KR20210082932A - X-ray detector - Google Patents

X-ray detector Download PDF

Info

Publication number
KR20210082932A
KR20210082932A KR1020190175413A KR20190175413A KR20210082932A KR 20210082932 A KR20210082932 A KR 20210082932A KR 1020190175413 A KR1020190175413 A KR 1020190175413A KR 20190175413 A KR20190175413 A KR 20190175413A KR 20210082932 A KR20210082932 A KR 20210082932A
Authority
KR
South Korea
Prior art keywords
csi
scintillator
ray detector
perovskite quantum
quantum dots
Prior art date
Application number
KR1020190175413A
Other languages
Korean (ko)
Inventor
전상준
Original Assignee
주식회사 레이언스
(주)바텍이우홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이언스, (주)바텍이우홀딩스 filed Critical 주식회사 레이언스
Priority to KR1020190175413A priority Critical patent/KR20210082932A/en
Publication of KR20210082932A publication Critical patent/KR20210082932A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention provides an X-ray detector which increases a photon emission amount by combining CsI:Tl and a perovskite quantum dot scintillator, thereby acquiring an image with good characteristics under a lower dose.

Description

엑스선 검출기{X-ray detector}X-ray detector {X-ray detector}

본 발명은 엑스선 검출기에 관한 것으로서, 보다 상세하게는 CsI:Tl와 페로브스카이트 양자점 섬광체를 결합하여 광자 방출량을 증가시켜 더 낮은 선량에서 좋은 특성의 영상을 획득할 수 있는 엑스선 검출기에 관한 것이다.The present invention relates to an X-ray detector, and more particularly, to an X-ray detector capable of obtaining an image with good characteristics at a lower dose by increasing the amount of photon emission by combining CsI:Tl with a perovskite quantum dot scintillator.

종래기술에 관해 도 1 내지 4를 참조한다.Reference is made to Figs. 1 to 4 for the prior art.

기둥형태의 CsI:Tl 섬광체를 사용하는 엑스선 검출기의 광자검출 효율을 증가시키기 위해 섬광체를 더 두껍게 증착하는 경우가 있음. 두께가 증가할 경우 효율은 증가하지만, 공간분해능이 감소하는 경우가 있다.A thicker scintillator is sometimes deposited to increase the photon detection efficiency of an X-ray detector using a columnar CsI:Tl scintillator. When the thickness increases, the efficiency increases, but the spatial resolution decreases in some cases.

기존 특허 및 연구들에서 보여지는 페로브스카이트 양자점을 사용하는 섬광검출기의 경우, CsI:Tl, Gd2O2S와 비교하여 낮은 섬광량을 보여서 기존 섬광물질을 대체하기는 어려워 보인다.In the case of a scintillation detector using perovskite quantum dots shown in existing patents and studies, it is difficult to replace the existing scintillation material because it shows a lower scintillation amount compared to CsI:Tl, Gd 2 O 2 S.

기존 페로브스카이트 양자점을 사용한 섬광체는 무기바인더 등의 물질과 혼합하여 두께를 증가시는 방법으로 광자검출 효율을 증가시키고 있으나, CsI:Tl과 같은 기둥구의 결정을 생성할 수 없어 공간분해능은 떨어질 수밖에 없는 구조를 지닌다.Existing scintillators using perovskite quantum dots increase photon detection efficiency by mixing them with materials such as inorganic binders to increase their thickness, but spatial resolution is lowered because they cannot create columnar crystals such as CsI:Tl. It has an inescapable structure.

본 발명은 CsI:Tl와 페로브스카이트 양자점 섬광체를 결합하여 광자 방출량을 증가시켜 더 낮은 선량에서 좋은 특성의 영상을 획득할 수 있는 엑스선 검출기를 제공하는 것에 과제가 있다.An object of the present invention is to provide an X-ray detector capable of obtaining an image with good characteristics at a lower dose by increasing the amount of photon emission by combining CsI:Tl and a perovskite quantum dot scintillator.

본 발명은 상용 엑스선 검출기에 사용되는 CsI:Tl에 페로브스카이트 양자점을 접합하는 샌드위치 구조의 섬광체를 사용하는데 있다.The present invention is to use a scintillator having a sandwich structure that bonds perovskite quantum dots to CsI:Tl used in commercial X-ray detectors.

CsI:Tl섬광체와 페로브스카이트 양자점을 결합하는 방법은 반사체와 섬광체의 접합에 사용되는 접착제에 페로브스카이트 양자점을 혼합하여 '반사체-페로브스카이트 양자점이 첨가된 접착제-CsI:Tl-광자검출패널'의 구조가 되도록 제작하여 구현한다. CsI:Tl의 장점인 기둥형태를 사용하면서, 페로브스카이트 양자점 섬광체를 통해 섬광효율을 높여 더 높은 감도의 검출기를 제작한다.The method of bonding CsI:Tl scintillator and perovskite quantum dots is to mix perovskite quantum dots with the adhesive used for bonding of reflectors and scintillators to make ‘reflector-adhesive with perovskite quantum dots-CsI:Tl- It is manufactured and implemented so as to have a structure of 'photon detection panel'. Using the columnar shape, which is the advantage of CsI:Tl, the scintillation efficiency is increased through the perovskite quantum dot scintillator to fabricate a detector with higher sensitivity.

CsI:Tl 기반 엑스선 검출기의 검출 효율 향상될 수 있다. The detection efficiency of the CsI:Tl-based X-ray detector may be improved.

광자검출 패널에 CsI:Tl 증착시, 증착 높이를 높이면 효율은 증가하지만 분해능은 감소할 수 있다. When depositing CsI:Tl on a photon detection panel, increasing the deposition height may increase efficiency but decrease resolution.

분해능 저하를 최소화 하면서 검출효율을 증가시킬 수 있다.It is possible to increase the detection efficiency while minimizing the degradation of resolution.

도 1은 종래의 CsI:Tl 섬광체 기반 엑스선 검출기의 구조를 도시한 도면.
도 2는 종래의 페로브스카이트 양자점을 사용한 엑스선 영상 검출기를 도시한 도면.
도 3은 종래의 페로브스카이트 양자점을 사용한 엑스선 영상 검출기를 도시한 도면.
도 4는 종래의 CsPbBr3 (좌), Rb2CuBr3 (우) 양자점 섬광체의 섬광량을 도시한 도면.
도 5는 본 발명의 엑스선 검출기의 구조를 도시한 도면.
도 6은 본 발명에서 Si PIN diode의 파장별 반응성을 도시한 그래프.
도 7은 본 발명에서 CsI:Tl 섬광체의 섬광 파장을 도시한 그래프.
도 8은 본 발명에서 CsPbI3 양자점의 섬광 파장을 도시한 그래프.
도 9는 본 발명에서 CsI:Tl과 CsPbI3를 결합한 섬광체가 1MeV의 에너지를 흡수하였을 때 PIN diode와의 반응을 도시한 그래프.
도 10은 본 발명에서 PIN diode의 반응 파장영역을 도시한 그래프.
도 11은 본 발명에서 CsPbBr3 양자점의 섬광 파장을 도시한 그래프.
도 12는 본 발명에서 Rb2CuBr3 양자점의 섬광 영역을 도시한 그래프.
도 13은 본 발명에서 CsI:Tl과 CsPbBr3를 결합한 섬광체가 1MeV의 에너지를 흡수하였을 때 PIN diode와의 반응을 도시한 그래프.
도 14는 본 발명에서 CsI:Tl과 Rb2CuBr3를 결합한 섬광체가 1MeV의 에너지를 흡수하였을 때 PIN diode와의 반응을 도시한 그래프.
1 is a view showing the structure of a conventional CsI:Tl scintillator-based X-ray detector.
2 is a view showing an X-ray image detector using a conventional perovskite quantum dots.
3 is a view showing an X-ray image detector using a conventional perovskite quantum dots.
Figure 4 is a conventional CsPbBr 3 (left), Rb 2 CuBr 3 (right) A view showing the amount of scintillation of the quantum dot scintillator.
5 is a view showing the structure of the X-ray detector of the present invention.
6 is a graph showing the reactivity by wavelength of the Si PIN diode in the present invention.
7 is a graph showing the scintillation wavelength of the CsI:Tl scintillator in the present invention.
8 is a graph showing the scintillation wavelength of CsPbI3 quantum dots in the present invention.
9 is a graph showing a reaction with a PIN diode when a scintillator combining CsI:Tl and CsPbI 3 in the present invention absorbs energy of 1MeV.
10 is a graph showing the response wavelength region of the PIN diode in the present invention.
11 is a graph showing the scintillation wavelength of CsPbBr 3 quantum dots in the present invention.
12 is a graph showing the flash region of Rb 2 CuBr 3 quantum dots in the present invention.
13 is a graph showing the reaction with the PIN diode when the scintillator combining CsI:Tl and CsPbBr 3 in the present invention absorbs energy of 1MeV.
14 is a graph showing a reaction with a PIN diode when a scintillator combining CsI:Tl and Rb 2 CuBr 3 in the present invention absorbs energy of 1 MeV.

이하, 본 발명에 대해 도 5 내지 14를 참조하여 설명한다.Hereinafter, the present invention will be described with reference to FIGS. 5 to 14 .

페로브스카이트는 AMX3의 물질구성을 가지는 물질이다.Perovskite is a material having the material composition of AMX 3 .

페로브스카이트 양자점 기반의 엑스선 검출기는 현재까지 연구단계고 상용화된 사례는 없다.X-ray detectors based on perovskite quantum dots are still in the research stage and have not been commercialized.

페로브스카이트 양자점 섬광체는 상용화 되어있는 엑스선 검출기에 주로 사용되는 CsI:Tl, Gd2O2S와 비교하여 낮은 흡수에너지당 광자방출량(#of photon/MeV)을 보이거나, 양자점 형태로 존재할 때에만 높은 광자방출량을 보이기 때문에 기둥구조의 결정을 만들어 광자가 퍼지지 않게 해주는 CsI:Tl의 장점을 구현할 수 없다.하지만 페로브스카이트 양자점 섬광체는 구성물질을 바꾸어 방출되는 가시광선의 파장영역을 조절할 수 있는 장점이 있다. 섬광체에서 변환된 가시광선을 전기적 신호로 바꾸는 PIN diode, PMT 등의 광센서의 반응 파장 범위에 맞게 섬광파장 영역을 조절하여 엑스선을 전기적 신호로 변환할 때 효율이 더 높아질 수 있다.The perovskite quantum dot scintillator shows a lower amount of photon emission per absorption energy (#of photon/MeV) compared to CsI:Tl, Gd 2 O 2 S, which are mainly used in commercially available X-ray detectors, or when it exists in the form of quantum dots. However, since it shows high photon emission, the advantage of CsI:Tl, which prevents photons from spreading by making columnar crystals, cannot be realized. However, the perovskite quantum dot scintillator can change the constituent material to control the wavelength range of the emitted visible light. There are advantages. The efficiency can be higher when converting X-rays into electrical signals by adjusting the scintillation wavelength region to match the response wavelength range of optical sensors such as PIN diodes and PMTs that convert visible light converted by the scintillator into an electrical signal.

엑스선 검출기의 구조는 크게 엑스선을 가시광선으로 변환하는 섬광체와 섬광체에서 변환된 가시광선을 전기적 신호로 변환하는 광자검출패널로 이루어진다.The structure of the X-ray detector is largely composed of a scintillator that converts X-rays into visible light and a photon detection panel that converts the visible light converted from the scintillator into an electrical signal.

현재 상용화된 방사선 검출기의 섬광체는 CsI:Tl과 Gd2O2S이 사용되고 광자검출패널에 부착하거나 직접 증착하여 제작된다. 그리고 섬광체의 광자검출패널이 부착된면과 반대방향의 면에는 섬광체에서 발생되는 광자가 광자검출패널로 향할 수 있도록 반사체가 부착된다. CsI:Tl and Gd 2 O 2 S are used for scintillators of currently commercialized radiation detectors, and are manufactured by attaching them to a photon detection panel or directly depositing them. In addition, a reflector is attached to the surface of the scintillator opposite to the surface to which the photon detection panel is attached so that photons generated from the scintillator can be directed to the photon detection panel.

본 발명의 상용 엑스선 검출기에 사용되는 CsI:Tl에 페로브스카이트 양자점을 접합하는 샌드위치 구조의 섬광체를 사용하는데 있다.The purpose of the present invention is to use a scintillator having a sandwich structure in which perovskite quantum dots are bonded to CsI:Tl used in the commercial X-ray detector of the present invention.

CsI:Tl섬광체와 페로브스카이트 양자점을 결합하는 방법은 반사체와 섬광체의 접합에 사용되는 접착제에 페로브스카이트 양자점을 혼합하여 '반사체-페로브스카이트 양자점이 첨가된 접착제-CsI:Tl-광자검출패널'의 구조가 되도록 제작하여 구현한다. CsI:Tl의 장점인 기둥형태를 사용하면서, 페로브스카이트 양자점 섬광체를 통해 섬광효율을 높여 더 높은 감도의 검출기를 제작한다.The method of bonding CsI:Tl scintillator and perovskite quantum dots is to mix perovskite quantum dots with the adhesive used for bonding of reflectors and scintillators to make ‘reflector-adhesive with perovskite quantum dots-CsI:Tl- It is manufactured and implemented so as to have a structure of 'photon detection panel'. Using the columnar shape, which is the advantage of CsI:Tl, the scintillation efficiency is increased through the perovskite quantum dot scintillator to fabricate a detector with higher sensitivity.

도 5를 참조하여, Reflector는 난반사 계열과 정반사 계열이 모두 사용될 수 있고, 난반사 계열은 PTFE, PET, PT 필름, Teflon, Tyvek Paper, Lumirror, Melindex, VM2000, VM2002, TiO2, MgO, AlO3, 정반사 계열은 Al, Au, Ag, Pt, Ti, ESR film 등을 사용할 수 있다.Referring to Figure 5, the reflector can be used in both diffuse and specular series, diffuse reflector PTFE, PET, PT film, Teflon, Tyvek Paper, Lumirror, Melindex, VM2000, VM2002, TiO 2 , MgO, AlO 3 , For the specular reflection series, Al, Au, Ag, Pt, Ti, ESR film, etc. can be used.

Perovskite 섬광물질은 Photodiode의 동작특성에 따라 결정되고, CsPbCl3, CsPbCl2Br, CsPbCl1.5Br1.5, CsPbClBr2, CsPbCl2.5Br0.5, CsPbBr3, CsPbBr2I, CsPbBr1.8I1.2, CsPbBr1.5I1.5, CsPbBr1.2I1.8, CsPbBrI2, CsPbI3, Rb2CuBr3 등의 물질을 사용할 수 있다.Perovskite scintillation substance is determined by the operating characteristics of the Photodiode, CsPbCl 3, CsPbCl 2 Br , CsPbCl 1.5 Br 1.5, CsPbClBr 2, CsPbCl 2.5 Br 0.5, CsPbBr 3, CsPbBr 2 I, CsPbBr 1.8 I 1.2, CsPbBr 1.5 I 1.5, A material such as CsPbBr 1.2 I 1.8 , CsPbBrI 2 , CsPbI 3 , Rb 2 CuBr 3 may be used.

1. 광자검출패널의 반응 파장영역과 CsI:Tl의 섬광파장 범위가 맞지 않는 경우1. When the reaction wavelength range of the photon detection panel does not match the scintillation wavelength range of CsI:Tl

- 도 6은 Si PIN diode에 가시광선이 반응할 때 생성되는 전류량을 나타낸 그래프이다. 첨두파장은 700 nm이다.- Figure 6 is a graph showing the amount of current generated when visible light reacts to the Si PIN diode. The peak wavelength is 700 nm.

- 도 7을 참조하여, CsI:Tl 섬광체의 경우 약 330 ~760 nm 영역의 빛을 방출하고 첨두파장은 550 nm이다.- Referring to FIG. 7, the CsI:Tl scintillator emits light in the range of about 330 to 760 nm and the peak wavelength is 550 nm.

- PIN diode의 첨두파장과 CsI:Tl의 첨두파장이 일치하지 않기 때문에, 첨두파장이 700 nm인 CsPbI3를 사용하여 섬광량을 보충할 수 있다. CsPbI3에 관해 도 8을 참조할 수 있다.- Since the peak wavelength of PIN diode and the peak wavelength of CsI:Tl do not match, the amount of glare can be supplemented by using CsPbI 3 with a peak wavelength of 700 nm. 8 may be referred to for CsPbI 3 .

- CsI:Tl 섬광체에 CsPbI3 양자점 섬광체를 접합하여 Si PIN diode와 결합한 경우 도 9와 같은 분포로 반응하게 된다.- When a CsPbI 3 quantum dot scintillator is bonded to a CsI:Tl scintillator and combined with a Si PIN diode, it reacts with the distribution shown in FIG. 9 .

[표 1]은 CsI:Tl 대비CsPbI3의 에너지 흡수율에 따른 PIN diode의 전류 이득을 나타내고 있다.[Table 1] shows the current gain of the PIN diode according to the energy absorption rate of CsPbI 3 compared to CsI:Tl.

에너지 흡수율
(CsPbI3/CsI:Tl)
energy absorption rate
(CsPbI 3 /CsI:Tl)
10%10% 20%20% 30%30% 40%40% 50%50% 60%60% 70%70% 80%80% 90%90% 100%100%
PIN diode
전류 이득
PIN diode
current gain
7%7% 15%15% 22%22% 29%29% 36%36% 44%44% 51%51% 58%58% 65%65% 73%73%

CsPbI3의 섬광 발생량은 CsI:Tl 대비 약 50% 이지만, CsPbI3와 CsI:Tl이 동일한 에너지를 흡수할 경우 PIN diode의 전류 증가율은 약 73%로 계산되었다.Although the amount of glare of CsPbI 3 is about 50% compared to CsI:Tl, when CsPbI 3 and CsI:Tl absorb the same energy, the current increase rate of the PIN diode was calculated to be about 73%.

광자검출패널의 반응 파장영역에 맞는 페로브스카이트 양자점 섬광체를 사용하여 검출효을 향상시킬 수 있다.The detection efficiency can be improved by using a perovskite quantum dot scintillator suitable for the reaction wavelength range of the photon detection panel.

2. 광자검출패널의 반응 파장 영역과 CsI:Tl 섬광체의 섬광 파장 영역이 맞는 경우.2. When the reaction wavelength region of the photon detection panel matches the scintillation wavelength region of the CsI:Tl scintillator.

- 도 10과 같이 PIN diode의 첨두파장이 CsI:Tl 섬광체의 첨두파장(550nm)과 일치하는 경우, 섬광 효율은 낮지만 첨두파장이 540 nm인 CsPbBr3 양자점 섬광체를 사용하거나, 첨두파장이 385 nm로 PIN diode의 첨두값과 차이는 있지만 섬광량이 CsI:Tl의 150%인 Rb2CuBr3를 사용할 수 있다.(도 11, 12)- As shown in FIG. 10, when the peak wavelength of the PIN diode matches the peak wavelength (550 nm) of the CsI:Tl scintillator, a CsPbBr 3 quantum dot scintillator with a peak wavelength of 540 nm is used although the scintillation efficiency is low, or the peak wavelength is 385 nm Although there is a difference from the peak value of the PIN diode, Rb 2 CuBr 3 with a flash intensity of 150% of CsI:Tl can be used (Figs. 11 and 12).

- CsI:Tl-CsPbBr3 접합과 CsI:Tl-Rb2CuBr3 접합 두가지를 PIN diode에 반응시킨 경우 도 13, 14의 반응 스펙트럼을 보이고, CsI:Tl 대비 흡수에너지에 따른 전류 이득은 [표 2, 3]과 같다.- When the CsI:Tl-CsPbBr 3 junction and the CsI:Tl-Rb 2 CuBr 3 junction are reacted with the PIN diode, the reaction spectra of FIGS. 13 and 14 are shown, and the current gain according to the absorbed energy compared to CsI:Tl is [Table 2] , 3].

[표 2]는 CsI:Tl 대비CsPbBr3의 에너지 흡수율에 따른 PIN diode의 전류 이득을 나타내고 있다. [표 3]은 CsI:Tl 대비Rb2CuBr3의 에너지 흡수율에 따른 PIN diode의 전류 이득을 나타내고 있다.[Table 2] shows the current gain of the PIN diode according to the energy absorption rate of CsPbBr 3 compared to CsI:Tl. [Table 3] shows the current gain of the PIN diode according to the energy absorption rate of Rb 2 CuBr 3 compared to CsI:Tl.

에너지 흡수율
(CsPbBr3/CsI:Tl)
energy absorption rate
(CsPbBr 3 /CsI:Tl)
10%10% 20%20% 30%30% 40%40% 50%50% 60%60% 70%70% 80%80% 90%90% 100%100%
PIN diode
전류 증가율
PIN diode
current increase rate
6%6% 12%12% 18%18% 24%24% 30%30% 36%36% 42%42% 48%48% 54%54% 60%60%

에너지 흡수율
(Rb2CuBr3/CsI:Tl)
energy absorption rate
(Rb 2 CuBr 3 /CsI:Tl)
10%10% 20%20% 30%30% 40%40% 50%50% 60%60% 70%70% 80%80% 90%90% 100%100%
PIN diode
전류 증가율
PIN diode
current increase rate
13%13% 25%25% 38%38% 50%50% 63%63% 75%75% 88%88% 100%100% 113%113% 125%125%

Claims (3)

포토다이오드가 형성된 광자검출패널과;
상기 광자검출패널의 상기 포토다이오드 상에 형성된 섬광체와;
상기 섬광체 상에 형성되고 페로브스카이트 양자점이 혼합된 접착층과;
상기 접착층 상에 접착된 반사체를 포함하는 X선 검출기.
a photon detection panel on which a photodiode is formed;
a scintillator formed on the photodiode of the photon detection panel;
an adhesive layer formed on the scintillator and mixed with perovskite quantum dots;
An X-ray detector comprising a reflector adhered to the adhesive layer.
제 1 항에 있어서,
상기 섬광체는 CsI:Tl인 X선 검출기.
The method of claim 1,
The scintillator is CsI:Tl X-ray detector.
제 1항에 있어서,
상기 반사층은 PTFE, PET, PT, Teflon, Tyvek Paper, Lumirror, Melindex, VM2000, VM2002, TiO2, MgO, AlO3를 포함하는 난반사 계열 또는 Al, Au, Ag, Pt, Ti, ESR를 포함하는 정반사 계열 중 적어도 하나로 이루어진 X선 검출기.

The method of claim 1,
The reflective layer is a diffuse reflection series including PTFE, PET, PT, Teflon, Tyvek Paper, Lumirror, Melindex, VM2000, VM2002, TiO2, MgO, AlO3 or a specular reflection series including Al, Au, Ag, Pt, Ti, and ESR. at least one X-ray detector.

KR1020190175413A 2019-12-26 2019-12-26 X-ray detector KR20210082932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190175413A KR20210082932A (en) 2019-12-26 2019-12-26 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190175413A KR20210082932A (en) 2019-12-26 2019-12-26 X-ray detector

Publications (1)

Publication Number Publication Date
KR20210082932A true KR20210082932A (en) 2021-07-06

Family

ID=76860913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190175413A KR20210082932A (en) 2019-12-26 2019-12-26 X-ray detector

Country Status (1)

Country Link
KR (1) KR20210082932A (en)

Similar Documents

Publication Publication Date Title
JP3332200B2 (en) Radiation detector for X-ray CT
US4694177A (en) Radiation detector having high efficiency in conversion of absorbed X-rays into light
CA1122335A (en) Distributed phosphor scintillator structures
US20020079455A1 (en) X-ray detector module
EP1482327A1 (en) X-ray detector and method for producing x-ray detector
US20100264322A1 (en) Radiation-sensitive detector with a scintillator in a composite resin
JP2012002627A (en) Two-dimensional array scintillator for radiation detection
Děcká et al. Timing performance of lead halide perovskite nanoscintillators embedded in a polystyrene matrix
Panayiotakis et al. A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO 4: Eu) screens for medical imaging applications
US5386122A (en) Radiation detector and method for making the same
US7919757B2 (en) Radiation detector
KR20210082932A (en) X-ray detector
JP4678924B2 (en) Radiation detector and X-ray diagnostic apparatus using the same
EP3441793A1 (en) Scintillator array
WO2012104798A2 (en) Radiation sensitive imaging detector including a radiation hard wavelength shifter
JP4451112B2 (en) Radiation detector and radiation image diagnostic apparatus using the same
JP2017529408A (en) Luminescent materials containing textured photonic layers
JPH01269083A (en) Radiant ray detecting element
US20120313013A1 (en) Scintillator plate
JP2822185B2 (en) Radiation detector
WO2022209470A1 (en) Scintillator structure
JPH04290985A (en) Neutron detector
KR102615653B1 (en) Multilayer scintillator thin film for high-efficiency image measurement and preparation method thereof
CN218037368U (en) Radiation absorption layer and radiation detector
WO2022209469A1 (en) Scintillator structure

Legal Events

Date Code Title Description
E902 Notification of reason for refusal