KR20210082020A - Manufacturing method of High-purity SiC particulate material - Google Patents

Manufacturing method of High-purity SiC particulate material Download PDF

Info

Publication number
KR20210082020A
KR20210082020A KR1020190174546A KR20190174546A KR20210082020A KR 20210082020 A KR20210082020 A KR 20210082020A KR 1020190174546 A KR1020190174546 A KR 1020190174546A KR 20190174546 A KR20190174546 A KR 20190174546A KR 20210082020 A KR20210082020 A KR 20210082020A
Authority
KR
South Korea
Prior art keywords
silicon carbide
graphite
deposition
carbide powder
raw material
Prior art date
Application number
KR1020190174546A
Other languages
Korean (ko)
Other versions
KR102382291B1 (en
Inventor
김규현
이재흠
김하준
Original Assignee
김규현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김규현 filed Critical 김규현
Priority to KR1020190174546A priority Critical patent/KR102382291B1/en
Publication of KR20210082020A publication Critical patent/KR20210082020A/en
Application granted granted Critical
Publication of KR102382291B1 publication Critical patent/KR102382291B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention relates to a method of manufacturing a high-purity silicon carbide powdered material and, more specifically, to a method of manufacturing a high-purity silicon carbide powdered material which is used as a material for manufacturing silicon carbide (SiC) single crystals. The method of manufacturing a high-purity silicon carbide powdered material includes: a first step of depositing silicon carbides (SiC) on a deposition platform of a graphite material by using a silicon carbide (SiC) precursor as a material in a deposition chamber; a second step of collecting the deposition platform in which the silicon carbides are deposited; a third step of separating powder or grains of the deposited silicon carbides from the collected deposition platform; a fourth step of controlling the size of the separated powder of the silicon carbides; and a fifth step of removing and refining impurities from the silicon carbide powder, of which the size has been controlled.

Description

고순도 탄화규소 분체상 원료 제조방법{Manufacturing method of High-purity SiC particulate material}Manufacturing method of high-purity SiC particulate material

본 발명은 고순도 탄화규소 분체상 원료 제조방법에 관한 것으로, 보다 상세하게는 탄화규소(SiC) 단결정의 제조 원료로 사용되는 고순도 탄화규소 분체상 원료 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high-purity silicon carbide powdery raw material, and more particularly, to a method for manufacturing a high-purity silicon carbide powdery raw material used as a manufacturing raw material for a silicon carbide (SiC) single crystal.

탄화규소(SiC) 반도체는 큰 밴드갭(~3.2 eV)을 가지고 높은 절연파괴에 의한 반도체 크기감소, 낮은 전력 손실, 고온안정성을 가지므로 Si 소자의 최대 동작온도인 250℃ 보다도 훨씬 높은 온도인 300~500℃에서도 사용이 가능한 소자를 실현시킬 수 있어 Si 반도체 특성의 한계에 따른 해결책으로 기대되고 있으며, 이에 미국, 일본을 중심으로 SiC 단결정 기판이 주목되면서 SiC 기판을 사용한 제품시장이 확대되고 있는 추세이다.Silicon carbide (SiC) semiconductor has a large band gap (~3.2 eV), semiconductor size reduction due to high dielectric breakdown, low power loss, and high temperature stability. Since it is possible to realize a device that can be used even at ~500°C, it is expected as a solution according to the limitations of Si semiconductor characteristics. to be.

이를 위해서는 전체 소비 에너지의 30 ~ 35%에 달하는 전기에너지 분야에서의 효율화 및 절약기술의 개발이 필수적이며, 이 분야에서 SiC-반도체를 이용한 전력반도체소자 (power semiconductor devices)의 개발 실용화는 현재 실리콘 wafer 반도체 변환손실 12% 수준을 3% 수준으로 낮추어 줄 것으로 예상된다. 또한 SiC로 제작한 디바이스는 정격전압 1000V 이상의 응용분야, 특히 에어컨, 태양광 발전, 전기자동차용 인버터 등에 적용되고 있다. SiC 단결정 웨이퍼는 전기자동차, 하이브리드카 등의 전력소자, 태양광소자의 에너지 변환소자, 에너지 절약이 요구되는 다양한 전자제품용 전력소자, LED/LD소자 및 고주파 소자에 응용될 것이 확실시 되며 2022년 이후 커다란 시장이 전망되는 바, 특히 미국, 일본, 유럽 등 소재 선진국을 중심으로 개발이 활발히 진행 중이다.For this, it is essential to develop efficiency and saving technology in the field of electric energy, which accounts for 30 to 35% of the total energy consumed. In this field, the development and practical use of power semiconductor devices using SiC-semiconductor is currently a silicon wafer. It is expected to lower the semiconductor conversion loss from 12% to 3%. In addition, SiC devices are being applied to applications with a rated voltage of 1000V or higher, especially in air conditioners, solar power generation, and inverters for electric vehicles. SiC single crystal wafers are certain to be applied to power devices such as electric vehicles and hybrid cars, energy conversion devices for solar devices, power devices for various electronic products that require energy saving, LED/LD devices, and high-frequency devices. As the market is expected, development is being actively carried out mainly in advanced materials such as the US, Japan, and Europe.

