KR20210076549A - Grouting material for underground heat exchangers and method of construction using the same - Google Patents

Grouting material for underground heat exchangers and method of construction using the same Download PDF

Info

Publication number
KR20210076549A
KR20210076549A KR1020190167885A KR20190167885A KR20210076549A KR 20210076549 A KR20210076549 A KR 20210076549A KR 1020190167885 A KR1020190167885 A KR 1020190167885A KR 20190167885 A KR20190167885 A KR 20190167885A KR 20210076549 A KR20210076549 A KR 20210076549A
Authority
KR
South Korea
Prior art keywords
heat exchanger
weight
hole
lime
water
Prior art date
Application number
KR1020190167885A
Other languages
Korean (ko)
Other versions
KR102400336B1 (en
Inventor
류상범
Original Assignee
수에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수에너지 주식회사 filed Critical 수에너지 주식회사
Priority to KR1020190167885A priority Critical patent/KR102400336B1/en
Publication of KR20210076549A publication Critical patent/KR20210076549A/en
Application granted granted Critical
Publication of KR102400336B1 publication Critical patent/KR102400336B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/104Bentonite, e.g. montmorillonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to a grouting material for an underground heat exchanger and a grouting method using the same. The grouting material for the underground heat exchanger includes: 30 to 55 wt% of silica sand; 20 to 30 wt% of bentonite; 5 to 10 wt% of a hydraulic binder; 10 to 15 wt% of water; and 5 to 10 wt% of copper smelting slag, wherein the copper smelting slag is to have a particle size distribution of 0.5 to 4.0 mm by a slag generated during copper smelting by water granulating with high pressure water. According to this configuration, it is possible to provide the grouting material for the underground heat exchanger having high thermal conductivity, workability, and low shrinkage, and the grouting method using the same.

Description

지중열교환기용 그라우팅 재료 및 이를 이용한 그라우팅 방법{Grouting material for underground heat exchangers and method of construction using the same}Grouting material for underground heat exchangers and method of construction using the same

본 발명은 지중열교환기용 그라우팅 재료 및 이를 이용한 그라우팅 방법에 관한 것이다. The present invention relates to a grouting material for an underground heat exchanger and a grouting method using the same.

최근 화석에너지에 의한 이산화탄소 배출량이 지구환경 문제로 크게 부각되면서 화석에너지의 사용을 줄이기 위한 다양한 방법들이 개발되고 있으며, 그 일환으로 지중에 열교환기를 설치하고, 이 지중 열교환기에 열매체를 순환시킴으로써 건물의 냉난방에 필요한 에너지를 지열로부터 공급받는 지열 히트펌프 시스템이 개발되어 사용되고 있다. Recently, as carbon dioxide emissions from fossil energy have been highlighted as a global environmental problem, various methods are being developed to reduce the use of fossil energy. As part of this, a heat exchanger is installed underground and a heating medium is circulated in the underground heat exchanger to heat and cool buildings. A geothermal heat pump system, which receives the energy required for heating from geothermal heat, has been developed and used.

지중 온도는 사계절 변함없이 17 내지 18℃의 온도를 연중 유지하므로, 지하수를 양수하고 히트펌프를 사용하여 열을 이용하면 온도차에 따른 열량 확보가 가능하다. 히트펌프에서 열교환되어 데워지거나 차가워진 지하수 또는 열매체는 지하로 유입되어 다시 지중과 열교환 되므로, 이러한 사이클이 지속적으로 유지될 수 있다. 이러한 원리를 이용한 시설이 지열 히트 펌프시스템이다.Since the underground temperature is maintained at a temperature of 17 to 18°C throughout the year, it is possible to secure the amount of heat according to the temperature difference by pumping the groundwater and using heat using a heat pump. Since groundwater or heating medium heated or cooled by heat exchange in the heat pump flows into the ground and exchanges heat with the ground again, this cycle can be continuously maintained. A facility using this principle is a geothermal heat pump system.

지열 히트펌프 시스템에서 땅속에 위치하는 지중열교환기는 크게 밀폐형과 개방형으로 구분된다.In the geothermal heat pump system, the geothermal heat exchanger located in the ground is largely divided into a closed type and an open type.

개방형은 지열공이 일반 지하수 관정과 유사하나 심정펌프에 의해 양수된 지하수를 지상에 설치된 히트펌프에서 열교환시킨 다음, 열교환된 지하수를 다시 지열공 내부로 환수시켜 지중 열을 교환할 수 있도록 한 것이다.The open type geothermal well is similar to a general underground water well, but the groundwater pumped by the deep well pump is exchanged with a heat pump installed on the ground, and then the heat-exchanged groundwater is returned to the inside of the geothermal well to exchange underground heat.

밀폐형은 땅속으로 천공되는 지열공 내부에 열교환용 폴리에칠렌관(PE관)을 U자형으로 설치하고 관 내부로 열매체를 순환시켜, 열매체와 지중의 열을 교환할 수 있도록 한 것이다.In the sealed type, a polyethylene pipe (PE pipe) for heat exchange is installed in a U-shape inside a geothermal hole drilled into the ground, and the heating medium is circulated inside the tube to exchange heat between the heating medium and the ground.

밀폐형의 지중열교환기를 설치할 때에는 지중에 대략 150~200m의 깊이로 천공된 홀에 U자 모양으로 밴딩된 PE관(이하, 열교환배관)을 삽입한 다음, 천공된 홀에 그라우트재를 충전한다. 그라우트재의 충전은 트레미관을 천공 홀에 삽입하고, 트레미관 내부로 그라우트재를 유동시키는 방법으로 이루어진다. When installing a sealed type underground heat exchanger, insert a PE pipe (hereinafter referred to as a heat exchange pipe) bent in a U-shape into a hole drilled to a depth of approximately 150 to 200 m underground, and then fill the hole with grout material. The filling of the grout material is performed by inserting the tremie tube into the drilling hole and flowing the grout material into the tremie tube.

그라우트재는 지중 열교환기와 지반 혹은 암반 사이의 공간을 메워 지중과의 열전달을 촉진하고 보어홀 내 지표수의 침투 및 지하수 오염을 방지하는 역할을 한다. 따라서, 그라우트재가 갖추어야 할 조건은 높은 열전도도와 낮은 투수성, 작업을 용이하게 할 수 있도록 해주는 시공성의 확보이다. The grout material fills the space between the underground heat exchanger and the ground or rock to promote heat transfer to and from the ground, and plays a role in preventing the penetration of surface water in the bore hole and contamination of the ground water. Therefore, the conditions that the grout material must have are high thermal conductivity, low water permeability, and secure workability that facilitates work.

일반적인 그라우트재로는 벤토나이트와 시멘트가 있지만, 현재 국내에서는 대부분 벤토나이트를 사용하고 있다. Although bentonite and cement are common grout materials, most of the bentonite is currently used in Korea.

벤토나이트는 대부분 수입에 의존하고 있어 재료비에 대한 부담이 높은 편이고, 지중 환경보호 측면에서 우수한 이점이 있지만, 열전도도가 낮은 문제가 있다. As most of bentonite is imported, the burden of material cost is high, and although it has excellent advantages in terms of underground environmental protection, it has a problem of low thermal conductivity.

시멘트의 경우 벤토나이트보다 열전도도가 높고, 높은 부착력과 낮은 투수 계수를 갖는다.Cement has higher thermal conductivity than bentonite, high adhesion and low permeability coefficient.

일반적으로, 그라우트재는 벤토나이트에 다른 모래 등을 섞어 사용하고 있으나, 현재 국내에서는 지중열교환기 전용의 벤토나이트 그라우트재에 대한 연구가 부족한 실정이다.In general, the grout material is used by mixing bentonite with other sand, etc. However, research on bentonite grout material exclusively for underground heat exchangers in Korea is insufficient.

또한, 그라우트재가 건조되면서 수축이 많이 되면 재료 분리가 일어나서 열적 불연속면이 생겨 지열 열교환 효율을 떨어뜨리게 된다. In addition, if the grout material shrinks a lot as it dries, material separation occurs and a thermal discontinuity is formed, thereby reducing the geothermal heat exchange efficiency.

따라서, 높은 열전도도, 시공성, 낮은 수축성을 갖는 벤토나이트계 그라우트재가 필요하다.Therefore, there is a need for a bentonite-based grout material having high thermal conductivity, workability, and low shrinkage.

대한민국 특허출원 제10-2003-0099010호Korean Patent Application No. 10-2003-0099010

본 발명은 상기 사정을 감안하여 발명된 것으로, 높은 열전도도, 시공성, 낮은 수축성을 갖는 지중열교환기용 그라우팅 재료 및 이를 이용한 그라우팅 방법을 제공하는 것을 목적으로 한다. The present invention was invented in view of the above circumstances, and an object of the present invention is to provide a grouting material for an underground heat exchanger having high thermal conductivity, workability, and low shrinkage, and a grouting method using the same.

상술한 바와 같은 목적을 구현하기 위한 본 발명에 따른 지중열교환기용 그라우팅 재료는, 30~55 중량%의 실리카 샌드 ; 20~30 중량%의 벤토나이트; 5~10 중량%의 수경성 결합재; 10~15 중량%의 물; 을 포함한다.The grouting material for a geothermal heat exchanger according to the present invention for realizing the object as described above is 30 to 55 wt% of silica sand; 20-30% by weight of bentonite; 5-10 wt% of a hydraulic binder; 10-15% by weight of water; includes

또한, 5~10 중량%의 동제련 슬래그; 를 더 포함하고, 상기 동제련 슬래그는 동제련시 발생하는 슬래그를 고압수에 의한 수쇄에 의해 0.5~4.0mm의 입도분포를 갖도록 한 것이다.In addition, 5 to 10% by weight of copper smelting slag; Further comprising, the copper smelting slag is to have a particle size distribution of 0.5 ~ 4.0mm by the slag generated during copper smelting by water crushing with high pressure water.

또한, 상기 수경성 결합재는 규산3석회(3CaO·SiO2), 규산2석회(2CaO·SiO2) 및 알루민산석회(3CaO·Al2O3)로 이루어지고, 상기 규산3석회, 상기 규산2석회 및 상기 알루민산석회는 1:1:0.7의 비율로 혼합된다. In addition, the hydraulic binder is composed of silicate 3 lime (3CaO·SiO 2 ), silicate 2 lime (2CaO·SiO 2 ) and aluminate lime (3CaO·Al 2 O 3 ), the silicate 3 lime, the silicate 2 lime and the lime aluminate is mixed in a ratio of 1:1:0.7.

본 발명의 다른 실시예에 따른 지중열교환기를 위한 그라우팅 방법은, 천공장비를 사용하여 지중에 소정 깊이로 소정 직경의 홀을 천공하는 홀 천공단계; 상기 홀에 열교환배관을 설치하는 열교환배관 설치단계; 상기 열교환배관이 설치된 홀의 내부에 트레미관을 삽입하여 그라우트재를 충전하는 그라우트재 충전단계; 상기 그라우트재가 충전된 상기 홀의 상부로 외부 오염물이 유입되지 않도록 마감하거나 표층을 형성시키는 마감단계; 를 포함하고, 상기 그라우트재는, 30~55 중량%의 실리카 샌드; 20~30 중량%의 벤토나이트; 5~10 중량%의 수경성 결합재; 5~10 중량%의 동제련 슬래그; 10~15 중량%의 물; 을 포함한다. A grouting method for a geothermal heat exchanger according to another embodiment of the present invention comprises: a hole drilling step of drilling a hole of a predetermined diameter to a predetermined depth in the ground using a drilling facility; a heat exchange pipe installation step of installing a heat exchange pipe in the hole; a grout material filling step of inserting a tremie tube into the hole in which the heat exchange pipe is installed to fill the grout material; a finishing step of finishing or forming a surface layer so that external contaminants do not flow into the upper portion of the hole filled with the grout material; Including, wherein the grout material, 30 to 55% by weight of silica sand; 20-30% by weight of bentonite; 5-10 wt% of a hydraulic binder; 5-10% by weight of copper smelting slag; 10-15% by weight of water; includes

본 발명에 따르면, 높은 열전도도, 시공성, 낮은 수축성을 갖는 지중열교환기용 그라우팅 재료 및 이를 이용한 그라우팅 방법을 제공할 수 있다. According to the present invention, it is possible to provide a grouting material for an underground heat exchanger having high thermal conductivity, workability, and low shrinkage, and a grouting method using the same.

도 1은 본 발명의 지중열교환기를 위한 그라우팅 방법의 공정 순서도이다.
도 2는 본 발명에서 그라우트재 충전단계를 도시하는 도면이다.
1 is a process flow chart of a grouting method for a geothermal heat exchanger of the present invention.
Figure 2 is a view showing the grout material filling step in the present invention.

이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어서 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, in adding reference numerals to the components of each drawing, it should be noted that only the same components are marked with the same reference numerals as much as possible even though they are displayed on different drawings.

도 1은 본 발명의 지중열교환기를 위한 그라우팅 방법의 공정 순서도이다. 도 2는 본 발명에서 그라우트재 충전단계를 도시하는 도면이다. 1 is a process flow chart of a grouting method for a geothermal heat exchanger of the present invention. Figure 2 is a view showing the grout material filling step in the present invention.

본 발명에 따른 지중열교환기를 위한 그라우팅 방법은 홀 천공단계(S100), 열교환배관 설치단계(S200), 그라우트재 충전단계(S300) 및 마감단계(S400)를 포함한다.The grouting method for an underground heat exchanger according to the present invention includes a hole drilling step (S100), a heat exchange pipe installation step (S200), a grout material filling step (S300) and a finishing step (S400).

홀 천공단계(S100)는 천공장비(예를 들면, 천공기 등)를 이용하여 지중에 깊이 150~200m의 홀(10)을 천공하는 단계이다.The hole drilling step (S100) is a step of drilling a hole 10 having a depth of 150 to 200 m in the ground using a drilling equipment (eg, a drilling machine, etc.).

여기서 천공기를 사용하여 홀(10)을 천공할 때에는 표토층을 소정 깊이로 파내어 구멍을 만들고, 이 구멍에 소정 길이의 케이싱을 삽입한다. 그리고 천공 작업을 지속하여 홀(10)의 깊이가 깊어지면 비트가 설치된 로드의 상단에 또 다른 로드를 연결하여 길이를 연장시켜 가면서 작업이 진행된다. 이때 케이싱은 천공 작업을 진행하는 동안 홀 안쪽으로 토사가 유입되거나 흙이 무너져 내리지 않도록 지지하는 기능을 한다.Here, when the hole 10 is drilled using a perforator, the topsoil layer is dug to a predetermined depth to make a hole, and a casing of a predetermined length is inserted into the hole. And when the depth of the hole 10 is deepened by continuing the drilling operation, the operation proceeds while extending the length by connecting another rod to the upper end of the rod on which the bit is installed. At this time, the casing functions to support the soil from entering the hole or collapsing during the drilling operation.

열교환배관 설치단계(S200)는 지중에 천공된 홀(10)에 U자 모양으로 밴딩된 열교환배관(20)을 삽입하는 단계이다. 열교환배관(20)은 PE재질의 관으로 구성될 수 있다. The heat exchange pipe installation step ( S200 ) is a step of inserting the heat exchange pipe 20 bent in a U-shape into the hole 10 drilled in the ground. The heat exchange pipe 20 may be composed of a pipe made of PE material.

열교환배관(20)의 직경은 대략 50㎜이고, 밴딩된 배관 사이의 간격은 50㎜가 되도록 U자 모양으로 형성된다. 열교환배관(20)에는 U자 모양으로 밴딩된 배관 사이의 간격이 유지되도록 소정 간격을 두고 스페이서(21)가 설치된다.The diameter of the heat exchange pipe 20 is approximately 50 mm, and the interval between the bent pipes is formed in a U-shape such that the interval is 50 mm. The spacer 21 is installed in the heat exchange pipe 20 at a predetermined interval so that the interval between the pipes bent in a U-shape is maintained.

그라우트재 충전단계(S300)는 천공된 홀(10)에 열교환배관(20)이 삽입 설치되고 나면, 홀(10)과 열교환배관(20) 사이의 공간을 메워 지중의 열을 열교환배관(20)으로 용이하게 전달하면서도 홀의 형태를 장기적으로 유지시키는 그라우트재(30)를 충전하는 단계이다.In the grout material filling step (S300), after the heat exchange pipe 20 is inserted into the perforated hole 10 and installed, the space between the hole 10 and the heat exchange pipe 20 is filled to replace the underground heat with the heat exchange pipe 20. It is a step of filling the grout material 30 that maintains the shape of the hole for a long time while easily delivering it to the

그라우트재(30)는 열교환배관이 파손되어 내부의 열매체가 누출될 때, 지하수가 오염되는 것을 방지하고, 천공된 홀(10)과 열교환배관(20)을 따라 지하수가 지표로 누출되는 것을 막아주는 기능도 한다.The grout material 30 prevents groundwater from being contaminated when the heat exchange pipe is damaged and the internal heating medium leaks, and prevents groundwater from leaking to the surface along the perforated hole 10 and the heat exchange pipe 20 function as well.

그라우트재(30)를 천공된 홀(10)에 충전할 때에는 소정 길이의 트레미관을 천공된 홀에 삽입한 다음, 공급펌프를 가동하여 저장조에 저장된 그라우트재(30)를 트레미관으로 공급함으로써 천공된 홀(10)의 아래쪽에서부터 위로 소정 높이까지 채워져 올라오게 하여 충전된다.When the grout material 30 is filled into the perforated hole 10, a tremi tube of a predetermined length is inserted into the perforated hole, and then the supply pump is operated to supply the grout material 30 stored in the storage tank to the tremie tube, thereby perforating The hole 10 is filled by filling it up to a predetermined height from the bottom to the top.

그런 다음, 소정 시간 후에, 그라우트재(30)가 침하되면서 그라우트재(30)로 채워진 높이가 전체적으로 낮아지게 되고, 이후 낮아진 높이만큼 그라우트재(30)를 다시 충전한다. 위와 같이 그라우트재(30)의 침하량에 따라 그라우트재(30)의 재충전을 여러 번 반복한다.Then, after a predetermined time, as the grout material 30 is subsided, the height filled with the grout material 30 is lowered as a whole, and then the grout material 30 is filled again by the lowered height. The refilling of the grout material 30 is repeated several times according to the amount of settlement of the grout material 30 as described above.

마감단계(S400)는 그라우트재(30)의 충전이 완료되면 트레미관을 제거한 다음, 앞서 설치한 케이싱을 제거하여 마감하는 단계이다.The closing step (S400) is a step of finishing by removing the tremie tube when the filling of the grout material 30 is completed, and then removing the casing installed previously.

이때 케이싱은 필요에 따라 제거하지 않을 수도 있다. 그리고 천공된 홀(10)의 상부는 개방된 상태로 마감되거나 또는 뚜껑 등으로 홀(10)의 상부를 덮어 마감될 수 있고, 또 다르게는 흙으로 홀(10)을 완전히 메워 마감될 수도 있다.At this time, the casing may not be removed if necessary. And the upper part of the perforated hole 10 may be finished in an open state or may be finished by covering the upper part of the hole 10 with a lid or the like, or may be finished by completely filling the hole 10 with soil.

본 발명에서, 그라우트재는 벤토나이트 20~30 중량%, 실리카 샌드 30~55 중량%, 수경성 결합제 5~10 중량%, 동제련 슬래그 5~10중량%, 혼화제, 감수제, 증점제, 소포제 및 10~15 중량%의 물이 혼합된다. In the present invention, the grout material is bentonite 20-30 wt%, silica sand 30-55 wt%, hydraulic binder 5-10 wt%, copper smelting slag 5-10 wt%, admixture, water reducing agent, thickener, defoaming agent and 10-15 wt% % of water is mixed.

벤토나이트는 팽윤성이 강하고 물을 흡수 팽창하여 겔(gel)화되는 일종의 점토이다. 순수한 벤토나이트는 지반 혹은 암반에 비하여 열전도도가 낮아 단독으로 사용할 경우에는 지중열교환시스템에 사용할 수 있을 정도의 좋은 열효율을 얻을 수 없는 단점을 가지고 있다.Bentonite is a kind of clay that has strong swelling properties and is gelled by absorbing and expanding water. Since pure bentonite has a lower thermal conductivity than ground or rock, when used alone, it has a disadvantage in that it cannot obtain good thermal efficiency enough to be used in an underground heat exchange system.

여기서, 벤토나이트는 Na계 벤토나이트와 Ca계 벤토나이트로 나뉠 수 있는데, 자연 상에서 산출되는 벤토나이트는 주로 Ca계 벤토나이트 형태이다. Ca계 벤토나이트에 비하여 Na계 벤토나이트가 점도 및 팽윤도가 월등하기 때문에, Ca계 벤토나이트의 양이온을 Na로 치환시켜 Na계 벤토나이트의 형태로 이용한다. Here, bentonite may be divided into Na-based bentonite and Ca-based bentonite, and bentonite produced in nature is mainly in the form of Ca-based bentonite. Since Na-based bentonite has superior viscosity and swelling degree compared to Ca-based bentonite, it is used in the form of Na-based bentonite by replacing the cation of Ca-based bentonite with Na.

이를 위해, Ca계 벤토나이트를 분쇄한 다음 Na2CO3 분말과 혼합한 후, 이를 450~900℃로 열처리하여 Na계 벤토나이트를 만든다. 열처리하기 전에 벤토나이트에 알루미나 또는 흑연을 첨가할 수 있다.To this end, Ca-based bentonite is pulverized and then mixed with Na 2 CO 3 powder, and then heat-treated at 450 to 900° C. to make Na-based bentonite. Alumina or graphite may be added to the bentonite prior to heat treatment.

벤토나이트에 대한 보완수단으로 열전도성이 좋은 실리카 샌드가 벤토나이트와 함께 혼합된다. As a supplement to bentonite, silica sand with good thermal conductivity is mixed with bentonite.

수경성 결합재는 벤토나이트의 수축을 저감시켜 수축으로 인한 열단락이 발생하는 것을 방지한다. The hydraulic binder reduces the shrinkage of bentonite and prevents thermal short circuit due to shrinkage.

수경성 결합재는 물과의 빠른 반응을 유도하는 규산3석회(3CaO·SiO2), 강도 발현에 기여하는 규산2석회(2CaO·SiO2) 및 물과의 빠른 반응을 유도하고 열을 발생시킬 수 있는 알루민산석회(3CaO·Al2O3)로 이루어진다. 여기서, 규산3석회, 규산2석회 및 알루민산석회는 1:1:0.7의 비율로 혼합된다. The hydraulic binder is a tri-lime silicate (3CaO•SiO 2 ) that induces a quick reaction with water, a dilime silicate (2CaO•SiO 2 ) that contributes to strength development, and a quick reaction with water that can generate heat. It consists of lime aluminate (3CaO·Al 2 O 3 ). Here, 3 lime silicate, 2 lime silicate and lime aluminate are mixed in a ratio of 1:1:0.7.

상기 수경성 결합재는 점토분이 15~20% 함유된 석회석을 소성하여 생석회의 일부를 점토질 석회석 중에 함유된 규산(SiO2) 및 알루미나(Al2O3)와 반응시켜 수경성 광물인 규산3석회, 규산2석회 및 알루민산석회를 생성시키고, 이를 물로 수화하여 분쇄 및 분급하여 제조된다. 이러한 수경성 결합재는 경화성이 보완되고 내수성이 높은 장점이 있다.The hydraulic binder is calcined limestone containing 15-20% of clay powder, and reacts a part of quicklime with silicic acid (SiO 2 ) and alumina (Al 2 O 3 ) contained in clay limestone to form hydraulic minerals such as silicate 3 lime, silicic acid 2 It is produced by producing lime and lime aluminate, which are hydrated with water, and crushed and classified. These hydraulic binders have the advantage of complementing hardenability and high water resistance.

수경성 결합재의 경화특성과 강도 특성을 향상시키기 위하여 혼화제로서 실리카흄(silica fume)이나 석회석(limestone powder) 미분말이 혼합될 수 있다.Silica fume or limestone powder fine powder may be mixed as an admixture in order to improve the curing characteristics and strength characteristics of the hydraulic binder.

실리카흄은 실리콘, 페로실리콘, 실리콘 합금 등을 제조할 때에 발생하는 폐가스 중에 포함되어 있는 실리카(SiO2)를 집진기로 모아서 얻어지는 초미립자의 산업부산물이다. 실리카흄은 매우 미세한 구형의 입자(평균입경 0.1 내지 0.2㎛)로 구성되어 있다. 이러한 실리카흄은 상당히 미세한 입자를 가지기 때문에 공극충전 효과에 따른 강도증진과 투수성을 감소시킨다. Silica fume is an industrial by-product of ultra-fine particles obtained by collecting silica (SiO 2 ) contained in waste gas generated when manufacturing silicon, ferrosilicon, silicon alloy, etc. with a dust collector. Silica fume is composed of very fine spherical particles (average particle diameter 0.1 to 0.2㎛). Since these silica fume has very fine particles, it increases strength and reduces permeability according to the pore filling effect.

석회석 미분말은 석회석을 분쇄하여 얻을 수 있으며, 석회석 미분말을 벤토나이트에 혼합한 경우, 레올로지 특성이 개선될 뿐만 아니라 블리딩 저감, 수화열 억제의 효과가 있다. Fine limestone powder can be obtained by pulverizing limestone, and when fine limestone powder is mixed with bentonite, rheological properties are improved, bleeding is reduced, and heat of hydration is suppressed.

실리카흄과 석회석 미분말은 각각 2~3중량% 및 3~6중량%로 혼합하여 사용할 수 있다.Silica fume and fine limestone powder can be used by mixing 2 to 3% by weight and 3 to 6% by weight, respectively.

동제련 슬래그는 벤토나이트의 열전도도를 향상시키기 위해 사용되는 것으로, 동제련시 발생되는 슬래그를 골재로 첨가한다. 동제련 공정 중 매트와 분리된 동제련 슬래그는 전기로에서 유가 금속 회수를 위한 과정을 거친 후, 고압수에 의해 수쇄되어 0.5~4.0㎜의 균일한 입도를 갖는 그래뉼 상태로 제조된다.Copper smelting slag is used to improve the thermal conductivity of bentonite, and slag generated during copper smelting is added as an aggregate. The copper smelting slag separated from the mat during the copper smelting process is subjected to a process for recovering valuable metals in an electric furnace, and then crushed by high-pressure water to form granules with a uniform particle size of 0.5 to 4.0 mm.

이와 같이 동제련 슬래그에 대하여 수쇄 공정을 거치는 것은 슬래그가 수경성 결합재와 혼합되는 과정에서 물질 분리가 발생되어 혼합되지 않은 현상을 방지하기 위한 것이다. As described above, the process of hand crushing the copper smelting slag is to prevent material separation and non-mixing in the process of mixing the slag with the hydraulic binder.

고성능 AE 감수제는 나프탈렌계 또는 폴리카르본산계를 사용할 수 있고, 수경성 결합재의 분산 성능이 뛰어나 감수성능이 뛰어나며, 응결지연, 과다한 공기 연행 및 강도 저하 등의 나쁜 영향이 없어 그라우팅 재료의 물성을 향상시킬 수 있다.The high-performance AE water reducing agent can use naphthalene or polycarboxylic acid, and the dispersion performance of the hydraulic binder is excellent and the water sensitivity is excellent, and there is no adverse effect such as delay in setting, excessive air entrainment, and decrease in strength, so it can improve the properties of grouting materials. can

증점제는 셀룰로오즈계로서 그라우트의 점성이나 보수성을 높여서 시공할 때 그라우트의 유실이나 골재 역할을 하는 동제련 슬래그의 분리를 적게 하여 그라우트재 품질의 균일성 및 수밀성을 향상시킬 수 있다. 증점제로는 에틸하이드록실에틸셀룰로오스(EHEC), 메틸 하이드록실 에틸셀룰로스(MHEC)를 사용할 수 있다. The thickener is cellulose-based, and it can improve the uniformity and watertightness of the grout material quality by increasing the viscosity and water retention of the grout and reducing the loss of the grout or the separation of copper smelting slag, which serves as an aggregate, during construction. Ethyl hydroxyl ethyl cellulose (EHEC) and methyl hydroxyl ethyl cellulose (MHEC) may be used as the thickener.

소포제는 기포가 생성되는 것을 억제하는 물질로서, 디메틸 폴리실록산(dimethyl polysyloxame)이 사용될 수 있다.The antifoaming agent is a material that inhibits the formation of bubbles, and dimethyl polysyloxame may be used.

고성능 AE 감수제, 증점제 및 소포제는 각각 0.2~0.5 중량%, 0.05~0.1 중량%, 0.1~0.25 중량%를 물과 함께 사용할 수 있다. The high-performance AE water reducing agent, thickener, and antifoaming agent may be used with water in an amount of 0.2 to 0.5 wt%, 0.05 to 0.1 wt%, and 0.1 to 0.25 wt%, respectively.

상술한 본 발명의 지중열교환기용 그라우팅 재료는 수경성 결합재를 혼합하여, 벤토나이트의 수축을 저감시켜 수축으로 인한 열단락이 발생하는 것을 방지한다. 또한, 동제련 슬래그는 벤토나이트의 열전도도를 향상시키기 위해 사용되고, 유가 금속 회수를 위한 과정을 거친 후, 고압수에 의해 수쇄됨으로써, 슬래그가 수경성 결합재와 혼합되는 과정에서 물질 분리가 발생되어 혼합되지 않은 현상을 방지할 수 있다. The grouting material for the underground heat exchanger of the present invention is mixed with a hydraulic binder to reduce the shrinkage of bentonite to prevent thermal short circuit due to shrinkage. In addition, copper smelting slag is used to improve the thermal conductivity of bentonite, and after going through a process for recovering valuable metals, it is crushed by high pressure water, so that material separation occurs in the process of mixing the slag with the hydraulic binder. phenomenon can be prevented.

본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It is obvious to those of ordinary skill in the art that the present invention is not limited to the above embodiments and can be implemented with various modifications or variations without departing from the technical gist of the present invention. will be.

10: 홀
20: 열교환배관
21: 스페이서
30: 그라우트재
10: Hall
20: heat exchange pipe
21: spacer
30: grout material

Claims (4)

지중열교환기용 그라우팅 재료에 있어서,
30~55 중량%의 실리카 샌드;
20~30 중량%의 벤토나이트;
5~10 중량%의 수경성 결합재;
10~15 중량%의 물;
을 포함하는 지중열교환기용 그라우팅 재료.
In the grouting material for the underground heat exchanger,
30-55% by weight of silica sand;
20-30% by weight of bentonite;
5-10 wt% of a hydraulic binder;
10-15% by weight of water;
A grouting material for an underground heat exchanger comprising a.
제1항에 있어서,
5~10 중량%의 동제련 슬래그;
를 더 포함하고,
상기 동제련 슬래그는 동제련시 발생하는 슬래그를 고압수에 의한 수쇄에 의해 0.5~4.0mm의 입도분포를 갖도록 한 것인 지중열교환기용 그라우팅 재료.
According to claim 1,
5-10% by weight of copper smelting slag;
further comprising,
The copper smelting slag is a grouting material for a geothermal heat exchanger so that the slag generated during copper smelting has a particle size distribution of 0.5 to 4.0 mm by water crushing with high pressure water.
제1항에 있어서,
상기 수경성 결합재는 규산3석회(3CaO·SiO2), 규산2석회(2CaO·SiO2) 및 알루민산석회(3CaO·Al2O3)로 이루어지고,
상기 규산3석회, 상기 규산2석회 및 상기 알루민산석회는 1:1:0.7의 비율로 혼합되는 지중열교환기용 그라우팅 재료.
According to claim 1,
The hydraulic binder consists of silicate 3 lime (3CaO·SiO 2 ), silicate 2 lime (2CaO·SiO 2 ) and aluminate lime (3CaO·Al 2 O 3 ),
The grouting material for a geothermal heat exchanger in which the silicate 3 lime, the silicate 2 lime and the aluminate lime are mixed in a ratio of 1:1:0.7.
지중열교환기를 위한 그라우팅 방법에 있어서,
천공장비를 사용하여 지중에 소정 깊이로 소정 직경의 홀을 천공하는 홀 천공단계;
상기 홀에 열교환배관을 설치하는 열교환배관 설치단계;
상기 열교환배관이 설치된 홀의 내부에 트레미관을 삽입하여 그라우트재를 충전하는 그라우트재 충전단계;
상기 그라우트재가 충전된 상기 홀의 상부로 외부 오염물이 유입되지 않도록 마감하거나 표층을 형성시키는 마감단계;
를 포함하고,
상기 그라우트재는,
30~55 중량%의 실리카 샌드;
20~30 중량%의 벤토나이트;
5~10 중량%의 수경성 결합재;
5~10 중량%의 동제련 슬래그;
10~15 중량%의 물;
을 포함하는 지중열교환기를 위한 그라우팅 방법.
A grouting method for an underground heat exchanger comprising:
A hole drilling step of drilling a hole of a predetermined diameter to a predetermined depth in the ground using a drilling machine;
a heat exchange pipe installation step of installing a heat exchange pipe in the hole;
a grout material filling step of inserting a tremie tube into the hole in which the heat exchange pipe is installed to fill the grout material;
a finishing step of finishing or forming a surface layer so that external contaminants do not flow into the upper portion of the hole filled with the grout material;
including,
The grout material,
30-55% by weight of silica sand;
20-30% by weight of bentonite;
5-10 wt% of a hydraulic binder;
5-10% by weight of copper smelting slag;
10-15% by weight of water;
A grouting method for an underground heat exchanger comprising a.
KR1020190167885A 2019-12-16 2019-12-16 Grouting material for underground heat exchangers and method of construction using the same KR102400336B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190167885A KR102400336B1 (en) 2019-12-16 2019-12-16 Grouting material for underground heat exchangers and method of construction using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190167885A KR102400336B1 (en) 2019-12-16 2019-12-16 Grouting material for underground heat exchangers and method of construction using the same

Publications (2)

Publication Number Publication Date
KR20210076549A true KR20210076549A (en) 2021-06-24
KR102400336B1 KR102400336B1 (en) 2022-05-23

Family

ID=76607475

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190167885A KR102400336B1 (en) 2019-12-16 2019-12-16 Grouting material for underground heat exchangers and method of construction using the same

Country Status (1)

Country Link
KR (1) KR102400336B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716922A (en) * 2021-09-01 2021-11-30 湖北大学 Shield synchronous grouting material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050067972A (en) * 2003-12-29 2005-07-05 코오롱건설주식회사 Grout composition for laying geothermal exchanger
KR100648461B1 (en) * 2006-05-01 2006-11-28 (주)청해소재 A solidification agent for soft ground and sludge improvement strengthen using industrial waste
KR101402472B1 (en) * 2013-07-29 2014-06-03 한국벤토나이트 주식회사 Manufacturing method for superplasticizer and grouting material of geothermal exchanging system
KR101570192B1 (en) * 2015-04-30 2015-11-19 (주)대우건설 Grout Composite for PHC file Using Copper Slag Smelting by Continuous Furnace
KR20190041728A (en) * 2017-10-13 2019-04-23 류상범 Geothermal heat exchanger construction method using carbon powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050067972A (en) * 2003-12-29 2005-07-05 코오롱건설주식회사 Grout composition for laying geothermal exchanger
KR100648461B1 (en) * 2006-05-01 2006-11-28 (주)청해소재 A solidification agent for soft ground and sludge improvement strengthen using industrial waste
KR101402472B1 (en) * 2013-07-29 2014-06-03 한국벤토나이트 주식회사 Manufacturing method for superplasticizer and grouting material of geothermal exchanging system
KR101570192B1 (en) * 2015-04-30 2015-11-19 (주)대우건설 Grout Composite for PHC file Using Copper Slag Smelting by Continuous Furnace
KR20190041728A (en) * 2017-10-13 2019-04-23 류상범 Geothermal heat exchanger construction method using carbon powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716922A (en) * 2021-09-01 2021-11-30 湖北大学 Shield synchronous grouting material and preparation method thereof

Also Published As

Publication number Publication date
KR102400336B1 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
CA3077638C (en) Reduction in bentonite-based grout concentration in grout fluids
CN106986593B (en) A kind of preparation method of earth source heat pump drilling backfilling material
EP1065451B1 (en) Filling material comprising graphite for ground heat exchanger
CN104402349A (en) Ground-source heat pump ground-buried pipe backfill material and preparation method thereof
CN100398482C (en) Underground pipe heat exchanger drilling hole refilling material
CN100453497C (en) Backfill to buried pipe heat exchanger through hole
KR100985854B1 (en) Method for constructing grouting of closed-loop vertical ground heat exchanger
KR102400336B1 (en) Grouting material for underground heat exchangers and method of construction using the same
SA119410196B1 (en) Hydraulic Geofracture Energy Storage System With Desalination
CN106866081B (en) A kind of preparation method of earth source heat pump drilling backfilling material
CN105174860A (en) High thermal conductive cementing material capable of enhancing heat exchange performance of heat exchange system of floor heating
US9976272B2 (en) Method for manufacturing an element in the ground by in-situ soil mixing with a geopolymer
CN207904917U (en) Deep layer buried tube type prefabrication type energy pile pile
CN101870575A (en) Hydropower station pressure pipeline grouting construction method and gel material
CN108484038A (en) A kind of backfilling material and preparation method suitable for rock-soil layer geology
CN100395209C (en) Underground pipe heat exchanger hole drilling refilling material
US11884874B2 (en) Bentonite-based grouts and related methods
CN110105016A (en) Barrier wall material and its application method for ion Rare Earth Mine contaminated site
KR100860259B1 (en) Grout composition for laying geothermal exchanger
CN205876388U (en) Grout system of backfilling of shaft in vertical heat exchanger
CN207033403U (en) One kind only takes hot ground hot hole solid hole plugging device of not fetching water
CN107298559A (en) A kind of underground pipe backfilling material used for geothermal heat pump
CN107721344A (en) A kind of grouting material and water-stopping method of soil source heat pump system heat exchanger tube wellhole
KR101581754B1 (en) Grouting material for geothermal heating and cooling and method of manufacture thereof
CN104877651A (en) Drilling fluid composition, drilling fluid, and application of drilling fluid

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant