KR20210069366A - Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same - Google Patents

Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same Download PDF

Info

Publication number
KR20210069366A
KR20210069366A KR1020190159096A KR20190159096A KR20210069366A KR 20210069366 A KR20210069366 A KR 20210069366A KR 1020190159096 A KR1020190159096 A KR 1020190159096A KR 20190159096 A KR20190159096 A KR 20190159096A KR 20210069366 A KR20210069366 A KR 20210069366A
Authority
KR
South Korea
Prior art keywords
sewage treatment
treatment material
oyster shells
sewage
oyster
Prior art date
Application number
KR1020190159096A
Other languages
Korean (ko)
Inventor
김경회
이인철
정일원
널 인드라드위 옥타비트리
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020190159096A priority Critical patent/KR20210069366A/en
Publication of KR20210069366A publication Critical patent/KR20210069366A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention relates to a method for preparing a sewage treatment material for PO4-P and NH3-N removal, a sewage treatment material prepared thereby, and a sewage treatment system including the same. The method includes the steps of: (A) grinding an oyster shell; and (B) calcining the oyster shell and then attaching microalgae to the oyster shell to prepare a sewage treatment material. According to the present invention, the sewage treatment material is prepared using oyster shells, it is possible to recycle oyster shells that have caused problems such as odor and coastal ecosystem pollution, and thus environmental pollution can be reduced. In addition, it is possible to produce a sewage treatment material of excellent performance capable of simultaneously treating phosphorus (PO4-P) and nitrogen (NH3-N) in sewage at a high removal rate.

Description

PO4-P 및 NH3-N 제거용 하수처리재의 제조방법, 이에 의해 제조된 하수처리재, 및 이를 포함하는 하수처리시스템{METHOD FOR PREPARING SEWAGE TREATMENT MATERIAL USED FOR REMOVING PO4-P AND NH3-N, SEWAGE TREATMENT MATERIAL PREPARED THEREBY, AND SEWAGE TREATMENT SYSTEM COMPRISING THE SAME}A method for manufacturing a sewage treatment material for removing PO4-P and NH3-N, a sewage treatment material manufactured thereby, and a sewage treatment system comprising the same MATERIAL PREPARED THEREBY, AND SEWAGE TREATMENT SYSTEM COMPRISING THE SAME}

본 발명은 하수 중에 포함된 오염 물질을 제거하기 위한 하수처리재의 제조방법, 이에 의해 제조된 하수처리재, 및 상기 하수처리재를 포함하는 하수처리시스템에 대한 것이다.The present invention relates to a method for manufacturing a sewage treatment material for removing contaminants contained in sewage, a sewage treatment material manufactured thereby, and a sewage treatment system including the sewage treatment material.

최근 하수처리장의 영양염 배출 기준이 강화되면서 하수의 영양염 농도 감소를 위한 연구가 진행되고 있다. 실제로 다양한 하수처리 공법이 적용 중에 있으며, 특히 인과 질소를 처리할 수 있는 표준활성슬러지 공법은 국내외에서도 넓게 적용되고 있다. 표준 활성슬러지 공법은 다른 공법에 비해 약품을 사용하지 않기에 유지관리비가 저렴하며, 다양한 변형공정에 관한 연구 및 개발 진행되고 있다. 하지만, 폭기조에 사용되는 충진제의 종류에 따라 비용이 많이 소모되는 단점이 있으며, T-N의 처리효율은 20 ~ 30%, T-P의 처리효율은 10 ~ 25%에 불과하기 때문에 배출 수질기준 강화시에는 추가로 고도처리시설이 요구된다. 폭기조의 충진제로는 천연재료인 맥반석, 제올라이트, 가공재료인 세라믹, 다공성 폴리우레탄, 산업 부산물인 자철광 분말, 폐타이어 등이 제안되었다. 이와 같은 충진제들은 기존에 사용하던 재료에 비해 상대적으로 저비용 고효율의 효과를 나타내지만, 충진제의 재료 특성으로 인해 중금속 오염 등과 같은 2차 환경 오염의 원인으로 작용될 여지가 있다. Recently, as the standards for nutrient discharge from sewage treatment plants have been strengthened, research to reduce the concentration of nutrients in sewage is being conducted. In fact, various sewage treatment methods are being applied, and in particular, the standard activated sludge method capable of treating phosphorus and nitrogen is widely applied at home and abroad. Compared to other methods, the standard activated sludge method does not use chemicals, so the maintenance cost is low, and research and development on various transformation processes are in progress. However, depending on the type of filler used in the aeration tank, there is a disadvantage in that it consumes a lot of money, and since the treatment efficiency of TN is 20 to 30% and that of TP is only 10 to 25%, additional Therefore, advanced treatment facilities are required. As fillers for the aeration tank, natural materials such as elvan stone and zeolite, processing materials such as ceramics, porous polyurethane, industrial byproducts of magnetite powder, and waste tires have been proposed. Such fillers exhibit relatively low cost and high efficiency compared to conventional materials, but may act as a cause of secondary environmental pollution such as heavy metal contamination due to the material properties of the filler.

한편, 굴은 2016년 기준으로 전세계에서 약 438 억톤의 생산규모로 양식되고 있다. 굴의 전체 중량 중 약 70%가 패각으로 구성되며, 굴패각은 약 96%가 탄산칼슘의 형태로 존재하고 있어 시멘트의 응집제 및 칼슘 보충제로서 이용되기도 한다. 하지만 굴패각의 발생량 중 30%만 재활용되고 있으며 나머지는 대부분 매립되거나 불법 야적되면서 악취, 해충발생, 침출수로 인한 수질오염 등과 같은 2차 환경오염을 유발하고 있기에 재활용 방안의 모색이 시급한 실정이다. On the other hand, as of 2016, oysters are being farmed around the world with a production scale of about 43.8 billion tons. About 70% of the total weight of oysters is composed of shells, and about 96% of oyster shells are in the form of calcium carbonate, so it is also used as a cement coagulant and calcium supplement. However, only 30% of the generated oyster shells are recycled, and most of the rest are landfilled or stored illegally, causing secondary environmental pollution such as odors, pests, and water pollution due to leachate. Therefore, it is urgent to find a recycling method.

한국공개특허 제10-1998-076547호 (공개일: 1998.11.16)Korea Patent Publication No. 10-1998-076547 (published on: November 16, 1998) 한국공개특허 제10-2002-0043024호 (공개일: 2002.06.08)Korean Patent Application Laid-Open No. 10-2002-0043024 (published on June 8, 2002)

본 발명이 해결하고자 하는 기술적 과제는, 굴패각을 재활용하기 위한 방안으로서 굴패각을 이용해 하수 중의 인산염 인(PO4-P) 및 암모니아성 질소(NH3-N)를 동시에 제거할 수 있는 신규한 하수처리재를 제조하는 방법, 이에 의해 제조된 하수처리재, 및 상기 하수 처리재를 포함하는 하수처리시스템을 제공하는 것이다.The technical problem to be solved by the present invention is a novel sewage treatment that can simultaneously remove phosphorus phosphate (PO 4 -P) and ammonia nitrogen (NH 3 -N) in sewage using oyster shells as a method for recycling oyster shells An object of the present invention is to provide a method for manufacturing ashes, a sewage treatment material manufactured thereby, and a sewage treatment system including the sewage treatment material.

상기 기술적 과제를 달성하기 위해, 본 발명은 (A) 굴패각을 분쇄하는 단계; 및 (B) 굴패각을 소성시킨 후 굴패각에 미세조류(microalgae)를 부착시켜 하수처리재를 제조하는 단계를 포함하는, PO4-P 및 NH3-N 제거용 하수처리재의 제조방법을 제안한다. In order to achieve the above technical object, the present invention comprises the steps of (A) grinding oyster shells; And (B) after calcining the oyster shell, attaching microalgae to the oyster shell to prepare a sewage treatment material, PO 4 -P and NH 3 -N suggesting a method of manufacturing a sewage treatment material for removal.

상기 단계 (B)에서 미세조류는 NH3-N를 제거할 수 있는 미세조류로서, 예를 들면, 클로렐라 불가리스(Chlorella vulgaris), 아르쓰로스피라 플라텐시스(Arthrospira platensis), 안키스트로데스무스 그라실리스(Ankistrodesmus gracilis), 세네데스무스 악쿠이나투스(Scenedesmus accuminatus) 및 세네데스무스 쿠아드리카우다(Scenedesmus quadricauda)로부터 선택되는 1종 이상을 사용할 수 있으나, 반드시 상기 미세조류로 제한되는 것은 아니다. In the step (B) is a microalgae microalgae capable of removing the NH 3 -N, e.g., Chlorella vulgaris (Chlorella vulgaris), are used to Spira platen sheath (Arthrospira platensis), des mousse as not keystore Gracilis ( Ankistrodesmus gracilis ), Senedesmus accuminatus ( Scenedesmus accuminatus ) and Senedesmus quadricauda ( Scenedesmus quadricauda ) At least one selected from the group may be used, but it is not necessarily limited to the microalgae. .

또한, 상기 단계 (B)에서 소성된 굴패각에 미세조류를 부착시키는 방법은 특별히 제한되지 않으며, 예를 들어, 물이 담긴 수조 내에 소성된 굴패각과 함께 미세조류를 접종하면 굴패각 표면이 미세조류가 부착하기 위한 기질(substrate)로서 작용해 일정 기간 경과 후에 미세조류가 표면에 부착된 굴패각을 얻을 수 있다. In addition, the method of attaching microalgae to the calcined oyster shells in step (B) is not particularly limited. For example, when microalgae are inoculated with the calcined oyster shells in a water tank filled with water, the microalgae adhere to the surface of the oyster shells. After a certain period of time, it acts as a substrate to obtain oyster shells with microalgae attached to the surface.

한편, 본 발명에 따른 PO4-P 및 NH3-N 제거용 하수처리재는 하나의 특정 온도 또는 온도 범위에서 소성된 굴패각만을 이용해 제조할 수도 있음은 물론, 서로 상이한 2 이상의 특정 온도 또는 온도 범위에서 각각 소성된 굴패각에 조류를 부착한 후 이들을 혼합해 제조할 수도 있다. On the other hand, the sewage treatment material for removing PO 4 -P and NH 3 -N according to the present invention may be manufactured using only oyster shells fired at one specific temperature or temperature range, as well as at two or more different specific temperatures or temperature ranges. It can also be prepared by attaching algae to each calcined oyster shell and then mixing them.

예를 들어, 서로 상이한 온도에서 각각 소성시킨 굴패각에 미세조류를 부착하고 이들을 혼합해 하수처리재를 제조하는 방법은, (a) 굴패각을 분쇄하는 단계; (b) 굴패각을 100℃에서 소성시킨 후 굴패각에 미세조류(microalgae)를 부착시켜 제1 하수처리재를 제조하는 단계; (c) 굴패각을 600 내지 800℃에서 소성시킨 후 굴패각에 미세조류를 부착시켜 제2 하수처리재를 제조하는 단계; 및 (d) 상기 제1 하수처리재 및 제2 하수처리재를 혼합하는 단계를 포함해 이루어질 수 있다(도 1 참조). For example, a method of preparing a sewage treatment material by attaching microalgae to oyster shells calcined at different temperatures and mixing them, comprising the steps of: (a) grinding oyster shells; (b) calcining the oyster shells at 100° C. and attaching microalgae to the oyster shells to prepare a first sewage treatment material; (c) calcining the oyster shells at 600 to 800° C. and then attaching microalgae to the oyster shells to prepare a second sewage treatment material; and (d) mixing the first sewage treatment material and the second sewage treatment material (see FIG. 1 ).

이때, 상기 단계 (d)에서 제1 하수처리재 및 제2 하수처리재를 0 : 10 초과 10 : 0미만의 중량비로 혼합하는 것이 바람직하며, 더욱 바람직하게는 제1 하수처리재 및 제2 하수처리재를 3 : 7 내지 5 : 5의 중량비로 혼합할 수 있다. At this time, it is preferable to mix the first sewage treatment material and the second sewage treatment material in the step (d) in a weight ratio of more than 0: 10 and less than 10: 0, more preferably, the first sewage treatment material and the second sewage treatment material The treatment material may be mixed in a weight ratio of 3: 7 to 5: 5.

그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 얻어지는 PO4-P 및 NH3-N 제거용 하수처리재를 제안한다.And, the present invention proposes a sewage treatment material for removing PO 4 -P and NH 3 -N obtained by the manufacturing method in another aspect of the present invention.

나아가, 본 발명은 발명의 또 다른 측면에서 상기 PO4-P 및 NH3-N 제거용 하수처리재가 충전된 폭기조 또는 시료 충전층을 구비한 하수처리 시스템을 제안한다.Furthermore, in another aspect of the present invention, the present invention proposes a sewage treatment system having an aeration tank or a sample filling layer filled with the sewage treatment material for removing the PO 4 -P and NH 3 -N.

상기 하수처리 시스템의 일례로서, 현재 하수처리에 가장 많이 적용되고 있는 표준활성슬러지 공정을 적용한 하수처리 시스템에 대해 설명하면, 하수 중에 포함된 모래 등 조대 입자를 제거하는 전처리부; 자연 침강을 이용하여 하수 중의 부유물질을 침강 및/또는 제거하는 1차 처리공정부; 1차 처리공정부를 거친 상층수를 폭기조에 유입시켜 처리하는 2차 처리공정부; 2차 처리공정부를 통과한 유출수를 방류 전에 소독하는 소독부; 및 상기 1차 처리공정부 및 2차 처리공정부에서의 공정에 따라 발생되는 슬러지를 탈수하여 최종 처분하는 슬러지 처리공정부로 이루어질 수 있으며, 상기 2차 처리공정부에 포함되는 폭기조에 본 발명에 따른 PO4-P 및 NH3-N 제거용 하수처리재를 충진해 하수처리 시스템을 구성하게 된다. As an example of the sewage treatment system, when describing a sewage treatment system to which the standard activated sludge process, which is currently most widely applied to sewage treatment, is applied, a pretreatment unit for removing coarse particles such as sand contained in the sewage; a primary treatment process unit for sedimenting and/or removing suspended solids in sewage using natural sedimentation; a secondary treatment unit for processing the upper layer water that has passed through the primary treatment unit into the aeration tank; a disinfection unit that disinfects the effluent that has passed through the secondary treatment process unit before discharging; and a sludge treatment unit for dewatering and finally disposing of sludge generated according to the processes in the primary treatment unit and the secondary treatment unit, and the aeration tank included in the secondary treatment unit is provided according to the present invention. A sewage treatment system is formed by filling the sewage treatment material for removing PO 4 -P and NH 3 -N.

본 발명에 따른 PO4-P 및 NH3-N 제거용 하수처리재의 제조방법을 통해, 굴패각을 이용해 하수처리재를 제조함으로써 종래 악취, 연안생태계 오염 등의 문제를 야기했던 굴패각을 재활용함으로써 환경 오염을 저감시키는 동시에, 하수 중의 인(PO4-P) 및 질소(NH3-N)를 높은 제거율로 동시에 처리할 수 있는 우수한 성능의 하수처리재를 생산할 수 있다. Environmental pollution by recycling oyster shells that have caused problems such as odor and coastal ecosystem pollution in the past by manufacturing sewage treatment materials using oyster shells through the method of manufacturing a sewage treatment material for removing PO 4 -P and NH 3 -N according to the present invention At the same time, it is possible to produce a sewage treatment material with excellent performance that can simultaneously treat phosphorus (PO 4 -P) and nitrogen (NH 3 -N) in sewage at a high removal rate.

도 1은 본 발명에 따른 PO4-P 및 NH3-N 제거용 하수처리재의 제조방법의 각 단계를 나타낸 공정 흐름도이다.
도 2는 본원 실시예에서 소성한 굴패각에 대한 XRD 분석 결과이다.
도 3은 본원 실시예에서 하수처리재의 오염물질 제거 성능을 평가하기 위해 사용한 상향류 투수방식 유출장치의 모식도이다.
도 4는 상향류 투수방식 유출장치의 유입(Con) 및 유출(POS)에서의 인공 오수의 PO4-P의 농도 변화(도 4(a))와 POS100, POS600, POS800의 충전 중량(g)에 따른 PO4-P의 제거량(mg)(도 4(b))을 측정한 결과이다.
도 5는 본원 실시예에서 미세조류(Chlorella vulgaris)의 NH3-N 제거 성능을 측정한 결과이다.
1 is a process flow diagram showing each step of the method of manufacturing a sewage treatment material for removing PO 4 -P and NH 3 -N according to the present invention.
2 is an XRD analysis result of calcined oyster shells in Examples of the present application.
3 is a schematic diagram of an upflow permeable outflow device used to evaluate the pollutant removal performance of the sewage treatment material in the present embodiment.
Figure 4 is a change in the concentration of PO 4 -P of artificial sewage in the inflow (Con) and outflow (POS) of the upflow permeable outflow device (FIG. 4 (a)) and the filling weight of POS100, POS600, POS800 (g) According to PO 4 -P removal amount (mg) (Fig. 4 (b)) is a measurement result.
5 is a result of measuring the NH 3 -N removal performance of microalgae ( Chlorella vulgaris ) in the present Example.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the present invention may have various changes and may have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention with respect to a specific disclosed form, and should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as “comprise” or “have” are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, and includes one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail by way of examples.

본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.

<실시예><Example>

본 실시예에서는 분쇄 후 100℃에서 소성한 굴패각에 클로렐라 불가리스(Chlorella vulgaris)를 부착시켜 제1 하수처리재를 제조하고, 분쇄 후 600℃ 또는 800℃에서 소성한 굴패각에 클로렐라 불가리스(Chlorella vulgaris)를 부착시켜 제2 하수처리재를 제조한 후, 제1 하수처리재 및 제2 하수처리재를 3 : 7 또는 5 : 5의 중량비로 혼합해 본 발명에 따른 PO4-P 및 NH3-N 제거용 하수처리재를 제조하고, 이를 하수처리시설의 충진제로 활용하고자 하수처리 시스템을 모사한 실내 실험을 수행하고, PO4-P 및 NH3-N의 제거 성능을 평가하였다.The present embodiment, oyster shell Chlorella vulgaris (Chlorella vulgaris) at a firing were attached Chlorella vulgaris (Chlorella vulgaris) after crushed oyster shell calcination at 100 ℃ a first wastewater treatment material in the production, and after grinding 600 ℃ or 800 ℃ After attaching to prepare a second sewage treatment material, the first sewage treatment material and the second sewage treatment material are mixed in a weight ratio of 3: 7 or 5: 5 to remove PO 4 -P and NH 3 -N according to the present invention To prepare a sewage treatment material for use as a filler in a sewage treatment facility, an indoor experiment simulating a sewage treatment system was performed, and the removal performance of PO 4 -P and NH 3 -N was evaluated.

본 실시예에서 사용한 굴패각은 경상남도 남해안에 위치한 거제시의 박신장에서 채취하였다. 채취한 굴패각은 이물질을 제거하고 세척하였으며, 실험을 위해 100℃(POS100), 600℃(POS600), 800℃(POS800)의 다른 온도에서 6시간 소성하였다. 소성된 굴패각은 분쇄하여 입자크기를 0.5 mm ~ 10 mm로 체거름하였다(Fig. 1).The oyster shells used in this example were collected from Parksinjang, Geoje-si, located on the southern coast of Gyeongsangnam-do. The collected oyster shells were cleaned and foreign substances were removed and calcined for 6 hours at different temperatures of 100°C (POS100), 600°C (POS600), and 800°C (POS800) for the experiment. The calcined oyster shells were pulverized and sieved to a particle size of 0.5 mm to 10 mm (Fig. 1).

소성된 굴패각은 X-Ray Fluorescence Spectrometer(SHIMADZU, XRF-1800, Japan) 장비를 활용하여 화학적 구성을 분석하였다. 소성 굴패각의 화학적 구성은 아래 표 1에 나타내었다.The calcined oyster shells were analyzed for chemical composition using X-Ray Fluorescence Spectrometer (SHIMADZU, XRF-1800, Japan) equipment. The chemical composition of calcined oyster shells is shown in Table 1 below.

<표 1> 열분해 굴패각의 성분 분석 결과<Table 1> Result of component analysis of pyrolysis oyster shell

Figure pat00001
Figure pat00001

POS100은 Ca의 함량이 약 96.25%, POS600 및 POS800은 약 99.64%, 99.63% 비율로 나타났다. POS100의 원소 종류가 11종류(Ca, Na, Mg, Cl, S, Si, Sr, FE, Al, P, K)로 검출된 반면에 POS600 및 POS800은 3종류(Ca, S, P)만 검출되었다.The Ca content of POS100 was about 96.25%, and POS600 and POS800 were about 99.64% and 99.63%. POS100 detects 11 types (Ca, Na, Mg, Cl, S, Si, Sr, FE, Al, P, K), whereas POS600 and POS800 detects only 3 types (Ca, S, P) became

이는 소성 온도가 증가할수록 탄산칼슘(CaCO3)와 같은 무기화합물성분이 탄산염으로 분해되면서 Ca의 함량 비율이 높아지고, 미량인 원소들은 검출한계에 미달한 영향으로 판단된다. 또한, X-Ray Diffractometer(XRD, Philips, X'Pert-MPD System, Netherlands) 장비를 활용하여 소성 굴패각의 결정성 분석을 실시하였다.As the calcination temperature increases, inorganic compound components such as calcium carbonate (CaCO 3 ) are decomposed into carbonate, resulting in a higher Ca content ratio, and trace elements are judged to be less than the detection limit. In addition, crystallinity analysis of calcined oyster shells was performed using X-Ray Diffractometer (XRD, Philips, X'Pert-MPD System, Netherlands) equipment.

도 2에 소성 굴패각의 XRD 분석 결과를 나타내었다. 탄산칼슘(CaCO3)이 주된 성분인 것으로 확인되었으며, 소성온도에 따라 Intensity의 차이가 보였다(Hellen et al., 2019). CaCO3의 Intensity는 POS600, POS800, POS100의 순으로 나타났다. 또한, POS100, POS600, POS800에서 CaMg(CO3)2 Intensity의 반응도 나타났다. CaMg(CO3)2는 탄산염 광물의 일종으로, 낮은 온도에서는 무기적으로 합성되기 어려운 것으로 알려져 있으며, 약 700℃에서 결정성이 안정화 되는 것으로 알려져 있다(Bertram et al., 1991; Tong et al., 2019). 또한, CaMg(CO3)2는 pH가 높을수록, 그리고 75℃이상의 온도에서 아래 Eq. 1의 화학 반응을 통해 CaCO3로 분해되는 것으로 알려져 있다. 2 shows the results of XRD analysis of calcined oyster shells. Calcium carbonate (CaCO 3 ) was confirmed to be the main component, and the difference in intensity was seen according to the firing temperature (Hellen et al., 2019). Intensity of CaCO 3 appeared in the order of POS600, POS800, and POS100. In addition, the response of CaMg(CO 3 ) 2 Intensity was also shown in POS100, POS600, and POS800. CaMg(CO 3 ) 2 As a kind of carbonate mineral, it is known that it is difficult to synthesize inorganically at a low temperature, and its crystallinity is stabilized at about 700° C. (Bertram et al., 1991; Tong et al. , 2019). In addition, CaMg(CO 3 ) 2 The higher the pH, and the lower Eq. It is known to decompose into CaCO 3 through the chemical reaction of 1.

CaMg(CO3)2 + 2MOH → M2CO3 + Mg(OH)2 + CaCO3 (Eq. 1)CaMg(CO 3 ) 2 + 2MOH → M 2 CO 3 + Mg(OH) 2 + CaCO 3 (Eq. 1)

* M = Na, K, or Li.* M = Na, K, or Li.

소성한 굴패각 및 미세조류(Chlorella vulgaris)의 PO4-P 및 NH3-N의 제거 성능을 평가하기 위해, 도 3에 모식도를 도시한 상향류 투수방식 유출장치를 이용해 환경부에서 제시하는 「폐기물 공정시험 기준」에서 상향류 투수방식의 유출시험을 수행하였다(MOE, 2016). In order to evaluate the removal performance of PO 4 -P and NH 3 -N of calcined oyster shells and microalgae ( Chlorella vulgaris ), the “waste process” presented by the Ministry of Environment using an upflow permeable outflow device shown in the schematic diagram in FIG. An upflow permeable runoff test was performed in "Test Standards" (MOE, 2016).

본 실험에서는 20 L 저장용기, 정량식 튜브 펌프(BT600-2J, LONGER PUMP), 그리고 시료 충전층은 13 L 용기를 이용하였다. 「9. 환기관」및 「10. 수집용기 마개」는 제거하였으며, 「12. 수집용기」에 유출수가 유입되면 즉시 채취하여 분석하였다.In this experiment, a 20 L storage container, a metering tube pump (BT600-2J, LONGER PUMP), and a 13 L container were used for the sample filling layer. 「9. Ventilation pipe” and “10. The stopper of the collection container was removed, and “12. When the effluent flows into the collection container, it was immediately collected and analyzed.

상향류 투수방식 유출장치에서 「1. 저장용기」에는 인공오수를 제작하여 채웠다. 인공오수는 3차 증류수에 NH4Cl(Ammonium chloride, Sigma-Aldrich, Spain)과 KH2PO4(Potassium phosphate monobasic, Sigma-Aldrich, Japan)을 혼합하여 PO4-P 및 NH3-N 농도가 각각 25 mg/L이 되도록 제작하였다.In the upflow permeable outflow device, refer to 「1. The storage container” was filled with artificial sewage water. Artificial sewage is obtained by mixing NH 4 Cl (Ammonium chloride, Sigma-Aldrich, Spain) and KH 2 PO 4 (Potassium phosphate monobasic, Sigma-Aldrich, Japan) with tertiary distilled water to obtain PO 4 -P and NH 3 -N concentrations. Each was prepared to be 25 mg/L.

아래 표 2에는 실험에 사용한 POS100, POS600 그리고 POS800의 양과 인공오수의 유입량을 나타내었다. 소성 굴패각은 약 866 g ~ 982 g이 사용되었으며, 유입 인공오수는 650 mL ~ 900 mL의 범위로 나타났다. 인공 오수 유입량은 소성 굴패각을 시료충전층에 채운 후, 시료충전층에 남은 공극만큼 유입되도록 설정하였다. 소성 굴패각 및 유입된 인공오수의 용량 차이는 실험케이스마다 다른 굴패각의 평균입경과 굴패각이 시료충전층에 채워지는 과정에서 발생한 압밀로 인한 공극 차이에 기인한다. 인공 오수는 환경부에서 고시한 하수도 설계기준을 참고하여 시료충전층에 6시간 체류된 후에 유출되도록 설정하였다(MOE, 2017). 또한, 시료충전층에서 인공오수가 유출되는 동안 새로운 인공오수가 유입되도록 설정하였다. POS100 33회, POS600 52회, 그리고 POS800 56회까지의 실험을 반복하여 수행하였다. Table 2 below shows the amounts of POS100, POS600, and POS800 used in the experiment and the inflow of artificial sewage. About 866 g ~ 982 g of calcined oyster shells were used, and the inflow of artificial sewage was found to be in the range of 650 mL to 900 mL. After filling the calcined oyster shells in the sample filling layer, the artificial sewage inflow was set to flow as much as the remaining voids in the sample filling layer. The difference in the calcined oyster shells and the capacity of the introduced artificial sewage is due to the difference in the average particle diameter of the different oyster shells for each experimental case and the voids due to consolidation that occurred while the oyster shells were filled in the sample filling layer. Artificial sewage was set to flow out after staying in the sample-filled bed for 6 hours with reference to the sewage design standards announced by the Ministry of Environment (MOE, 2017). In addition, it was set so that new artificial sewage flows in while the artificial sewage flows out from the sample filling layer. Experiments up to 33 times of POS100, 52 times of POS600, and 56 times of POS800 were repeatedly performed.

PO4-P과 NH3-N는 자동분석장치(DR 3900, Hach)를 이용하여 분석하였으며, 각 분석 항목들은 3회 반복 분석하였다.PO 4 -P and NH 3 -N were analyzed using an automatic analyzer (DR 3900, Hach), and each analysis item was analyzed three times.

<표 2> 상향류 투수방식 유출시험에 사용된 굴패각 양 및 인공오수 유입량<Table 2> Amount of oyster shells and artificial sewage inflow used in upflow permeable runoff test

Figure pat00002
Figure pat00002

도 4에 유·출입에서의 인공 오수의 PO4-P의 농도 변화(도 4(a))와 POS100, POS600, POS800의 충전 중량(g)에 따른 PO4-P의 제거량(mg)(도 4(b))을 나타내었다. 초기 유출수의 PO4-P 농도는 유입수 대비 POS100은 약 53%, POS600은 약 62%, 그리고 POS800은 100% 감소하였다. 감소 원인으로는 소성 굴패각에서 용출되는 Ca가 Eq. 3 ~ 6와 같은 화학적 반응을 통해 PO4-P를 고정시킨 것으로 판단된다.Removing amount (mg) of PO 4 -P accordance with the concentration of the artificial sewage PO 4 -P (FIG. 4 (a)) and a fill weight (g) of POS100, POS600, POS800 in oil, out in Figure 4 (FIG. 4(b)) is shown. The PO 4 -P concentration of the initial effluent decreased by about 53% for POS100, 62% for POS600, and 100% for POS800 compared to the influent. Ca eluted from calcined oyster shells was the cause of the decrease in Eq. It is considered that PO 4 -P was immobilized through a chemical reaction such as 3 to 6.

Ca2+ + HPO4 2- → CaHPO4↓ (Eq. 3)Ca 2+ + HPO 4 2- → CaHPO 4 ↓ (Eq. 3)

Ca2+ + 2PO4 3- → Ca(PO4)2↓ (Eq. 4)Ca2+ + 2PO 4 3- → Ca(PO 4 ) 2 ↓ (Eq. 4)

Ca2+ + 2H2PO4 - → Ca(H2PO4)2↓ (Eq. 5)Ca2+ + 2H 2 PO 4 - → Ca(H 2 PO 4 ) 2 ↓ (Eq. 5)

Ca2+ + 3HPO4 2- + 4OH- → Ca5(OH)(PO4)3↓ + 3H2O (Eq. 6)Ca2+ + 3HPO 4 2- + 4OH - → Ca 5 (OH)(PO 4 ) 3 ↓ + 3H 2 O (Eq. 6)

기존 연구에 따르면 CaMg(CO3)2가 낮은 공극과 균질한 표면을 갖는 성질을 가지지만, PO4-P를 흡착하는 성질이 있다고 알려져 있으므로 CaMg(CO3)2에 의한 PO4-P의 흡착도 PO4-P 농도 감소에 기여하고 있는 것으로 판단된다.According to previous studies, CaMg(CO 3 ) 2 has a property of having low pores and a homogeneous surface, but it is known that it has a property of adsorbing PO 4 -P, so CaMg(CO 3 ) 2 Adsorption of PO 4 -P by CaMg(CO 3 ) 2 It is also considered to be contributing to the reduction of the PO 4 -P concentration.

POS100 유출수 중의 PO4-P 농도는 11.5 ~ 2 mg/L의 범위로, 반복횟수가 증가할수록 지속적으로 감소하였다. POS100은 POS600 및 POS800과는 다르게 소성 온도가 낮아 하소과정(Calcination process)에서 생성되는 Ca의 양이 적어서, 초기에는 인산염 제거율이 낮게 나타났다. POS800 유출수 중의 PO4-P 농도는 약 0.015 mg/g의 제거량을 유지하고 있는 것으로 나타났다. 기존 연구에 따르면 굴패각을 100℃로 가열 시, 굴패각에 남아있는 습기의 증발과 유기물의 분해로 중량이 완만하게 감소하지만, 761.5℃에서는 약 47.5% 중량 감소가 발생하며 고순도의 CaO가 생성된다고 알려져 있다는 것을 고려할 때, POS800은 POS100 및 POS600에 비해 CaO 함량이 높아 인산염의 제거 효율이 가장 높게 나타난다. The PO 4 -P concentration in the POS100 effluent was in the range of 11.5 to 2 mg/L, and it continued to decrease as the number of repetitions increased. Unlike POS600 and POS800, POS100 had a low calcination temperature and thus a small amount of Ca generated in the calcination process, so that the phosphate removal rate was initially low. The PO 4 -P concentration in the POS800 effluent was found to maintain a removal amount of about 0.015 mg/g. According to previous studies, when oyster shells are heated to 100℃, the weight decreases gently due to evaporation of moisture remaining in oyster shells and decomposition of organic matter, but at 761.5℃, it is known that about 47.5% weight reduction occurs and high purity CaO is produced. Considering that, POS800 has a higher CaO content than POS100 and POS600, so the phosphate removal efficiency is the highest.

반면 POS600 유출수 PO4-P 농도는 초기에 약 9.5 mg/L로 POS100보다 낮았지만 28회째에는 농도가 증가하면서 25mg/L에 도달하여 유입되는 인공오수와 차이가 없는 것으로 나타났다.On the other hand, the POS600 effluent PO 4 -P concentration was initially about 9.5 mg/L, which was lower than that of POS100, but at the 28th time, the concentration increased and reached 25 mg/L, indicating that there was no difference with the inflow artificial sewage.

POS600은 POS100 및 POS800 대비 1.12 ~ 1.38배 많은 유입수와, 0.88 ~ 0.96배에 불과한 굴패각의 양이 이용되어, 상대적으로 PO4-P 제거량이 낮은 것으로 판단된다. 도 4(b)에서, POS100이 POS600 및 POS800 보다 높은 제거량을 나타내고 있다. 종래의 연구 결과에서 굴패각을 소성할 경우에 굴패각에 포획된 Na+가 입자들을 응집시켜 비표면적을 감소시키는 역할을 하는 것으로 보고되었다. 즉, PO4-P 제거량이 POS100, POS800, POS600의 순서로 나타나는 것은 비표면적의 차이, 생성된 Ca 순도 및 유입수와 굴패각의 양의 차이의 복합적인 영향에 의한 것으로 판단된다.Compared to POS100 and POS800, POS600 uses 1.12 to 1.38 times more influent and 0.88 to 0.96 times more oyster shells, so it is judged that the amount of PO 4 -P removed is relatively low. In Fig. 4(b), POS100 shows a higher removal amount than POS600 and POS800. In the results of previous studies, it has been reported that when oyster shells are calcined, Na + trapped in oyster shells agglomerate particles and reduce the specific surface area. That is, the PO 4 -P removal amount in the order of POS100, POS800, and POS600 is considered to be due to the complex effects of the difference in specific surface area, purity of Ca produced, and the difference in the amount of influent and oyster shells.

이상의 결과로부터 소성 굴패각을 활용한 PO4-P 제거 효과를 확인할 수 있었다.From the above results, it was possible to confirm the effect of removing PO 4 -P using calcined oyster shells.

도 5는 본원 실시예에서 미세조류(Chlorella vulgaris)의 NH3-N 제거 성능을 측정한 결과로서, 도 5를 참조하면 미세조류를 이용한 실험결과 암모늄의 제거율은 대조구에 비해서 높은 경향을 나타내었다. 실험시작 3일 후부터 암모늄 농도 90% 이상의 제거효율을 보여 대조구에 비해 제거율이 약 2배 정도 높은 것을 확인할 수 있었다. 이러한 결과는 미세조류에 의한 암모늄의 흡수 및 미세조류의 광합성을 통해 생성된 산소로 인해 암모늄이 산화된 결과로 판단된다.Figure 5 is a result of measuring the NH 3 -N removal performance of microalgae ( Chlorella vulgaris ) in the present Example. Referring to FIG. 5 , as a result of the experiment using microalgae, the removal rate of ammonium showed a high tendency compared to the control. From 3 days after the start of the experiment, it was confirmed that the removal efficiency of the ammonium concentration was 90% or more, and the removal rate was about 2 times higher than that of the control group. These results are judged to be the result of oxidation of ammonium due to oxygen produced through absorption of ammonium by microalgae and photosynthesis of microalgae.

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but can be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains can take other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that it can be implemented as Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (6)

(A) 굴패각을 분쇄하는 단계; 및
(B) 굴패각을 소성시킨 후 굴패각에 미세조류(microalgae)를 부착시켜 하수처리재를 제조하는 단계를 포함하는,
PO4-P 및 NH3-N 제거용 하수처리재의 제조방법.
(A) crushing the oyster shell; and
(B) after calcining the oyster shell, attaching microalgae to the oyster shell to prepare a sewage treatment material,
A method of manufacturing a sewage treatment material for removing PO 4 -P and NH 3 -N.
제1항에 있어서,
상기 미세조류는 클로렐라 불가리스(Chlorella vulgaris), 아르쓰로스피라 플라텐시스(Arthrospira platensis), 안키스트로데스무스 그라실리스(Ankistrodesmus gracilis), 세네데스무스 악쿠이나투스(Scenedesmus accuminatus) 및 세네데스무스 쿠아드리카우다(Scenedesmus quadricauda)로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, PO4-P 및 NH3-N 제거용 하수처리재의 제조방법.
According to claim 1,
The microalgae are Chlorella vulgaris ( Chlorella vulgaris ), Arthrospira platensis ( Arthrospira platensis ), Ankistrodesmus gracilis ( Ankistrodesmus gracilis ), Senedesmus Accuinatus ( Scenedesmus accuminatus ) and Senedesmus Quadricauda ( Scenedesmus quadricauda ) A method of manufacturing a sewage treatment material for removing PO 4 -P and NH 3 -N, characterized in that at least one selected from the group consisting of.
제1항에 있어서,
(a) 굴패각을 분쇄하는 단계;
(b) 굴패각을 100℃에서 소성시킨 후 굴패각에 미세조류(microalgae)를 부착시켜 제1 하수처리재를 제조하는 단계;
(c) 굴패각을 600 내지 800℃에서 소성시킨 후 굴패각에 미세조류(microalgae)를 부착시켜 제2 하수처리재를 제조하는 단계; 및
(d) 상기 제1 하수처리재 및 제2 하수처리재를 혼합하는 단계를 포함하는,
PO4-P 및 NH3-N 제거용 하수처리재의 제조방법.
According to claim 1,
(a) crushing the oyster shell;
(b) calcining the oyster shells at 100° C. and then attaching microalgae to the oyster shells to prepare a first sewage treatment material;
(c) calcining the oyster shells at 600 to 800° C. and then attaching microalgae to the oyster shells to prepare a second sewage treatment material; and
(d) mixing the first sewage treatment material and the second sewage treatment material;
A method of manufacturing a sewage treatment material for removing PO 4 -P and NH 3 -N.
제3항에 있어서,
상기 단계 (d)에서 제1 하수처리재 및 제2 하수처리재를 0 : 10 초과 10 : 0미만의 중량비로 혼합하는 것을 특징으로 하는, PO4-P 및 NH3-N 제거용 하수처리재의 제조방법.
4. The method of claim 3,
In the step (d), the first sewage treatment material and the second sewage treatment material are mixed in a weight ratio of more than 0: 10 and less than 10: 0, PO 4 -P and NH 3 -N of a sewage treatment material for removal manufacturing method.
제1항 내지 제4항 중 어느 한 항에 따른 제조방법에 의해 제조된 PO4-P 및 NH3-N 제거용 하수처리재. A sewage treatment material for removing PO 4 -P and NH 3 -N manufactured by the method according to any one of claims 1 to 4. 제5항에 따른 PO4-P 및 NH3-N 제거용 하수처리재가 충전된 폭기조 또는 시료 충전층을 구비한 하수처리 시스템. A sewage treatment system comprising an aeration tank or a sample-filled bed filled with a sewage treatment material for removing PO 4 -P and NH 3 -N according to claim 5.
KR1020190159096A 2019-12-03 2019-12-03 Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same KR20210069366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190159096A KR20210069366A (en) 2019-12-03 2019-12-03 Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190159096A KR20210069366A (en) 2019-12-03 2019-12-03 Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same

Publications (1)

Publication Number Publication Date
KR20210069366A true KR20210069366A (en) 2021-06-11

Family

ID=76376617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190159096A KR20210069366A (en) 2019-12-03 2019-12-03 Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same

Country Status (1)

Country Link
KR (1) KR20210069366A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980076547A (en) 1997-04-10 1998-11-16 이찬원 Method for preparing active oyster shell powder for wastewater treatment and active oyster shell powder obtained by the method
KR20020043024A (en) 2000-12-01 2002-06-08 권혁보 Preparation of activated oyster shell and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980076547A (en) 1997-04-10 1998-11-16 이찬원 Method for preparing active oyster shell powder for wastewater treatment and active oyster shell powder obtained by the method
KR20020043024A (en) 2000-12-01 2002-06-08 권혁보 Preparation of activated oyster shell and use thereof

Similar Documents

Publication Publication Date Title
Shu et al. An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43− and F− in electrolytic manganese residue and phosphogypsum
Santos et al. Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent
Koshy et al. Fly ash zeolites for water treatment applications
Yu et al. Phosphate removal from domestic wastewater using thermally modified steel slag
Barca et al. Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: removal mechanisms and performance
Tirkey et al. Optimization of fluoride removal from aqueous solution using Jamun (Syzygium cumini) leaf ash
Bavandpour et al. Removal of dissolved metals in wetland columns filled with shell grits and plant biomass
Hendrych et al. Stabilisation/solidification of landfill leachate concentrate and its residue obtained by partial evaporation
Motsi Remediation of acid mine drainage using natural zeolite
WO2021054116A1 (en) Phosphorus adsorbent
Nguyen et al. White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater
Zhong et al. How to select substrate for alleviating clogging in the subsurface flow constructed wetland?
Letshwenyo et al. Phosphorus removal from secondary wastewater effluent using copper smelter slag
Hamid et al. Sorptive removal of phosphorus by flue gas desulfurization gypsum in batch and column systems
Yang et al. Using desulfurization slag as the aquacultural amendment for fish pond water quality improvement: Mechanisms and effectiveness studies
Mohajeri et al. ALLODUST augmented activated sludge single batch anaerobic reactor (AS-SBAnR) for high concentration nitrate removal from agricultural wastewater
KR20210069366A (en) Method for preparing sewage treatment material used for removing po4-p and nh3-n, sewage treatment material prepared thereby, and sewage treatment system comprising the same
El Fadel et al. Purification performance of filtration process for leachate in Morocco by marine sands, clays and fly ash
Yettefti et al. Performance evaluation of sand filter for tertiary treatment of secondary effluent of wastewater: effect of hydraulic loading evaluation des performances des filtres a sable pour le traitement tertiaire de l’effluent secondaire des eaux usees: effet de la charge hydraulique
Tran et al. Autoclaved aerated concrete grains as alternative absorbent and filter media for phosphorus recovery from municipal wastewater: A case study in Hanoi, Vietnam
Wang et al. Denitrification performance and kinetics of an attapulgite lightweight ceramsite biofilter
El Zayat Adsorption of heavy metals cations in wastewater using cement kiln dust
Kpannieu et al. Removal of phosphate by ivory coast shale in a homogeneous reactor and under hydrodynamic conditions: Influence of soluble species
Li et al. Removal of NH+ 4-N from aqueous solution by ceramsite coated with Mg (OH) 2 combined with air stripping.
Mlayah et al. Powdered marble wastes reuse for cadmium removal from aqueous solutions under dynamic conditions.

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application