최근 SiC 전력반도체의 기술개발이 성숙기에 도달하고 시장이 개화하고 있어 SiC 웨이퍼의 공급량이 증가하고 있으나 아직 Si wafer 대비 제조단가가 높아 제조단가의 절감기술에 대한 니즈가 높다. Recently, SiC power semiconductor technology development has reached maturity and the market is blooming, so the supply of SiC wafers is increasing. However, the manufacturing cost is still high compared to Si wafers, so the need for technology to reduce the manufacturing cost is high.

2009년 착수된 지식경제부의 WPM사업 “초고순도 SiC 소재”를 통하여 6인치급 4H-SiC 단결정성장(POSCO) 및 6N5급 고순도 분말기술개발이 진행된 바 있으며, 이에 국내에서도 복수의 기업에서 양산수준에 근접한 수준의 SiC 단결정 제조기술을 보유하고 있는 상황이다.6-inch class 4H-SiC single crystal growth (POSCO) and 6N5 class high-purity powder technology have been developed through the WPM project “ultra-high-purity SiC material” of the Ministry of Knowledge Economy, launched in 2009. It has a near-level SiC single crystal manufacturing technology.

SiC 단결정은 통상 SiC 분말을 승화시킨후 다시 종자결정상에 재결정화시키는 PVT(승화재결정법, Physical Vapor Transport method)법으로 단결정을 제조하고 있는데, 이때 사용되는 SiC 분말의 입자크기와 순도 등 품질수준이 제조되는 단결정의 품질에 결정적인 영향을 미치므로 고순도 분말의 제조가 필요하다. SiC single crystals are usually produced by the PVT (Sublimation Recrystallization, Physical Vapor Transport method) method in which SiC powder is sublimated and then recrystallized to the seed crystal phase. In this case, the quality level such as particle size and purity of the SiC powder used is manufactured. Since it has a decisive effect on the quality of the single crystal, it is necessary to manufacture a high-purity powder.

일반적으로 PVT법을 이용하여 단결정을 성장시키는 경우 원료분말의 입도가 크고 균일할수록 충전밀도(packing density)가 증가하여 장축의 단결정 성장에 유리하며 승화(sublimation)되는 양이 균일하게 많아지므로 고품질 단결정에 유리한 것으로 알려져 있다. In general, when single crystals are grown using the PVT method, the larger and more uniform the particle size of the raw material powder is, the greater the packing density increases, which is advantageous for long-axis single crystal growth. known to be advantageous.

불순물이 다량 혼재하는 SiC 분말의 경우 결정성장과정에서 불순물의 영향에 의한 다양한 결함(기공, 동공결함(Micropipe), 전위(Dislocation), 폴리타입(Polytype), 입계(Grain Boundary))의 발생이 가능하며, 이로 인하여 성장공정 이후의 소재가공시 소재의 파손, 에피성장시 불균일한 에피박 형성, 소자형성시 누설전류의 발생으로 인한 수율 하락, 수명저하 등의 문제점이 발생되고 있다.In the case of SiC powder containing a large amount of impurities, various defects (pores, micropipe defects, dislocations, polytypes, grain boundaries) may occur during the crystal growth process due to the influence of impurities. Due to this, problems such as material breakage during material processing after the growth process, non-uniform epi-thick formation during epi-growth, yield drop due to leakage current during device formation, and reduced lifespan are occurring.

고순도 및 초고순도 SiC 분말의 합성을 위해 Si와 C의 direct reaction법, SiO2 carbothermal reduction 법, Sol-gel 공정을 사용한 carbothermal reduction 법 및 organosilicon 열분해법 등이 개발되었으나, 아직까지 개발된 합성기술은 각 합성공정의 문제점으로 대량 생산 체제를 구축하지 못하고 있다.For the synthesis of high-purity and ultra-high purity SiC powder, direct reaction method of Si and C, SiO 2 carbothermal reduction method, carbothermal reduction method using sol-gel process, and organosilicon pyrolysis method have been developed. Due to the problems of the synthesis process, a mass production system cannot be established.

또한, 종래에는 증착용 챔버에서 메틸트리클로로실란(methyltrichlorosilane: MTS, CH3SiCl3) 가스와 같은 탄화규소 전구체를 원료로 흑연부품에 SiC가 증착되도록 하는 증착공정이 실시되었으나, 이러한 경우에는 두꺼운 증착층을 균일하게 형성하도록 하는 기술이 발달되었으며, 증착법을 이용하여 고순도의 SiC 분체상을 직접적으로 제조할 수 있는 기술은 전무한 실정이다.In addition, in the prior art, a deposition process for depositing SiC on graphite parts using a silicon carbide precursor such as methyltrichlorosilane (MTS, CH 3 SiCl 3 ) gas in a deposition chamber was performed, but in this case, thick deposition was performed. A technology for uniformly forming a layer has been developed, and there is no technology capable of directly manufacturing a high-purity SiC powder phase using a vapor deposition method.

한국등록특허 제10-0827970호Korean Patent No. 10-0827970

상기와 같은 종래 기술의 문제점을 해결하기 위하여 PVT법으로 탄화규소(SiC) 단결정을 제조하는 데 적합한 크기와 경제성을 갖춘 고순도 탄화규소 분체상 또는 알갱이상(이하 분체상이라 통침함) 원료 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, a method for producing high-purity silicon carbide powder or granular (hereinafter referred to as powder phase) raw material having a size and economic feasibility suitable for producing a silicon carbide (SiC) single crystal by the PVT method. intended to provide

또한, 종래의 SiC 후막 제조공정으로 사용되는 증착 공정을 이용하여 후막 공정이 아닌 분체상의 원료 제조가 가능하도록 하여, SiC 단결정 성장을 위해 필요한 수 밀리에서 수십 미크론 범위의 다양한 입도 분포와 고순도의 SiC 분체상을 제조할 수 있는 고순도 탄화규소 분체상 원료 제조방법을 제공하는 것을 목적으로 한다.In addition, by using the deposition process used in the conventional SiC thick film manufacturing process, it is possible to manufacture a powdery raw material rather than a thick film process, so that a variety of particle size distributions in the range of several millimeters to several tens of microns required for SiC single crystal growth and high purity SiC powder An object of the present invention is to provide a method for producing a high-purity silicon carbide powdery raw material capable of producing a phase.

발명이 해결하고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be solved by the invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. will be able

본 발명의 고순도 탄화규소 분체상 원료 제조방법은, 증착용 챔버에서 탄화규소(SiC) 전구체를 원료로 흑연 소재의 증착대 상에 탄화규소(SiC)를 증착하는 제 1단계; 상기 탄화규소가 증착된 증착대를 회수하는 제 2단계; 상기 회수된 증착대로부터 증착된 탄화규소 알갱이 또는 분말의 분체상을 분리하는 제 3단계; 상기 분리된 탄화규소 분체상의 사이즈를 조절하는 제 4단계; 상기 사이즈를 조절한 탄화규소 분체상으로부터 불순물을 제거하여 정제하는 제 5단계;를 포함하는 것을 특징으로 한다.The method for manufacturing a high-purity silicon carbide powder material of the present invention comprises: a first step of depositing silicon carbide (SiC) on a deposition table of a graphite material using a silicon carbide (SiC) precursor as a raw material in a deposition chamber; a second step of recovering the deposition zone on which the silicon carbide is deposited; a third step of separating the powder phase of the deposited silicon carbide grains or powder from the recovered deposition stage; a fourth step of adjusting the size of the separated silicon carbide powder phase; and a fifth step of purifying by removing impurities from the size-controlled silicon carbide powder phase.

상기 과제의 해결 수단에 의해, 본 발명의 고순도 탄화규소 분체상 원료 제조방법은 단결정 성장용 고순도 SiC 분체상을 사용자의 목적에 따른 입도로 대량 제조가 가능한 효과가 있다.By means of solving the above problems, the method for producing a high-purity silicon carbide powder raw material of the present invention has the effect of enabling mass production of a high-purity SiC powder phase for single crystal growth with a particle size according to the purpose of the user.

또한, 수 미크론 정도의 작은 입도 SiC 분말을 추가로 성장시키는 공정을 별도로 추가하거나, 수율이 낮은 공정으로 고가에 제조할 필요가 없게 되어 작업의 효율성을 높일 수 있는 효과가 있다.In addition, it is not necessary to separately add a process for additionally growing SiC powder with a small particle size of about a few microns or to manufacture at a high price with a low-yield process, thereby increasing the efficiency of the operation.

또한, 단결정 성장에 알맞은 충전율을 제어하기 위한 넓은 입도 분포의 SiC 분말을 용이하게 얻을 수 있으므로, 단결정 성장을 보다 경제적이고 고품질로 생산 가능하게 하는 효과가 있다.In addition, since SiC powder having a wide particle size distribution for controlling the filling rate suitable for single crystal growth can be easily obtained, there is an effect of making single crystal growth more economical and high quality production possible.

도 1은 본 발명의 탄화규소 증착을 나타내는 도면이다.
도 2는 본 발명의 탄화규소 증착을 나타내는 또 다른 실시예의 도면이다.
도 3은 본 발명의 탄화규소 증착 시 중간층을 사용한 형태를 나타내는 도면이다.(도 3에서 거친 부분은 분체상의 탄화규소가 증착된 부분이며, 매끄러운 부분은 겹쳐져 증착되지 않은 부분이다.)
1 is a diagram showing silicon carbide deposition according to the present invention.
2 is a diagram of another embodiment showing the silicon carbide deposition of the present invention.
3 is a view showing a form using an intermediate layer when depositing silicon carbide according to the present invention. (In FIG. 3, the rough part is the part where powdery silicon carbide is deposited, and the smooth part is the overlapped and not deposited part.)

이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.Specific details including the problems to be solved for the present invention as described above, means for solving the problems, and the effects of the invention are included in the embodiments and drawings to be described below. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.

하기에서는 상기 고순도 탄화규소 분체상 원료 제조방법을 도면과 실시예를 이용하여 설명한다.Hereinafter, a method for manufacturing the high-purity silicon carbide powdery raw material will be described with reference to drawings and examples.

도 1은 본 발명의 탄화규소 증착을 나타내는 도면이고, 도 2는 본 발명의 탄화규소 증착을 나타내는 또 다른 실시예의 도면이고, 도 3은 본 발명의 탄화규소 증착 시 중간층을 사용한 형태를 나타내는 도면이다.1 is a diagram showing silicon carbide deposition of the present invention, FIG. 2 is a diagram of another embodiment showing silicon carbide deposition of the present invention, and FIG. 3 is a diagram showing a form using an intermediate layer during silicon carbide deposition of the present invention. .

먼저, 제 1단계에서는 증착용 챔버에서 탄화규소(SiC) 전구체를 원료로 탄화규소(SiC)를 증착한다. 구체적으로, 증착되는 기재인 흑연 재질의 증착대를 이용하여 증착용 챔버에서 탄화규소 전구체를 원료로 탄화규소를 증착한다.First, in the first step, silicon carbide (SiC) is deposited using a silicon carbide (SiC) precursor as a raw material in a deposition chamber. Specifically, silicon carbide is deposited using a silicon carbide precursor as a raw material in a deposition chamber using a deposition table made of graphite, which is a substrate to be deposited.

상기 증착대는 흑연봉 및 흑연재 구조재를 포함한다. 상기 흑연봉은 전류를 흘려 열원으로 사용되며, 상기 흑연재 구조재는 전류는 흐르지만 비열원으로 분체상이 증착되도록 한다.The deposition stage includes a graphite rod and a graphite structural material. The graphite rod is used as a heat source by flowing an electric current, and the graphite structural material allows current to flow but a powder phase is deposited as a non-heat source.

상기 증착을 위한 흑연봉과 흑연재 구조재는 저항가열용 압출재 흑연 또는 등방성 흑연을 사용한다.Graphite rods and graphite structural materials for the deposition use extruded graphite or isotropic graphite for resistance heating.

상기 증착대는 저항가열용 압출재 흑연, 등방성 흑연 뿐만 아니라 탄소섬유단열재, 플렉시블 그라파이트시트의 사용도 가능하나, 재료 특성상 강도 유지가 어려워 많은 양을 증착하기에 어려움이 있을 수 있다.The deposition table may use not only graphite, isotropic graphite, extruded graphite for resistance heating, but also carbon fiber insulation and flexible graphite sheet, but it may be difficult to deposit a large amount due to the difficulty in maintaining strength due to the characteristics of the material.

또한, 상기 증착대는 표면에 중간층을 마련할 수 있다. 상기 중간층은 탄소섬유단열재(Felt) 또는 플렉시블 그라파이트시트를 사용하여 SiC 분체상 증착물과 흑연재질인 증착대 간의 분리를 용이하게 한다.In addition, the deposition table may provide an intermediate layer on the surface. The intermediate layer uses a carbon fiber insulating material (Felt) or a flexible graphite sheet to facilitate separation between the SiC powder deposition and the graphite deposition table.

상기 증착은 1200 내지 2100℃의 공정온도에서 0.05 내지 300A/㎠의 전류를 흘리며 5 내지 25시간 실시하는 것이 바람직하다.The deposition is preferably performed for 5 to 25 hours at a process temperature of 1200 to 2100° C. while flowing a current of 0.05 to 300 A/cm 2 .

SiC 증착이 이루어지는 기재인 증착대에 전류가 흐를 때 SiC의 씨드(seed)가 발생하거나, 성장하기 어려운 상태가 되어 평활한 형태의 증착이 형성되지 않는다.When an electric current flows through the deposition table, which is a substrate on which SiC deposition is performed, a SiC seed is generated or becomes difficult to grow, so that a smooth deposition is not formed.

따라서, 전류를 흘려줄 경우 이미 성장된 핵을 중심으로 증착이 진행되어 포도송이와 같은 형태로 성장하게 된다.Therefore, when an electric current is passed through, deposition proceeds centering on the already grown nuclei, so that it grows in the shape of a bunch of grapes.

이러한 성장은 전류 및 온도에 따라 입자의 형상이 변화하므로 상기 범위 내에서 실시하는 것이 바람직하다.Such growth is preferably carried out within the above range because the shape of the particles changes depending on the current and temperature.

보다 상세하게는, 동일한 전류의 경우에는 온도가 높을수록, 동일한 온도의 경우에는 전류밀도가 높을수록 도 1에 도시된 바와 같이 핵 생성과 성장이 억제되어 미세한 분체상의 증착이 이루어진다.More specifically, in the case of the same current, the higher the temperature and the higher the current density in the case of the same temperature, the more nucleation and growth are suppressed as shown in FIG.

또한, 동일한 전류의 경우에는 온도가 낮을수록, 동일한 온도의 경우에는 전류밀도가 낮을수록 도 2에 도시된 바와 같이 핵 생성과 성장이 촉진되어 보다 큰 입도를 가지는 덩어리 형태의 증착이 이루어진다.In addition, in the case of the same current, the lower the temperature and the lower the current density in the case of the same temperature, the more nucleation and growth are promoted, as shown in FIG. 2 , so that the deposition in the form of a lump having a larger particle size is made.

따라서, 증착 속도 및 입도를 고려하여 상기에 제시된 범위 내의 온도 및 전류로 증착을 수행하는 것이 바람직하다. Therefore, it is preferable to perform deposition at a temperature and current within the ranges given above in consideration of the deposition rate and particle size.

다음으로, 제 2단계에서는 상기 탄화규소가 증착된 증착대를 회수한다. 구체적으로, 상기 챔버 내의 SiC가 증착된 흑연 재질 증착대(SiC 분체 생성물 및 후막 등을 포함)를 회수한다.Next, in the second step, the deposition zone on which the silicon carbide is deposited is recovered. Specifically, the graphite material deposition stage (including SiC powder product and thick film) on which SiC is deposited in the chamber is recovered.

다음으로, 제 3단계에서는 상기 회수된 증착대로부터 증착된 탄화규소 분체상을 분리한다. 구체적으로, 상기 회수된 증착대로부터 증착된 SiC 알갱이 또는 분말의 분체상을 분리한다. Next, in the third step, the deposited silicon carbide powder phase is separated from the recovered deposition stage. Specifically, the powder phase of the deposited SiC grains or powder is separated from the recovered deposition stage.

이 때, 도 3에 도시된 바와 같이, 상기 증착대에 중간층을 포함하였을 경우 분리(거친면이 분체상이 형성된 면, 매끄러운 부분이 뒷면)를 용이하게 실시할 수 있다.At this time, as shown in FIG. 3 , when an intermediate layer is included in the deposition table, separation (rough side is the powder-like side, smooth side is the back side) can be easily performed.

다음으로, 제 4단계에서는 상기 분리된 탄화규소 분체상의 사이즈를 조절한다. 구체적으로, 상기 분리된 탄화규소 분체상을 원료로 사용하기에 적합한 크기를 사용자의 목적에 따라 사이즈를 조절한다.Next, in the fourth step, the size of the separated silicon carbide powder phase is adjusted. Specifically, the size suitable for using the separated silicon carbide powder phase as a raw material is adjusted according to the purpose of the user.

즉, 상기 탄화규소 분체상을 PVT(승화재결정법, Physical Vapor Transport method)법으로 단결정 제조를 위한 원료로 사용하기에 적합한 사이즈로 조절하는 것이 바람직하다.That is, it is preferable to adjust the silicon carbide powder phase to a size suitable for use as a raw material for producing a single crystal by a PVT (Sublimation Recrystallization Method, Physical Vapor Transport method) method.

상기 제 4단계는 탄화규소 분체상의 사이즈를 분류하는 제 4-1단계와, 상기 분류에 따라 탄화규소 분체상을 분쇄하는 제 4-2단계를 포함한다. The fourth step includes a 4-1 step of classifying the size of the silicon carbide powder phase, and a 4-2 step of pulverizing the silicon carbide powder phase according to the classification.

상기 제 4-1단계에서는 SiC 분체상 사이즈를 기준에 따라 분류하고, 상기 제 4-2단계에서는 분류 대상 중 입자가 큰 분체상을 분쇄하여 사이즈를 조절한다.In the step 4-1, the size of the SiC powder phase is classified according to the standard, and in the step 4-2, the powder phase having large particles among the classification objects is pulverized to adjust the size.

상기 사이즈 조절을 실시한 입자는 50㎛ 내지 15mm의 크기를 갖는 것이 바람직하다.It is preferable that the size-adjusted particles have a size of 50 μm to 15 mm.

다음으로, 제 5단계에서는 상기 사이즈를 조절한 탄화규소 분체상으로부터 불순물을 제거하여 정제한다. 구체적으로, 상기 사이즈를 조절한 탄화규소 분체상으로부터 여분의 탄소(흑연), SiO₂, 금속분 등의 불순물을 제거하여 정제한다.Next, in the fifth step, impurities are removed from the size-controlled silicon carbide powder phase and purified. Specifically, impurities such as excess carbon (graphite), SiO2, and metal powder are removed from the silicon carbide powder phase whose size is adjusted for purification.

보다 상세하게, 상기 탄화규소 분체상의 정제는, 산화분위기, 중성분위기, 환원(수소)분위기 중 적어도 어느 하나에서 열처리하여 잔류하는 탄소를 가스화시켜 제거하는 단계 및 단일 또는 복합산을 이용하여 탄화규소와 금속불순물을 제거하는 단계 중 적어도 어느 하나를 포함한다.In more detail, the purification of the silicon carbide powder phase is carried out by heat treatment in at least one of an oxidizing atmosphere, a neutral atmosphere, and a reducing (hydrogen) atmosphere to gasify and remove the remaining carbon and silicon carbide using a single or complex acid At least one of the steps of removing metal impurities.

산화분위기에서의 열처리를 통한 정제는, 카본을 대기 중의 고온에서 산화시켜 탄소를 제거할 수 있다. 상기 고온을 위한 열처리는 500 내지 950℃인 것이 바람직하다. 상기 온도에서 열처리를 실시할 경우 무게감량이 발생하는 것을 확인할 수 있어, 잔류 불순물을 제거 가능함을 알 수 있다.Refining through heat treatment in an oxidizing atmosphere can remove carbon by oxidizing carbon at a high temperature in the atmosphere. The heat treatment for the high temperature is preferably 500 to 950 ℃. When the heat treatment is performed at the above temperature, it can be confirmed that weight loss occurs, and thus it can be seen that residual impurities can be removed.

또한, 중성분위기, 환원(수소)분위기 상에서도 열처리를 통한 정제를 수행할 수 있다. In addition, purification through heat treatment can be performed even in a neutral atmosphere or a reducing (hydrogen) atmosphere.

(화학식 1)(Formula 1)

C + 2H₂ →CH₄C + 2H₂ →CH₄

특히, 카본을 상기 화학식 1과 같은 반응을 통해 수소가스화함으로써 불순물인 카본을 제거할 수 있다.In particular, carbon, which is an impurity, can be removed by hydrogenating carbon through the reaction shown in Chemical Formula 1 above.

상기 반응에 관여하는 인자로는 H₂분압, 흑연질의 정도 및 온도를 들 수 있다. 높은 H₂분압과 낮은 흑연도는 메탄 생성 반응을 촉진시킨다. 또한, 위 반응은 기본적으로 발열반응이지만 높은 반응 속도를 얻기 위해서는 고온을 유지하는 것이 바람직하다. 상기 고온을 위한 열처리는 500 내지 950℃인 것이 바람직하다. Factors involved in the reaction include H2 partial pressure, the degree and temperature of graphite. High H2 partial pressure and low graphitization promote methanogenic reaction. In addition, although the above reaction is basically an exothermic reaction, it is preferable to maintain a high temperature in order to obtain a high reaction rate. The heat treatment for the high temperature is preferably 500 to 950 ℃.

또한, 단일 또는 복합산을 이용하여 탄화규소와 금속불순물을 제거할 수 있다. 구체적으로는 단일 또는 복합산(질산, 염산, 불산 등)의 용액에 정제 대상을 투입한 후 상온에서 2 내지 3시간 교반한 후, 이를 Buchner Funnel로 감압 필터링하고, 오븐에서 70℃의 온도로 16시간 건조하여 정제를 수행한다.In addition, silicon carbide and metal impurities can be removed using a single or complex acid. Specifically, after adding the purification target to a solution of a single or complex acid (nitric acid, hydrochloric acid, hydrofluoric acid, etc.), stirring at room temperature for 2 to 3 hours, filtering it under reduced pressure with a Buchner funnel, and heating it to a temperature of 70 ° C in an oven 16 Purification is carried out by drying time.

상기와 같이 제조된 고순도 탄화규소 분체상은 적어도 5N(five-nine, 99.999%) 이상의 순도를 가지며, 정제과정에 따라 5N5에서 6N 이상의 순도를 갖는다.The high-purity silicon carbide powder phase prepared as described above has a purity of at least 5N (five-nine, 99.999%) or more, and has a purity of 5N5 to 6N or more according to the purification process.

이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, those skilled in the art to which the present invention pertains will understand that the above-described technical configuration of the present invention may be implemented in other specific forms without changing the technical spirit or essential characteristics of the present invention.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the above detailed description, and the meaning and scope of the claims and their All changes or modifications derived from the concept of equivalents should be construed as being included in the scope of the present invention.

Claims (7)

증착용 챔버에서 탄화규소(SiC) 전구체를 원료로 흑연 소재의 증착대 상에 탄화규소(SiC)를 증착하는 제 1단계;
상기 탄화규소가 증착된 증착대를 회수하는 제 2단계;
상기 회수된 증착대로부터 증착된 탄화규소 알갱이 또는 분말의 분체상을 분리하는 제 3단계;
상기 분리된 탄화규소 분체상의 사이즈를 조절하는 제 4단계;
상기 사이즈를 조절한 탄화규소 분체상으로부터 불순물을 제거하여 정제하는 제 5단계;를 포함하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
a first step of depositing silicon carbide (SiC) on a deposition table made of graphite using a silicon carbide (SiC) precursor as a raw material in a deposition chamber;
a second step of recovering the deposition zone on which the silicon carbide is deposited;
a third step of separating the powder phase of the deposited silicon carbide grains or powder from the recovered deposition stage;
a fourth step of adjusting the size of the separated silicon carbide powder phase;
A fifth step of purifying by removing impurities from the size-adjusted silicon carbide powder phase, high-purity silicon carbide powder raw material manufacturing method comprising the
제 1항에 있어서,
상기 증착은 1200 내지 2100℃의 공정온도에서 흑연 소재의 증착대에 0.05A/㎠ 이상의 전류를 흘리며 5 내지 25시간 실시하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
The method of claim 1,
The deposition is a high-purity silicon carbide powder raw material manufacturing method, characterized in that at a process temperature of 1200 to 2100° C., flowing a current of 0.05 A/cm 2 or more to the deposition table of graphite material for 5 to 25 hours
제 1항에 있어서,
상기 증착대는 흑연 재질로,
열원으로 사용하는 흑연봉과, 흑연재 구조재를 포함하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
The method of claim 1,
The deposition table is made of graphite material,
High-purity silicon carbide powder raw material manufacturing method comprising a graphite rod used as a heat source and a graphite structural material
제 3항에 있어서,
상기 흑연봉과 흑연재 구조재는 저항가열용 압출재 흑연, 등방성 흑연, 탄소섬유단열재, 플렉시블 그라파이트 시트 중 적어도 어느 하나를 사용하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
4. The method of claim 3,
The graphite rod and graphite structural material is a high-purity silicon carbide powder raw material manufacturing method, characterized in that using at least any one of extruded graphite for resistance heating, isotropic graphite, carbon fiber insulation, and flexible graphite sheet
제 3항에 있어서,
상기 증착대는 중간재를 더 포함하고,
상기 중간재는 탄소섬유단열재, 플렉시블 그라파이트 시트 중 적어도 어느 하나를 사용하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
4. The method of claim 3,
The deposition table further comprises an intermediate material,
The intermediate material is a high-purity silicon carbide powder raw material manufacturing method, characterized in that using at least one of a carbon fiber insulation material and a flexible graphite sheet
제 1항에 있어서,
상기 탄화규소 분체상의 사이즈를 조절은,
탄화규소 분체상의 사이즈를 분류하는 제 4-1단계;
상기 분류에 따라 탄화규소 분체상을 분쇄하는 제 4-2단계;를 포함하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
The method of claim 1,
Adjusting the size of the silicon carbide powder phase,
Step 4-1 of classifying the size of the silicon carbide powder phase;
A high-purity silicon carbide powder raw material manufacturing method comprising; a 4-2 step of pulverizing the silicon carbide powder phase according to the classification
제 1항에 있어서,
상기 탄화규소 분체상의 정제는,
산화분위기, 중성분위기, 환원분위기 중 적어도 어느 하나에서 열처리하여 잔류하는 탄소를 가스화시켜 제거하는 단계; 및
단일 또는 복합산을 이용하여 탄화규소와 금속불순물을 제거하는 단계; 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 고순도 탄화규소 분체상 원료 제조방법
The method of claim 1,
The purification of the silicon carbide powder phase,
gasifying and removing carbon remaining by heat treatment in at least one of an oxidizing atmosphere, a neutral atmosphere, and a reducing atmosphere; and
removing silicon carbide and metal impurities using a single or complex acid; High-purity silicon carbide powdery raw material manufacturing method comprising at least one of
KR1020190174546A 2019-12-24 2019-12-24 Manufacturing method of High-purity SiC particulate material KR102382291B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190174546A KR102382291B1 (en) 2019-12-24 2019-12-24 Manufacturing method of High-purity SiC particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190174546A KR102382291B1 (en) 2019-12-24 2019-12-24 Manufacturing method of High-purity SiC particulate material

Publications (2)

Publication Number Publication Date
KR20210082020A true KR20210082020A (en) 2021-07-02
KR102382291B1 KR102382291B1 (en) 2022-04-01

Family

ID=76897341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190174546A KR102382291B1 (en) 2019-12-24 2019-12-24 Manufacturing method of High-purity SiC particulate material

Country Status (1)

Country Link
KR (1) KR102382291B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827970B1 (en) 2004-10-29 2008-05-08 스미토모 덴키 고교 가부시키가이샤 Silicon carbide single crystal, silicon carbide substrate and manufacturing method for silicon carbide single crystal
KR20150123806A (en) * 2013-02-26 2015-11-04 신에쯔 한도타이 가부시키가이샤 Method for producing silicon carbide and silicon carbide
JP2016098162A (en) * 2014-11-26 2016-05-30 太平洋セメント株式会社 Production method of reclaimed silicon carbide powder, and production method of silicon carbide single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827970B1 (en) 2004-10-29 2008-05-08 스미토모 덴키 고교 가부시키가이샤 Silicon carbide single crystal, silicon carbide substrate and manufacturing method for silicon carbide single crystal
KR20150123806A (en) * 2013-02-26 2015-11-04 신에쯔 한도타이 가부시키가이샤 Method for producing silicon carbide and silicon carbide
JP2016098162A (en) * 2014-11-26 2016-05-30 太平洋セメント株式会社 Production method of reclaimed silicon carbide powder, and production method of silicon carbide single crystal

Also Published As

Publication number Publication date
KR102382291B1 (en) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101413653B1 (en) A method for manufacturing SiC powders with high purity
KR101976594B1 (en) Silicon carbide powder, method for manufacturing the same and method for fabricating single crystal
CN110055587A (en) A kind of high purity graphite crucible and high quality single-crystal silicon carbide preparation method
CN110016718A (en) A kind of processing method for growing silicon carbide crystal with high quality feedstock purification
CN108193282B (en) A kind of synthetic method and its application of high-purity silicon carbide raw material
KR102187817B1 (en) Recycling method of SiC by-product from the deposition process into the source of single crystal
CN108946735A (en) A kind of synthetic method of the big partial size sic powder of growing silicon carbice crystals
KR20130132873A (en) Feed material for epitaxial growth of monocrystalline silicon carbide, and method for epitaxial growth of monocrystalline silicon carbide
KR102382291B1 (en) Manufacturing method of High-purity SiC particulate material
KR20150142245A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
US20140283735A1 (en) Method for growth of ingot
JP5333363B2 (en) Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
CN111575801B (en) Preparation method and wafer growth raw material
KR20170086982A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
KR20220106062A (en) Method for regenerating silicon carbide and manufacturing method for single crystal silicon carbide using same
KR20150142246A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
KR101549597B1 (en) The Manufacturing Method of SiC Single Crystal Using the Crucible coated with SiC
CN102485974B (en) Method for direct growth of monocrystalline silicon through CVD (chemical vapor deposition) reaction
JP5724122B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
KR20040106816A (en) Graphite crucible with the cone shape at the bottom part, which is used in growing SiC single crystal
CN117361534A (en) High-crystalline semiconductor silicon carbide powder and preparation method thereof
JP5724121B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
JP5724123B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
KR102491237B1 (en) Silicon carbide powder and method of fabrication the same
JP2019112239A (en) SiC POWDER, AND PRODUCTION METHO THEREOF

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant