KR20210085030A - Thermosalinograph System for High Resolution and Real-time Data Aquisition - Google Patents

Thermosalinograph System for High Resolution and Real-time Data Aquisition Download PDF

Info

Publication number
KR20210085030A
KR20210085030A KR1020190177640A KR20190177640A KR20210085030A KR 20210085030 A KR20210085030 A KR 20210085030A KR 1020190177640 A KR1020190177640 A KR 1020190177640A KR 20190177640 A KR20190177640 A KR 20190177640A KR 20210085030 A KR20210085030 A KR 20210085030A
Authority
KR
South Korea
Prior art keywords
seawater
sensor
temperature
salinity
measurement sensor
Prior art date
Application number
KR1020190177640A
Other languages
Korean (ko)
Inventor
이경목
강한구
정우영
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020190177640A priority Critical patent/KR20210085030A/en
Publication of KR20210085030A publication Critical patent/KR20210085030A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow

Abstract

Disclosed is a high-precision real-time surface water temperature/salinity measurement system. According to the present invention, the high-precision real-time surface water temperature/salinity measurement system includes: a seawater supply part including an introduction pump to introduce surface seawater thereinto; a seawater measurement sensor for measuring the temperature, salinity and conductivity of the seawater introduced from the introduction pump; and a seawater discharge part including a discharge pump to discharge the seawater having passed through the seawater measurement sensor. The surface water temperature/salinity measurement system is installed in a vessel to measure the temperature, salinity and conductivity of the seawater where the vessel is located. A malfunction diagnosis means is provided between the introduction pump and the discharge pump to determine whether the seawater measurement sensor is malfunctioning. The malfunction diagnosis means comprises: a first temperature sensor installed between the introduction pump and the seawater measurement sensor to measure the temperature of the seawater supplied to the seawater measurement sensor; and a second temperature sensor installed between the seawater measurement sensor and the discharge pump to measure the temperature of the seawater having passed through the seawater measurement sensor.

Description

고정밀 실시간 표층수온염분측정 시스템{Thermosalinograph System for High Resolution and Real-time Data Aquisition}High-precision real-time surface water temperature and salinity measurement system {Thermosalinograph System for High Resolution and Real-time Data Aquisition}

본 발명은 고정밀 실시간 표층수온염분측정 시스템에 관한 것으로, 보다 상세하게는, 선박 내부에 설치하여 선박이 항해 또는 정선해 있는 위치의 표층 해수에 대한 고정밀의 수온, 염분, 전도도 데이터를 연속적이고 실시간으로 관측할 수 있으며, 자체 고장 진단이 가능하도록 고안된 고정밀 실시간 표층수온염분측정 시스템에 관한 것이다.The present invention relates to a high-precision real-time surface water temperature and salinity measurement system, and more particularly, it is installed inside a ship to continuously and in real time provide high-precision water temperature, salinity, and conductivity data for surface seawater at a location where the ship is sailing or stationary. It relates to a high-precision real-time surface water temperature and salinity measurement system designed to be observable and self-diagnostic.

일반적으로, 여객선이나 화물선을 포함하는 선박의 운행 또는 정박시에 표층 해수에 대한 수온, 염분, 전도도 등을 측정한다. In general, water temperature, salinity, conductivity, etc. of surface seawater are measured during operation or anchoring of a ship including a passenger ship or cargo ship.

이러한 표층 해수의 수온, 염분, 전도도 측정에 사용되는 센서로서, 표층수온염분측정센서(TSG : Thermosalinograph)가 사용된다. As a sensor used to measure the water temperature, salinity, and conductivity of the surface seawater, a surface water temperature salinity sensor (TSG: Thermosalinograph) is used.

표층수온염분측정센서는 별도의 공급장치에 의해 유입된 표층 해수가 시스템을 통과하는 동안 해수의 수온과 염분 및 전도도 등을 측정하게 된다. The surface water temperature and salinity sensor measures the water temperature, salinity, and conductivity of seawater while it passes through the system, introduced by a separate supply device.

이러한 해수의 조사 활동을 통하여 선박이 위치한 해양의 정보(수온, 염분, 전도도 등)를 실시간으로 획득함으로써, 단기간으로는 수온과 염분 변화를 통해 어장분초 변동을 바로 알 수 있고, 장기적으로는 기후변화에 의한 한반도 주변 해역의 연속적인 표층 변화를 모니터링하여 빅데이터를 구축할 수 있게 된다. By acquiring real-time information (water temperature, salinity, conductivity, etc.) of the ocean where the vessel is located through these seawater survey activities, changes in fishery areas can be immediately known through changes in water temperature and salinity in the short term, and climate change in the long term. It is possible to build big data by monitoring the continuous surface changes in the sea area around the Korean Peninsula.

이러한 해수의 염분을 측정하기 위한 선행기술로서, 대한민국공개실용신안 제20-2008-0002787호(공개일 : 2008.07.23)에는 선박용 다기능 염분측정장치가 개시되어 있다. As a prior art for measuring the salinity of such seawater, Korean Utility Model Publication No. 20-2008-0002787 (published on July 23, 2008) discloses a multifunctional salinity measuring device for ships.

그러나 이러한 선박용 다기능 염분측정장치는 조수기에서 생성된 담수의 염분을 측정함과 동시에 조수기에서 생성된 담수의 양을 유량측정장치를 이용하여 측정 및 표시하여주는 기능을 갖는 것으로, 표층 해수의 염분 및 수온, 전도도 등을 측정할 수 없는 문제점이 있었다. However, this multi-functional salinity measuring device for ships has a function of measuring and displaying the salinity of fresh water generated by the freshwater generator and at the same time measuring and displaying the amount of fresh water generated by the fresh water generator using the flow measurement device, and the salinity of surface seawater is measured. And there was a problem that water temperature, conductivity, etc. could not be measured.

. 대한민국공개실용신안 제20-2008-0002787호(공개일 : 2008.07.23). Republic of Korea Public Utility Model No. 20-2008-0002787 (published date: 2008.07.23)

본 발명의 목적은, 선박 내부에 설치하여 선박이 항해 또는 정선해 있는 위치의 표층 해수에 대한 고정밀의 수온, 염분, 전도도 데이터를 실시간으로 관측할 수 있고, 자체적으로 고장진단을 수행할 수 있으며, 측정 신뢰도를 높일 수 있는 수단을 제공하는데 있다. It is an object of the present invention to be installed inside a ship to observe high-precision water temperature, salinity, and conductivity data for surface seawater at a location where the ship is sailing or stationary in real time, and to perform fault diagnosis by itself, It is intended to provide a means to increase the measurement reliability.

또한, 본 발명이 해결하고자 하는 과제는, 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.In addition, the problem to be solved by the present invention is not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art to which the present invention belongs from the description below. can be understood

상기 목적은, 본 발명에 따라, 표층 해수를 유입하도록 유입펌프를 구비한 해수 공급부와, 유입펌프로부터 유입된 해수의 수온과 염분 및 전도도를 측정하기 위한 해수측정센서와, 상기 해수측정센서를 통과한 해수를 배출하기 위한 배출펌프를 구비한 해수 배출부를 포함하고, 선박에 설치되어 선박이 위치한 해수의 수온과 염분 및 전도도를 측정하기 위한 표층수온염분측정 시스템으로서, 상기 유입펌프와 상기 배출펌프 사이에는, 상기 해수측정센서의 고장여부를 판단하기 위한 고장진단수단이 마련되고, 상기 고장진단수단은, 상기 해수측정센서로 공급되는 해수의 온도를 측정하도록 상기 유입펌프와 상기 해수측정센서 사이에 설치되는 제1 온도센서; 및 상기 해수측정센서를 통과한 해수의 온도를 측정하도록 상기 해수측정센서와 상기 배출펌프 사이에 설치되는 제2 온도센서로 이루어지는 것을 특징으로 하는 고정밀 실시간 표층수온염분측정 시스템에 의해 달성된다.The above object is, according to the present invention, a seawater supply unit having an inlet pump to introduce surface seawater, a seawater measurement sensor for measuring the water temperature, salinity and conductivity of seawater introduced from the inflow pump, and the seawater measurement sensor passes A surface water temperature and salinity measurement system including a seawater discharge unit having a discharge pump for discharging one seawater, and installed on a vessel to measure the water temperature, salinity, and conductivity of seawater in which the vessel is located, between the inlet pump and the discharge pump is provided with a failure diagnosis means for determining whether the seawater measurement sensor has a failure, and the failure diagnosis means is installed between the inlet pump and the seawater measurement sensor to measure the temperature of seawater supplied to the seawater measurement sensor a first temperature sensor to be; and a second temperature sensor installed between the seawater measurement sensor and the discharge pump to measure the temperature of the seawater that has passed through the seawater measurement sensor. It is achieved by a high-precision real-time surface water temperature and salinity measurement system.

상기 제1 온도센서와 상기 해수측정센서 사이, 그리고 상기 제2 온도센서와 상기 버퍼탱크 사이에는, 통과되는 해수의 유량 및 유압을 측정하기 위한 유량계와 유압계가 각각 설치될 수 있다. Between the first temperature sensor and the seawater measurement sensor, and between the second temperature sensor and the buffer tank, a flow meter and a hydraulic pressure meter for measuring the flow rate and hydraulic pressure of the passing seawater may be installed, respectively.

상기 제1 온도센서와 해수측정센서 사이, 그리고 상기 해수측정센서와 상기 제2 온도센서 사이에는, 유량을 측정하기 위한 유량계가 각각 설치될 수 있다.A flow meter for measuring a flow rate may be installed between the first temperature sensor and the seawater measurement sensor, and between the seawater measurement sensor and the second temperature sensor, respectively.

상기 버퍼탱크에는, 상기 해수측정센서를 통과한 해수의 수위를 감지하기 위한 수위감지센서가 마련될 수 있다. The buffer tank may be provided with a water level sensor for detecting the level of seawater that has passed through the seawater measurement sensor.

본 발명에 의하면, 선박 내부에 설치하여 선박이 항해 또는 정선해 있는 위치의 표층 해수에 대한 고정밀의 수온, 염분, 전도도 데이터를 실시간으로 관측할 수 있음은 물론, 해수측정센서와 제1,2 온도센서가 감지한 해수의 온도값을 토대로 해수측정센서의 고장유무를 파악할 수 있어서 측정 신뢰도를 현저하게 향상시킬 수 있는 효과를 제공할 수 있게 된다. According to the present invention, it is possible to observe in real time high-precision water temperature, salinity, and conductivity data for surface seawater at a location where the ship is sailing or stationary by installing it inside the ship, as well as the seawater measurement sensor and the first and second temperature Based on the temperature value of the seawater detected by the sensor, it is possible to determine the presence or absence of a failure of the seawater measurement sensor, thereby providing the effect of remarkably improving the measurement reliability.

또한, 해수측정센서와 배출펌프 사이에 버퍼탱크가 구비됨으로써 시스템 내의 유체의 유량과 유속이 안정화되어 측정 신뢰도를 향상시킬 수 있는 효과를 제공할 수 있게 된다. In addition, since the buffer tank is provided between the seawater measurement sensor and the discharge pump, the flow rate and flow velocity of the fluid in the system are stabilized, thereby providing an effect of improving measurement reliability.

도 1은 본 발명에 따른 고정밀 실시간 표층수온염분측정 시스템을 설명하기 위한 개략적 구성도이다.
도 2는 도 1에 도시된 표층수온염분측정 시스템의 개략적 구성도이다.
도 3은 도 2에 도시된 버퍼탱크의 개략적 구성도이다.
1 is a schematic configuration diagram for explaining a high-precision real-time surface water temperature and salinity measurement system according to the present invention.
FIG. 2 is a schematic configuration diagram of the surface water temperature salinity measurement system shown in FIG. 1 .
FIG. 3 is a schematic configuration diagram of the buffer tank shown in FIG. 2 .

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present invention, descriptions of already known functions or configurations will be omitted in order to clarify the gist of the present invention.

그리고, 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.In addition, the terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. As used herein, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, the terms 'comprises' and/or 'comprising' do not exclude the presence or addition of one or more other components.

첨부된 도면 중에서, 도 1은 본 발명에 따른 고정밀 실시간 표층수온염분측정 시스템을 설명하기 위한 개략적 구성도이고, 도 2는 도 1에 도시된 표층수온염분측정 시스템의 개략적 구성도이며, 도 3은 도 2에 도시된 버퍼탱크의 개략적 구성도이다. Among the accompanying drawings, FIG. 1 is a schematic configuration diagram for explaining a high-precision real-time surface water temperature and salinity measurement system according to the present invention, and FIG. 2 is a schematic configuration diagram of the surface water temperature and salinity measurement system shown in FIG. 1 , FIG. It is a schematic configuration diagram of the buffer tank shown in FIG.

도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 고정밀 실시간 표층수온염분측정 시스템(10)은, 선박(100)에 설치되어 선박(100)이 위치한 해역의 표층 해수를 유입시켜 수온과 염분 및 전도도를 측정한 후 배출하도록 된 것으로, 표층 해수를 유입하도록 유입펌프(22)를 구비한 해수 공급부(20)와, 유입펌프(22)로부터 유입된 해수의 수온과 염분 및 전도도를 측정하기 위한 해수측정센서(30)와, 해수측정센서(30)를 통과한 해수를 배출하기 위한 배출펌프(42)를 구비한 해수 배출부(40)를 포함한다.1 to 3 , the high-precision real-time surface water temperature and salinity measurement system 10 according to the present invention is installed on the ship 100 and introduces the surface seawater of the sea area where the ship 100 is located, so that the water temperature and salinity and a seawater supply unit 20 having an inlet pump 22 to introduce the surface seawater, and the water temperature, salinity, and conductivity of seawater introduced from the inlet pump 22 to measure the conductivity and discharge it. and a seawater discharge unit 40 having a seawater measurement sensor 30 and a discharge pump 42 for discharging seawater that has passed through the seawater measurement sensor 30 .

그리고, 유입펌프(22)와 배출펌프(42) 사이에는, 해수측정센서(30)의 고장여부를 판단하기 위한 고장진단수단(50)이 마련된다. And, between the inlet pump 22 and the discharge pump 42, a fault diagnosis means 50 for determining whether the seawater measurement sensor 30 is faulty is provided.

고장진단수단(50)은, 해수측정센서(30)로 공급되는 해수의 온도를 측정하도록 유입펌프(22)와 해수측정센서(30) 사이의 유로관(70A)에 설치되는 제1 온도센서(52)와, 해수측정센서(30)를 통과한 해수의 온도를 측정하도록 해수측정센서(30)와 배출펌프(42) 사이의 유로관(70B)에 설치되는 제2 온도센서(54)로 이루어진다. The malfunction diagnosis means 50 is a first temperature sensor installed in the flow path 70A between the inlet pump 22 and the seawater measurement sensor 30 to measure the temperature of the seawater supplied to the seawater measurement sensor 30 ( 52) and a second temperature sensor 54 installed in the flow path 70B between the seawater measurement sensor 30 and the discharge pump 42 to measure the temperature of the seawater that has passed through the seawater measurement sensor 30 .

한편, 제2 온도센서(54)와 배출펌프(42) 사이의 유로관(70B)에는, 해수측정센서(30)를 통과한 해수가 자연 배수되도록 하여 유량과 유속을 안정시키기 위한 버퍼탱크(60)가 마련된다. On the other hand, in the flow path pipe 70B between the second temperature sensor 54 and the discharge pump 42, a buffer tank 60 for stabilizing the flow rate and flow rate by allowing the seawater that has passed through the seawater measurement sensor 30 to drain naturally. ) is provided.

이러한 버퍼탱크(60)에는 해수측정센서(30)를 통과한 해수의 수위를 감지하기 위한 수위감지센서(62)가 마련된다. The buffer tank 60 is provided with a water level sensor 62 for detecting the level of seawater that has passed through the seawater measurement sensor 30 .

그리고, 제1 온도센서(52)와 해수측정센서(30) 사이의 유로관(70A)에는 유량계(80A)가 설치되고, 해수측정센서(30)와 제2 온도센서(54) 사이의 유로관(70B) 또는 제2 온도센서(54)와 버퍼탱크(60) 사이의 유로관(70B)에는 유압을 측정하기 위한 유압계(80B)가 각각 설치된다. 유량계(80A)는 해수측정센서(30)로 유입되는 해수의 양을 측정하고, 유압계(80B)는 해수측정센서(30)로부터 배출되는 해수의 압력을 측정하기 위한 것이다. In addition, a flow meter 80A is installed in the flow path 70A between the first temperature sensor 52 and the seawater measurement sensor 30 , and the flow path pipe between the seawater measurement sensor 30 and the second temperature sensor 54 . A hydraulic pressure gauge 80B for measuring hydraulic pressure is installed in the flow path 70B between the 70B or the second temperature sensor 54 and the buffer tank 60, respectively. The flow meter 80A measures the amount of seawater flowing into the seawater measurement sensor 30 , and the hydraulic meter 80B is for measuring the pressure of seawater discharged from the seawater measurement sensor 30 .

한편, 해수감지센서(30)는, 'SBE21' 모델과 비교해 수온과 전도도의 분해능이 10 배나 높아 정밀한 데이터 획득이 가능한 'SBE45' 모델을 적용한다. 반면 해당 해수감지센서(30)는 ‘SBE21’ 모델과 비교해 요구 유량이 10~16 ㎖/sec으로 현저히 낮기 때문에 대량으로 입력되는 해수의 유량을 낮춰 일정하게 공급해야 하며, 이를 위해 유입펌프(22)는 소형 입력 펌프를 적용한다. On the other hand, the seawater sensor 30 applies the 'SBE45' model, which has a 10 times higher resolution of water temperature and conductivity compared to the 'SBE21' model, which enables precise data acquisition. On the other hand, the seawater sensor 30 has a significantly lower required flow rate of 10 to 16 ㎖/sec compared to the 'SBE21' model, so it is necessary to reduce the flow rate of seawater input in large quantity and supply it constantly, and for this purpose, the inflow pump (22) applies a small input pump.

또한, 버퍼탱크(60)는 해수측정센서(30)를 통과하여 사용된 해수의 일정하고 안정적인 배출을 위한 것으로, 해수측정센서(30)의 끝부분(유로관)이 배출펌프(42)와 직결될 경우, 배출펌프(42)의 동작시 해수의 강제 배출이 이루어져 시스템(10)의 유로관(70A,70B) 내부를 이동하는 유체의 유량 및 유속의 불규칙한 변동이 발생하게 되고, 이로 인해 데이터의 손실이 발생하게 된다. In addition, the buffer tank 60 is for a constant and stable discharge of the used seawater passing through the seawater measurement sensor 30 , and the end (flow pipe) of the seawater measurement sensor 30 is directly connected to the discharge pump 42 . In this case, when the discharge pump 42 is operated, the forced discharge of seawater is made, so that irregular fluctuations in the flow rate and flow rate of the fluid moving inside the flow pipes 70A and 70B of the system 10 occur. loss will occur.

따라서 배출펌프(42)의 작동력이 해수측정센서(30)에 영향을 미치지 않도록 배출펌프(42)의 영향력(해수를 강제배출시키는 힘)이 해수측정센서(30)(30)에 미치지 않도록 배출펌프(42)와 해수측정센서(30) 사이, 정확하게는 제2 온도센서(54)와 배출펌프(42) 사이에 전술한 버퍼탱크(60)가 설치되는 것이다. Therefore, so that the operating force of the discharge pump 42 does not affect the seawater measurement sensor 30, the influence of the discharge pump 42 (force to forcibly discharge seawater) does not affect the seawater measurement sensor 30, 30. Between the 42 and the seawater measurement sensor 30, precisely, the above-described buffer tank 60 is installed between the second temperature sensor 54 and the discharge pump 42 .

이러한 버퍼탱크(60)는, 해수측정센서(30)를 통과한 해수가 자연 배수되어 모이고, 일정 수위가 되면 수위감지센서(62)가 이를 감지하여 배출펌프(42)가 작동되록 한다. 이 과정으로 사용이 완료된 해수는 배출될 수 있으며, 이러한 구조에 의해 시스템(10) 내부의 유량과 유속을 안정시켜 노이즈 없는 데이터의 취득이 가능하게 된다. In the buffer tank 60, the seawater that has passed through the seawater measurement sensor 30 is naturally drained and collected, and when the water level reaches a certain level, the water level sensor 62 detects it and the discharge pump 42 operates. In this process, seawater that has been used can be discharged, and by this structure, the flow rate and flow rate inside the system 10 are stabilized, so that noise-free data can be acquired.

한편, 고장진단수단(50)은, 다음과 같이 작동된다. 즉, 해수가 시스템(10)을 이동하는 과정에서, 유입되는 해수의 온도를 제1 온도센서(52)가 측정하고, 제1 온도센서(52)를 통과하여 유입되는 해수의 온도를 해수측정센서(30)가 측정하며, 해수측정센서(30)를 통과한 해수의 제2 온도센서(544)가 감지하고, 제어부(90)는 제1 온도센서(52)와 해수측정센서(30) 및 제2 온도센서(54)가 감지한 해수의 온도값을 비교 분석하여 해수측정센서(30)의 고장유무를 판단할 수 있고, 고장으로 판단되는 경우에 경고메시지를 발생시켜 시스템(10)을 정지시키는 등을 조치를 취하도록 할 수 있다. On the other hand, the fault diagnosis means 50 is operated as follows. That is, in the process of seawater moving the system 10 , the first temperature sensor 52 measures the temperature of the incoming seawater, and the seawater measurement sensor measures the temperature of the incoming seawater through the first temperature sensor 52 . 30 is measured, the second temperature sensor 544 of the seawater that has passed through the seawater measurement sensor 30 detects, and the control unit 90 includes the first temperature sensor 52 and the seawater measurement sensor 30 and the second temperature sensor 544. 2 By comparing and analyzing the temperature value of the seawater detected by the temperature sensor 54, it is possible to determine whether the seawater measurement sensor 30 has a failure, and generates a warning message to stop the system 10 when it is determined to be a failure. You can take action, etc.

그리고, 전술한 과정으로 해수측정센서(30)로부터 취득한 해수에 대한 데이터는, 제어부(90)에 의해 취득된 데이터와 취득된 시간, 선박(100)의 위치 정보(GPS)를 함께 저장할 있다. 그리고 실시간 모니터링 기능이 통합된 운영 소프트웨어를 통해 시스템(10) 전체를 직관적이고 효율적으로 운용할 수 있다.In addition, data on seawater acquired from the seawater measurement sensor 30 through the above-described process may store the data acquired by the controller 90, the acquired time, and location information (GPS) of the vessel 100 together. In addition, the entire system 10 can be operated intuitively and efficiently through the operating software integrated with the real-time monitoring function.

전술한 바와 같이 구성된 표층수온염분측정 시스템(10)의 작용을 설명한다. The operation of the surface water temperature salinity measurement system 10 configured as described above will be described.

유입펌프(22)에 의해 유입된 해수는 제1 온도센서(52)를 통하여 해수측정센서(30)를 통과하면서 해수측정센서(30)에 의해 수온, 염분 및 전도도가 측정된다. 이어서 해수측정센서(30)를 통과한 해수는 제2 온도센서(54)를 통과한 후 버퍼탱크(60)에 임시 저장된다. 이와 같이 해수측정센서(30)를 통과한 해수가 버퍼탱크(60)로 자연배수되므로 해수측정센서(30)를 포함한 유로관(70A,70B) 내의 유량 및 유압, 유속 등이 일정하게 된다. The seawater introduced by the inlet pump 22 passes through the seawater measurement sensor 30 through the first temperature sensor 52 , and the water temperature, salinity and conductivity are measured by the seawater measurement sensor 30 . Subsequently, the seawater that has passed through the seawater measurement sensor 30 is temporarily stored in the buffer tank 60 after passing through the second temperature sensor 54 . As the seawater passing through the seawater measurement sensor 30 is naturally drained to the buffer tank 60 as described above, the flow rate, hydraulic pressure, and flow velocity in the flow pipes 70A and 70B including the seawater measurement sensor 30 become constant.

한편, 해수가 유입펌프(22)를 통과하여 제1 온도센서(52), 해수측정센서(30)와 제2 온도센서(54)를 통과하는 동안 제1 온도센서(52), 해수측정센서(30)와 제2 온도센서(54)가 해수의 온도를 측정한 후 이를 비교하여 해수측정센서(30)의 고장여부를 판단하게 된다. 이 과정으로 측정 신뢰도를 높일 수 있다. On the other hand, while the seawater passes through the inlet pump 22 and passes through the first temperature sensor 52, the seawater measurement sensor 30 and the second temperature sensor 54, the first temperature sensor 52, the seawater measurement sensor ( 30) and the second temperature sensor 54 measure the temperature of the seawater and compare it to determine whether the seawater measurement sensor 30 is malfunctioning. This process can increase the measurement reliability.

이와 같은 시스템(10)은, 국내 및 국외의 다양한 해양 관측 연구선의 유사한 표층수온염분측정 시스템에 적용 가능하다.Such a system 10 is applicable to similar surface water temperature and salinity measurement systems of various domestic and foreign ocean observation research vessels.

앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.In the foregoing, specific embodiments of the present invention have been described and shown, but it is common knowledge in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have Accordingly, such modifications or variations should not be individually understood from the technical spirit or point of view of the present invention, and modified embodiments should be considered to belong to the claims of the present invention.

10 : 표층수온염분측정 시스템 20 : 유입부
22 : 유입펌프 30 : 해수측정센서
40 : 배출부 42 : 배출펌프
50 : 고장진단수단 52 : 제1 온도센서
54 : 제2 온도센서 60 : 버퍼탱크
62 : 수위센서 70A,70B : 유로관
80A : 유량계 80B : 유압계
90 : 제어부 100 : 선박
10: surface water temperature salinity measurement system 20: inlet
22: inflow pump 30: seawater measurement sensor
40: discharge part 42: discharge pump
50: fault diagnosis means 52: first temperature sensor
54: second temperature sensor 60: buffer tank
62: water level sensor 70A, 70B: flow pipe
80A: flow meter 80B: hydraulic meter
90: control unit 100: ship

Claims (4)

표층 해수를 유입하도록 유입펌프를 구비한 해수 공급부와, 유입펌프로부터 유입된 해수의 수온과 염분 및 전도도를 측정하기 위한 해수측정센서와, 상기 해수측정센서를 통과한 해수를 배출하기 위한 배출펌프를 구비한 해수 배출부를 포함하고, 선박에 설치되어 선박이 위치한 해수의 수온과 염분 및 전도도를 측정하기 위한 표층수온염분측정 시스템으로서,
상기 유입펌프와 상기 배출펌프 사이에는, 상기 해수측정센서의 고장여부를 판단하기 위한 고장진단수단이 마련되고, 상기 고장진단수단은,
상기 해수측정센서로 공급되는 해수의 온도를 측정하도록 상기 유입펌프와 상기 해수측정센서 사이에 설치되는 제1 온도센서; 및 상기 해수측정센서를 통과한 해수의 온도를 측정하도록 상기 해수측정센서와 상기 배출펌프 사이에 설치되는 제2 온도센서로 이루어지는 것을 특징으로 하는,
고정밀 실시간 표층수온염분측정 시스템.
A seawater supply unit having an inlet pump to introduce surface seawater, a seawater measurement sensor for measuring the water temperature, salinity, and conductivity of seawater introduced from the inflow pump, and a discharge pump for discharging seawater that has passed through the seawater measurement sensor A surface water temperature salinity measurement system including a seawater discharge unit provided on a ship and installed on a ship to measure the water temperature, salinity, and conductivity of seawater in which the ship is located,
A failure diagnosis means is provided between the inlet pump and the discharge pump to determine whether the seawater measurement sensor has a failure, and the failure diagnosis means comprises:
a first temperature sensor installed between the inflow pump and the seawater measurement sensor to measure the temperature of the seawater supplied to the seawater measurement sensor; and a second temperature sensor installed between the seawater measurement sensor and the discharge pump to measure the temperature of the seawater that has passed through the seawater measurement sensor,
High-precision real-time surface water temperature and salinity measurement system.
제1항에 있어서,
상기 제2 온도센서와 상기 배출펌프 사이에는,
상기 해수측정센서를 통과한 해수가 자연 배수되도록 하여 유량과 유속을 안정시키기 위한 버퍼탱크가 마련되는 것을 특징으로 하는,
고정밀 실시간 표층수온염분측정 시스템.
According to claim 1,
Between the second temperature sensor and the discharge pump,
Characterized in that a buffer tank is provided for stabilizing the flow rate and flow rate by allowing the seawater that has passed through the seawater measurement sensor to drain naturally,
High-precision real-time surface water temperature and salinity measurement system.
제2항에 있어서,
상기 제1 온도센서와 상기 해수측정센서 사이, 그리고 상기 제2 온도센서와 상기 버퍼탱크 사이에는, 통과되는 해수의 유량 및 유압을 측정하기 위한 유량계와 유압계가 각각 설치되는 것을 특징으로 하는,
고정밀 실시간 표층수온염분측정 시스템.
3. The method of claim 2,
Between the first temperature sensor and the seawater measurement sensor and between the second temperature sensor and the buffer tank, a flow meter and a hydraulic pressure meter for measuring the flow rate and hydraulic pressure of seawater passing through are installed, respectively,
High-precision real-time surface water temperature and salinity measurement system.
제2항에 있어서,
상기 버퍼탱크에는,
상기 해수측정센서를 통과한 해수의 수위를 감지하기 위한 수위감지센서가 마련되는 것을 특징으로 하는,
고정밀 실시간 표층수온염분측정 시스템.



3. The method of claim 2,
In the buffer tank,
characterized in that a water level sensor for detecting the level of seawater that has passed through the seawater measurement sensor is provided,
High-precision real-time surface water temperature and salinity measurement system.



KR1020190177640A 2019-12-30 2019-12-30 Thermosalinograph System for High Resolution and Real-time Data Aquisition KR20210085030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190177640A KR20210085030A (en) 2019-12-30 2019-12-30 Thermosalinograph System for High Resolution and Real-time Data Aquisition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190177640A KR20210085030A (en) 2019-12-30 2019-12-30 Thermosalinograph System for High Resolution and Real-time Data Aquisition

Publications (1)

Publication Number Publication Date
KR20210085030A true KR20210085030A (en) 2021-07-08

Family

ID=76893598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190177640A KR20210085030A (en) 2019-12-30 2019-12-30 Thermosalinograph System for High Resolution and Real-time Data Aquisition

Country Status (1)

Country Link
KR (1) KR20210085030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608357B1 (en) 2022-10-05 2023-12-01 울산과학기술원 A method and apparatus for predicting sea surface salinity by applying satellite-based sea surface salinity data and ocean numerical model-based sea surface salinity to a machine learning model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002787U (en) 2007-01-18 2008-07-23 장용석 Ship's Multi-Function Salinity Meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002787U (en) 2007-01-18 2008-07-23 장용석 Ship's Multi-Function Salinity Meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608357B1 (en) 2022-10-05 2023-12-01 울산과학기술원 A method and apparatus for predicting sea surface salinity by applying satellite-based sea surface salinity data and ocean numerical model-based sea surface salinity to a machine learning model

Similar Documents

Publication Publication Date Title
US10655317B2 (en) Method for controlling a vacuum sewage system for a building or for a marine vessel
CN105241528A (en) Flow sensor detection platform and control method thereof
KR20210085030A (en) Thermosalinograph System for High Resolution and Real-time Data Aquisition
CN102607889B (en) A kind ofly get liquid metering method for analytical instrument
US20220212770A1 (en) System and method for performing diagnostics of a water system on-board a watercraft
JP2009192340A (en) Water quality measuring apparatus
FI128387B (en) Detecting leakage in a soda recovery boiler
US20140026648A1 (en) Tiefenbach control systems gmbh
CN206386108U (en) A kind of new oil-water-gas three-phase metering mechanism
WO2021201959A8 (en) Ice machine cleaning apparatus
JP6577267B2 (en) Gas detection system
KR102011432B1 (en) Flushing system of water quality analysis equipment
FI104653B (en) Method for determining the properties of pulp
CN208297506U (en) Moisture on-line monitors system in a kind of oil liquid
US5467643A (en) Method and apparatus for monitoring water flow in a marine engine cooling water system and a bilge water pumping system
RU2012126685A (en) METHOD AND DEVICE FOR REAL-TIME MONITORING OF THE FUEL CONSUMPTION SYSTEM
TWI826725B (en) Water collection device for water quality measurement
KR20150065462A (en) Ballast water treatment system
RU2482998C2 (en) System and method of fuel transfer
KR100740274B1 (en) A device for detecting the over-flood
CN209366438U (en) A kind of Sewage from Ships discharge maintenance device
CN205027419U (en) Flow sensor testing platform
JP5475076B2 (en) Residual chlorine meter with water level change detection function
RU2439375C2 (en) Current monitoring device and method of cleaning and/or aeration system
RU2802098C1 (en) Ship sewage pumping plant