KR20210086186A - Paste For Solar Cell's Electrode And Solar Cell using the same - Google Patents

Paste For Solar Cell's Electrode And Solar Cell using the same Download PDF

Info

Publication number
KR20210086186A
KR20210086186A KR1020190179957A KR20190179957A KR20210086186A KR 20210086186 A KR20210086186 A KR 20210086186A KR 1020190179957 A KR1020190179957 A KR 1020190179957A KR 20190179957 A KR20190179957 A KR 20190179957A KR 20210086186 A KR20210086186 A KR 20210086186A
Authority
KR
South Korea
Prior art keywords
mpp
solar cell
index
silicone oil
paste
Prior art date
Application number
KR1020190179957A
Other languages
Korean (ko)
Other versions
KR102413679B1 (en
Inventor
장문석
고민수
노화영
김인철
김충호
박강주
전태현
김화중
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Priority to KR1020190179957A priority Critical patent/KR102413679B1/en
Priority to PCT/KR2020/019188 priority patent/WO2021137548A1/en
Publication of KR20210086186A publication Critical patent/KR20210086186A/en
Application granted granted Critical
Publication of KR102413679B1 publication Critical patent/KR102413679B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • H01B3/465Silicone oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

The present invention relates to a conductive paste for a solar cell electrode, and specifically, to a conductive paste for a solar cell electrode comprising a metal powder, a glass frit, an organic vehicle and silicone oil, wherein the mass of the metal powder and the mass of the silicone oil are determined by MPP index defined by an equation 1, MPP index = (mass of metal powder) / (mass of silicone oil), and the MPP index is 20 to 500. It is possible to improve power generation efficiency of solar cells without major changes in conventional manufacturing conditions.

Description

태양전지 전극용 페이스트 및 이를 사용하여 제조된 태양전지{Paste For Solar Cell's Electrode And Solar Cell using the same}Paste for a solar cell electrode and a solar cell manufactured using the same {Paste For Solar Cell's Electrode And Solar Cell using the same}

본 발명은 태양전지의 전극 형성에 사용되는 도전성 페이스트 및 이를 이용하여 제조된 태양전지에 관한 것이다.The present invention relates to a conductive paste used for forming an electrode of a solar cell and a solar cell manufactured using the same.

태양 전지(solar cell)는 태양에너지를 전기에너지로 변환시켜 주는 반도체 소자로서 일반적으로 p-n 접합 형태를 가지며 그 기본 구조는 다이오드와 동일하다. 태양 전지 소자는 일반적으로 두께가 160~250㎛인 p형 실리콘 반도체 기판을 이용하여 구성된다. 실리콘 반도체 기판의 수광면측에는, 두께가 0.3~0.6㎛인 n형 불순물층과, 그 위에 반사 방지막과 전면 전극이 형성되어 있다. 또한, p형 실리콘 반도체 기판의 이면측에는 배면 전극이 형성되어 있다. A solar cell is a semiconductor device that converts solar energy into electrical energy, and generally has a p-n junction type and has the same basic structure as a diode. A solar cell device is generally constructed using a p-type silicon semiconductor substrate having a thickness of 160 to 250 μm. On the light-receiving surface side of the silicon semiconductor substrate, an n-type impurity layer having a thickness of 0.3 to 0.6 mu m, an antireflection film and a front electrode are formed thereon. Further, a back electrode is formed on the back side of the p-type silicon semiconductor substrate.

전면 전극은 은을 주성분으로 하는 도전성 입자(silver powder), 유리 프릿(glass frit), 유기 바인더, 용매, 및 첨가제 등을 혼합한 도전성 페이스트를 반사 방지막 상에 도포한 후 소성하여 전극을 형성하고 있으며, 배면 전극은 알루미늄 분말, 유리 프릿, 유기 바인더, 용매 및 첨가제로 이루어지는 알루미늄 페이스트 조성물을 스크린 인쇄 등에 의해 도포하고 건조한 후, 660℃(알루미늄의 융점) 이상의 온도에서 소성함으로써 형성되어 있다. 이 소성시에 알루미늄이 p형 실리콘 반도체 기판의 내부로 확산됨으로써, 배면 전극과 p형 실리콘 반도체 기판 사이에 Al-Si 합금층이 형성됨과 동시에, 알루미늄 원자의 확산에 의한 불순물층으로서 p+층이 형성된다. 이러한 p+층의 존재에 의해 전자의 재결합을 방지하고, 생성 캐리어의 수집 효율을 향상시키는 BSF(Back Surface Field) 효과가 얻어진다. 배면 알루미늄 전극 하부에는 배면 실버 전극이 더 위치될 수 있다.The front electrode forms an electrode by applying a conductive paste mixed with silver powder, glass frit, organic binder, solvent, and additives on the anti-reflection film and then firing it. , the rear electrode is formed by applying an aluminum paste composition consisting of aluminum powder, glass frit, organic binder, solvent and additives by screen printing or the like, drying it, and then firing at a temperature of 660 ° C. (melting point of aluminum) or higher. During this firing, aluminum diffuses into the p-type silicon semiconductor substrate, thereby forming an Al-Si alloy layer between the back electrode and the p-type silicon semiconductor substrate, and at the same time forming a p+ layer as an impurity layer by diffusion of aluminum atoms. do. By the presence of such a p + layer, a BSF (Back Surface Field) effect of preventing recombination of electrons and improving the collection efficiency of generated carriers is obtained. A rear silver electrode may be further disposed under the rear aluminum electrode.

한편, 태양전지의 전면 전극은 주로 스크린 프린팅 공정을 통해 형성되고 있다. 그러나, 페이스트의 슬립성이 나쁜 경우 스크린 인쇄시 스크린 망으로 페이스트가 쉽게 빠져나오지 못해 전극 패턴이 설계한대로 형성되지 못하고 울퉁불퉁하거나 불균일해지는 문제가 있다. 특히 미세 선폭을 구현할 경우 단선이 발생하거나 저항이 크게 증가하게 되므로 페이스트의 슬립성은 매우 중요한 요소가 된다.Meanwhile, the front electrode of the solar cell is mainly formed through a screen printing process. However, when the slip property of the paste is bad, the paste does not easily come out through the screen mesh during screen printing, so that the electrode pattern is not formed as designed, and there is a problem in that it is uneven or non-uniform. In particular, when a fine line width is implemented, disconnection occurs or resistance is greatly increased, so the slip property of the paste becomes a very important factor.

본 발명은 태양전지 전극용 도전성 페이스트의 슬립성을 높이기 위해, 페이스트에 실리콘 오일을 첨가한다. 그러나, 실리콘 오일이 적정량 사용되지 않을 경우 저항이 증가하여 변환 효율이 감소하거나, 실리콘 오일에 의한 상분리 현상이 일어나 페이스트의 균일성이 훼손되고 저장 안정성이 저하되는 문제가 발생할 수 있다. In the present invention, silicone oil is added to the paste in order to improve the slip property of the conductive paste for solar cell electrodes. However, if the silicone oil is not used in an appropriate amount, the resistance may increase to decrease the conversion efficiency, or a phase separation phenomenon may occur due to the silicone oil, thereby damaging the uniformity of the paste and lowering the storage stability.

따라서 본 발명은 실리콘 오일의 사용시 은 분말의 질량 대비 적정한 질량의 실리콘 오일을 첨가하여, 저항을 줄임과 동시에 안정적인 미세선폭을 구현할 수 있는 태양전지용 전극 페이스트 및 이에 따라 단락 전류가 상승하여 전극의 전기적 특성이 개선된 고효율 태양전지를 제공하는 것을 목적으로 한다.Therefore, the present invention provides an electrode paste for a solar cell that can realize a stable fine line width while reducing resistance by adding silicone oil of an appropriate mass relative to the mass of silver powder when using silicone oil, and electrical characteristics of the electrode by increasing the short-circuit current accordingly. An object of the present invention is to provide an improved high-efficiency solar cell.

그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명은 금속 분말, 유리 프릿, 유기 비히클 및 실리콘 오일을 포함하는 태양전지 전극용 페이스트 조성물을 포함하며, 상기 금속 분말의 질량 및 상기 실리콘 오일의 질량은 하기 식 1에 의해 정의되는 MPP 지수에 의해 결정되며, 상기 MPP 지수는 20 내지 500인 것을 특징으로 하는 태양전지 전극용 페이스트를 제공한다.The present invention includes a paste composition for a solar cell electrode comprising a metal powder, a glass frit, an organic vehicle and a silicone oil, wherein the mass of the metal powder and the mass of the silicone oil are determined by the MPP index defined by Equation 1 below. It is determined, and the MPP index provides a paste for a solar cell electrode, characterized in that 20 to 500.

[식 1][Equation 1]

MPP지수=(금속 분말의 질량)/(실리콘 오일의 질량) MPP index = (mass of metal powder) / (mass of silicone oil)

또한 상기 MPP지수는 30 내지 150인 것을 특징으로 한다.In addition, the MPP index is characterized in that 30 to 150.

또한 상기 MPP 지수는 하기 식 2에 의해 MPP 변환지수로 치환될 수 있는 것을 특징으로 한다.In addition, the MPP index is characterized in that it can be substituted with the MPP conversion index by the following formula (2).

[식 2][Equation 2]

MPP 변환지수 = MPP 지수×(log(v)/3)MPP conversion index = MPP index × (log(v)/3)

(여기서, MPP 지수는 식 1의 MPP 지수, v는 함유된 실리콘 오일의 동점도를 의미한다.)(Here, the MPP index is the MPP index of Equation 1, and v means the kinematic viscosity of the contained silicone oil.)

또한 상기 실리콘 오일의 분자량은 1~100,000cs인 것을 특징으로 한다.In addition, the molecular weight of the silicone oil is characterized in that 1-100,000cs.

또한 상기 실리콘 오일은 선형 분자, 분지형 분자, 고리형 분자 또는 이들의 혼합물을 함유하는 것을 특징으로 한다.In addition, the silicone oil is characterized in that it contains a linear molecule, a branched molecule, a cyclic molecule, or a mixture thereof.

또한 상기 선형 분자는 데카메틸테트라실록산(Decamethyltetrasiloxane), 도데카메틸펜타실록산(Dodecamethylpentasiloxane), 테트라데카메틸헥사실록산(Tetradecamethylhexasiloxane), 헥사데카메틸헵타실록산(Hexadecamethylheptasiloxane) 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 한다.In addition, the linear molecule is characterized in that it comprises at least one selected from decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane, and hexadecamethylheptasiloxane. do.

또한 상기 고리형 분자는 데카메틸시클로펜타실록산(Decamethylcyclopentasiloxane), 도데카메틸시클로헥사실록산(Dodecamethylcyclohexasiloxane), 테트라데카메틸시클로헵타실록산(Tetradecamethylcycloheptasiloxane) 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 한다.In addition, the cyclic molecule is characterized in that it comprises at least one selected from decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and tetradecamethylcycloheptasiloxane.

또한 본 발명은 상기 태양전지 전극용 페이스트를 이용하여 형성된 전극을 포함하는 태양전지를 제공한다.In addition, the present invention provides a solar cell including an electrode formed by using the solar cell electrode paste.

본 발명은 실리콘 오일의 사용시 은 분말의 질량 대비 적정한 질량의 실리콘 오일을 첨가하여, 저항을 줄임과 동시에 안정적인 미세선폭을 구현할 수 있는 태양전지용 전극 페이스트 및 이에 따라 단락 전류가 상승하여 태양전지 전극의 전기적 특성이 개선 가능한 효과를 제공한다.The present invention relates to an electrode paste for a solar cell that can realize a stable fine line width while reducing resistance by adding silicone oil of an appropriate mass relative to the mass of silver powder when silicone oil is used, and thus the short-circuit current rises to increase the electrical power of the solar cell electrode The property provides an effect that can be improved.

이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is to be understood that the terminology used herein is for the purpose of describing specific embodiments and is not intended to limit the scope of the present invention, which is limited only by the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art, unless otherwise stated.

본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless stated otherwise, the term comprise, comprises, comprising is meant to include the stated object, step or group of objects, and steps, and any other object. It is not used in the sense of excluding steps or groups of objects or groups of steps.

한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.On the other hand, various embodiments of the present invention may be combined with any other embodiments unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.

본 발명의 일실시예에 따른 페이스트는 태양전지 전극 형성에 사용되기 적합한 페이스트로서, 금속 분말, 유리 프릿, 유기 비히클 및 실리콘 오일을 포함할 수 있다.The paste according to an embodiment of the present invention is a paste suitable for use in forming a solar cell electrode, and may include a metal powder, a glass frit, an organic vehicle, and a silicone oil.

상기 금속 분말로는 은, 금, 팔라듐, 백금, 구리, 크롬, 코발트, 알루미늄, 주석, 납, 아연, 철, 이리듐, 오스뮴, 로듐, 텅스텐, 몰리브덴, 니켈 및 인듐틴옥사이드(ITO) 등이 사용될 수 있는데, 전면 전극용의 경우 은 분말이 주로 사용된다. 금속 분말은 상술한 분말 중 하나가 단독으로 사용되거나, 상술한 금속의 합금이 사용되거나, 상술한 분말 중 적어도 두 개가 혼합된 혼합 분말로 사용될 수 있다. As the metal powder, silver, gold, palladium, platinum, copper, chromium, cobalt, aluminum, tin, lead, zinc, iron, iridium, osmium, rhodium, tungsten, molybdenum, nickel and indium tin oxide (ITO) may be used. However, for the front electrode, silver powder is mainly used. As the metal powder, one of the above-mentioned powders may be used alone, an alloy of the above-mentioned metal may be used, or at least two of the above-mentioned powders may be used as a mixed powder.

금속 분말의 함량은 인쇄 시 형성되는 전극 두께 및 전극의 선저항을 고려할 때 도전성 페이스트 조성물 총 중량을 기준으로 40 내지 95 중량%가 바람직하다. 40 중량% 미만인 경우 형성된 전극의 비저항이 높을 수 있으며, 95 중량% 초과인 경우 다른 성분의 함량이 충분하지 않아 금속 분말이 균일하게 분산되지 않는 문제점이 있다. 더욱 바람직하게는 70 내지 93 중량%로 포함되는 것이 좋다.The content of the metal powder is preferably 40 to 95% by weight based on the total weight of the conductive paste composition in consideration of the thickness of the electrode formed during printing and the wire resistance of the electrode. If it is less than 40% by weight, the specific resistance of the formed electrode may be high, and if it is more than 95% by weight, there is a problem in that the content of other components is not sufficient, so that the metal powder is not uniformly dispersed. More preferably, it is included in an amount of 70 to 93% by weight.

태양전지의 전면 전극 형성을 위하여 도전성 페이스트가 은 분말을 포함하는 경우 은 분말은 순은 분말이 바람직하며, 이외에 적어도 표면이 은 층(silver layer)으로 이루어지는 은 피복 복합 분말이나, 은을 주성분으로 하는 합금(alloy) 등을 사용할 수 있다. 또한, 다른 금속 분말을 혼합하여 사용할 수도 있다. 예를 들면 알루미늄, 금, 팔라듐, 동, 니켈 등을 들 수 있다.When the conductive paste contains silver powder for forming the front electrode of a solar cell, the silver powder is preferably a pure silver powder. In addition, a silver-coated composite powder having at least a surface of a silver layer, or an alloy containing silver as a main component (alloy) and the like can be used. In addition, other metal powders may be mixed and used. For example, aluminum, gold, palladium, copper, nickel, etc. are mentioned.

금속 분말의 평균 입경(D50)은 0.1 내지 10㎛ 일 수 있으며, 페이스트화 용이성 및 소성시 치밀도를 고려할 때 0.5 내지 5㎛가 바람직하며, 그 형상이 구상, 침상, 판상 그리고 무정상 중 적어도 1종 이상일 수 있다. 금속 분말은 평균 입자지름이나 입도 분포, 형상 등이 다른 2종 이상의 분말을 혼합하여 이용해도 좋다. The average particle diameter (D50) of the metal powder may be 0.1 to 10 μm, preferably 0.5 to 5 μm in consideration of ease of pasting and density during firing, and the shape is at least one of spherical, needle, plate, and amorphous. may be more than one species. The metal powder may be used by mixing two or more types of powders having different average particle diameters, particle size distributions, shapes, and the like.

상기 도전성 금속 분말은 코팅제를 사용하여 코팅된 것을 사용할 수 있는데, 상기 코팅제는 탄소수 8 내지 20의 알킬체인에 아민기를 갖는 알킬아민계 화합물 또는 탄소수 8 내지 20의 알킬체인에 카르복실기를 갖는 알킬카복시계 화합물을 포함한다. 바람직하게는 탄소수 15 내지 20의 알킬체인에 아민기 또는 카르복실기를 갖는 화합물을 포함하는 것이 좋다. 알킬체인의 탄소수가 8 미만인 경우 원하는 효과가 발현되지 않는 문제점이 있고, 탄소수가 20을 초과하는 경우 용제에 녹이는데 어려움이 있고, 표면처리가 잘 되지 않는 문제점이 있다. 또한 상기 코팅제는 알킬체인이 포화되거나 불포화된 것 모두 사용 가능하다. The conductive metal powder may be coated using a coating agent. The coating agent is an alkylamine-based compound having an amine group in an alkyl chain having 8 to 20 carbon atoms or an alkylcarboxy compound having a carboxyl group in an alkyl chain having 8 to 20 carbon atoms. includes Preferably, it is good to include a compound having an amine group or a carboxyl group in an alkyl chain having 15 to 20 carbon atoms. If the carbon number of the alkyl chain is less than 8, there is a problem in that the desired effect is not expressed, if the carbon number exceeds 20, there is a problem in that it is difficult to dissolve in a solvent, and the surface treatment is not well. In addition, the coating agent can be used in both saturated or unsaturated alkyl chain.

상기 알킬체인에 아민기를 갖는 화합물은 트리에틸아민(Triethylamine), 헵틸아민(Heptylamine), 옥타데실아민(Octadecylamine), 헥사데실아민(Hexadecylamine), 데실아민(Decylamine), 옥틸아민(Octylamine), 디데실아민(Didecylamine), 및 트리옥틸아민(Trioctylamine) 중에서 선택된 적어도 하나를 포함할 수 있다. The compound having an amine group in the alkyl chain is triethylamine, heptylamine, octadecylamine, hexadecylamine, decylamine, octylamine, didecyl It may include at least one selected from amine ( Didecylamine), and trioctylamine (Trioctylamine).

상기 알킬체인에 카르복실기를 갖는 화합물은 포화 지방산으로는 카프릭산(Capric acid), 라우르산(Lauric acid), 미리스트산(Myristic acid), 팔미트산(Palmitic acid), 스테아르산(Stearic acid), 아라키딘산(Arachidic acid), 불포화 지방산으로는 미리스트올레산(Myristoleic acid), 팔미톨레산(Palmitoleic acid), 올레산(Oleic acid), 리놀레산(Linoleic acid) 중에서 선택된 적어도 하나를 포함할 수 있다. The compound having a carboxyl group in the alkyl chain is, as a saturated fatty acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid ), arachidic acid, the unsaturated fatty acid may include at least one selected from myristoleic acid, palmitoleic acid, oleic acid, and linoleic acid.

가장 바람직하게는 옥타데실아민으로 코팅 처리된 은 분말이 사용되며, 상기 코팅제는 금속 분말의 표면에 0.1nm 내지 50nm의 두께로 코팅되는 것이 바람직하다. 상기 코팅은 코팅제가 녹아있는 유기 용매에 은 분말(Ag powder)과 같은 금속 분말을 넣고 일정시간 교반한 후 여과하는 방법으로 진행될 수 있다.Most preferably, a silver powder coated with octadecylamine is used, and the coating agent is preferably coated on the surface of the metal powder to a thickness of 0.1 nm to 50 nm. The coating may be performed by adding a metal powder such as Ag powder to an organic solvent in which the coating agent is dissolved, stirring for a predetermined time, and then filtering.

구체적인 코팅 방법으로는 도전성 금속 분말이 분산된 용액에 알킬아민계 화합물 또는 알킬카복시계 화합물을 포함하는 알코올 용액을 넣고 교반기를 이용하여 2000 내지 5000rpm 10 내지 30분간 교반하여 표면처리할 수 있다. 알킬아민계 화합물 또는 알킬카복시계 화합물을 포함하는 알코올 용액은 용액 전체 중량에 대하여 상기 화합물이 5 내지 20 wt%로 용해된 알코올 용액을 사용할 수 있으며, 알코올은 메탄올, 에탄올, n-프로판올, 벤질알코올, 테르피네올(Terpineol) 등을 사용할 수 있으며, 바람직하게는 에탄올을 사용할 수 있다.As a specific coating method, an alcohol solution containing an alkylamine-based compound or an alkylcarboxyl-based compound is added to a solution in which the conductive metal powder is dispersed, and the surface is treated by stirring at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer. An alcohol solution containing an alkylamine-based compound or an alkylcarboxyl compound may be an alcohol solution in which 5 to 20 wt% of the compound is dissolved based on the total weight of the solution, and the alcohol is methanol, ethanol, n-propanol, benzyl alcohol , terpineol, etc. may be used, preferably ethanol.

도전성 금속 분말 100 중량부에 대하여 코팅제를 0.1 내지 1.0 중량부 사용할 수 있다. 0.1 중량부 미만으로 혼합되는 경우 도전성 금속 분말 표면에 흡착되는 코팅제 양이 적어 분말 간에 응집이 발생하고, 실리콘 오일의 상용성 개선 효과가 미미할 수 있으며, 1.0 중량부 초과하여 혼합되는 경우, 도전성 금속 분말 표면에 과량의 표면처리제가 흡착되어 제조되는 전극의 전기 전도성을 저하시킬 수 있는 문제점이 있다. 0.1 to 1.0 parts by weight of the coating agent may be used based on 100 parts by weight of the conductive metal powder. When mixed in less than 0.1 parts by weight, the amount of coating agent adsorbed to the surface of the conductive metal powder is small, so agglomeration occurs between the powders, the compatibility improvement effect of the silicone oil may be insignificant, and when mixed in more than 1.0 parts by weight, the conductive metal powder There is a problem in that an excessive amount of the surface treatment agent is adsorbed on the surface to lower the electrical conductivity of the manufactured electrode.

상기 코팅제를 이용하여 코팅된 도전성 금속 분말을 사용함으로써 도전성 페이스트에 포함되는 실리콘 오일을 금속 분말 표면으로 위치시킬 수 있어 비히클(vehicle)에서의 상분리를 완전하게 방지할 수 있다. 즉 상기 코팅제에 의해 코팅됨에 따라 실리콘 오일의 도전성 금속 분말 표면으로의 이동 정도를 제어할 수 있다. 실리콘 오일의 유기 비히클(유기 용제 및 유기 바인더 등)과의 비상용에 의한 상분리를 방지함으로써 제공되는 도전성 페이스트의 저장 안정성을 확보할 수 있으며 우수한 슬립성을 확보하여 초 미세선폭 구현이 가능한 효과를 제공한다.By using the conductive metal powder coated with the coating agent, the silicone oil included in the conductive paste can be positioned on the surface of the metal powder, so that phase separation in the vehicle can be completely prevented. That is, it is possible to control the degree of movement of the silicone oil to the surface of the conductive metal powder as it is coated by the coating agent. By preventing phase separation due to incompatibility of silicone oil with organic vehicles (organic solvents and organic binders, etc.), storage stability of the provided conductive paste can be secured, and excellent slip properties are ensured to provide the effect of realizing ultra-fine line width. .

실리콘 오일은 도전성 페이스트에 포함되어 슬립성을 극대화할 수 있다. 상기 실리콘 오일의 종류는 제한되지 않으나, 바람직하게는 선형 분자, 분지형 분자, 고리형 분자 또는 이들의 혼합물을 사용하는 것이 좋다.Silicone oil may be included in the conductive paste to maximize slip properties. The type of the silicone oil is not limited, but it is preferable to use a linear molecule, a branched molecule, a cyclic molecule, or a mixture thereof.

구체적으로, 상기 실리콘 오일은 선형 분자로서 데카메틸테트라실록산(Decamethyltetrasiloxane), 도데카메틸펜타실록산(Dodecamethylpentasiloxane), 테트라데카메틸헥사실록산(Tetradecamethylhexasiloxane), 헥사데카메틸헵타실록산(Hexadecamethylheptasiloxane) 등을 예로 들 수 있으며, 고리형 분자로서 데카메틸시클로펜타실록산(Decamethylcyclopentasiloxane), 도데카메틸시클로헥사실록산(Dodecamethylcyclohexasiloxane), 테트라데카메틸시클로헵타실록산(Tetradecamethylcycloheptasiloxane) 등을 예로 들 수 있다. 상기 실리콘 오일들은 적어도 1종 이상 선택되어 사용될 수 있다. 또한, 상기 실리콘 오일은 페닐트리메치콘(Phenyl trimethione), 디메치콘(Dimethicone), 사이클로메치콘(cyclomethicone), 폴리디메틸실록산(polydimethylsiloxane), 실리콘검(Silicone Gum)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 변성 실리콘 오일 또한 사용가능하다. 바람직하게는 폴리디메틸실록산 등의 폴리실록산(Polydimethylsiloxane)일 수 있으며, 슬립성을 고려할 때 비변성 폴리실록산 오일을 사용하는 것이 좋다.Specifically, the silicone oil is a linear molecule and includes decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane, hexadecamethylheptasiloxane, and the like. , as a cyclic molecule, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, tetradecamethylcycloheptasiloxane, and the like can be exemplified. At least one of the silicone oils may be selected and used. In addition, the silicone oil is at least one selected from the group consisting of phenyl trimethione, dimethicone, cyclomethicone, polydimethylsiloxane, and silicone gum. may be included, and a modified silicone oil may also be used. Preferably, it may be polysiloxane such as polydimethylsiloxane, and it is preferable to use unmodified polysiloxane oil in consideration of slip properties.

또한 상기 실리콘 오일의 분자량은 1~100,000cs인 것이 바람직하다. 실리콘 오일의 분자량이 100,000cs를 초과할 경우 점도가 너무 높아 페이스트 제조가 어려운 문제가 있다.In addition, it is preferable that the molecular weight of the silicone oil is 1-100,000cs. When the molecular weight of the silicone oil exceeds 100,000cs, the viscosity is too high, so that it is difficult to prepare a paste.

상기 실리콘 오일은 도전성 페이스트 조성물 총 중량을 기준으로 0.1 내지 5 중량%로 포함된다. 실리콘 오일이 0.1 중량% 미만으로 첨가되는 경우 슬립성 개선 효과가 미미한 문제점이 있고, 5 중량%을 초과하여 첨가되는 경우 상분리 및 저장 안정성에 문제가 있으며, 슬립 특성이 과한 경우 인쇄시 도포 상태가 불량하여 단선으로 이어질 수 있는 문제가 있다. 바람직하게는 0.5 내지 2 중량%로 포함되는 것이 좋다.The silicone oil is included in an amount of 0.1 to 5% by weight based on the total weight of the conductive paste composition. When silicone oil is added in an amount of less than 0.1% by weight, there is a slight problem in improving the slip property, when it is added in excess of 5% by weight, there is a problem in phase separation and storage stability, and when the slip property is excessive, the coating state during printing is poor. There is a problem that can lead to disconnection. Preferably, it is included in an amount of 0.5 to 2% by weight.

본 발명의 일실시예에 따른 도전성 페이스트에 포함되는 금속 분말의 질량 및 실리콘 오일의 질량은 하기 식 1에 의해 정의되는 MPP 지수에 의해 결정될 수 있다.The mass of the metal powder and the mass of the silicone oil included in the conductive paste according to an embodiment of the present invention may be determined by the MPP index defined by Equation 1 below.

[식 1][Equation 1]

MPP 지수=(금속 분말의 질량)/(실리콘 오일의 질량)MPP index = (mass of metal powder)/(mass of silicone oil)

식 1에 따르면, MPP 지수가 높을수록 금속 분말의 질량 대비 실리콘 오일의 질량은 작고, MPP 지수가 낮을수록 금속 분말의 질량 대비 실리콘 오일의 질량은 크다. 상기 MPP 지수는 20 내지 500일 수 있으며, 30 내지 150인 것이 바람직하다. MPP 지수가 20 미만이면 도전성 페이스트를 사용해 태양전지를 제조 시 실리콘 오일이 일부 잔류하게 되어 저항으로 작용하고, 제조된 태양전지의 저항이 증가하여 변환 효율이 낮아지는 문제가 있으며, MPP 지수가 500을 초과하면 종횡비가 낮아져 미세 선폭을 구현할 수 없어 저항이 증가하고, 단락 전류가 감소해 제조된 태양전지의 변환 효율이 낮아지는 문제가 있다.According to Equation 1, the higher the MPP index, the smaller the mass of the silicone oil relative to the mass of the metal powder, and the lower the MPP index, the greater the mass of the silicone oil relative to the mass of the metal powder. The MPP index may be 20 to 500, preferably 30 to 150. When the MPP index is less than 20, when the solar cell is manufactured using the conductive paste, some silicone oil remains and acts as a resistance, and there is a problem in that the resistance of the manufactured solar cell increases and the conversion efficiency decreases, and the MPP index is 500 If it exceeds, the aspect ratio is lowered, so that a fine line width cannot be realized, which increases the resistance, and there is a problem in that the conversion efficiency of the manufactured solar cell is lowered due to a decrease in the short-circuit current.

상기 실리콘 오일은 동점도(Centi Stokes, cs)에 따라 치환될 수 있다. 구체적으로, 실리콘 오일은 분자량에 따라 동점도 단위로 구분하여 MPP 지수를 MPP 변환지수로 표현할 수 있으며, MPP 변환지수는 하기 식 2와 같이 계산될 수 있다.The silicone oil may be substituted according to the kinematic viscosity (Centi Stokes, cs). Specifically, the silicone oil can be divided into kinematic viscosity units according to the molecular weight, and the MPP index can be expressed as the MPP conversion index, and the MPP conversion index can be calculated as in Equation 2 below.

[식 2][Equation 2]

MPP 변환지수 = MPP 지수×(log(v)/3)MPP conversion index = MPP index × (log(v)/3)

(여기서, MPP 지수는 식 1의 MPP 지수, v는 함유된 실리콘 오일의 동점도를 의미한다.)(Here, the MPP index is the MPP index of Equation 1, and v means the kinematic viscosity of the contained silicone oil.)

예를 들어, 도전성 페이스트 제조 시 분자량이 10,000cs인 실리콘 오일을 사용할 경우, MPP 지수가 90일 때 MPP 변환지수는 동점도를 고려하지 않은 MPP 지수에 log(10000)/3=4/3을 곱하여 120으로 표현될 수 있다. 더하여, 분자량이 1,000cs인 실리콘 오일을 사용할 경우, MPP 지수가 90일 때 MPP 변환지수는 MPP 지수에 log(1000)/3=1을 곱하여 90으로 표현될 수 있다.For example, when silicone oil with a molecular weight of 10,000cs is used for manufacturing conductive paste, when the MPP index is 90, the MPP conversion index is 120 by multiplying the MPP index without considering the kinematic viscosity by log(10000)/3=4/3 can be expressed as In addition, when using a silicone oil having a molecular weight of 1,000cs, when the MPP index is 90, the MPP conversion index can be expressed as 90 by multiplying the MPP index by log(1000)/3=1.

MPP 변환지수를 이용하면, 분자량을 고려하지 않은 MPP 지수를 보완할 수 있어 도전성 페이스트 제조 시 분자량이 상이한 실리콘 오일을 사용하더라도 실리콘 오일의 점도에 맞게 최적화된 비율로 제조할 수 있으며, 미세 선폭을 구현하여 단락 전류가 높고 변환 효율이 높은 태양전지를 제조할 수 있다.If the MPP conversion index is used, the MPP index that does not consider the molecular weight can be supplemented, so even if a silicone oil with a different molecular weight is used when manufacturing a conductive paste, it can be manufactured at an optimized ratio according to the viscosity of the silicone oil, and a fine line width is realized. Thus, it is possible to manufacture a solar cell with high short-circuit current and high conversion efficiency.

상기 유리 프릿은 그 조성이나 입경, 형상에 있어서 특별히 제한을 두지 않는다. 유연 유리 프릿뿐만 아니라 무연 유리 프릿도 사용 가능하다. 바람직하기로는 유리 프릿의 성분 및 함량으로서, 산화물 환산 기준으로 PbO는 5 ~ 29 mol%, TeO2는 20 ~ 34 mol%, Bi2O3는 3 ~ 20 mol%, SiO2 20 mol% 이하, B2O3 10 mol% 이하, 알칼리 금속(Li, Na, K 등) 및 알칼리 토금속(Ca, Mg 등)은 10 ~ 20 mol%를 함유하는 것이 좋다. 상기 각 성분의 유기적 함량 조합에 의해 전극 선폭 증가를 막고 고면저항에서 접촉 저항을 우수하게 할 수 있으며, 단락전류 특성을 우수하게 할 수 있다. The glass frit is not particularly limited in its composition, particle size, or shape. Lead-free glass frit as well as lead-free glass frit can be used. Preferably, as a component and content of the glass frit, PbO is 5 to 29 mol%, TeO 2 is 20 to 34 mol%, Bi 2 O 3 is 3 to 20 mol%, SiO 2 20 mol% or less, B 2 O 3 10 mol% or less, alkali metals (Li, Na, K, etc.) and alkaline earth metals (Ca, Mg, etc.) preferably contain 10 to 20 mol%. By combining the organic content of each component, it is possible to prevent an increase in electrode line width, to improve contact resistance in high sheet resistance, and to improve short-circuit current characteristics.

유리 프릿의 평균 입경은 제한되지 않으나 0.5 내지 10㎛ 범위 내의 입경을 가질 수 있으며, 평균 입경이 다른 다종이 입자를 혼합하여 사용할 수도 있다. 바람직하기로는 적어도 1종의 유리 프릿은 평균 입경(D50)이 2㎛ 이상 10 ㎛ 이하인 것을 사용하는 것이 좋다. The average particle diameter of the glass frit is not limited, but may have a particle diameter within the range of 0.5 to 10 μm, and may be used by mixing various types of particles having different average particle diameters. Preferably, at least one glass frit having an average particle diameter (D50) of 2 μm or more and 10 μm or less is used.

유리 프릿의 함량은 도전성 페이스트 조성물 총중량을 기준으로 1 내지 10 중량%가 바람직한데, 1 중량% 미만이면 불완전 소성이 이루어져 전기 비저항이 높아질 우려가 있고, 10 중량% 초과하면 금속 분말의 소성체 내에 유리 성분이 너무 많아져 전기 비저항이 역시 높아질 우려가 있다.The content of the glass frit is preferably 1 to 10% by weight based on the total weight of the conductive paste composition. If it is less than 1% by weight, there is a risk that incomplete firing is made to increase the electrical resistivity, and if it exceeds 10% by weight, the glass in the fired body of the metal powder is There is a possibility that the component is too large and the electrical resistivity is also increased.

상기 유리 프릿의 표면이 지방아민 및 지방산으로 코팅 처리되면 분산성이 향상되어, 전극 형성 시 유리 프릿의 균일한 도포가 가능할 수 있다. 그 결과, 소성시 반응성이 우수해지고, 특히 고온에서 n층의 데미지를 최소화할 수 있으며 부착력이 개선되고 개방전압(Voc)을 우수하게 할 수 있다. 또한, 소성시 금속 분말(예컨대, 은 분말)의 침투를 균일하게 하여 전극과 n층의 접촉 저항을 감소시킬 수 있다. 이와 같은 효과의 제공은, 유리 프릿의 조성, 입경 또는 형상의 조절을 더욱 용이하게 하는 추가적인 효과를 제공할 수 있다.When the surface of the glass frit is coated with fatty amines and fatty acids, dispersibility is improved, and uniform application of the glass frit may be possible during electrode formation. As a result, reactivity during firing is improved, damage to the n-layer can be minimized especially at high temperatures, adhesion is improved, and open-circuit voltage (Voc) can be excellent. In addition, it is possible to reduce the contact resistance between the electrode and the n-layer by making the penetration of the metal powder (eg, silver powder) uniform during firing. Providing such an effect may provide an additional effect of further facilitating control of the composition, particle size or shape of the glass frit.

상기 유기 비히클로는 제한되지 않으나 유기 바인더와 용제 등이 포함될 수 있다. 때로는 용제가 생략될 수 있다. 유기 비히클은 제한되지 않으나 도전성 페이스트 조성물 총 중량을 기준으로 1 내지 30 중량%가 바람직하다.The organic vehicle is not limited, but may include an organic binder and a solvent. Sometimes the solvent can be omitted. The organic vehicle is not limited, but preferably 1 to 30% by weight based on the total weight of the conductive paste composition.

유기 비히클은 금속 분말과 유리 프릿 등이 균일하게 혼합된 상태를 유지하는 특성이 요구되며, 예를 들면 스크린 인쇄에 의해 도전성 페이스트가 기재에 도포될 때에, 도전성 페이스트를 균질하게 하여, 인쇄 패턴의 흐려짐 및 흐름을 억제하고, 또한 스크린판으로부터의 도전성 페이스트의 토출성 및 판분리성을 향상시키는 특성이 요구된다. The organic vehicle is required to maintain a uniformly mixed state of metal powder and glass frit. For example, when a conductive paste is applied to a substrate by screen printing, the conductive paste is homogenized, resulting in blurring of the printed pattern. and properties for suppressing the flow and improving the discharge property and the plate separation property of the conductive paste from the screen plate are required.

유기 비히클에 포함되는 유기 바인더는 제한되지 않으나 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트 등을 예로 들 수 있으며, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스 등을 예로 들 수 있으며, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 등을 예로 들 수 있으며, 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올 등을 예로 들 수 있다. 상기 유기 바인더들은 적어도 1종 이상 선택되어 사용될 수 있다. The organic binder included in the organic vehicle is not limited, but examples of the cellulose ester-based compound include cellulose acetate and cellulose acetate butyrate, and the cellulose ether compound includes ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and hydroxyethyl Examples include cellulose, hydroxypropyl methyl cellulose, and hydroxyethyl methyl cellulose, and examples of the acrylic compound include polyacrylamide, poly methacrylate, polymethyl methacrylate, polyethyl methacrylate, and the like. , polyvinyl butyral, polyvinyl acetate and polyvinyl alcohol may be exemplified as the vinyl type. At least one or more organic binders may be selected and used.

조성물의 희석을 위해 사용되는 용제로서는 알파-터피네올, 텍사놀, 디옥틸 프탈레이트, 디부틸 프탈레이트, 시클로헥산, 헥산, 톨루엔, 벤질알코올, 디옥산, 디에틸렌글리콜, 에틸렌 글리콜 모노 부틸 에테르, 에틸렌 글리콜 모노 부틸 에테르 아세테이트, 디에틸렌 글리콜 모노 부틸 에테르, 디에틸렌 글리콜 모노 부틸 에테르 아세테이트 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다.As a solvent used for dilution of the composition, alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol monobutyl ether, ethylene It is preferable to use at least one selected from the group consisting of glycol monobutyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, and the like.

본 발명에 의한 도전성 페이스트 조성물은 필요에 따라 통상적으로 알려져 있는 첨가제, 예를 들면, 분산제, 가소제, 점도 조정제, 계면활성제, 산화제, 금속 산화물, 금속 유기 화합물 등을 더 포함할 수 있다.The conductive paste composition according to the present invention may further include, if necessary, commonly known additives, for example, a dispersant, a plasticizer, a viscosity modifier, a surfactant, an oxidizing agent, a metal oxide, a metal organic compound, and the like.

상술한 태양전지 전극용 도전성 페이스트 조성물은 금속 분말, 코팅 처리된 유리 프릿, 유기 비히클 및 첨가제 등을 혼합 및 분산한 다음 여과 및 탈포하여 제조될 수 있다. The above-described conductive paste composition for a solar cell electrode may be prepared by mixing and dispersing a metal powder, a coated glass frit, an organic vehicle, an additive, and the like, followed by filtration and defoaming.

본 발명은 또한 상기 도전성 페이스트를 기재 위에 도포하고, 건조 및 소성하는 것을 특징으로 하는 태양전지의 전극 형성 방법 및 상기 방법에 의하여 제조된 태양전지 전극을 제공한다. 본 발명의 태양전지 전극 형성 방법에서 상기와 같이 코팅 처리된 유리 프릿을 포함하는 도전성 페이스트를 사용하는 것을 제외하고, 기재, 인쇄, 건조 및 소성은 통상적으로 태양전지의 제조에 사용되는 방법들이 사용될 수 있음은 물론이다. 일 예로 상기 기재는 실리콘 웨이퍼일 수 있다.The present invention also provides a method for forming an electrode of a solar cell, characterized in that the conductive paste is applied on a substrate, dried and fired, and a solar cell electrode manufactured by the method. In the method for forming a solar cell electrode of the present invention, except for using the conductive paste including the coated glass frit as described above, the substrate, printing, drying, and firing are methods commonly used for manufacturing solar cells. of course there is For example, the substrate may be a silicon wafer.

한편, 상기와 같이 형성된 태양전지 전극을 포함하는 단위 태양전지 셀은 그 기전력이 작기 때문에 다수의 단위 태양전지 셀을 연결하여 적정 기전력을 갖는 태양전지모듈(Photovoltaic Module)을 구성하여 사용하게 되는데, 이 때 각 단위 태양전지 셀들은 납이 피복된 일정 길이의 도체 리본들에 의해 연결된다.On the other hand, since the unit solar cell including the solar cell electrode formed as described above has a small electromotive force, a number of unit solar cells are connected to form a photovoltaic module having an appropriate electromotive force. When each unit solar cell cells are connected by lead-coated conductor ribbons of a certain length.

또한 본 발명에 따른 도전성 페이스트는 결정질 태양전지(P-type, N-type), PESC(Passivated Emitter Solar Cell), PERC(Passivated Emitter and Rear Cell), PERL(Passivated Emitter Real Locally Diffused) 등의 구조 및 더블 프린팅(Double printing), 듀얼 프린팅(Dual printing) 등 변경된 인쇄 공정에도 모두 적용이 가능하다.In addition, the conductive paste according to the present invention has a structure such as a crystalline solar cell (P-type, N-type), a Passivated Emitter Solar Cell (PESC), a Passivated Emitter and Rear Cell (PERC), and a Passivated Emitter Real Locally Diffused (PERL). It can be applied to all modified printing processes such as double printing and dual printing.

실험예 Experimental example

(1) 실험예 1(One) Experimental Example 1

은 분말 90g, 분자량이 1,000cs인 PDMS 0.15g, 유리 프릿 3g, 유기 비히클 7.85g, 첨가제 1g을 자전공전식 진공 교반 탈포 장치로 혼합한 후 삼본롤을 사용함으로써, 도전성 페이스트를 얻었다.After mixing 90 g of silver powder, 0.15 g of PDMS having a molecular weight of 1,000 cs, 3 g of glass frit, 7.85 g of an organic vehicle, and 1 g of an additive using a rotating vacuum stirring degassing device, a three-bone roll was used to obtain a conductive paste.

(2) 실험예 2(2) Experimental Example 2

PDMS를 0.2g, 유기 비히클을 7.8g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다. It was prepared in the same capacity and method as in Experimental Example 1, except that 0.2 g of PDMS and 7.8 g of organic vehicle were added.

(3) 실험예 3(3) Experimental Example 3

PDMS를 0.4g, 유기 비히클을 7.6g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다. It was prepared in the same capacity and method as in Experimental Example 1, except that 0.4 g of PDMS and 7.6 g of an organic vehicle were added.

(4) 실험예 4(4) Experimental Example 4

PDMS를 0.6g, 유기 비히클을 7.4g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 0.6 g of PDMS and 7.4 g of an organic vehicle were added.

(5) 실험예 5(5) Experimental Example 5

PDMS를 0.8g, 유기 비히클을 7.2g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 0.8 g of PDMS and 7.2 g of an organic vehicle were added.

(6) 실험예 6(6) Experimental Example 6

PDMS를 1.0g, 유기 비히클을 7.0g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 1.0 g of PDMS and 7.0 g of an organic vehicle were added.

(7) 실험예 7(7) Experimental Example 7

PDMS를 1.2g, 유기 비히클을 6.8g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 1.2 g of PDMS and 6.8 g of an organic vehicle were added.

(8) 실험예 8(8) Experimental Example 8

PDMS를 2.0g, 유기 비히클을 6.0g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 2.0 g of PDMS and 6.0 g of an organic vehicle were added.

(9) 실험예 9(9) Experimental Example 9

PDMS를 3.5g, 유기 비히클을 4.5g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 3.5 g of PDMS and 4.5 g of an organic vehicle were added.

(10) 실험예 10(10) Experimental Example 10

PDMS를 5.0g, 유기 비히클을 3.0g 첨가한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that 5.0 g of PDMS and 3.0 g of an organic vehicle were added.

(11) 실험예 11(11) Experimental Example 11

분자량이 10cs인 PDMS를 사용한 것을 제외하고는 실험예 1과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 1, except that PDMS having a molecular weight of 10cs was used.

(12) 실험예 12(12) Experimental Example 12

분자량이 10cs인 PDMS를 사용한 것을 제외하고는 실험예 3과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 3, except that PDMS having a molecular weight of 10cs was used.

(13) 실험예 13(13) Experimental Example 13

분자량이 90,000cs인 PDMS를 사용한 것을 제외하고는 실험예 8과 동일한 용량 및 방법으로 제조하였다.It was prepared in the same capacity and method as in Experimental Example 8, except that PDMS having a molecular weight of 90,000cs was used.

실험예 1 내지 실험예 13에 사용된 조성물의 용량 및 물성, Ag 분말의 용량 및 PDMS 용량에 따라 계산된 MPP 지수 및 MPP 변환 지수는 표 1 및 표 2에 나타내었다.The MPP index and MPP conversion index calculated according to the dose and physical properties of the compositions used in Experimental Examples 1 to 13, the dose of Ag powder, and the PDMS dose are shown in Tables 1 and 2.

Ag 분말Ag powder PDMSPDMS 유리
프릿
Glass
frit
유기
비히클
abandonment
vehicle
첨가제additive PDMS 분자량(cs)PDMS molecular weight (cs) MPP 지수MPP Index
실험예1Experimental Example 1 90g90g 0.15g0.15g 3g3g 7.85g7.85g 1g1 g 1,0001,000 600600 실험예2Experimental Example 2 90g90g 0.2g0.2g 3g3g 7.8g7.8g 1g1 g 1,0001,000 440440 실험예3Experimental Example 3 90g90g 0.4g0.4g 3g3g 7.6g7.6g 1g1 g 1,0001,000 225225 실험예4Experimental Example 4 90g90g 0.6g0.6g 3g3g 7.4g7.4g 1g1 g 1,0001,000 150150 실험예5Experimental Example 5 90g90g 0.8g0.8g 3g3g 7.2g7.2g 1g1 g 1,0001,000 112.5112.5 실험예6Experimental Example 6 90g90g 1.0g1.0g 3g3g 7.0g7.0g 1g1 g 1,0001,000 9090 실험예7Experimental Example 7 90g90g 1.2g1.2g 3g3g 6.8g6.8g 1g1 g 1,0001,000 7575 실험예8Experimental Example 8 90g90g 2.0g2.0g 3g3g 6.0g6.0g 1g1 g 1,0001,000 4545 실험예9Experimental Example 9 90g90g 3.5g3.5g 3g3g 4.5g4.5g 1g1 g 1,0001,000 25.725.7 실험예10Experimental Example 10 90g90g 5.0g5.0g 3g3g 3.0g3.0g 1g1 g 1,0001,000 1818

Ag 분말Ag powder PDMSPDMS 유리 프릿glass frit 유기 비히클organic vehicle 첨가제additive PDMS 분자량(cs)PDMS molecular weight (cs) MPP 지수MPP Index MPP
변환 지수
MPP
Conversion Index
실험예1Experimental Example 1 90g90g 0.15g0.15g 3g3g 7.85g7.85g 1g1 g 1,0001,000 600600 600600 실험예3Experimental Example 3 90g90g 0.4g0.4g 3g3g 7.6g7.6g 1g1 g 1,0001,000 225225 225225 실험예8Experimental Example 8 90g90g 2.0g2.0g 3g3g 6.0g6.0g 1g1 g 1,0001,000 4545 4545 실험예11Experimental Example 11 90g90g 0.15g0.15g 3g3g 7.85g7.85g 1g1 g 1010 600600 200200 실험예12Experimental Example 12 90g90g 0.4g0.4g 3g3g 7.6g7.6g 1g1 g 1010 225225 7575 실험예13Experimental Example 13 90g90g 2.0g2.0g 3g3g 6.0g6.0g 1g1 g 90,00090,000 4545 225225

실험예Experimental example - 태양전지의 전기적 특성 평가- Evaluation of electrical characteristics of solar cells

상기 실험예에 따라 제조된 도전성 페이스트를 wafer의 전면에 50㎛ 메쉬의 스크린 프린팅 기법으로 패턴 인쇄하고, 벨트형 건조로를 사용하여 200~350℃에서 20초에서 30초 동안 건조시켰다. 이후 Wafer의 후면에 Al paste를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 500 내지 900℃사이로 20초에서 30초간 소성을 행하여 태양전지 Cell을 제작하였다. The conductive paste prepared according to the above experimental example was pattern-printed on the entire surface of the wafer by a screen printing technique of 50 μm mesh, and dried at 200 to 350° C. for 20 to 30 seconds using a belt-type drying furnace. After that, Al paste was printed on the back side of the wafer and dried in the same way. The cell formed by the above process was fired using a belt-type firing furnace at 500 to 900° C. for 20 to 30 seconds to manufacture a solar cell.

상기 제조된 Cell은 태양전지 효율측정장비(Halm社, cetisPV-Celltest 3)를 사용하여, 선폭, 종횡비, 단락전류 및 변환효율을 측정하여 하기 표 3 및 표 4에 나타내었다.The prepared cells were shown in Tables 3 and 4 by measuring the line width, aspect ratio, short-circuit current and conversion efficiency using a solar cell efficiency measuring device (Halm, cetisPV-Celltest 3).

선폭(um)Line width (um) 종횡비(%)Aspect Ratio (%) 단락 전류(A)Short circuit current (A) 변환 효율(%)Conversion Efficiency (%) 단선
(개수)
monorail
(Count)
실험예1Experimental Example 1 42.142.1 34.534.5 9.629.62 20.8420.84 3030 실험예2Experimental Example 2 40.240.2 3838 9.6629.662 20.8820.88 3030 실험예3Experimental Example 3 38.738.7 4040 9.6749.674 20.9220.92 2525 실험예4Experimental Example 4 38.238.2 41.641.6 9.6849.684 21.1821.18 33 실험예5Experimental Example 5 37.537.5 4343 9.6929.692 21.2221.22 22 실험예6Experimental Example 6 35.135.1 46.746.7 9.79.7 21.3521.35 22 실험예7Experimental Example 7 34.334.3 4848 9.7119.711 21.3821.38 00 실험예8Experimental Example 8 33.233.2 50.250.2 9.7269.726 21.4221.42 1One 실험예9Experimental Example 9 38.938.9 40.240.2 9.6769.676 21.0921.09 1One 실험예10Experimental Example 10 36.536.5 44.844.8 9.6989.698 20.8820.88 3030

선폭(um)Line width (um) 종횡비(%)Aspect Ratio (%) 단락 전류(A)Short circuit current (A) 변환 효율(%)Conversion Efficiency (%) 단선
(개수)
monorail
(Count)
실험예1Experimental Example 1 42.142.1 34.534.5 9.629.62 20.8420.84 3030 실험예3Experimental Example 3 38.738.7 4040 9.6749.674 20.9220.92 2525 실험예8Experimental Example 8 33.233.2 50.250.2 9.7269.726 21.4221.42 1One 실험예11Experimental Example 11 34.834.8 46.946.9 9.79.7 21.3621.36 1One 실험예12Experimental Example 12 33.833.8 48.648.6 9.7129.712 21.421.4 00 실험예13Experimental Example 13 36.3836.38 45.845.8 9.6989.698 21.3421.34 66

상기 표 2에 나타나는 것과 같이, MPP 지수가 20 미만 또는 500을 초과하는 실험예 1 및 10은 실험예 2 내지 9에 비해 선폭, 종횡비, 단락 전류 및 변환 효율이 현저히 떨어진 것을 알 수 있고, 단선 수 또한 많은 것을 알 수 있다.As shown in Table 2, in Experimental Examples 1 and 10 having an MPP index of less than 20 or exceeding 500, it can be seen that the line width, aspect ratio, short-circuit current and conversion efficiency were significantly lower than those of Experimental Examples 2 to 9, and the number of disconnections You can also learn a lot.

더욱 구체적으로 실험예2 내지 9의 경우 선폭 감소로 인하여 실험예 1 및 10에 비하여 단락 전류값이 증가하여 변환효율이 우수한 것을 확인할 수 있다. 특히 실험예 4 내지 8의 경우 가장 변환 효율이 우수한 것을 확인할 수 있었다.More specifically, in the case of Experimental Examples 2 to 9, it can be seen that the short-circuit current value is increased compared to Experimental Examples 1 and 10 due to the decrease in line width, and thus the conversion efficiency is excellent. In particular, in the case of Experimental Examples 4 to 8, it was confirmed that the conversion efficiency was the most excellent.

상기 표 2에 나타나는 것과 같이, 실험예 1 및 11, 3 및 12, 8 및 13은 각각 같은 용량의 조성물을 이용하되, 상이한 분자량을 가져 MPP 지수는 같지만 서로 상이한 MPP 변환지수를 가지는 실리콘 오일을 사용하여 도전성 페이스트를 제조했다. As shown in Table 2, Experimental Examples 1 and 11, 3 and 12, 8 and 13 each use the same amount of composition, but have different molecular weights so that the MPP index is the same but silicone oil having a different MPP conversion index is used. Thus, a conductive paste was prepared.

실험 결과 실험예 3, 8, 11은 우수한 변환 효율을 나타낸 것을 알 수 있고, 실험예 1, 12, 13은 현저히 떨어지는 변환 효율을 나타내는 것을 알 수 있다. As a result of the experiment, it can be seen that Experimental Examples 3, 8, and 11 showed excellent conversion efficiency, and Experimental Examples 1, 12, and 13 showed significantly lower conversion efficiency.

구체적으로, 실험예 1 및 11과 같은 조성물 및 용량을 사용하여 도전성 페이스트를 제조할 경우, PDMS의 분자량이 1,000cs일 때 MPP 변환 지수가 600으로 변환 효율이 낮지만, PDMS의 분자량이 90,000cs일 때 MPP 변환 지수가 200으로 높은 변환 효율이 나타나는 것을 확인할 수 있다. Specifically, when a conductive paste is prepared using the same composition and capacity as in Experimental Examples 1 and 11, the MPP conversion index is 600 when the molecular weight of PDMS is 1,000cs, and the conversion efficiency is low, but the molecular weight of PDMS is 90,000cs. When the MPP conversion index is 200, it can be seen that high conversion efficiency appears.

실험예 3 및 12와 같은 조성물 및 용량을 사용하여 도전성 페이스트를 제조할 경우, PDMS의 분자량이 1,000cs일 때 MPP 변환 지수가 225로 변환 효율이 높지만, PDMS의 분자량이 10cs일 때 MPP 변환 지수가 75로 상대적으로 단선 수가 감소하고 보다 높은 변환 효율이 나타나는 것을 확인할 수 있다.When a conductive paste was prepared using the same composition and capacity as in Experimental Examples 3 and 12, the MPP conversion index was 225 when the molecular weight of PDMS was 1,000cs, and the conversion efficiency was high, but when the molecular weight of PDMS was 10cs, the MPP conversion index was 75, it can be seen that the number of disconnections is relatively reduced and the conversion efficiency is higher.

실험예 8 및 13과 같은 조성물 및 용량을 사용하여 도전성 페이스트를 제조할 경우, PDMS의 분자량이 1,000cs일 때 MPP 변환 지수가 45로 변환 효율이 높지만, PDMS의 분자량이 90,000cs일 때 MPP 변환 지수가 225로 상대적으로 단선 수가 증가하고 보다 낮은 변환 효율이 나타나는 것을 확인할 수 있다.When a conductive paste was prepared using the same composition and capacity as in Experimental Examples 8 and 13, the MPP conversion index was 45 when the molecular weight of PDMS was 1,000cs, and the conversion efficiency was high, but when the molecular weight of PDMS was 90,000cs, the MPP conversion index was It can be seen that the number of disconnections is relatively increased to 225 and lower conversion efficiency appears.

전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, etc. exemplified in each of the above-described embodiments may be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.

Claims (8)

금속 분말, 유리 프릿, 유기 비히클 및 실리콘 오일을 포함하는 태양전지 전극용 페이스트에 있어서,
상기 금속 분말의 질량 및 상기 실리콘 오일의 질량은 하기 식 1에 의해 정의되는 MPP 지수에 의해 결정되며,
상기 MPP 지수는 20 내지 500인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
[식 1]
MPP지수=(금속 분말의 질량)/(실리콘 오일의 질량)

In the paste for a solar cell electrode comprising a metal powder, a glass frit, an organic vehicle and a silicone oil,
The mass of the metal powder and the mass of the silicone oil are determined by the MPP index defined by Equation 1 below,
The MPP index is a conductive paste for a solar cell electrode, characterized in that 20 to 500.
[Equation 1]
MPP index = (mass of metal powder) / (mass of silicone oil)

제1항에 있어서,
상기 MPP지수는 30 내지 150인, 태양전지 전극용 페이스트.
According to claim 1,
The MPP index is 30 to 150, the solar cell electrode paste.
제1항에 있어서,
상기 MPP 지수는 하기 식 2에 의해 MPP 변환지수로 치환될 수 있는 태양전지 전극용 페이스트.
[식 2]
MPP 변환지수=MPP 지수×(log(v)/3)
(여기서, MPP 지수는 식 1의 MPP 지수, v는 함유된 실리콘 오일의 동점도를 의미한다.)
According to claim 1,
The MPP index is a solar cell electrode paste that can be substituted with an MPP conversion index by the following Equation 2.
[Equation 2]
MPP conversion index = MPP index × (log(v)/3)
(Here, the MPP index is the MPP index of Equation 1, and v means the kinematic viscosity of the contained silicone oil.)
제1항에 있어서,
상기 실리콘 오일의 분자량은 1~100,000cs인, 태양전지 전극용 페이스트.
According to claim 1,
The molecular weight of the silicone oil is 1-100,000cs, a solar cell electrode paste.
제1항에 있어서,
상기 실리콘 오일은 선형 분자, 분지형 분자, 고리형 분자 또는 이들의 혼합물을 함유하는, 태양전지 전극용 페이스트.
According to claim 1,
The silicone oil contains a linear molecule, a branched molecule, a cyclic molecule, or a mixture thereof, a paste for a solar cell electrode.
제5항에 있어서,
상기 선형 분자는 데카메틸테트라실록산(Decamethyltetrasiloxane), 도데카메틸펜타실록산(Dodecamethylpentasiloxane), 테트라데카메틸헥사실록산(Tetradecamethylhexasiloxane), 헥사데카메틸헵타실록산(Hexadecamethylheptasiloxane) 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트.
6. The method of claim 5,
The linear molecule is characterized by comprising at least one selected from decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane, and hexadecamethylheptasiloxane Paste for solar cell electrodes.
제5항에 있어서,
상기 고리형 분자는 데카메틸시클로펜타실록산(Decamethylcyclopentasiloxane), 도데카메틸시클로헥사실록산(Dodecamethylcyclohexasiloxane), 테트라데카메틸시클로헵타실록산(Tetradecamethylcycloheptasiloxane) 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 태양전지 전극용 페이스트.
6. The method of claim 5,
The cyclic molecule is a solar cell electrode paste comprising at least one selected from decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and tetradecamethylcycloheptasiloxane. .
제1항 내지 제7항 중 어느 한 항의 태양전지 전극용 페이스트를 이용하여 형성된 전극을 포함하는 태양전지.
A solar cell comprising an electrode formed using the paste for a solar cell electrode according to any one of claims 1 to 7.
KR1020190179957A 2019-12-31 2019-12-31 Paste For Solar Cell's Electrode And Solar Cell using the same KR102413679B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190179957A KR102413679B1 (en) 2019-12-31 2019-12-31 Paste For Solar Cell's Electrode And Solar Cell using the same
PCT/KR2020/019188 WO2021137548A1 (en) 2019-12-31 2020-12-28 Paste for solar cell electrode and solar cell manufactured using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190179957A KR102413679B1 (en) 2019-12-31 2019-12-31 Paste For Solar Cell's Electrode And Solar Cell using the same

Publications (2)

Publication Number Publication Date
KR20210086186A true KR20210086186A (en) 2021-07-08
KR102413679B1 KR102413679B1 (en) 2022-06-24

Family

ID=76686930

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190179957A KR102413679B1 (en) 2019-12-31 2019-12-31 Paste For Solar Cell's Electrode And Solar Cell using the same

Country Status (2)

Country Link
KR (1) KR102413679B1 (en)
WO (1) WO2021137548A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110049222A (en) * 2009-11-04 2011-05-12 엘지이노텍 주식회사 Paste composition containing silicon oil for electrode of solar cell
KR20120012335A (en) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 Solar cell and paste compisition for rear electrode of the same
KR20140033021A (en) * 2011-03-29 2014-03-17 썬 케미칼 코포레이션 High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
KR20180049352A (en) * 2016-10-31 2018-05-11 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR20180119623A (en) * 2016-02-23 2018-11-02 바스프 에스이 Conductive paste containing silicone oil
KR20190067667A (en) * 2017-12-07 2019-06-17 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110049222A (en) * 2009-11-04 2011-05-12 엘지이노텍 주식회사 Paste composition containing silicon oil for electrode of solar cell
KR20120012335A (en) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 Solar cell and paste compisition for rear electrode of the same
KR20140033021A (en) * 2011-03-29 2014-03-17 썬 케미칼 코포레이션 High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
KR20180119623A (en) * 2016-02-23 2018-11-02 바스프 에스이 Conductive paste containing silicone oil
KR20180049352A (en) * 2016-10-31 2018-05-11 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR20190067667A (en) * 2017-12-07 2019-06-17 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same

Also Published As

Publication number Publication date
KR102413679B1 (en) 2022-06-24
WO2021137548A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP4714633B2 (en) Conductive paste for solar cell electrode
KR101693840B1 (en) Paste composition for solar cell front electrode and solar cell using thereof
CN110431671B (en) Conductive paste for solar cell electrode and solar cell manufactured using the same
JP2016127212A (en) Conductive composition
TW201737502A (en) Conductive paste and solar cell
JP4714634B2 (en) Conductive paste for solar cell electrode
US20220089475A1 (en) Conductive paste for solar cell electrode and solar cell manufactured using same
KR102152840B1 (en) Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR101716549B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR102413679B1 (en) Paste For Solar Cell's Electrode And Solar Cell using the same
CN111630012A (en) Conductive paste for solar cell electrode, glass frit contained in conductive paste, and solar cell
TWI716760B (en) Conductive paste for solar cell's electrode and solar cell using the same
KR102539378B1 (en) Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
CN110337726B (en) Conductive paste for solar cell electrode and solar cell manufactured using the same
KR101748008B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20230102993A (en) Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR102007860B1 (en) Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR101991976B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20210119732A (en) Conductive paste for electrode of solar cell, and solar cell producted by using the same
KR20160020663A (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20120086406A (en) Conductive pastes for backside electrodes of solar cell and methods of manufacturing solar cells using the conductive pastes
CN113366585A (en) Conductive paste for solar cell electrode and solar cell manufactured using same
KR20200066077A (en) Method for manufacturing conductive paste for solar cell electrode with improved thixotropic and slip

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant