체로서 기능을 한다. 광양극을 통해 투과된 광은 CIGS 태양전지를 활성화시키며, 이는 NADH 재생과 물 산화의 바이어스-자유 커플링을 구동하기에 충분히 높은 광전압을 제공한다. 본 발명에 따른 PEC-PV 탠덤 시스템은 이전에 보고된 이중 또는 다중 접합 PV(예를 들어, 이중 접합 Si 태양전지(F. F. Abdi, et al., Nat. Commun. 2013, 4, 2195) 및 3중 접합 Si PV(S. Y. Reece, et al., Science 2011, 334, 645-648))를 사용하는 시스템에 비해 훨씬 간단하고 경제적이다.As shown in FIG. 2 , the tandem absorber is composed of an FeOOH/BiVO 4 upper cell (photoelectrode) and a single CIGS lower cell (PV), and is connected to an anode, a mesoporous indium tin oxide ( meso ITO) electrode. do. Among n-type semiconductors , the BiVO 4 photoelectrode, a material that exhibits the best performance in H 2 O oxidation, functions as an electron extractor from H 2 O for electron transfer to the meso-ITO cathode. Light transmitted through the photoanode activates the CIGS solar cell, which provides a photovoltage high enough to drive the bias-free coupling of NADH regeneration and water oxidation. The PEC-PV tandem system according to the present invention can be used with previously reported double or multi-junction PVs (e.g., double-junction Si solar cells (FF Abdi, et al. , Nat. Commun. 2013, 4 , 2195) and triple It is much simpler and more economical than systems using bonded Si PVs (SY Reece, et al. , Science 2011, 334, 645-648).

전기촉매 mesoITO 전극은 전자를 사용하여 NAD+로부터 1,4-NADH의 위치특이적 재생을 위한 Rh-기반 전자전달 매개체[Cp*Rh(bpy)H2O2+, M]를 환원시킨다. 그 다음, Thiobacillus sp. KNK65MA 유래 포름산 탈수소효소(formate dehydrogenase)(TsFDH)는 1,4-NADH로부터 수소화이온을 받아 CO2를 포름산염으로 전환시킨다. 본 발명에 따른 탠덤 장치로 구동되는 TsFDH 생체촉매는 72시간 이상 지속되며, 5.6mM 포름산염을 생성시켰다. 이는 각각 PEC 플랫폼을 사용하는 매개된 전자 전달-타입 생체촉매 중에서 가장 높은 기록된 반응 시간 및 농도이다.The electrocatalytic meso- ITO electrode uses electrons to reduce the Rh-based electron transport mediator [Cp * Rh(bpy)H 2 O 2+ , M ] for the site-specific regeneration of 1,4-NADH from NAD + . Then, Thiobacillus sp. KNK65MA-derived formate dehydrogenase ( Ts FDH) converts CO 2 into formate by receiving hydride ions from 1,4-NADH. The Ts FDH biocatalyst driven by the tandem device according to the present invention lasted more than 72 hours and produced 5.6 mM formate. These are the highest recorded reaction times and concentrations, respectively, among mediated electron transfer-type biocatalysts using the PEC platform.

본 발명에서는 자연 광합성을 모방하여 태양에너지와 물을 유용한 화학물질로 변환 가능한 광전기화학적 전지(PEC cell)를 기반으로 NADH를 재생하기 위하여, CIGS-기반 완전 탠덤 광전기 화학 장치(즉, FeOOH/BiVO4/CIGS/mesoITO)를 제작하였다.In the present invention, in order to reproduce NADH based on a photoelectrochemical cell (PEC cell) capable of converting solar energy and water into useful chemicals by mimicking natural photosynthesis, a CIGS-based fully tandem photoelectrochemical device (i.e., FeOOH/BiVO 4 /CIGS/ meso ITO) was prepared.

따라서, 본 발명은 일 관점에서, 광양극(photoanode), CIGS(Cu(In,Ga)Se2) 광전지(photovoltaic) 및 음극(cathode)을 포함하는 광전기화학(PEC) 장치에 관한 것이다.Accordingly, the present invention, in one aspect, relates to a photoelectrochemical (PEC) device comprising a photoanode, a CIGS (Cu(In,Ga)Se 2 ) photovoltaic and a cathode.

본 명세서에서, 용어 "광전기화학(photoelectrochemical; PEC) 장치"란, 광에너지를 전기화학에너지로 전환하는 전기화학적 장치를 의미하며, "광전기화학(Photoelectrochemical; PEC)-광전지(photovoltaic; PV) 탠덤(tandem) 장치"란 광전지를 포함하는 광전기화학 장치로서, 광양극; 광전지 및 음극이 탠덤 구조를 이루는 장치를 의미한다.As used herein, the term "photoelectrochemical (PEC) device" means an electrochemical device that converts light energy into electrochemical energy, and "Photoelectrochemical (PEC)-photovoltaic (PV) tandem ( "tandem) device" means a photoelectrochemical device comprising a photocell, comprising: a photoanode; It refers to a device in which a photovoltaic cell and a negative electrode form a tandem structure.

본 발명에 있어서, 상기 광양극, CIGS 광전지 및 음극이 탠덤(tandem) 구조를 이루는 것을 특징으로 할 수 있다.In the present invention, the photoanode, the CIGS photocell, and the cathode may be characterized in that they form a tandem structure.

본 발명에 있어서, 용어 "탠덤(tandem) 구조"란, 서로 보완적인 2개 이상의 광흡수체가 직렬로 적층되어 형성되는 구조를 의미한다. 태양광을 모두 이용할 수 있다는 점과 두 개 이상의 광흡수체를 직렬로 연결하였으므로 광전압이 증가하게 되어 높은 효율을 얻을 수 있다는 장점이 있다.In the present invention, the term “tandem structure” refers to a structure in which two or more light absorbers complementary to each other are stacked in series. There are advantages in that all of the sunlight can be used and that since two or more light absorbers are connected in series, the photo voltage increases and high efficiency can be obtained.

본 발명에 있어서, 상기 광양극은 FeOOH/BiVO4, NiOOH/BiVO4, NiOOH/FeOOH/BiVO4, α-Fe2O3 및 WO3로 구성된 군에서 선택되는 어느 하나인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는 FeOOH/BiVO4인 것을 특징으로 할 수 있다.In the present invention, the photoanode is any one selected from the group consisting of FeOOH/BiVO 4 , NiOOH/BiVO 4 , NiOOH/FeOOH/BiVO 4 , α-Fe 2 O 3 and WO 3 It may be characterized in that it is , but is not limited thereto. Preferably, it may be characterized as FeOOH/BiVO 4 .

본 명세서에서, 용어 "광전지(photovoltaic)"란, "태양전지(solar cell)"와 동일한 의미로 사용되며, 태양에너지를 전기에너지로 변환할 수 있는 장치를 의미한다.As used herein, the term “photovoltaic” is used in the same sense as “solar cell” and refers to a device capable of converting solar energy into electrical energy.

본 발명에 있어서, "CIGS(Cu(In,Ga)Se2) 광전지"는 구리(Copper; Cu), 인듐(Indium; In), 갈륨(Gallium; Ga), 셀레늄(Selenide; Se)의 화합물을 광흡수층으로 이용한 광전지이다.In the present invention, "CIGS (Cu(In,Ga)Se 2 ) photovoltaic cell" is a compound of copper (Copper; Cu), indium (In), gallium (Ga), selenium (Selenide; Se) A photovoltaic cell used as a light absorption layer.

본 발명에 있어서, 상기 음극은 ITO(indium tin oxide), FTO(fluorine-doped tin oxide), 스테인리스강(stainless steel), TiO2, Pt, 유리탄소전극(glassy carbon electrode), 탄소직물(carbon cloth), 카본펠트(carbon felt) 및 탄소나노튜브 버키페이퍼(carbon nanotube buckypaper)로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the negative electrode is ITO (indium tin oxide), FTO (fluorine-doped tin oxide), stainless steel (stainless steel), TiO 2 , Pt, glassy carbon electrode (glassy carbon electrode), carbon cloth (carbon cloth) ), carbon felt (carbon felt) and carbon nanotube buckypaper (carbon nanotube buckypaper) may be characterized in that any one or more selected from the group consisting of, but is not limited thereto.

본 발명에 있어서, 상기 ITO는 다공성 인듐 주석 산화물(mesoporous indium tin oxide; mesoITO)인 것을 특징으로 할 수 있다. 따라서, 바람직하게는 상기 음극은 mesoITO인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the ITO may be characterized in that porous indium tin oxide (mesoporous indium tin oxide; meso ITO). Therefore, preferably, the negative electrode may be characterized as meso ITO, but is not limited thereto.

본 발명에 있어서, 상기 광전기화학 장치는 보조인자 재생용 또는 수소 생산용 장치인 것을 특징으로 할 수 있다.In the present invention, the photoelectrochemical device may be a device for cofactor regeneration or hydrogen production.

강력한 광전지는 생체촉매 광전기화학 플랫폼에서 장기적인 산화환원 생체변환에 필수적이다. 본 발명의 일 실시예에서, 광양극/CIGS/음극 탠덤 어셈블리는 가시광 하에서 보조인자(cofactor)-의존적 생체촉매 CO2 환원을 유도하며, 72시간의 긴 반응 시간과 보조인자의 최대 전환 빈도(0.236 h-1) 및 총 전환 수(11.2)를 달성하였다. CIGS 구성요소의 우수한 광전기화학적 안정성이 이러한 성능에 기여한다. CIGS를 페로브스카이트 태양전지(perovskite solar cell; PSC)로 대체하면 PSC의 수분-유도 분해 때문에 습도가 높은 환경에서 불안정한 광전류 및 낮은 농도의 포름산염이 발생하는 것을 확인하였다.Powerful photovoltaic cells are essential for long-term redox biotransformation in biocatalytic photoelectrochemical platforms. In one embodiment of the present invention, the photoanode/CIGS/cathode tandem assembly induces a cofactor-dependent biocatalytic CO 2 reduction under visible light, with a long reaction time of 72 hours and a maximum conversion frequency of cofactors (0.236). h −1 ) and a total number of conversions (11.2). The excellent photoelectrochemical stability of the CIGS component contributes to this performance. It was confirmed that when CIGS was replaced with a perovskite solar cell (PSC), unstable photocurrent and low concentration of formate were generated in a humid environment due to moisture-induced decomposition of PSC.

본 발명의 일 실시예에서, 광양극/CIGS/음극 탠덤 어셈블리를 이용하여 가시광 하에서 물 분해 반응(산소기체 및 수소기체 생성)을 유도하여 이를 전류밀도-시간 그래프를 통해 확인하였다. 이는 본 발명에 따른 PEC 장치를 이용하여 효과적으로 수소를 생산할 수 있음을 의미한다.In an embodiment of the present invention, a water decomposition reaction (oxygen gas and hydrogen gas generation) was induced under visible light using a photoanode/CIGS/cathode tandem assembly, and this was confirmed through a current density-time graph. This means that hydrogen can be effectively produced using the PEC device according to the present invention.

본 발명에서는, 바이어스 없는 광-생체촉매 CO2 환원을 위한 PEC-PV 탠덤 구성에서의 단일 CIGS 광전지를 제시했다. 본 발명자들은 NADH 재생 및 포름산염으로의 CO2의 효소적 전환을 유도하는 물-산화 FeOOH/BiVO4 광양극 및 mesoITO 음극과 CIGS 광전지를 결합시켰다. CIGS 및 FeOOH/BiVO4 모두에 의해 생성된 광전압의 상승 효과는 Rh-기반 전자 매개체 및 NAD+ 보조인자를 통해 mesoITO 전극이 TsFDH로의 광여기된 전자 전달 캐스케이드를 달성할 수 있게 했다. CIGS-기반 완전 탠덤 장치(즉, FeOOH/BiVO4/CIGS/mesoITO)는 보조인자 재생을 통한 생체촉매 PEC 시스템의 기준 성능(포름산염 농도: 5.6mM, TOFNAD+: 0.236h-1, TTNNAD+: 11.2)을 달성했다. CIGS 광전지의 탁월한 광전기화학적 안정성은 새로운 기준점에 영향을 미쳤다. CIGS를 페로브스카이트로 대체한 광전지의 경우, PSC의 물-유도 변질 때문에 40, 60 및 80% RH 하에서 더 낮은 효소적 생산성을 나타냈다. 결과적으로, 본 발명에서는 CIGS 광전지를 장기적인 인공광합성을 실현하기 위한 적절한 에너지 소재로 확립했다.In the present invention, a single CIGS photovoltaic cell in a PEC-PV tandem configuration for bias-free photo-biocatalytic CO 2 reduction is presented. We combined a CIGS photovoltaic cell with a water-oxidized FeOOH/BiVO 4 photoanode and meso ITO cathode that induces NADH regeneration and enzymatic conversion of CO 2 to formate. The synergistic effect of photovoltages generated by both CIGS and FeOOH/BiVO 4 enabled meso- ITO electrodes to achieve a photo-excited electron transfer cascade to Ts FDH via Rh-based electron mediators and NAD + cofactors. A CIGS-based fully tandem device (i.e., FeOOH/BiVO 4 /CIGS/ meso- ITO) was tested for the baseline performance of a biocatalytic PEC system with cofactor regeneration (formate concentration: 5.6 mM, TOF NAD+ : 0.236h -1 , TTN NAD+). : 11.2) was achieved. The excellent photoelectrochemical stability of CIGS photovoltaic cells served as a new reference point. The photovoltaic cells in which CIGS was replaced with perovskite showed lower enzymatic productivity under 40, 60 and 80% RH due to water-induced degradation of PSCs. Consequently, in the present invention, CIGS photovoltaic cells have been established as a suitable energy material for realizing long-term artificial photosynthesis.

본 명세서에서, '바이어스 없는(unbiased)' 또는 '바이어스-자유(bias-free)'는 동일한 의미로 사용되며, 태양 에너지를 단독 에너지원으로 사용하는 것을 의미한다.In this specification, the terms 'unbiased' or 'bias-free' are used in the same sense and refer to using solar energy as a sole energy source.

따라서, 본 발명은 다른 관점에서, (a) 상기 광전기화학(PEC) 장치에 산화형 보조인자, 전자전달 매개체 및 전자공여체를 포함하는 용액을 첨가하는 단계; 및 (b) 상기 광전기화학(PEC) 장치에 광원을 조사하여 상기 산화형 보조인자를 환원형 보조인자로 재생하는 단계를 포함하는 보조인자 재생방법에 관한 것이다.Accordingly, the present invention, in another aspect, (a) adding a solution containing an oxidation-type cofactor, an electron transport mediator and an electron donor to the photoelectrochemical (PEC) device; and (b) irradiating a light source to the photoelectrochemical (PEC) device to regenerate the oxidized cofactor into a reduced cofactor.

본 발명에 있어서, 상기 전자공여체는 물(H2O), 트리에탄올아민(TEOA, triethanolamine), 에틸렌디아민테트라아세트산(EDTA, Ethylenediaminetetraacetic acid), 시트르산(Citric acid), 아스코르빈산(Ascorbic acid) 및 옥살산(Oxalic acid)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 바람직하게는 물인 것을 특징으로 할 수 있다.In the present invention, the electron donor is water (H 2 O), triethanolamine (TEOA, triethanolamine), ethylenediaminetetraacetic acid (EDTA, Ethylenediaminetetraacetic acid), citric acid (Citric acid), ascorbic acid (Ascorbic acid) and oxalic acid (Oxalic acid) may be characterized as selected from the group consisting of, but is not limited thereto, and may preferably be characterized as water.

트리에탄올아민, 에틸렌디아민테트라아세트산 등의 유기화합물을 전자공여체로 사용할 경우 부산물 내 유기화합물이 잔존하는 단점이 있으나, 물을 전자공여체로 사용할 경우 친환경적인 장점이 있다.When an organic compound such as triethanolamine or ethylenediaminetetraacetic acid is used as an electron donor, organic compounds remain in the by-product, but when water is used as an electron donor, there is an environmentally friendly advantage.

"보조인자(cofactor)"란 생명체 내에서 단백질 등의 작용을 돕는 인자를 의미한다."Cofactor" means a factor that helps the action of a protein or the like in an organism.

본 발명에 있어서, 광화학적 환원의 대상이 되는 상기 산화형 보조인자는 니코틴아미드 보조인자인 NAD+(nicotinamide adenine dinucleotide), NADP+(nicotinamide adenine dinucleotide phosphate), 플라빈 보조인자인 FAD+(flavin adenine dinucleotide) 및 FMN+(flavin monoucleotide)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the oxidized cofactor to be photochemically reduced is a nicotinamide cofactor NAD + (nicotinamide adenine dinucleotide), NADP + (nicotinamide adenine dinucleotide phosphate), a flavin cofactor FAD + (flavin adenine dinucleotide) and It may be characterized in that it is selected from the group consisting of FMN + (flavin monoucleotide), but is not limited thereto.

본 발명에 있어서, 상기 광전기화학 장치에 광원을 조사하여 재생되는 환원형 보조인자는 NADH, NADPH, FADH2 및 FMNH2로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, The reduction cofactor to be reproduced by irradiating the light source to the opto-electronic device, chemical NADH, NADPH, FADH and FMNH 2, but can be characterized as being selected from the group consisting of 2, without being limited thereto.

본 발명에 있어서, 상기 전자전달 매개체는 메틸비올로겐, 루테늄(Ⅱ) 복합체 및 로듐(Ⅲ) 복합체로 구성되는 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the electron transport mediator may be selected from the group consisting of methylviologen, ruthenium (II) complex, and rhodium (III) complex, but is not limited thereto.

본 발명에 있어서, 상기 전자전달 매개체는 광유도 전자를 산화형 보조인자에 전달을 위한 1차 매개체의 용도로 사용된다. 일반적으로 전자 매개체를 거치지 않고 바로 보조인자로 전자가 전달되는 직접 전자전달(direct electron transfer)은 보조인자의 아이소머와 다이머의 형성을 초래한다. 이는 효소의 활성이 없어 산화환원효소 반응에서 최종 생성물을 얻을 수 없다.In the present invention, the electron transport mediator is used as a primary mediator for transferring the photoinduced electrons to the oxidation-type cofactor. In general, direct electron transfer, in which electrons are transferred directly to a cofactor without passing through an electron mediator, results in the formation of isomers and dimers of the cofactor. It does not have enzyme activity, so the final product cannot be obtained in the oxidoreductase reaction.

본 발명에 있어서, 상기 로듐(Ⅲ) 복합체는 바람직하게는 (펜타메틸사이클로펜타디에닐-2,2'-비피리딘클로로)로듐(III):[Cp*Rh(bpy)H2O]2+인 것을 특징으로 할 수 있다. 본 명세서에서, 상기 [Cp*Rh(bpy)H2O2+]는 M으로 표현되며, Cp*는 C5Me5, bpy는 2,2'-bipyridine을 의미한다.In the present invention, the rhodium(III) complex is preferably (pentamethylcyclopentadienyl-2,2'-bipyridinechloro)rhodium(III):[Cp * Rh(bpy)H 2 O] 2+ It can be characterized as In the present specification, the [Cp * Rh(bpy)H 2 O 2+ ] is represented by M , Cp* is C 5 Me 5 , and bpy means 2,2'-bipyridine.

높은 위치 선택성(regio-selectivity)을 갖는 로듐(rhodium)계 유기금속 화합물은 효소적으로 활성인 NADH를 생산하는 주요 매개체로 사용되고 있다.A rhodium-based organometallic compound having high regio-selectivity is used as a major medium for producing enzymatically active NADH.

본 발명은 또 다른 관점에서, (a) 상기 광전기화학(PEC) 장치에 산화형 보조인자, 전자전달 매개체 및 전자공여체를 포함하는 용액을 첨가한 다음, 광원을 조사하여 보조인자를 재생시키는 단계; 및 (b) 상기 재생된 보조인자를 산화환원효소의 기질의 산화환원 반응에 사용하여 유용물질을 제조하는 단계를 포함하는 인공광합성 방법에 관한 것이다.In another aspect, the present invention provides a method comprising: (a) adding a solution containing an oxidation-type cofactor, an electron transport mediator and an electron donor to the photoelectrochemical (PEC) device, and then irradiating a light source to regenerate the cofactor; and (b) using the regenerated cofactor in a redox reaction of a substrate of an oxidoreductase to prepare a useful substance.

본 발명의 인공광합성은 자연광합성의 명반응을 모방하여 광양극, CIGS 광전지 및 음극을 포함하는 광전기화학(PEC) 장치를 이용하여 보조인자를 재생하고, 암반응을 모방하여 모든 산화환원효소를 이용한 효소반응으로 유용물질을 제조하는 과정을 의미한다.The artificial photosynthesis of the present invention mimics the light reaction of natural photosynthesis to regenerate cofactors using a photoelectrochemical (PEC) device including a photoanode, CIGS photocell, and anode, and mimics the dark reaction to mimic the dark reaction and enzymatic reaction using all oxidoreductases. It refers to the process of manufacturing useful substances.

본 발명에 있어서, 인공광합성에 의해 생산되는 유용물질은 포름산(formic acid), 글루타메이트(glutamate), 아스파테이트(aspartate), 젖산(lactate), 인공아미노산(unnatural amino acid), 이부프로펜(Ibuprofen), 프라바스타틴(Pravastatin) 및 텍솔(Texol) 등을 포함하는 신약원료물질, 광학이성질체와 같은 고부가가치의 정밀화학물질뿐만 아니라 메탄올과 같은 화학연료, 기능성조미료 등을 예시할 수 있으나, 산화환원효소 반응에 의해 생성되는 물질을 모두 포함한다.In the present invention, useful substances produced by artificial photosynthesis are formic acid, glutamate, aspartate, lactate, unnatural amino acid, ibuprofen, pravastatin New drug raw materials including (Pravastatin) and Texol, high value-added fine chemicals such as optical isomers, as well as chemical fuels such as methanol, functional seasonings, etc. can be exemplified, but produced by oxidoreductase reaction includes all substances.

본 발명에 있어서, 상기 전자공여체는 물(H2O), 트리에탄올아민(TEOA, triethanolamine), 에틸렌디아민테트라아세트산(EDTA, Ethylenediaminetetraacetic acid), 시트르산(Citric acid), 아스코르빈산(Ascorbic acid) 및 옥살산(Oxalic acid)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 바람직하게는 물인 것을 특징으로 할 수 있다.In the present invention, the electron donor is water (H 2 O), triethanolamine (TEOA, triethanolamine), ethylenediaminetetraacetic acid (EDTA, Ethylenediaminetetraacetic acid), citric acid (Citric acid), ascorbic acid (Ascorbic acid) and oxalic acid (Oxalic acid) may be characterized as selected from the group consisting of, but is not limited thereto, and may preferably be characterized as water.

본 발명에 있어서, 상기 산화형 보조인자는 NAD+(nicotinamide adenine dinucleotide), NADP+(nicotinamide adenine dinucleotide phosphate), FAD+(flavin adenine dinucleotide) 및 FMN+(flavin monoucleotide)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the oxidation-type cofactor is selected from the group consisting of NAD + (nicotinamide adenine dinucleotide), NADP + (nicotinamide adenine dinucleotide phosphate), FAD + (flavin adenine dinucleotide) and FMN + (flavin monoucleotide). can, but is not limited thereto.

본 발명에 있어서, 상기 전자전달 매개체는 메틸비올로겐, 루테늄(Ⅱ) 복합체 및 로듐(Ⅲ) 복합체로 구성되는 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the electron transport mediator may be selected from the group consisting of methylviologen, ruthenium (II) complex, and rhodium (III) complex, but is not limited thereto.

본 발명에 있어서, 상기 로듐(Ⅲ) 복합체는 (펜타메틸사이클로펜타디에닐-2,2'-비피리딘클로로)로듐(III):[Cp*Rh(bpy)H2O]2+인 것을 특징으로 할 수 있다.In the present invention, the rhodium(III) complex is (pentamethylcyclopentadienyl-2,2'-bipyridinechloro)rhodium(III):[Cp * Rh(bpy)H 2 O] 2+ can be done with

본 발명에 있어서, 상기 산화환원효소는 FDH(formate dehydrogenase), GDH(glutamate dehydrogenase), ADH(Alcohol dehydrogenase), G6PDH(glucose-6-phosphate dehydrogenase), LDH(lactic dehydrogenase), MDH(malate dehydrogenase) 및 SDH(succinic dehydrogenase)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the oxidoreductase is FDH (formate dehydrogenase), GDH (glutamate dehydrogenase), ADH (Alcohol dehydrogenase), G6PDH (glucose-6-phosphate dehydrogenase), LDH (lactic dehydrogenase), MDH (malate dehydrogenase) and It may be characterized in that it is selected from the group consisting of succinic dehydrogenase (SDH), but is not limited thereto.

본 발명의 일 실시예에서, 포름산(formic acid)의 생체촉매 반응을 위하여 사용한 FDH는 formate oxidation과 이산화탄소 reduction을 동시에 활성화하는 산화환원효소이다. NADH-dependent FDH는 그 발현 종에 따라 상업적으로 손쉽게 이용 가능한 CbFDH를 비롯하여 CsFDH, AaFDH, PsFDH, TsFDH등의 여러 종류가 존재하나, 일반적으로 FDH는 formate oxidation 반응에 대한 선호도가 이산화탄소 reduction 반응에 대한 것 보다 더 크기 때문에 FDH에 의한 이산화탄소 고정화 반응을 실현하는데 어려움이 있었다. 하지만 최근 연구에 따르면, Thiobacillus sp. 유래의 FDH(TsFDH)는 다른 FDH에 비해 이산화탄소 reduction 반응에 대한 촉매활성이 우세하다는 결과가 보고되었다(H, Choe et al., PlosONE, 9:e103111, 2014). 따라서 본 발명의 일 실시예에서는 TsFDH를 생체 촉매로 사용하여 CO2 고정화 반응을 수행하였다.In one embodiment of the present invention, FDH used for the biocatalytic reaction of formic acid is an oxidoreductase that simultaneously activates formate oxidation and carbon dioxide reduction. There are several types of NADH-dependent FDH, such as CsFDH, AaFDH, PsFDH, and TsFDH, including commercially available CbFDH, depending on the expression species. In general, FDH has the preference for the formate oxidation reaction, but the preference for the carbon dioxide reduction reaction. Because of the larger size, it was difficult to realize the carbon dioxide immobilization reaction by FDH. However, according to a recent study, Thiobacillus sp. It has been reported that derived FDH (TsFDH) has superior catalytic activity for carbon dioxide reduction reaction compared to other FDHs (H, Choe et al., PlosONE, 9:e103111, 2014). Therefore, in an embodiment of the present invention, CO 2 immobilization reaction was performed using TsFDH as a biocatalyst.

본 발명에 있어서, 상기 재생된 보조인자는 (b) 단계의 산화환원 반응 후 산화되어 (a) 단계에 재첨가 되는 것을 특징으로 할 수 있다.In the present invention, the regenerated cofactor may be oxidized after the redox reaction in step (b) and re-added in step (a).

본 발명은 또 다른 관점에서, 상기 광전기화학(PEC) 장치에 전해질 용액을 첨가한 다음, 광원을 조사하는 단계를 포함하는 수소 생산방법에 관한 것이다.In another aspect, the present invention relates to a hydrogen production method comprising adding an electrolyte solution to the photoelectrochemical (PEC) device and then irradiating a light source.

본 발명에 있어서, 상기 전해질 용액은 물(H2O) 및 이온화 화합물을 포함하고, 상기 이온화 화합물은 염화리튬, 염화칼륨, 염화나트륨, 염화칼슘, 질산칼륨, 질산나트륨, 황산칼륨, 황산나트륨 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the electrolyte solution includes water (H 2 O) and an ionizing compound, and the ionizing compound is lithium chloride, potassium chloride, sodium chloride, calcium chloride, potassium nitrate, sodium nitrate, potassium sulfate, sodium sulfate, and mixtures thereof. It may be characterized in that it is selected from the group consisting of, but is not limited thereto.

본 명세서에서, 용어 "전해질 용액"은 물 등의 용매에 녹였을 때 이온화하는 물질인 전해질이 녹아있는 용액을 의미한다.As used herein, the term “electrolyte solution” refers to a solution in which an electrolyte, which is a material that ionizes when dissolved in a solvent such as water, is dissolved.

본 발명의 일 실시예에서, FeOOH/BiVO4/CIGS 및 stainless steel에 전해질 용액을 첨가한 다음 광원을 조사한 결과, 양성자가 환원되어 수소 기체(H2)가 생성되는 것을 확인하였다(도 3D).In an embodiment of the present invention, as a result of adding an electrolyte solution to FeOOH/BiVO 4 /CIGS and stainless steel and then irradiating a light source, protons are reduced to generate hydrogen gas (H 2 ) (FIG. 3D).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 재료 및 방법Example 1: Materials and Methods

실시예 1-1: 화학물질Example 1-1: Chemicals

Potassium hydride, ethanol, bismuth(III) nitrate pentahydrate, potassium iodide, ethanol, nitric acid, p-benzoquinone, vanadyl acetylacetonate, dimethyl sulfoxide(DMSO), indium tin oxide nanopowder, acetic acid, β-NAD+ hydrate(NAD+) 및 sodium formate는 Sigma-Aldrich(St. Louis, MO, USA)로부터 구매하였다. 이들 화학물질은 추가 정제 없이 사용하였다. 완충용액을 제조하기 위해 Direct-Q® 5 UV ultrapure water purification system(Millipore Corp., USA)의 type 1 ultrapure water(18 MΩ cm)를 이용하였다. 유기금속 매개체 및 TsFDH는 문헌에 따라 생산되었다(Y. W. Lee, et al., Nat. Commun. 2018, 9, 4208; H. Choe, et al., PLoS One 2014, 9, e103111).Potassium hydride, ethanol, bismuth(III) nitrate pentahydrate, potassium iodide, ethanol, nitric acid, p -benzoquinone, vanadyl acetylacetonate, dimethyl sulfoxide (DMSO), indium tin oxide nanopowder, acetic acid, β-NAD + hydrate (NAD + ) and sodium formate were purchased from Sigma-Aldrich (St. Louis, MO, USA). These chemicals were used without further purification. To prepare a buffer solution, type 1 ultrapure water (18 MΩ cm) of Direct- 5 UV ultrapure water purification system (Millipore Corp., USA) was used. Organometallic mediators and Ts FDH were produced according to literature (YW Lee, et al. , Nat. Commun. 2018, 9 , 4208; H. Choe, et al., PLoS One 2014, 9 , e103111).

실시예 1-2: 광전지 제작Example 1-2: Photovoltaic Cell Fabrication

문헌 절차(S. T. Kim, et al., Sustain. Energ. Fuels 2019, 3, 709-716)에 약간의 수정을 더하여 Mo/CIGS/CdS/i-ZnO/ZnO:Al/Al-grid architecture에서 CIGS 광전지를 합성했다. 2.7Х10-4Pa의 기압, vacuum evaporator에서 elemental effusion cells로부터 Cu, In, Ga 및 Se의 공동-증발을 통해 Mo-coated soda-lime glass에 CIGS 흡수제 층을 증착시켰다. 평균 [Cu]/([Ga]+[In]) 및 [Ga]/([Ga]+[In])는 각각 0.80-0.90 및 0.30-0.35였고, CIGS 층의 두께는 1.8-2.0μm였다. 증착 후, 1-min etching을 위해 CIGS 필름을 0.15M KCN 용액에 침지시키고, 탈이온수로 세정하였으며, 473K, Se 하에서 어닐링 하였다. 합성된 CIGS 필름 상에 CdS 버퍼층(40-50nm)을 증착시키기 위하여, Cd 이온 소스로서 CdSO4, 황 소스로서 thiourea 및 착화제(complexing agent)로서 NH3를 사용하여 6분 동안 chemical bath 증착 공정을 수행하였다. 그 다음, radio frequency magnetron sputtering을 사용하여 i-ZnO 층(50nm)과 Al-도핑된 ZnO 층(ZnO:Al, 350nm)으로 구성된 bilayer를 증착시켰다. 마지막으로, aperture mask를 통한 Al의 열 증발을 통해 Al 전극을 증착시켰다. 대조군으로서, 삼중 양이온(즉, Cs, methylammonium 및 formamidinium)을 함유한 광 흡수체를 갖는 PSC를 이전에 보고된 문헌 절차에 따라 제조하였다.CIGS photovoltaic cells in Mo/CIGS/CdS/i-ZnO/ZnO:Al/Al-grid architecture with minor modifications to the literature procedure (ST Kim, et al. , Sustain. Energ. Fuels 2019, 3, 709-716). was synthesized A CIGS absorber layer was deposited on Mo-coated soda-lime glass through co-evaporation of Cu, In, Ga and Se from elemental effusion cells in a vacuum evaporator at an atmospheric pressure of 2.7Х10 -4 Pa. The averages [Cu]/([Ga]+[In]) and [Ga]/([Ga]+[In]) were 0.80-0.90 and 0.30-0.35, respectively, and the thickness of the CIGS layer was 1.8-2.0 μm. After deposition, the CIGS film was immersed in 0.15M KCN solution for 1-min etching, washed with deionized water, and annealed at 473K, Se. In order to deposit a CdS buffer layer (40-50 nm) on the synthesized CIGS film, a chemical bath deposition process was performed for 6 minutes using CdSO 4 as a Cd ion source, thiourea as a sulfur source, and NH 3 as a complexing agent. carried out. Then, a bilayer consisting of an i-ZnO layer (50 nm) and an Al-doped ZnO layer (ZnO:Al, 350 nm) was deposited using radio frequency magnetron sputtering. Finally, Al electrodes were deposited through thermal evaporation of Al through an aperture mask. As a control, PSCs with light absorbers containing triple cations (ie, Cs, methylammonium and formamidinium) were prepared according to previously reported literature procedures.

실시예 1-3: 태양전지의 특성 분석Example 1-3: Characteristics analysis of solar cells

K3000 Solar Simulator(McScience Inc., Korea)를 사용하여 one-sun illumination(AM 1.5G, 100mW cm-2) 하에서 J-V 특성을 측정했으며, silicon reference cell로 보정되었다. 전력 변환 효율(power conversion efficiency; PCE)은 반응식 (1)을 이용하여 계산되었다. J - V characteristics were measured under one-sun illumination (AM 1.5G, 100mW cm -2 ) using K3000 Solar Simulator (McScience Inc., Korea) and calibrated with a silicon reference cell. The power conversion efficiency (PCE) was calculated using Equation (1).

Figure pat00001
반응식 (1)
Figure pat00001
Scheme (1)

여기서, Jsc는 단락(short-circuit) 전류 밀도(mA cm-2), Voc는 개방 회로(open-circuit) 전압(V), FF는 충전 계수(fill factor), P는 입사 조명 전력 밀도(incident illumination power density, mW cm-2)이다. 외부 양자 효율은 QEX7 solar cell spectral response/QE/IPCE measurement system(PV Measurement Inc., USA)을 사용하여 구했다.where J sc is the short-circuit current density (mA cm -2 ), Voc is the open-circuit voltage (V), FF is the fill factor, and P is the incident illumination power density ( incident illumination power density, mW cm -2 ). The external quantum efficiency was obtained using a QEX7 solar cell spectral response/QE/IPCE measurement system (PV Measurement Inc., USA).

실시예 1-4: 광양극(photoanode) 제작Example 1-4: photoanode fabrication

시판되는 FTO glass(TEC-7, Pilkington)를 1.0M KOH 수용액, 탈이온수 및 에탄올로 철저히 헹구었다. FTO 상의 BiOI 필름의 전착(electrodeposition)은 potentiostat/galvanostat(WMPG 1000, WonATech Co., Korea)를 사용하여 수행되었다; FTO 기판을 BiOI 전구체 용액에 침지시키고, -0.1V(vs. Ag/AgCl)의 외부 바이어스를 기판에 적용하였다. 3-전극 구성은 working electrode, reference electrode(Ag/AgCl, 3M NaCl) 및 counter electrode(stainless steel)로 구성된다. 전구체 용액은 Bi(NO3)3·5H2O(40mM), HNO3(3μl ml-1) 및 KI(40M)를 탈이온수(100ml)에 용해시키고, p-benzoquinone(115.6mM)을 포함하는 40ml 에탄올성 용액을 첨가하여 제조되었다. BiOI를 BiVO4로 전환시키기 위해, BiOI 전극에 V 함유 용액을 떨어뜨린 후 Lindberg/Blue M muffle furnace(Fisher Scientific Corp., USA), 723K에서 2시간 동안 램핑 속도 1K min-1로 가열했다. 무수 DMSO(1ml)에 VO(acac)2(51.2mg)를 용해시켜 전구체 용액을 제조하였다. 반응 후, BiVO4 표면의 갈색 V2O5 crust를 1M NaOH 용액에 담가 부드럽게 교반하면서 제거하였다. BiVO4 전극에의 FeOOH 공촉매(cocatalyst)의 광-보조 전착을 위해, BiVO4를 FeSO4 수용액(100mM)에 격렬히 교반시키면서 담그고, 백색 LED 광(2mW cm-2) 조사 하에 0.3V(vs. Ag/AgCl)를 적용시켰다.Commercially available FTO glass (TEC-7, Pilkington) was thoroughly rinsed with 1.0M KOH aqueous solution, deionized water and ethanol. Electrodeposition of BiOI film on FTO was performed using potentiostat/galvanostat (WMPG 1000, WonATech Co., Korea); The FTO substrate was immersed in the BiOI precursor solution, and an external bias of -0.1 V (vs. Ag/AgCl) was applied to the substrate. The three-electrode configuration consists of a working electrode, a reference electrode (Ag/AgCl, 3M NaCl) and a counter electrode (stainless steel). The precursor solution was prepared by dissolving Bi(NO 3 ) 3 ·5H 2 O (40 mM), HNO 3 (3 μl ml -1 ) and KI (40M) in deionized water (100 ml), and containing p- benzoquinone (115.6 mM). It was prepared by adding 40 ml ethanolic solution. In order to convert BiOI to BiVO 4 , a solution containing V was dropped on the BiOI electrode and heated in a Lindberg/Blue M muffle furnace (Fisher Scientific Corp., USA), 723 K, for 2 hours at a ramping rate of 1 K min −1 . A precursor solution was prepared by dissolving VO(acac) 2 (51.2 mg) in anhydrous DMSO (1 ml). After the reaction, the brown V 2 O 5 crust on the BiVO 4 surface was immersed in 1M NaOH solution and removed while gently stirring. Light of BiVO 4 electrode FeOOH cocatalyst (cocatalyst) of the - for the secondary electro-deposition, dipping, while vigorously stirring the BiVO 4 to FeSO 4 aqueous solution (100mM), the white LED light (2mW cm -2) 0.3V (vs under investigation. Ag/AgCl) was applied.

실시예 1-5: 광양극/태양광 탠덤 전지(photoanode/photovoltaic tandem cells)의 제작Example 1-5: Fabrication of photoanode/photovoltaic tandem cells

FeOOH/BiVO4 광양극을 CIGS 태양전지에 연결시킴으로써 FeOOH/BiVO4/CIGS tandem cell을 제작하였다. CIGS 태양전지는 투명한 방수 에폭시로 덮여있었다. 그 다음, 추가로 음극을 연결시키기 위해, Al grid를 Ag paste로 덮고 측면에 Cu tape를 부착했다. 한편, CIGS의 Mo면에 Cu tape를 붙여, FeOOH/BiVO4의 FTO면에 연결했다. 마지막으로, 입사광을 차단하고 전해질 용액과 탠덤 전지의 전도성 부분 사이의 직접적인 접촉을 피하기 위해, 불투명한 에폭시 수지를 사용하여 FeOOH/BiVO4/CIGS 장치의 다른 면(Ag paste의 Cu tape 및 FeOOH/BiVO4의 앞면 제외)을 덮었다. FeOOH/BiVO4/Pervoskite 탠덤 장치를 조립할 때, 광양극의 FTO 쪽에 연결된 PSC(hole collector)의 Au 접점에 Cu tape를 붙였다. 추가로 음극을 연결하기 위해, 다른 Cu tape를 PSC(electron collector)의 FTO 쪽에 부착했다. PSC의 다른 쪽은 환경으로부터 태양전지를 보호하기 위해 에폭시 수지로 덮었다.A FeOOH/BiVO 4 /CIGS tandem cell was fabricated by connecting the FeOOH/BiVO 4 photoanode to the CIGS solar cell. The CIGS solar cell was covered with a transparent waterproof epoxy. Then, to further connect the negative electrode, the Al grid was covered with Ag paste and Cu tape was attached to the side. Meanwhile, Cu tape was attached to the Mo side of CIGS and connected to the FTO side of FeOOH/BiVO 4 . Finally, to block the incident light and avoid direct contact between the electrolyte solution and the conductive part of the tandem cell, an opaque epoxy resin was used on the other side of the FeOOH/BiVO 4 /CIGS device (Cu tape in Ag paste and FeOOH/BiVO 4 except for the front side). When assembling the FeOOH/BiVO 4 /Pervoskite tandem device, Cu tape was attached to the Au contact point of the hole collector (PSC) connected to the FTO side of the photoanode. In order to additionally connect the negative electrode, another Cu tape was attached to the FTO side of the PSC (electron collector). The other side of the PSC was covered with an epoxy resin to protect the solar cell from the environment.

실시예 1-6: Examples 1-6: mesomeso ITO 전극의 준비Preparation of ITO electrodes

문헌(J. Odrobina, et al., ACS Catal. 2017, 7, 2116-2125)에 따른 mesoITO 전극 합성 방법을 변형시켰다. (i) 193μl의 아세트산/에탄올(300:748 v/v) 혼합물에 40mg의 ITO 나노입자(직경 <50nm)를 용해시키고, (ii) 최소 60분 이상 초음파 처리하고, (iii) 30분 동안 균질화하는 단계를 통해 ITO 현탁액(20wt%)을 제조하였다. 이어서, ITO 현탁액(20μl)을 FTO 기판(형상 표면적: 1cm2) 상에 drop-cast하였다. 전극을 673K에서 4K min-1의 속도로 1시간 동안 어닐링하였다. ITO 나노입자로 덮이지 않은 다른 영역으로 에폭시 수지를 덮었다. 대조군으로서 평면형 ITO glass를 Taewon Scientific Corp. (Korea)로부터 구입하였다. The meso ITO electrode synthesis method according to the literature (J. Odrobina, et al. , ACS Catal. 2017, 7 , 2116-2125) was modified. (i) 40 mg of ITO nanoparticles (diameter <50 nm) were dissolved in 193 μl of acetic acid/ethanol (300:748 v/v) mixture, (ii) sonicated for at least 60 min, and (iii) homogenized for 30 min. An ITO suspension (20 wt%) was prepared through the following steps. Then, the ITO suspension (20 μl) was drop-cast onto the FTO substrate (shape surface area: 1 cm 2 ). The electrode was annealed at 673K at a rate of 4K min −1 for 1 hour. Another area not covered with ITO nanoparticles was covered with epoxy resin. As a control, planar ITO glass was obtained from Taewon Scientific Corp. (Korea).

실시예 1-7: (광)전기화학적((Photo)electrochemical) 측정Example 1-7: (Photo)electrochemical measurement

(광)전기화학 실험은 potentiostat/galvanostat(WMPG 1000, WonATech Co., Korea)를 사용하여 제어하였다. 3-전극 구성에서, working electrode, reference electrode(Ag/AgCl, 3M NaCl) 및 counter electrode(stainless steel)은 동일한 구획에 위치했다. 전해질 용액은 sodium phosphate buffer(100mM, pH 7.0)으로 구성되었다. CPPE를 수행할 때(도 3D 및 도 16D), 광원은 xenon lamp(λ>400nm, P: 100mW cm-2)였다. 모든 전위는 반응식 (2)를 사용하여 RHE에 대해 인용되었다.The (photo)electrochemical experiment was controlled using a potentiostat/galvanostat (WMPG 1000, WonATech Co., Korea). In the three-electrode configuration, the working electrode, reference electrode (Ag/AgCl, 3M NaCl) and counter electrode (stainless steel) were located in the same compartment. The electrolyte solution consisted of sodium phosphate buffer (100 mM, pH 7.0). When CPPE was performed ( FIGS. 3D and 16D ), the light source was a xenon lamp (λ>400 nm, P : 100 mW cm −2 ). All potentials were quoted for RHE using Scheme (2).

Figure pat00002
반응식 (2)
Figure pat00002
Scheme (2)

실시예 1-8: 생체촉매 광전기화학적 반응Example 1-8: Biocatalyst photoelectrochemical reaction

염다리로 연결된 두 개의 개별 반응기에서 보조인자 재생 반응 및 물 산화 반응이 수행되었다. phosphate buffer(100mM, pH 7.0)에 FeOOH/BiVO4/CIGS tandem cell을 침지시키고, 0.5mM M 및 1mM NAD+를 함유하는 phosphate buffer(100mM, pH 7.0)에 mesoITO 음극을 침지시켰다; 음극은 2-전극 구성에서 (potentiostat를 통해) tandem cell에 연결되었다. CIGS, FeOOH/BiVO4mesoITO의 기하학상 표면적은 각각 0.45, 4 및 1cm2였다. CIGS 태양전지가 PSC(기하학상 표면적: 0.45cm2)로 대체될 때, 수용액과의 직접 접촉을 피하기 위해 PSC를 반응 챔버 외부에 두었다. PSC로부터 ca. 3cm의 거리에서 광양극을 용액에 침지시켰다. 또한, mesoITO 음극은 potentiostat를 통해 tandem cell에 연결되었다. mesoITO 음극을 제외한 이들 탠덤 흡수체들은 xenon lamp(Newport Co., USA; λ>400nm; P: 100mW cm2)에 의해 조사되었다. V-650 UV-Vis absorption spectrophotometer(JASCO Inc., Japan)를 사용하여 NADH 농도를 모니터링하였다; NADH의 흡수 피크 위치 및 몰 흡광 계수는 각각 340nm 및 6220M-1 cm-1였다. CO2의 포름산염으로의 생체촉매 변환을 위해, 0.5mM M, 0.5mM NAD+, 10U ml-1 TsFDH 및 CO2를 포함하는 phosphate buffer(100mM, pH 7.0)를 제조하였다; 산화환원 반응 전 및 반응하는 동안 phosphate buffer를 CO2 gas(99.999%)로 제거하였다. LC-20A prominence(Shimadzu Corp., Japan)를 사용하여 포름산염을 정량화하였다. 이 기계에는 refractive index detector 및 Aminex HPX-87H ion exclusion column(Bio-Rad Laboratories Inc., USA)이 장착되었다. TOFNAD+ 및 TTNNAD+는 다음 식[반응식 (3) 및 (4)]에 따라 계산되었다.Cofactor regeneration reaction and water oxidation reaction were performed in two separate reactors connected by salt bridge. FeOOH/BiVO 4 /CIGS tandem cells were immersed in phosphate buffer (100 mM, pH 7.0), and meso- ITO negative electrode was immersed in phosphate buffer (100 mM, pH 7.0) containing 0.5 mM M and 1 mM NAD +; The cathode was connected to the tandem cell (via a potentiostat) in a two-electrode configuration. The geometrical surface areas of CIGS, FeOOH/BiVO 4 and meso ITO were 0.45, 4 and 1 cm 2 , respectively. When the CIGS solar cell was replaced with PSC (geometric surface area: 0.45 cm 2 ), the PSC was placed outside the reaction chamber to avoid direct contact with the aqueous solution. ca. from PSC. The photoanode was immersed in the solution at a distance of 3 cm. Also, the meso- ITO cathode was connected to the tandem cell through a potentiostat. Except for the meso- ITO cathode, these tandem absorbers were irradiated with a xenon lamp (Newport Co., USA; λ>400 nm; P : 100 mW cm 2 ). The NADH concentration was monitored using a V-650 UV-Vis absorption spectrophotometer (JASCO Inc., Japan); The absorption peak position and molar extinction coefficient of NADH were 340 nm and 6220M -1 cm -1 , respectively. For biocatalytic conversion of CO 2 to formate, 0.5 mM M , 0.5 mM NAD + , 10U ml -1 Ts FDH and CO 2 A phosphate buffer (100 mM, pH 7.0) was prepared; Before and during the redox reaction, the phosphate buffer was removed with CO 2 gas (99.999%). Formate was quantified using LC-20A prominence (Shimadzu Corp., Japan). The instrument was equipped with a refractive index detector and an Aminex HPX-87H ion exclusion column (Bio-Rad Laboratories Inc., USA). TOF NAD+ and TTN NAD+ were calculated according to the following equations [Schemes (3) and (4)].

Figure pat00003
반응식 (3)
Figure pat00003
Scheme (3)

Figure pat00004
반응식 (4)
Figure pat00004
Scheme (4)

실시예 2: 광전지(photovoltaics) 및 광양극(photoanodes)Example 2: Photovoltaics and photoanodes

진공 기반 동시증발(vacuum-based-co-evaporation) 공정을 통해 CIGS 태양전지를 합성했다. CIGS 태양전지의 전류 밀도-전압(J-V) 특성을 도 3A에 도시하였다. 0.45cm2 CIGS 장치 20개에 대한 성능 통계를 구하였다(도 4): 35.68±1.20mA cm-2의 단락(short-circuit) 전류 밀도(J SC ), 0.64±0.02V의 개방 회로(open-circuit) 전압(V OC ), 0.65±0.03의 충전 계수(fill factor; FF) 및 15.01±0.77%의 전력 변환 효율(PCE). 추정된 J SC 는 외부 양자 효율로부터 얻은 통합된 광전류 밀도와 관련되어있다(도 5). 태양전지의 대조군으로서 유기금속 PSC(활성 영역: 0.45cm2)를 준비하여 장기적인 산화환원 생체촉매 반응에서 PV의 안정성을 조사하였다. PSC는 19.53±1.37 mA cm-2J SC , 1.11±0.01V의 V OC , 56.13±2.16의 FF 및 11.41±0.92%의 PCE를 나타냈다. PSC의 J-V 플롯을 도 3A에 나타내었다.CIGS solar cells were synthesized through a vacuum-based-co-evaporation process. The current density-voltage ( JV ) characteristics of the CIGS solar cell are shown in FIG. 3A. Performance statistics were obtained for 20 0.45 cm 2 CIGS devices ( FIG. 4 ): short-circuit current density ( J SC ) of 35.68±1.20 mA cm −2 , open-circuit current density of 0.64±0.02 V circuit) voltage ( V OC ), a fill factor (FF) of 0.65±0.03, and a power conversion efficiency (PCE) of 15.01±0.77%. The estimated J SC is related to the integrated photocurrent density obtained from the external quantum efficiency (Fig. 5). As a control of the solar cell, an organometallic PSC (active area: 0.45 cm 2 ) was prepared and the stability of PV in a long-term redox biocatalyst was investigated. PSC showed J SC of 19.53±1.37 mA cm −2 , V OC of 1.11±0.01V , FF of 56.13±2.16 and PCE of 11.41±0.92%. A JV plot of PSC is shown in Figure 3A.

H2O 산화로부터 추출된 전자를 음극에 제공하기 위해, 불소 도핑된 주석 산화물(fluorine-doped tin oxide; FTO) 기판 상에 BiOI 필름의 전착(electrodeposition) 및 BiOI의 BiVO4로의 열 변환을 통해 나노 구조화된 BiVO4 광양극을 합성하였다. 높은 광전류는 탠덤 장치의 직렬 연결에서 타겟하는 산화환원 반응 속도를 향상시키는 데 유리하므로, BiVO4의 두께를 조절하고(도 6, 도 7 및 도 8; 도 10의 범례에서 자세한 결과 참조), BiVO4에 FeOOH 흡착층(ad-layer)을 적용하여(도 3B) FeOOH/BiVO4의 광양극 전류를 최적화했다. FeOOH/BiVO4 광전극(2.4-2.5eV)의 광학 밴드갭(S. K. Kuk, et al., Adv. Energy Mater. 2019, 9, 1900029)이 단일 CIGS 광전지의 광학 밴드갭(~ 1.1eV) (B. Koo, et al., ACS Appl. Mater. Interfaces 2017, 9, 5279-5287)보다 크기 때문에, FeOOH/BiVO4를 통해 투과된 광은 CIGS 층을 광활성화시킬 것으로 예상했다. 단일 CIGS 광전지를 FeOOH/BiVO4 필터링된 빛에 노출시켰을 때 J SC V OC 가 각각 20mA cm-2 및 0.63V로 감소했다(도 3A). 이는 감소된 V OC 가 FeOOH/BiVO4에 의해 유도되는 물 산화의 개시 전위보다 높기 때문에, FeOOH/BiVO4/CIGS 탠덤 구조는 바이어스되지 않은 H2O 산화를 유도할 수 있음을 의미한다(도 3A 및 도 3B). 또한, 필터링된 조사 하에서 PSC의 J SC V OC 는 각각 2.01mA cm-2 및 1.08V로 감소했다(도 3A).To provide electrons extracted from the H 2 O oxidation to the cathode, the nanoscale through electrodeposition of a BiOI film on a fluorine-doped tin oxide (FTO) substrate and thermal conversion of BiOI to BiVO 4 . A structured BiVO 4 photoanode was synthesized. Since the high photocurrent is advantageous for improving the target redox reaction rate in the series connection of the tandem device, the thickness of BiVO 4 is controlled (see the detailed results in the legend of Fig. 6, Fig. 7 and Fig. 8; Fig. 10), and BiVO By applying an FeOOH adsorption layer (ad-layer) to 4 (Fig. 3B), the photoanode current of FeOOH/BiVO 4 was optimized. Optical band gap of FeOOH / BiVO 4 photoelectrode (2.4-2.5eV) (SK Kuk, et al., Adv. Energy Mater. 2019, 9, 1900029) The optical band gap (~ 1.1eV) of the single CIGS photovoltaic (B Koo, et al. , ACS Appl. Mater. Interfaces 2017, 9 , 5279-5287), we expected that light transmitted through FeOOH/BiVO 4 would photoactivate the CIGS layer. When a single CIGS photocell was exposed to FeOOH/BiVO 4 filtered light, J SC and V OC decreased to 20 mA cm -2 and 0.63 V, respectively (Fig. 3A). This means that the reduced V OC is FeOOH / 4 is higher than the start potential of the oxidation induced by BiVO, FeOOH / BiVO 4 / CIGS tandem structure can lead to the H 2 O oxidation unbiased (Figure 3A and Figure 3B). In addition, under filtered irradiation, the J SC and V OC of PSCs decreased to 2.01 mA cm -2 and 1.08 V, respectively (Fig. 3A).

실시예 3: CIGS-기반 PEC-PV 탠덤 구조Example 3: CIGS-based PEC-PV tandem structure

단일 CIGS 광전지 및 FeOOH/BiVO4 광양극을 직렬로 전기적으로 연결시켰다. 광전지 및 광양극이 태양광 스펙트럼의 상이한 영역의 광자를 흡수하기 때문에, PEC-PV 탠덤 장치는 광범위한 광 획득을 가능하게 한다. FeOOH/BiVO4에서 CIGS의 광전압이 발휘되는지 확인했다. 선형 스위프 전압전류법(linear sweep voltammetric; LSV) 분석에 따르면, CIGS 태양전지는 CIGS의 V OC 와 유사한 ca. 0.62V(도 3C)에 의해 FeOOH/BiVO4J-V 프로파일을 음극으로 이동시켰다(도 3A). 또한 탠덤 장치는 외부 바이어스 없이 1.18mA의 광전류를 생성했다(도 3D). 이 값은 FeOOH/BiVO4 광전극과 CIGS 태양전지의 J-V 곡선의 교차점으로부터 추정된 작동 전류(1.20mA)와 일치한다(도 9). 실제 및 추정된 광전류의 유사성은 FeOOH/BiVO4 광양극 및 CIGS 태양전지가 유의미한 전기적 저항 없이 단일 탠덤 장치에 잘 연결되어 있음을 나타낸다. 페로브스카이트를 광전지 구성요소로 사용했을 때, FeOOH/BiVO4J-V 곡선은 PSC의 V OC 값과 비슷한 ca. 1.00V(도 3C)에 의해 음극으로 이동하였다(도 3A). 그러나 PSC의 낮은 광전류 때문에(도 3A 및 도 9), FeOOH/BiVO4/Perovskite의 광전류는 FeOOH/BiVO4/CIGS의 광전류보다 낮았다 (도 3D).A single CIGS photocell and FeOOH/BiVO 4 photoanode were electrically connected in series. Because the photovoltaic cell and the photoanode absorb photons in different regions of the solar spectrum, the PEC-PV tandem device enables a wide range of light acquisition. It was confirmed whether the photovoltage of CIGS was exhibited in FeOOH/BiVO 4 . Linear sweep voltammetry (linear sweep voltammetric; LSV) According to the analysis, it CIGS solar cells and similar ca. CIGS of V OC The JV profile of FeOOH/BiVO 4 was shifted to the cathode by 0.62V (FIG. 3C) (FIG. 3A). In addition, the tandem device generated a photocurrent of 1.18 mA without external bias (Fig. 3D). This value is consistent with the operating current (1.20 mA) estimated from the intersection of the JV curve of the FeOOH/BiVO 4 photoelectrode and the CIGS solar cell (Fig. 9). The similarity of the actual and estimated photocurrents indicates that the FeOOH/BiVO 4 photoanode and CIGS solar cells are well connected to a single tandem device without significant electrical resistance. When using a perovskite in photovoltaic components, JV curve of FeOOH / BiVO 4 is similar ca. V OC and the value of the PSC moved to the cathode by 1.00V (Fig. 3C) (Fig. 3A). However, due to the low photocurrent PSC (Fig. 3A and Fig. 9), the photocurrent of FeOOH / BiVO 4 / Perovskite is lower than that of the photoelectric current FeOOH / BiVO 4 / CIGS (Fig. 3D).

실시예 4: 안정성 연구Example 4: Stability Study

0V, 2-전극 구성(counter electrode: a stainless steel)에서 제어된 잠재적 광전기분해(controlled potential photoelectrolysis; CPPE)를 수행하여, 서로 다른 상대 습도(RH) 환경에서 FeOOH/BiVO4/CIGS 장치의 광전기화학적 안정성을 조사했다. 도 3D에 나타낸 바와 같이, FeOOH/BiVO4/CIGS의 광전류는 40, 60 또는 80% RH에서 24시간 동안 일정하게 유지되었으며, 이는 습도에 대한 FeOOH/BiVO4 및 CIGS 성분의 강력한 안정성을 의미한다. 대조적으로, CPPE는 FeOOH/BiVO4/Perovskite의 광전류에 대한 습도의 유해한 영향을 보여주었다; 광전류 감소율은 40% RH보다 60% RH에서 ca. 7배 더 높았으며, 80% RH 하 0.3시간에서 광전류가 갑자기 떨어졌다(도 3D). 불안정한 광전류 생성은 PV 커뮤니티에서 널리 보고된 습도에 대한 PSC의 열악한 안정성 때문이라고 생각한다. 결국, CIGS 광전지는 태양에너지 동력의 산화환원 생체변환의 실용화에 더 적합하다. Photoelectrochemical analysis of FeOOH/BiVO 4 /CIGS devices in different relative humidity (RH) environments by performing controlled potential photoelectrolysis (CPPE) at 0 V, a two-electrode configuration (counter electrode: a stainless steel). stability was investigated. As shown in Fig. 3D, the photocurrent of FeOOH/BiVO 4 /CIGS was kept constant at 40, 60 or 80% RH for 24 hours, indicating strong stability of FeOOH/BiVO 4 and CIGS components with respect to humidity. In contrast, CPPE showed a deleterious effect of humidity on the photocurrent of FeOOH/BiVO 4 /Perovskite; The photocurrent decay rate was ca. 7-fold higher, with a sudden drop in photocurrent at 0.3 h under 80% RH (Fig. 3D). We believe that the unstable photocurrent generation is due to the poor stability of PSCs to humidity, which has been widely reported in the PV community. Consequently, CIGS photovoltaic cells are more suitable for the practical application of redox bioconversion of solar energy.

실시예 5: 음극(cathodes)Example 5: Cathodes

NADH 재생을 위한 음극 재료로서, FTO 코팅된 유리에 ITO 나노 입자(직경 <50nm)를 축적시키고 673K에서 어닐링하여 mesoITO 전극을 합성했다(도 10A). mesoITO를 준비한 이유는 전기화학적 활성 표면적(electrochemically active surface area; ECSA)을 증가시켜 M으로의 전자 수송 속도를 향상시키기 위함이다. mesoITO 필름은 두께가 15.4μm인 나노입자형 ITO 필름의 메조구조체를 나타냈다(도 10B 및 도 11). 또한, mesoITO의 X-선 회절 패턴은 입방형 ITO(JCPDS: #01-083-3350)의 X-선 회절 패턴과 일치하였으며, 이는 전극의 오염이 없는 조성을 나타낸다(도 12). 순환 전압전류법(cyclic voltammetry; CV)를 이용하여 mesoITO 전극의 큰 ECSA를 검증했다. 문헌(Y. Wang, et al., Chem. Soc. Rev. 2016, 45, 5925-5950)에 따르면, ECSA가 큰 전극은 전극의 높은 정전용량(capacitance)으로 인해 CV 곡선의 큰 적분 면적을 나타낸다. 도 10C에 도시된 바와 같이, mesoITO 전극의 J-V 곡선 내로 둘러싸인 영역은 다양한 스캔 속도에서 평면형 ITO 전극의 영역보다 훨씬 더 컸다. As a cathode material for NADH regeneration, meso- ITO electrodes were synthesized by accumulating ITO nanoparticles (diameter <50 nm) on FTO-coated glass and annealing at 673 K (Fig. 10A). The reason for preparing meso- ITO is to increase the electrochemically active surface area (ECSA) to improve the electron transport rate to M. The meso- ITO film exhibited a mesostructure of a nanoparticulate ITO film having a thickness of 15.4 μm ( FIGS. 10B and 11 ). In addition, the X-ray diffraction pattern of meso- ITO was consistent with the X-ray diffraction pattern of cubic ITO (JCPDS: #01-083-3350), indicating a composition without contamination of the electrode (Fig. 12). Cyclic voltammetry (CV) was used to verify the large ECSA of meso-ITO electrodes. According to the literature (Y. Wang, et al ., Chem. Soc. Rev. 2016, 45 , 5925-5950), an electrode with a large ECSA exhibits a large integral area of the CV curve due to the high capacitance of the electrode. . As shown in Fig. 10C, the area enclosed within the JV curve of the meso ITO electrode was much larger than that of the planar ITO electrode at various scan rates.

LSV를 이용한 분석을 통해, 3-전극 구성(working electrode로서 mesoITO 음극, reference electrode로서 Ag/AgCl, 및 counter electrode로서 stainless steel)에서 M을 환원시키는 mesoITO 음극의 능력을 입증하였다. M은 NAD+를 효소적으로 활성인 1,4-NADH로 위치특이적으로 전환시키고(J. Kim, et al., Angew. Chem. Int. Ed. 2018, 57, 13825-13828), M의 환원은 NAD+(-ca. -0.54V vs. RHE, 과전위 고려)보다 약한 전위인 -0.13V(vs. reversible hydrogen electrode, RHE)를 필요로 한다(J. Kim, C. B. Park, Curr. Opin. Chem. Biol. 2019, 49, 122-129). 도 10D에 도시된 바와 같이, 전해질 용액에 M이 존재하면 약 -0.18V(vs. RHE)에서 음극 전류가 증가하고, 이는 M의 전기화학적 환원을 나타낸다. 음극 전류는 NAD+를 추가할수록 증가했으며, 이는 M을 통해 전자를 mesoITO으로부터 NAD+로 순차적으로 전달하는 것을 의미한다. 한편, mesoITO 전극은 M이 없는 NAD+를 첨가한 후 음극 전류에서 미미한 변화를 보였다(도 13). 또한, UV-Vis 분광법을 사용한 분석에 의하면, mesoITO 음극은 NADH를 성공적으로 재생했다. -0.28V(vs. RHE)의 인가 전위에서, mesoITO 음극에 의한 NADH 재생 속도는 101.0±6.1μM h-1이었고, 반면 M의 존재 하에서 평면형 ITO에 의한 재생 속도는 5.2±6.2μM h-1에 불과했다(도 10E). mesoITO의 뛰어난 성능은 평면형 ITO보다 빠른 mesoITO에 의한 M의 환원에 기인한다(도 14). mesoITO 및 평면형 ITO 전극은 M이 존재하지 않을 때 NADH를 생성하지 않았다(도 10E).Analysis using LSV demonstrated the ability of the meso- ITO anode to reduce M in a three-electrode configuration ( meso ITO cathode as working electrode, Ag/AgCl as reference electrode, and stainless steel as counter electrode). M regio-specifically converts NAD + to enzymatically active 1,4-NADH (J. Kim, et al. , Angew. Chem. Int. Ed. 2018, 57 , 13825-13828), and M Reduction requires -0.13V (vs. reversible hydrogen electrode, RHE), which is a weaker potential than NAD + (-ca. -0.54V vs. RHE, considering overpotential) (J. Kim, CB Park, Curr. Opin) (Chem. Biol. 2019, 49 , 122-129). As shown in Fig. 10D, the presence of M in the electrolyte solution increases the cathode current at about −0.18 V (vs. RHE), indicating an electrochemical reduction of M. The cathode current increased with the addition of NAD + , which means sequential transfer of electrons from meso- ITO to NAD + through M . On the other hand, the meso- ITO electrode showed a slight change in the cathode current after adding NAD + without M ( FIG. 13 ). In addition, according to analysis using UV-Vis spectroscopy, the meso- ITO cathode successfully regenerated NADH. At an applied potential of −0.28 V (vs. RHE) , the NADH regeneration rate by meso- ITO cathode was 101.0±6.1 μM h −1 , whereas the regeneration rate by planar ITO in the presence of M was 5.2±6.2 μM h −1 was only (Fig. 10E). superior performance of the meso ITO is due to the reduction of the M by meso faster than planar ITO ITO (Fig. 14). The meso- ITO and planar ITO electrodes did not produce NADH in the absence of M (Fig. 10E).

실시예 6: NADH의 바이어스 없는 광전기화학적 재생Example 6: Bias-free photoelectrochemical regeneration of NADH

각각 FeOOH/BiVO4/CIGS 및 mesoITO에 의해 유도된 H2O 산화 및 NADH 재생을 구체화하면서, 유일한 에너지 원으로서 빛을 사용하는 NADH 재생을 위한 완전한 탠덤 구조(즉, FeOOH/BiVO4/CIGS/mesoITO)를 만들었다. 도 15에 도시된 FeOOH/BiVO4/CIGS 및 mesoITO의 오버레이되는 |I|-V 플롯에 따라 완전한 탠덤 장치에 의한 바이어스되지 않은 산화환원 반응을 예측하였다. 도 16A에 도시된 바와 같이, 탠덤 장치의 광에 대한 노출(λ>400nm, P: 100mW cm-2)은 NADH 재생을 유도했다. 빛, CIGS 모듈, FeOOH 공촉매(cocatalyst) 또는 M의 부재하에서 대조 실험 결과, NADH은 무시할 수 있는 정도로 재생되었다. NADH 재생의 광전기화학적 성능은 NAD+ 농도가 증가함에 따라 증가했다(도 17). 1.21mM h-1의 NADH 재생 속도는 FDH-결부된 PEC 플랫폼에서 NADH 재생에 관한 보고 중 가장 높았다(표 1).Each FeOOH / BiVO 4 / CIGS and complete tandem structure for NADH regeneration using light and refine the H 2 O oxidized and NADH regeneration by meso ITO, as the sole energy source (i.e., FeOOH / BiVO 4 / CIGS / meso ITO) was created. Overlaid of FeOOH/BiVO 4 /CIGS and meso ITO shown in FIG. 15 | The unbiased redox reaction by the complete tandem apparatus was predicted according to the I |- V plot. As shown in Figure 16A, exposure to light in the tandem device (λ>400 nm, P : 100 mW cm −2 ) induced NADH regeneration. In control experiments in the absence of light, CIGS module, FeOOH cocatalyst or M, NADH was regenerated to a negligible extent. The photoelectrochemical performance of NADH regeneration increased with increasing NAD + concentration ( FIG. 17 ). The NADH regeneration rate of 1.21 mM h -1 was the highest among reports on NADH regeneration in the FDH-coupled PEC platform (Table 1).

PEC 플랫폼에서 보조인자 재생과 결부된 CO2의 포름산염으로의 생체촉매 변환 효율의 비교Comparison of biocatalytic conversion efficiency of CO 2 to formate with cofactor regeneration in PEC platform (Photo) anode(Photo) anode FeOOH/BiVOFeOOH/BiVO 44 Co-Pi/α-FeCo-Pi/α-Fe 22 OO 33 Co-Pi/α-FeCo-Pi/α-Fe 22 OO 33 3-jn-Si/ITO/Co-Pi3-jn-Si/ITO/Co-Pi NoNo
InformationInformation
(Photo) cathode(Photo) cathode mesoITO meso ITO BiFeOBiFeO 33 ITOITO H-SiNWH-SiNW InPInP LightLight λ > 400 nmλ > 400 nm λ > 420 nmλ > 420 nm λ > 420 nmλ > 420 nm λ > 420 nmλ > 420 nm λ > 300 nmλ > 300 nm Applied biasapplied bias Electrical bias [V]Electrical bias [V] 0a) 0 a) 0.8a) 0.8 a) 1.2a) 1.2 a) 1.8a) 1.8 a) 0.451
(vs. RHE)b)
0.451
(vs. RHE) b)
Chemical bias [V]Chemical bias [V] 00 0.2950.295 0.3540.354 0.0120.012 00 CofactorCofactor
regenerationregeneration
Cofactor typeCofactor type NADHNADH NADHNADH NADHNADH NADHNADH MV+ㆍ MV +・
Initial rate of cofactor regeneration [mM hInitial rate of cofactor regeneration [mM h -1-One ]] 1.211.21 0.34c) 0.34 c) Not AvailableNot Available Not AvailableNot Available Not AvailableNot Available Biocatalytic COBiocatalytic CO 22 -to-formate conversion-to-format conversion Total formate formation [mM]Total formate formation [mM] 5.605.60 2.032.03 0.550.55 0.260.26 0.600.60 TOFTOF cofactorcofactor [h [h] -1-One ]] 0.2360.236 0.04c) 0.04 c) 0.01c) 0.01 c) 0.01c) 0.01 c) Not AvailableNot Available TTNTTN cofactorcofactor 11.211.2 0.406c) 0.406 c) 0.55c) 0.55 c) 0.26c) 0.26 c) 0.3c) 0.3 c) RefRef 본 발명the present invention S. K. Kuk, et al., Angew. Chem. Int. Ed. 2017, 56, 3827-3832SK Kuk, et al. , Angew. Chem. Int. Ed. 2017, 56 , 3827-3832 D. H. Nam, et al., Green Chem. 2016, 18, 5989-5993D.H. Nam, et al. , Green Chem. 2016, 18 , 5989-5993 E. J. Son, et al., Chem. Commun. 2016, 52, 9723-9726EJ Son, et al. , Chem. Commun. 2016, 52 , 9723-9726 B. A. Parkinson, P. F. Weaver, Nature 1984, 309, 148-149B. A. Parkinson, P. F. Weaver, Nature 1984, 309, 148-149

상기 표에서, 광전극은 밑줄로 표시되었으며, 밑줄 표시가 없는 것은 금속 전극이다. 또한, a) two-electrode configuration; b) three-electrode configuration; c) approximate estimation according to data corroborated by the corresponding reference를 의미한다.In the above table, photoelectrodes are underlined, and those without underline are metal electrodes. Also, a) two-electrode configuration; b) three-electrode configuration; c) means approximate estimation according to data corroborated by the corresponding reference.

습도가 높은 환경에서 바이어스-자유 NADH 재생 실험은 FeOOH/BiVO4/Perovskite/mesoITO의 더 낮은 성능을 나타냈다. 40 및 60% RH 미만에서 CIGS- 및 PSC-기반 탠덤 전지는 NAD+로부터 NADH를 생성시켰다(도 16B). 그러나, 80% RH 미만에서는 CIGS-기반 장치만이 NADH를 형성시켰다. 페로브스카이트 탠덤 전지에 의한 NADH의 미미한 형성은 높은 RH에서 PSC 광활성의 극단적인 부족에 기인하며(도 3D), 유기금속 PSC로의 물 유입은 유기 종의 가수분해 및 페로브스카이트 물질의 비가역적 분해를 유발한다(Z. Song, et al., Adv. Energy Mater. 2016, 6, 1600846).Bias-free NADH regeneration experiments in a humid environment showed lower performance of FeOOH/BiVO 4 /Perovskite/ meso-ITO. At below 40 and 60% RH, CIGS- and PSC-based tandem cells generated NADH from NAD + ( FIG. 16B ). However, below 80% RH, only CIGS-based devices formed NADH. The insignificant formation of NADH by perovskite tandem cells is due to the extreme lack of PSC photoactivity at high RH (Fig. 3D), and water influx into organometallic PSCs is due to the hydrolysis of organic species and the ratio of perovskite material It induces reverse decomposition (Z. Song, et al. , Adv. Energy Mater. 2016, 6 , 1600846).

광전기화학의 널리 받아들여진 메커니즘에 기초하여(C. Jiang, et al., Chem. Soc. Rev. 2017, 46, 4645-4660), 본 발명자들은 바이어스 없는 NADH 재생이 H2O에서 NAD+로 전자의 광유도 이동에 속하는 것으로 생각했다(도 16C). 전자 및 구멍(hole)의 태양에너지 여기(excitation)는 이중 흡수체(즉, FeOOH/BiVO4 및 CIGS 광전극)에서 발생한다. CIGS의 광여기된 hole은 FeOOH/BiVO4의 광여기된 전자와의 재결합을 통해 소멸된다. CIGS의 전도 대역에서 여기된 전자는 M의 환원 전위보다 더 음의 에너지 레벨을 가지며, 이는 mesoITO 음극에서 M을 환원시키고 NADH를 재생시키는 열역학적 구동력이다. 동시에, FeOOH/BiVO4는 H2O 산화로부터 전자를 추출하여 광양극을 초기 상태로 되돌린다. quasi-Fermi levels(EF)의 관점에서, 빛은 광전극에서 소수의 운반체의 재증식을 통해 광전압(V ph = |E F,n - E F,h|))을 생성한다. FeOOH/BiVO4/CIGS 탠덤 구조의 총 Vph(~1.64V = ~1.0V(J. H. Kim, J. S. Lee, Adv. Mater. 2019, 31, 1806938)+0.64V)는 M 환원 및 H2O 산화를 위한 열역학적 전압(~1.34V)보다 커서 바이어스-자유 NADH 재생을 가능하게 한다.Based on the widely accepted mechanism of photoelectrochemistry (C. Jiang, et al. , Chem. Soc. Rev. 2017, 46 , 4645-4660), we show that unbiased NADH regeneration from H 2 O to NAD + electrons was considered to belong to the light-induced movement of (Fig. 16C). Solar excitation of electrons and holes occurs in the double absorber (ie FeOOH/BiVO 4 and CIGS photoelectrode). The photoexcited holes of CIGS are annihilated through recombination with photoexcited electrons of FeOOH/BiVO 4 . The excited electrons in the conduction band of CIGS have a more negative energy level than the reduction potential of M , which is a thermodynamic driving force that reduces M and regenerates NADH at the meso-ITO cathode. At the same time, FeOOH/BiVO 4 restores the photoanode to its initial state by extracting electrons from the H 2 O oxidation. In terms of quasi-Fermi levels ( E F), light generates a photovoltage (V ph = | E F,n - E F,h |) through the reproliferation of a few carriers at the photoelectrode. The total V ph of the FeOOH/BiVO 4 /CIGS tandem structure (~1.64 V = ~1.0 V(JH Kim, JS Lee, Adv. Mater. 2019, 31 , 1806938)+0.64 V) resulted in M reduction and H 2 O oxidation. greater than the thermodynamic voltage (~1.34 V) for the bias-free NADH regeneration.

실시예 7: 태양에너지 동력의 산화환원 생체촉매 반응Example 7: Redox biocatalyst reaction of solar energy power

상기 실시예들의 성공적인 결과를 바탕으로, 본 발명자들은 다른 FDH(예를 들어, Ancylobacter aquaticus KNK607M, Ceriporiopsis subvermispora, Moraxella sp. C-1, Paracoccus sp. 12-A 또는 Candida boidinii로부터 유래한 FDH)에 비해 CO2 환원에 대해 우수한 특이성 상수(kred/KM)를 나타내는 TsFDH를 사용하여 바이어스 없는 NADH 재생을 생체촉매 CO2로부터 포름산염 변환에 적용했다. 완전한 탠덤 구조는 광 조사 하에서만 포름산염의 생체촉매 생산을 달성했다(도 18A). 전체 장치에서 CIGS, FeOOH 또는 BiVO4가 생략되면 포름산염이 형성되지 않아, NADH가 극히 적게 형성된다(도 16A). 또한, 광합성 성분(예를 들어, M, NAD+TsFDH) 및 CO2 기질 모두는 포름산염의 생체촉매 형성을 위해 필수적이었다(도 18B). 이 결과는 직접적인 전기화학적 CO2 환원과는 대조적으로 NADH 재생을 통한 효소적 CO2 환원의 열역학적으로 유리한 경로임을 강조한다.Based on the successful results of the above examples, the present inventors compared other FDHs (eg, FDH derived from Ancylobacter aquaticus KNK607M, Ceriporiopsis subvermispora , Moraxella sp. C-1, Paracoccus sp. 12-A or Candida boidinii ). Bias-free NADH regeneration was applied to formate conversion from biocatalyst CO 2 using Ts FDH showing good specificity constant (k red /K M ) for CO 2 reduction. The complete tandem structure achieved biocatalytic production of formate only under light irradiation (Fig. 18A). If CIGS, FeOOH, or BiVO 4 is omitted in the entire device, formate is not formed, resulting in very little NADH formation (FIG. 16A). In addition, both photosynthetic components (eg, M, NAD + and Ts FDH) and CO 2 substrate were essential for the biocatalyst formation of formate ( FIG. 18B ). These results highlight the thermodynamically favorable pathway of enzymatic CO 2 reduction via NADH regeneration as opposed to direct electrochemical CO 2 reduction.

본 발명자들은 TsFDH 및 NAD+의 농도에 대한 광-생체촉매 CO2 환원의 초기 속도의 종속성을 확인하고자 하였다. 초기 반응 속도는 10U ml-1 초과 TsFDH 농도에서 포화되었고(도 19A), 이는 생체촉매 반응 단계가 전체 속도 제한임을 나타낸다. 한편, 광-생체촉매의 초기 속도는 다양한 보조 보조인자 농도(0 내지 2mM)일 때, 0.5mM NAD+에서 최대에 도달하였다(도 19B). Michaelis-Menten-type behavior로부터의 이탈은 고농도의 보조인자에서 TsFDH에 대한 NADH의 억제 효과에 기인한다(S. Kim, et al., J. Mol. Catal. B Enzym. 2014, 102, 9-15). CIGS-기반 탠덤 플랫폼에서 NADH의 재생 속도는 NAD+ 농도가 증가함에 따라 증가했다(도 17).We sought to determine the dependence of the initial rate of photo-biocatalytic CO 2 reduction on the concentrations of Ts FDH and NAD + . The initial reaction rate was saturated at Ts FDH concentrations above 10 U ml −1 ( FIG. 19A ), indicating that the biocatalytic reaction step is the overall rate limiting. On the other hand, the initial rate of the photo-biocatalyst reached a maximum at 0.5 mM NAD + at various co-cofactor concentrations (0 to 2 mM) (Fig. 19B). Deviation from Michaelis-Menten-type behavior is due to the inhibitory effect of NADH on Ts FDH at high concentrations of cofactors (S. Kim, et al. , J. Mol. Catal. B Enzym. 2014, 102 , 9- 15). The regeneration rate of NADH in the CIGS-based tandem platform increased with increasing NAD + concentration ( FIG. 17 ).

본 발명자들은 0.5mM NAD+ 및 10Uml-1 TsFDH를 이용하여 장기적인 광-생체촉매 반응을 수행하였으며, 이는 속도-결정 인자에 대한 실험으로부터 최적화된 조건이었다(도 19). 바이어스-자유 CPPE는 단일 CIGS-기반 완전 탠덤 장치의 안정성을 보여주었으며, 이는 5.6mM 포름산염 생산과 함께 72시간 촉매반응을 달성했다(도 16D). NAD+의 총 전환 빈도(total turnover frequency; TOFNAD+) 및 총 전환 수(total turnover number; TTNNAD+)는 각각 0.236h-1 및 11.2인 것으로 추정되었다. 음극 사이트에서 반응 용액을 교체하는 경우, 그 다음 사이클에서 광전류가 회복되었다(도 20). 제1 및 제2 사이클에서 12시간 반응 후 포름산염 농도는 거의 동일했다. 단백질 공학 분야의 최근 연구들에 의하면 안정성 문제는 효소 고정화를 통해 해결될 수 있을 것으로 예상된다(S. H. Lee, et al., Angew. Chem. Int. Ed. 2018, 57, 7958-7985). 예를 들면, 폴리머 물질(예를 들어, chitosan nanoparticle(K.-M. Yeon, et al., Biomacromolecules 2019, 20, 2477-2485) 및 polyaniline nanofiber(J. Lee, et al., ACS Appl. Mater. Interfaces 2017, 9, 15424-15432)에서 침전 효소의 cross-linking은 효소 사이의 다지점 공유결합이 그들의 변성을 억제하기 때문에 60일간 효소의 안정성을 상당히 향상시킨다.The present inventors performed a long-term photo-biocatalytic reaction using 0.5 mM NAD + and 10 Uml -1 Ts FDH, which was an optimized condition from the experiment for rate-determining factors (FIG. 19). Bias-free CPPE showed the stability of a single CIGS-based fully tandem device, which achieved 72 h catalysis with 5.6 mM formate production (Fig. 16D). Total conversion rate of NAD + (total turnover frequency; TOF NAD +) and the total number of conversions (total turnover number; TTN NAD + ) was estimated to be the respectively 0.236h -1 and 11.2. When the reaction solution was replaced at the cathode site, the photocurrent was restored in the next cycle (FIG. 20). The formate concentration was almost the same after 12 hours of reaction in the first and second cycles. According to recent studies in the field of protein engineering, it is expected that the stability problem can be solved through enzyme immobilization (SH Lee, et al. , Angew. Chem. Int. Ed. 2018, 57 , 7958-7985). For example, polymeric materials (e.g., chitosan nanoparticles ( K.-M. Yeon, et al. , Biomacromolecules 2019, 20 , 2477-2485) and polyaniline nanofibers (J. Lee, et al. , ACS Appl. Mater) Interfaces 2017, 9 , 15424-15432), cross-linking of precipitating enzymes significantly improves the stability of enzymes for 60 days because multi-point covalent bonds between enzymes inhibit their denaturation.

또한, PSC-기반 탠덤 구조의 경우, 습한 조건에서 낮은 광 효소 성능을 확인했다. 40, 60 및 80% RH에서 FeOOH/BiVO4/perovskite/mesoITO는 72시간 광 조사 후(λ>400nm, P: 100mW cm-2) 각각 4.3, 3.9 및 0mM 포름산염을 생성시켰다(도 16E). 반면, FeOOH/BiVO4/CIGS/mesoITO는 RH에 관계없이 일관되게 5.6mM을 생성시켰다. 이러한 결과는 바이어스-자유 CPPE와 일치한다(도 3D). 습한 조건에 PSC를 장기간 노출 시키면 PSC의 점진적인 기능 분해가 일어나며, 결과적으로 광전기 촉매능력의 쇠퇴가 발생한다.In addition, in the case of the PSC-based tandem structure, low photoenzyme performance was confirmed under humid conditions. FeOOH/BiVO 4 /perovskite/ meso- ITO at 40, 60, and 80% RH produced 4.3, 3.9, and 0 mM formate, respectively, after 72 hours of light irradiation (λ > 400 nm, P : 100 mW cm -2 ) (FIG. 16E) . On the other hand, FeOOH/BiVO 4 /CIGS/ meso- ITO consistently produced 5.6 mM regardless of RH. These results are consistent with bias-free CPPE (Fig. 3D). Long-term exposure of PSCs to humid conditions leads to gradual functional degradation of PSCs, resulting in a decline in their photoelectrocatalytic capacity.

FeOOH/BiVO4/CIGS/mesoITO 탠덤 장치는 보조인자 재생을 이용하는 최첨단 포름산염 생산 생체촉매 PEC 시스템과 필적한다(표 1). 3개의 PEC 전지는 최소 1.0V 인가된 바이어스에서 NADH를 재생시키기 위해 광양극(예를 들어, α-Fe2O3, 다중-접합 Si) 및 (광)음극(예를 들어, BiFeO3, ITO, 수소-종결 Si로 nanowire)으로 구성된다. 다른 시스템은 0.451V(vs. RHE)에서 p-type InP 광음극을 사용하여 환원된 형태의 독성 methyl viologen(MV+ㆍ)을 재생시켰다(B. A. Parkinson, P. F. Weaver, Nature 1984, 309, 148-149). FeOOH/BiVO4/CIGS/mesoITO 탠덤 장치에 의한 태양-연료 변환은 바이어스-자유 조건에서도 TOFcofactor 및 TTNcofactor 측면에서 가장 효율적이었다.The FeOOH/BiVO 4 /CIGS/ meso- ITO tandem apparatus is comparable to a state-of-the-art formate-producing biocatalytic PEC system using cofactor regeneration (Table 1). The three PEC cells are photoanode (eg, α-Fe 2 O 3 , multi-junction Si) and (photo)cathode (eg, BiFeO 3 , ITO) to regenerate NADH at a minimum 1.0 V applied bias. , composed of hydrogen-terminated Si nanowires). Another system used a p-type InP photocathode at 0.451 V (vs. RHE) to regenerate the reduced form of toxic methyl viologen (MV +· ) (BA Parkinson, PF Weaver, Nature 1984, 309 , 148-149). ). Solar-fuel conversion by FeOOH/BiVO 4 /CIGS/ meso ITO tandem device was the most efficient in terms of TOF cofactor and TTN cofactor even under bias-free conditions.

CIGS-기반 탠덤 장치는 지금까지 보고된 생체촉매 PEC 시스템에서 기준 효율을 나타냈다. 본 발명자들은 더 높은 광-생체촉매 생산성을 달성하기 위한 몇 가지 방향을 검토하였다. 도 15에 도시된 바와 같이, mesoITO는 탠덤 구조에서 전류-제한 전극으로 유지되었다. M의 heteroaromatic moiety와 전극 사이의 강한 π-π 상호작용이 계면 전하 이동을 촉진하기 때문에, 흑연질 탄소(graphitic carbon) 재료(예를 들면, graphene hydrogel 및 carbon nanotube film])를 이용한 전극의 기능화는 M 환원 속도를 향상시킬 수 있다. 또한, CIGS 광전지의 광전압 증가는 더 높은 동작 전류(operating current)를 생성시킬 수 있다. 예를 들어, 0.2V의 광전압 증가는 탠덤 전류의 거의 두 배가 될 수 있다(도 15). 최근의 연구들은 CIGS 층의 Ga 증감률, Mo 층에서의 Na 혼입 및 큰 밴드갭을 갖는 Cd-free 윈도우 층의 사용을 통해 CIGS의 광전압(~ 0.8 V)을 증가시키는 데에 중점을 두었다(R. Carron, et al., Adv. Energy Mater. 2019, 9, 1900408)The CIGS-based tandem device exhibited baseline efficiencies in the biocatalytic PEC systems reported so far. The present inventors have considered several directions for achieving higher photo-biocatalyst productivity. As shown in Fig. 15, the meso- ITO was maintained as a current-limiting electrode in a tandem structure. Since the strong π–π interaction between the heteroaromatic moiety of M and the electrode promotes interfacial charge transfer, the functionalization of the electrode with graphitic carbon materials (e.g., graphene hydrogel and carbon nanotube film) is M reduction rate can be improved. Also, increasing the photovoltage of a CIGS photovoltaic cell can produce a higher operating current. For example, an increase in photovoltage of 0.2V can almost double the tandem current (FIG. 15). Recent studies have focused on increasing the photovoltage (~0.8 V) of CIGS through the use of a Cd-free window layer with a large bandgap and Ga incorporation rate in the CIGS layer, Na incorporation in the Mo layer. R. Carron, et al. , Adv. Energy Mater. 2019, 9 , 1900408)

안정성 및 촉매 활성을 향상시키기 위한 FDH 단백질 공학은 생체촉매 탠덤 성능을 추가로 개선할 수 있다. TsFDH의 CO2-환원 활성은 다양한 FDH 중에서 가장 높지만, CO2 환원에 대한 특이 상수(k red/K M)[(반응식 (5)]는 포름산염 산화에 대한 상수)[(반응식 (6)]보다 3.2배 낮다.FDH protein engineering to improve stability and catalytic activity can further improve biocatalytic tandem performance. The CO 2 -reducing activity of Ts FDH is the highest among the various FDHs, but the specific constant for CO 2 reduction ( k red / K M )[(Scheme (5)] is the constant for formate oxidation)[(Scheme (6)) ] is 3.2 times lower.

Figure pat00005
반응식 (5)
Figure pat00005
Scheme (5)

Figure pat00006
반응식 (6)
Figure pat00006
Scheme (6)

FDH의 안정성 및 촉매 활성을 개량하기 위해 무작위 돌연변이 또는 아미노산 서열 정렬 접근법이 입증되었다(V. I. Tishkov, V. O. Popov, Biomol. Eng. 2006, 23, 89-110). 효소의 구조적 변형 이외에도 다공성 물질에서의 FDH 고정화는 열악한 조건에서 효소의 고유한 구조를 보존하고 효소 안정성을 향상시킬 수 있다(Y. Chen, et al., Angewandte Chemie 2019, 131, 7764-7768)Random mutation or amino acid sequence alignment approaches have been demonstrated to improve the stability and catalytic activity of FDH (VI Tishkov, VO Popov, Biomol. Eng. 2006, 23 , 89-110). In addition to structural modification of enzymes, FDH immobilization in porous materials can preserve the intrinsic structure of enzymes and improve enzyme stability under harsh conditions (Y. Chen, et al. , Angewandte Chemie 2019, 131 , 7764-7768).

실시예 8: 수소 생산 확인Example 8: Confirmation of hydrogen production

FeOOH/BiVO4/CIGS(working electrode)와 stainless steel(counter electrode)을 동일한 구획에 위치한 다음, 그 구획에 전해질 용액(sodium phosphate buffer, 100mM, pH 7.0)을 넣어주었다. 전류 값을 측정하기 위해 working electrode와 counter electrode는 potentiostat/galvanostat(WMPG 1000, WonATech Co., Korea)에 연결한 후, 두 전극 사이의 전압을 0V로 설정했다. 이때 사용한 광원은 xenon lamp(λ>400nm, P: 100mW cm-2)였다.FeOOH/BiVO 4 /CIGS (working electrode) and stainless steel (counter electrode) were placed in the same compartment, and then an electrolyte solution (sodium phosphate buffer, 100 mM, pH 7.0) was put into the compartment. To measure the current value, the working electrode and the counter electrode were connected to a potentiostat/galvanostat (WMPG 1000, WonATech Co., Korea), and the voltage between the two electrodes was set to 0V. The light source used at this time was a xenon lamp (λ>400nm, P : 100mW cm -2 ).

CIGS 기반의 탠덤 구조는 바이어스가 없는 조건에서 상대 습도에 상관없이 1.18mA 광전류를 나타냈다. 이는 물이 산화하여 산소 기체가 생성되고 양성자가 환원하여 수소 기체가 생성되었음을 의미한다(도 3D). 한편, CIGS를 PSC로 변경한 경우, 광전류가 점점 감소했는데, 상대 습도가 높을수록 감소하는 속도가 더 커졌다. 이는 PSC가 물에 의해 구조가 분해되기 때문이다.The CIGS-based tandem structure exhibited 1.18mA photocurrent regardless of relative humidity in the absence of bias. This means that water was oxidized to produce oxygen gas, and protons were reduced to produce hydrogen gas (FIG. 3D). On the other hand, when CIGS was changed to PSC, the photocurrent gradually decreased, with a higher rate of decrease as the relative humidity increased. This is because the structure of PSC is decomposed by water.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (20)

광양극(photoanode), CIGS(Cu(In,Ga)Se2) 광전지(photovoltaic) 및 음극(cathode)을 포함하는 광전기화학(PEC) 장치.
A photoelectrochemical (PEC) device comprising a photoanode, Cu(In,Ga)Se 2 ) photovoltaic (CIGS) and a cathode.
제1항에 있어서, 상기 광양극, CIGS 광전지 및 음극이 탠덤(tandem) 구조를 이루는 것을 특징으로 하는 광전기화학(PEC) 장치.
The photoelectrochemical (PEC) device according to claim 1, wherein the photoanode, the CIGS photovoltaic cell and the cathode form a tandem structure.
제1항에 있어서, 상기 광양극은 FeOOH/BiVO4, NiOOH/BiVO4, NiOOH/FeOOH/BiVO4, α-Fe2O3 및 WO3로 구성된 군에서 선택되는 어느 하나인 것을 특징으로 하는 광전기화학(PEC) 장치.
According to claim 1, wherein the photoanode is FeOOH/BiVO 4 , NiOOH/BiVO 4 , NiOOH/FeOOH/BiVO 4 , α-Fe 2 O 3 and WO 3 Photoelectricity, characterized in that any one selected from the group consisting of Chemical (PEC) devices.
제1항에 있어서, 상기 음극은 ITO(indium tin oxide), FTO(fluorine-doped tin oxide), 스테인리스강(stainless steel), TiO2, Pt, 유리탄소전극(glassy carbon electrode), 탄소직물(carbon cloth), 카본펠트(carbon felt) 및 탄소나노튜브 버키페이퍼(carbon nanotube buckypaper)로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 광전기화학(PEC) 장치.
According to claim 1, wherein the negative electrode is ITO (indium tin oxide), FTO (fluorine-doped tin oxide), stainless steel (stainless steel), TiO 2 , Pt, glassy carbon electrode (glassy carbon electrode), carbon fabric (carbon) cloth), a photoelectrochemical (PEC) device, characterized in that at least one selected from the group consisting of carbon felt and carbon nanotube buckypaper.
제4항에 있어서, 상기 ITO는 다공성 인듐 주석 산화물(mesoporous indium tin oxide; mesoITO)인 것을 특징으로 하는 광전기화학(PEC) 장치.
5. The photoelectrochemical (PEC) device according to claim 4, wherein the ITO is mesoporous indium tin oxide ( meso ITO).
제1항에 있어서, 보조인자 재생용 또는 수소 생산용 장치인 것을 특징으로 하는 광전기화학(PEC) 장치.
The photoelectrochemical (PEC) device according to claim 1, characterized in that it is a device for cofactor regeneration or hydrogen production.
다음 단계를 포함하는 보조인자 재생방법:
(a) 제1항 내지 제6항의 광전기화학(PEC) 장치에 산화형 보조인자, 전자전달 매개체 및 전자공여체를 포함하는 용액을 첨가하는 단계; 및
(b) 상기 광전기화학(PEC) 장치에 광원을 조사하여 상기 산화형 보조인자를 환원형 보조인자로 재생하는 단계.
A method of regenerating a cofactor comprising the steps of:
(a) adding a solution comprising an oxidation-type cofactor, an electron transport mediator and an electron donor to the photoelectrochemical (PEC) device of claim 1 ; and
(b) regenerating the oxidized cofactor into a reduced cofactor by irradiating the photoelectrochemical (PEC) device with a light source.
제7항에 있어서, 상기 전자공여체는 물(H2O), 트리에탄올아민(TEOA, triethanolamine), 에틸렌디아민테트라아세트산(EDTA, Ethylenediaminetetraacetic acid), 시트르산(Citric acid), 아스코르빈산(Ascorbic acid) 및 옥살산(Oxalic acid)으로 구성된 군에서 선택되는 것을 특징으로 하는 보조인자 재생방법.
The method of claim 7, wherein the electron donor is water (H 2 O), triethanolamine (TEOA, triethanolamine), ethylenediaminetetraacetic acid (EDTA, Ethylenediaminetetraacetic acid), citric acid (Citric acid), ascorbic acid (Ascorbic acid) and A method for regenerating a cofactor, characterized in that it is selected from the group consisting of oxalic acid.
제7항에 있어서, 상기 산화형 보조인자는 NAD+(nicotinamide adenine dinucleotide), NADP+(nicotinamide adenine dinucleotide phosphate), FAD+(flavin adenine dinucleotide) 및 FMN+(flavin monoucleotide)로 구성된 군에서 선택되는 것을 특징으로 하는 보조인자 재생방법.
The method according to claim 7, wherein the oxidative cofactor is selected from the group consisting of NAD + (nicotinamide adenine dinucleotide), NADP + (nicotinamide adenine dinucleotide phosphate), FAD + (flavin adenine dinucleotide) and FMN + (flavin monoucleotide). A method of regenerating cofactors using
제7항에 있어서, 상기 전자전달 매개체는 메틸비올로겐, 루테늄(Ⅱ) 복합체 및 로듐(Ⅲ) 복합체로 구성되는 군에서 선택되는 것을 특징으로 하는 보조인자 재생방법.
The method according to claim 7, wherein the electron transport mediator is selected from the group consisting of methylviologen, ruthenium(II) complex, and rhodium(III) complex.
제10항에 있어서, 상기 로듐(Ⅲ) 복합체는 (펜타메틸사이클로펜타디에닐-2,2'-비피리딘클로로)로듐(III):[Cp*Rh(bpy)H2O]2+인 것을 특징으로 하는 보조인자 재생방법.
11. The method of claim 10, wherein the rhodium (III) complex is (pentamethylcyclopentadienyl-2,2'-bipyridinechloro) rhodium (III): [Cp * Rh (bpy) H 2 O] 2+ A method of regenerating a cofactor characterized by its characteristics.
다음 단계를 포함하는 인공광합성 방법:
(a) 제1항 내지 제6항의 광전기화학(PEC) 장치에 산화형 보조인자, 전자전달 매개체 및 전자공여체를 포함하는 용액을 첨가한 다음, 광원을 조사하여 보조인자를 재생시키는 단계; 및
(b) 상기 재생된 보조인자를 산화환원효소의 기질의 산화환원 반응에 사용하여 유용물질을 제조하는 단계.
A method of artificial photosynthesis comprising the steps of:
(a) adding a solution containing an oxidation-type cofactor, an electron transfer mediator, and an electron donor to the photoelectrochemical (PEC) device of claims 1 to 6, and then irradiating a light source to regenerate the cofactor; and
(b) preparing a useful substance by using the regenerated cofactor in a redox reaction of a substrate of an oxidoreductase.
제12항에 있어서, 상기 전자공여체는 물(H2O), 트리에탄올아민(TEOA, triethanolamine), 에틸렌디아민테트라아세트산(EDTA, Ethylenediaminetetraacetic acid), 시트르산(Citric acid), 아스코르빈산(Ascorbic acid) 및 옥살산(Oxalic acid)으로 구성된 군에서 선택되는 것을 특징으로 하는 인공광합성 방법.
The method of claim 12, wherein the electron donor is water (H 2 O), triethanolamine (TEOA, triethanolamine), ethylenediaminetetraacetic acid (EDTA, Ethylenediaminetetraacetic acid), citric acid (Citric acid), ascorbic acid (Ascorbic acid) and Artificial photosynthesis method, characterized in that selected from the group consisting of oxalic acid.
제12항에 있어서, 상기 산화형 보조인자는 NAD+(nicotinamide adenine dinucleotide), NADP+(nicotinamide adenine dinucleotide phosphate), FAD+(flavin adenine dinucleotide) 및 FMN+(flavin monoucleotide)으로 구성된 군에서 선택되는 것을 특징으로 하는 인공광합성 방법.
The method according to claim 12, wherein the oxidative cofactor is selected from the group consisting of NAD + (nicotinamide adenine dinucleotide), NADP + (nicotinamide adenine dinucleotide phosphate), FAD + (flavin adenine dinucleotide) and FMN + (flavin monoucleotide). artificial photosynthesis method.
제12항에 있어서, 상기 전자전달 매개체는 메틸비올로겐, 루테늄(Ⅱ) 복합체 및 로듐(Ⅲ) 복합체로 구성되는 군에서 선택되는 것을 특징으로 하는 인공광합성 방법.
13. The method of claim 12, wherein the electron transport mediator is selected from the group consisting of methylviologen, ruthenium(II) complex, and rhodium(III) complex.
제15항에 있어서, 상기 로듐(Ⅲ) 복합체는 (펜타메틸사이클로펜타디에닐-2,2'-비피리딘클로로)로듐(III):[Cp*Rh(bpy)H2O]2+인 것을 특징으로 하는 인공광합성 방법.
The method of claim 15, wherein the rhodium (III) complex is (pentamethylcyclopentadienyl-2,2'-bipyridinechloro) rhodium (III): [Cp * Rh(bpy)H 2 O] 2+ Artificial photosynthesis method characterized.
제12항에 있어서, 상기 산화환원효소는 FDH(formate dehydrogenase), GDH(glutamate dehydrogenase), ADH(Alcohol dehydrogenase), G6PDH(glucose-6-phosphate dehydrogenase), LDH(lactic dehydrogenase), MDH(malate dehydrogenase) 및 SDH(succinic dehydrogenase)로 구성된 군에서 선택되는 것을 특징으로 하는 인공광합성 방법.
The method according to claim 12, wherein the oxidoreductase is formate dehydrogenase (FDH), glutamate dehydrogenase (GDH), alcohol dehydrogenase (ADH), glucose-6-phosphate dehydrogenase (G6PDH), lactic dehydrogenase (LDH), malate dehydrogenase (MDH). And SDH (succinic dehydrogenase) Artificial photosynthesis method, characterized in that selected from the group consisting of.
제12항에 있어서, 상기 재생된 보조인자는 (b) 단계의 산화환원 반응 후 산화되어 (a) 단계에 재첨가 되는 것을 특징으로 하는 인공광합성 방법.
The method according to claim 12, wherein the regenerated cofactor is oxidized after the redox reaction in step (b) and re-added in step (a).
제1항 내지 제6항의 광전기화학(PEC) 장치에 전해질 용액을 첨가한 다음, 광원을 조사하는 단계를 포함하는 수소 생산방법.
A method for producing hydrogen comprising adding an electrolyte solution to the photoelectrochemical (PEC) device of claim 1 , and then irradiating a light source.
제19항에 있어서, 상기 전해질 용액은 물(H2O) 및 이온화 화합물을 포함하고, 상기 이온화 화합물은 염화리튬, 염화칼륨, 염화나트륨, 염화칼슘, 질산칼륨, 질산나트륨, 황산칼륨, 황산나트륨 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 수소 생산방법.20. The method of claim 19, wherein the electrolyte solution comprises water (H 2 O) and an ionizing compound, wherein the ionizing compound is lithium chloride, potassium chloride, sodium chloride, calcium chloride, potassium nitrate, sodium nitrate, potassium sulfate, sodium sulfate and mixtures thereof. Hydrogen production method, characterized in that selected from the group consisting of.
KR1020200005986A 2020-01-16 2020-01-16 Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration KR102288193B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200005986A KR102288193B1 (en) 2020-01-16 2020-01-16 Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200005986A KR102288193B1 (en) 2020-01-16 2020-01-16 Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration

Publications (2)

Publication Number Publication Date
KR20210092503A true KR20210092503A (en) 2021-07-26
KR102288193B1 KR102288193B1 (en) 2021-08-11

Family

ID=77124855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200005986A KR102288193B1 (en) 2020-01-16 2020-01-16 Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration

Country Status (1)

Country Link
KR (1) KR102288193B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102630344B1 (en) * 2021-12-21 2024-01-30 울산과학기술원 Perovskite photoelectrode and active-photoelectrochemical reaction system comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729888B1 (en) * 2016-01-28 2017-04-24 서강대학교산학협력단 Photoelectrochemical Water Splitting System Using Porous Transition Metal Oxide Semiconductor
KR20170096707A (en) * 2016-02-17 2017-08-25 한국과학기술원 Method for Regenerating Cofactors Using Photoelectrochemical Cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729888B1 (en) * 2016-01-28 2017-04-24 서강대학교산학협력단 Photoelectrochemical Water Splitting System Using Porous Transition Metal Oxide Semiconductor
KR20170096707A (en) * 2016-02-17 2017-08-25 한국과학기술원 Method for Regenerating Cofactors Using Photoelectrochemical Cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SY Chae et al., 'Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells', Scientific Reports volume 6, Article number:30868 (2016.08.04.) 1부.* *

Also Published As

Publication number Publication date
KR102288193B1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
Yun et al. Dye sensitized photoelectrolysis cells
Chen et al. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting
Gao et al. Application of carbon dots in dye‐sensitized solar cells: a review
Feng et al. Non-oxide semiconductors for artificial photosynthesis: progress on photoelectrochemical water splitting and carbon dioxide reduction
Tian Molecular catalyst immobilized photocathodes for water/proton and carbon dioxide reduction
Kim et al. Robust FeOOH/BiVO 4/Cu (In, Ga) Se 2 tandem structure for solar-powered biocatalytic CO 2 reduction
Wang et al. Organic− inorganic hybrid perovskites: game-changing candidates for solar fuel production
Antón-García et al. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation
US20070184309A1 (en) Methods for use of a photobiofuel cell in production of hydrogen and other materials
CN113136602A (en) Preparation and application of bismuth vanadate/Vo-FeNiOOH composite photo-anode
Olmos et al. A quest for the artificial leaf
KR101703051B1 (en) Photoelectrochemical electrode for the conversion of carbon dioxide containing p-type copper-iron composite oxide, and the photoelectrochemical device including the same
KR101729888B1 (en) Photoelectrochemical Water Splitting System Using Porous Transition Metal Oxide Semiconductor
KR102015341B1 (en) Cathode containing copper oxide and transition metal sulfide, Preparation Method thereof, Microbial electrolysis cell containing the same, Wasted water treatment using the same
Wang et al. Engineering organic/inorganic hierarchical photocathode for efficient and stable quasi-solid-state photoelectrochemical fuel cells
KR20180022606A (en) Photoelectrochemical cell and manufacturing method thereof, water electrolysis system and manufacturing method thereof
CN108866563A (en) A kind of pucherite film photo cathode, preparation method and the purposes of the modification of boronation cobalt
WO2017025097A1 (en) A photoelectrochemical device suitable for production of electricity and seawater desalinization
CN113571812B (en) Bio-photo-electrochemical cell based on photo/chemical integrated energy conversion
KR102288193B1 (en) Photoelectrochemical(PEC) device Comprising CIGS Photovoltaic-Photoelectrode Tandem Configuration
Huang et al. Solar-to-chemical fuel conversion via metal halide perovskite solar-driven electrocatalysis
KR102434752B1 (en) Method for Regenerating Cofactors Using Photoelectrochemical Cells
Vlachopoulos et al. Photoelectrochemical cells based on dye sensitization for electricity and fuel production
Wrighton Thermodynamics and kinetics associated with semiconductor-based photoelectrochemical cells for the conversion of light to chemical energy
CN103219565A (en) Inverse photoelectrochemical cell

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant