KR20210066068A - Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide - Google Patents

Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide Download PDF

Info

Publication number
KR20210066068A
KR20210066068A KR1020190154497A KR20190154497A KR20210066068A KR 20210066068 A KR20210066068 A KR 20210066068A KR 1020190154497 A KR1020190154497 A KR 1020190154497A KR 20190154497 A KR20190154497 A KR 20190154497A KR 20210066068 A KR20210066068 A KR 20210066068A
Authority
KR
South Korea
Prior art keywords
catalytically active
catalyst
active metal
supported
oxide
Prior art date
Application number
KR1020190154497A
Other languages
Korean (ko)
Inventor
주지봉
김지율
김나연
이현경
이경우
장세진
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020190154497A priority Critical patent/KR20210066068A/en
Publication of KR20210066068A publication Critical patent/KR20210066068A/en
Priority to KR1020210128159A priority patent/KR102548892B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/0046Physical properties of the active metal ingredient
    • B01J35/006Physical properties of the active metal ingredient metal crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/08Spheres
    • B01J35/393
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium

Abstract

The present invention relates to a method for preparing a catalytically active metal-supported metal oxide bead catalyst, including the steps of: (a) preparing a catalytically active metal-supported metal oxide; (b) adding a solution containing the catalytically active metal-supported metal oxide and an alginate-based polymer to a calcium ion (Ca^2+) solution to form spherical beads; (c) surface-treating the catalyst beads by using an acid; and (d) drying and heat treating the catalyst beads. The present invention also relates to a catalytically active metal-supported metal oxide bead catalyst prepared by the method. According to the present invention, it is possible to prepare spherical oxide bead particles including at least one metal oxide support supported with catalytically active metal nanoparticles, such as gold (Au), in a simple manner. The oxide bead catalyst supported with the catalytically active metal, such as gold (Au), prepared according to the present invention can be used as a catalyst for oxidation of harmful organic compounds in exhaust gas to remove harmful exhaust gas compounds, such as carbon monoxide, effectively.

Description

촉매 활성 금속 담지 금속 산화물 비드 촉매의 제조 방법 {METHOD FOR PREPARING BEAD TYPE CATALYST COMPRISING CATALYTICALLY ACTIVE METAL SUPPORTED BY METAL OXIDE}Method for producing a catalytically active metal-supported metal oxide bead catalyst {METHOD FOR PREPARING BEAD TYPE CATALYST COMPRISING CATALYTICALLY ACTIVE METAL SUPPORTED BY METAL OXIDE}

본 발명은 유해가스 화합물 등의 대기오염 물질 제거를 위해 사용될 수 있는 금(Au) 등의 금속 촉매를 담지한 산화물을 포함하는 비드 형태의 촉매를 제조하는 방법에 대한 것이다. The present invention relates to a method for preparing a catalyst in the form of beads including an oxide carrying a metal catalyst such as gold (Au), which can be used to remove air pollutants such as harmful gas compounds.

화학 산업의 발전과 더불어 발생되는 화학사고 및 그로 인한 유해화합물 유출과 발생에 대처하기 위한 기술에 대해서 많은 관심이 집중되고 있다. 유해가스 화합물을 제거하기 위한 방법으로, 흡착, 흡수, 플라즈마 처리, 촉매산화 등 여러가지가 있다. 이 중 촉매산화반응을 통한 유해화합물 제거 기술은, 경제적이며, 안정적인 촉매 공정을 통해 장시간 동안 많은 양의 유해화합물을 제거할 수 있어 각광을 받고 있다. 특히, 유해 독성가스 분자인 일산화탄소를 제거하기 위해서는 금속입자가 촉매 지지체에 분산시킨 촉매를 사용하는데, 원하는 전환율 성능을 달성 하기위해 귀금속 (금, 백금, 팔라듐 등) 및 전이금속 (Cu, Ni, Co 등)을 분산시켜 사용한다. With the development of the chemical industry, a lot of attention is focused on the technology to cope with chemical accidents and the resulting leakage and occurrence of hazardous compounds. As a method for removing harmful gas compounds, there are various methods such as adsorption, absorption, plasma treatment, and catalytic oxidation. Among them, the technology of removing harmful compounds through catalytic oxidation is in the spotlight because it can remove a large amount of harmful compounds for a long time through an economical and stable catalytic process. In particular, in order to remove carbon monoxide, a harmful toxic gas molecule, a catalyst in which metal particles are dispersed in a catalyst support is used. In order to achieve the desired conversion performance, noble metals (gold, platinum, palladium, etc.) and transition metals (Cu, Ni, Co etc.) are dispersed.

상기 촉매로 사용되는 금속 중 금(Au)은 기존까지 촉매적 활성이 없다고 알려져 있었으나, 금 입자의 크기가 나노미터 수준으로 작아질 경우 일산화탄소 산화반응과 같은 화학반응에서 뛰어난 활성을 보인다고 밝혀졌다. 특히, 금 나노입자가 이산화티탄의 산화물 담지체에 고분산되어 있을 우, 일산화탄소 산화반응 활성이 매우 높다고 알려져 있다. 귀금속으로 알려진 금은 매장량과 생산량이 정해져 있고, 가격이 매우 높기 때문에 촉매 반응에 도움을 줄 수 있는 산화물 담지체에 고분산시켜 금 사용량을 줄이거나 단위 무게 당 활성을 최대화하여 사용하는 것이 바람직하다. 또한 실제 공정에 제조된 촉매를 적용하기 위해서는, 압력강하를 최소화하고, 반응물의 확산 및 표면반응을 최대화시킬 수 있는 모양으로 성형된 촉매를 제조 해야한다. 따라서 금입자가 담지된 산화물 촉매의 경우, 나노미터 크기의 금 입자가 고분산되며, 실제공정에서도 적용될 수 있도록 밀리미터(mm) 수준으로 성형된 촉매의 제조가 필수적이다. Among the metals used as the catalyst, gold (Au) was previously known to have no catalytic activity, but it was found that when the size of gold particles was reduced to a nanometer level, it showed excellent activity in chemical reactions such as carbon monoxide oxidation. In particular, it is known that carbon monoxide oxidation reaction activity is very high when gold nanoparticles are highly dispersed in an oxide support of titanium dioxide. Gold, known as a precious metal, has a fixed reserve and production amount, and its price is very high, so it is preferable to use it by reducing the amount of gold used or maximizing the activity per unit weight by highly dispersing it in an oxide support that can help the catalytic reaction. In addition, in order to apply the prepared catalyst to the actual process, it is necessary to prepare a catalyst molded in a shape that can minimize the pressure drop and maximize the diffusion and surface reaction of the reactants. Therefore, in the case of an oxide catalyst on which gold particles are supported, nanometer-sized gold particles are highly dispersed, and it is essential to prepare a catalyst molded to a millimeter (mm) level so that it can be applied in an actual process.

기존의 성형 촉매 제조 방법은, 먼저 금속 전구체와 산화물 담지체를 함침법 혹은 침전법으로 파우더형태의 촉매를 제조한후, 여러가지 바인더와 첨가제를 이용하여 성형장치를 이용하여 성형된 촉매를 제조하였다. 이러한 방법은 제조방법이 직관적이며, 대량생산에 적합하지만, 제조과정 중 귀금속 활성금속인 금 입자가 분산이 고르지 못하고, 활성금속의 활용이 낮을 수 있다는 단점이 있다. In the conventional method for preparing a molded catalyst, first, a catalyst in powder form is prepared by impregnating a metal precursor and an oxide carrier by an impregnation method or a precipitation method, and then using various binders and additives to prepare a molded catalyst using a molding apparatus. Although this method has an intuitive manufacturing method and is suitable for mass production, there are disadvantages in that gold particles, which are noble metal active metals, may not be evenly dispersed during the manufacturing process, and the utilization of the active metal may be low.

한국 등록특허 제10-1046314호 (등록일: 2011.06.28)Korean Patent Registration No. 10-1046314 (Registration Date: 2011.06.28) 미국 공개특허 US 2012-0263633 A1 (공개일: 2012.10.18)US Patent Publication US 2012-0263633 A1 (published date: 2012.10.18) 미국 공개특허 US 2013-0183221 A1 (공개일: 2013.07.18)US Patent Publication US 2013-0183221 A1 (published date: 2013.07.18)

본 발명은 활성금속이 금속 산화물 담지체에 담지되어 있는 비드 형태의 촉매를 제조하는 방법을 제공하는 것을 목적으로 한다. 특히, 금(Au) 등 촉매 활성 금속이 담지된 산화물 비드 촉매의 제조과정이 간단하고, 특성이 최적화되며, 입자의 크기가 균일하고, 높은 일산화탄소 전환율을 가지는 촉매 제조기술을 제공하는 것을 그 목적으로 한다. An object of the present invention is to provide a method for preparing a catalyst in the form of beads in which an active metal is supported on a metal oxide support. In particular, to provide a catalyst manufacturing technology having a simple manufacturing process of an oxide bead catalyst supported with a catalytically active metal such as gold (Au), optimized properties, uniform particle size, and high carbon monoxide conversion. do.

상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 촉매 활성 금속이 담지된 금속 산화물을 제조하는 단계; (b) 상기 촉매 활성 금속이 담지된 금속 산화물 및 알지네이트계 고분자를 포함한 용액을 칼슘 이온(Ca2+) 용액에 첨가해 구형의 촉매 비드(bead)를 제조하는 단계; (c) 산을 이용해 상기 촉매 비드를 표면 처리하는 단계; 및 (d) 상기 촉매 비드를 건조 및 열처리하는 단계;를 포함하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법을 제안한다(도 1).In order to achieve the above technical problem, the present invention comprises the steps of (a) preparing a catalytically active metal supported metal oxide; (b) preparing a spherical catalyst bead by adding a solution containing the catalytically active metal-supported metal oxide and alginate-based polymer to a calcium ion (Ca 2+ ) solution; (c) surface-treating the catalyst beads with an acid; and (d) drying and heat-treating the catalyst beads; proposes a method for preparing a catalyst for catalytically active metal-supported oxide beads (FIG. 1).

상기 단계 (a)에서는 촉매 활성 금속이 담지된 금속 산화물을 제조함에 있어서, 습식 함침법 (wet impregnation) 등을 통해 촉매 활성 금속 전구체 및 금속 산화물을 혼합한 후 열처리를 실시해 촉매 활성 금속 이온을 환원시켜 금속 산화물에 촉매 활성 금속 입자를 담지시킬 수 있다. In step (a), in preparing the metal oxide on which the catalytically active metal is supported, the catalytically active metal precursor and the metal oxide are mixed through wet impregnation, etc., and then heat-treated to reduce the catalytically active metal ions. Catalytically active metal particles may be supported on the metal oxide.

이때, 상기 촉매 활성 금속 전구체는 금(Au), 은(Ag), 백금(Pt), 루테늄(Ru), 오스뮴(Os), 로듐(Rh), 이리듐(Ir), 팔라듐(Pd), 철(Fe), 니켈(Ni), 코발트(Co), 구리(Cu) 등의 귀금속 또는 전이금속의 전구체일 수 있으며, 예를 들어 금 전구체는 HAuCl4, Na(AuCl4) 및 AuCl3 중에서 선택된 1종 이상일 수 있고, 은 전구체는 AgNO3, CH3 COOAg 및 CH3CH(OH)COOAg 중에서 선택된 1종 이상일 수 있으며, 백금 전구체는 H2PtCl6, PtCl4 및 Pt(NH3)2(NO2) 중에서 선택된 1종 이상일 수 있다. In this case, the catalytically active metal precursor is gold (Au), silver (Ag), platinum (Pt), ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd), iron ( Fe), nickel (Ni), cobalt (Co), may be a precursor of a noble metal or a transition metal such as copper (Cu), for example, the gold precursor is HAuCl 4 , Na(AuCl 4 ) and AuCl 3 One selected from or more, the silver precursor may be at least one selected from among AgNO 3 , CH 3 COOAg and CH 3 CH(OH)COOAg, and the platinum precursor is H 2 PtCl 6 , PtCl 4 and Pt(NH 3 ) 2 (NO 2 ) It may be at least one selected from among.

또한, 상기 금속 산화물은 티타니아(TiO2), 세리아(CeO2), 알루미나(Al2O3), 실리카(SiO2), 지르코니아(ZrO2) 및 제올라이트(zeolite)으로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직하나, 반드시 이들 산화물로 제한되는 것은 아니며, MgO, CrO2, Fe2O3, Fe3O4, CuO, ZnO, CaO, Sb2O4, Co3O4, Pb3O4, Mn3O4, Ag2O2, Cu2O, Li2O, Rb2O, Ag2O, BeO, CdO, GeO2, HfO2, PbO2, MnO2, TeO2, SnO2, La2O3, WO2, UO2, ThO2, 및 MoO3 등으로부터 선택된 1종 이상의 금속 산화물로 이루어질 수도 있다.In addition, the metal oxide is one selected from the group consisting of titania (TiO 2 ), ceria (CeO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ) and zeolite (zeolite) It is preferably more than, but not necessarily limited to these oxides, MgO, CrO 2 , Fe 2 O 3 , Fe 3 O 4 , CuO, ZnO, CaO, Sb 2 O 4 , Co 3 O 4 , Pb 3 O 4 , Mn 3 O 4 , Ag 2 O 2 , Cu 2 O, Li 2 O, Rb 2 O, Ag 2 O, BeO, CdO, GeO 2 , HfO 2 , PbO 2 , MnO 2 , TeO 2 , SnO 2 , La 2 It may consist of one or more metal oxides selected from O 3 , WO 2 , UO 2 , ThO 2 , MoO 3 , and the like.

한편, 상기 단계 (a)에서는 촉매 활성 금속 전구체 및 금속 산화물 이외에 금속 산화물 전구체를 추가로 혼합한 후 열처리를 실시해 촉매 활성 금속 이온을 환원시켜 금속 산화물에 촉매 활성 금속 입자를 담지시키는 것도 가능하다. On the other hand, in step (a), it is also possible to support the catalytically active metal particles on the metal oxide by further mixing the metal oxide precursor in addition to the catalytically active metal precursor and the metal oxide and then performing heat treatment to reduce the catalytically active metal ions.

즉, 촉매 활성 금속 전구체, 제1 금속 산화물 전구체 및 제2 금속 산화물을 포함하는 혼합물을 열처리해 제1 금속 산화물 및 제2 금속 산화물을 포함한 금속 산화물에 촉매 활성 금속이 담지된 복합체를 형성시킬 수 있다. That is, by heat-treating a mixture including a catalytically active metal precursor, a first metal oxide precursor, and a second metal oxide, a composite in which a catalytically active metal is supported on a metal oxide including the first metal oxide and the second metal oxide can be formed. .

이때, 상기 제1 금속 산화물 전구체는 제2 금속 산화물과 상이한 금속 산화물을 형성시킬 수 있는 전구체이기만 하면 그 종류는 특별히 제한되지 않는다. In this case, the type of the first metal oxide precursor is not particularly limited as long as it is a precursor capable of forming a metal oxide different from the second metal oxide.

다음으로, 상기 단계 (b)에서는 상기 단계 (a)에서 제조한 촉매 활성 금속 담지 금속 산화물과 알지네이트계 고분자를 포함하는 용액을 제조한 후, 해당 용액을 칼슘 이온(Ca2+)을 포함하는 용액에 적하(dropwise) 방식 등을 통해 첨가해, 촉매 활성 금속 담지 금속 산화물 입자가 겔화된 알지네이트계 고분자에 의해 둘러싸인 구조를 가지는 구형의 촉매 비드를 제조한다. Next, in step (b), after preparing a solution containing the catalytically active metal-carrying metal oxide and an alginate-based polymer prepared in step (a), the solution is used as a solution containing calcium ions (Ca 2+ ) by dropwise method, etc. to prepare a spherical catalyst bead having a structure in which the catalytically active metal-supported metal oxide particles are surrounded by a gelled alginate-based polymer.

α-L-글루론산(α-L-gluronic acid)과 β-D-만누론산β-D-mannuronic acid)의 1-4 글리코시드 결합(glycosidic linkage)으로 구성된 알지네이트계 고분자는 음이온성 카르복실기를 함유하고 있기 때문에 양이온인 Ca2+과 반응해, 촉매 활성 금속 담지 금속 산화물 입자 표면에 비가역적 불용성 겔 막을 형성시켜 구형 비드 형태의 촉매가 얻어진다. Alginate-based polymers composed of 1-4 glycosidic linkages of α-L-gluronic acid and β-D-mannuronic acid and β-D-mannuronic acid contain anionic carboxyl groups. Therefore, it reacts with the cation Ca 2+ to form an irreversible insoluble gel film on the surface of the catalytically active metal-carrying metal oxide particle to obtain a catalyst in the form of spherical beads.

이때, 상기 알지네이트계 고분자는 수용성인 알긴산나트륨(sodium alginate), 알긴산칼륨(potassium alginate), 알긴산암모늄(ammonium alginate) 및 알지네이트트리에탄올아민(triethanolamine alginate) 등에서 1종 이상을 선택해 사용할 수 있으며, 알지네이트계 고분자와 반응하는 칼슘 이온 용액은 염화 칼슘(calcium chloride) 또는 젖산 칼슘(calcium lactate) 용액으로 이루어질 수 있으나, 반드시 이들로 제한되는 것은 아니다. In this case, the alginate-based polymer may be used by selecting one or more types of water-soluble sodium alginate, potassium alginate, ammonium alginate, and triethanolamine alginate, etc., and the alginate-based polymer The calcium ion solution reacting with may be composed of a calcium chloride or calcium lactate solution, but is not necessarily limited thereto.

이어서, 단계 (c)에서는 염산 등의 산을 이용해 상기 촉매 비드 표면을 처리하는 공정을 실시하고, 단계 (d)에서는 상기 표면 처리된 촉매 비드를 건조 및 열처리하는 단계를 수행하여 최종적으로 본 발명에 따른 촉매 활성 금속 담지 산화물 비드 촉매가 얻어진다. Subsequently, in step (c), a process of treating the surface of the catalyst bead using an acid such as hydrochloric acid is performed, and in step (d), drying and heat treatment of the surface-treated catalyst bead are performed to finally provide the present invention. A catalytically active metal-supported oxide bead catalyst is obtained.

상기 본 발명에 따른 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법의 일례로서, 촉매 활성 금속으로서 금(Au)을 담지한 산화물 비드 촉매의 제조방법은, (a) 습식 함침법을 이용하여 이산화티탄 파우더에 금 전구체 0.1 내지 1 중량% 및 세리아 전구체 10 중량% 이하를 균일하게 담지해 제조된 혼합물을 400 내지 500℃에서 열처리하는 단계; (b) 상기 단계 (a)에서 열처리한 혼합물을 증류수에 알지네이트계 고분자 화합물과 섞은 후 칼슘 이온 용액에 방울방울 적하(dropwise)해 구형의 촉매 비드를 제조하는 단계; (c) 염산 용액을 가하여 상기 구형의 촉매 비드의 표면을 처리하는 단계; 및 (d) 상기 구형의 촉매 비드를 건조한 후 600 내지 800℃에서 열처리하는 단계를 거쳐 금(Au)을 담지한 산화물 비드 촉매가 최종적으로 얻어진다(도 2).As an example of the method for producing a catalytically active metal-supported oxide bead catalyst according to the present invention, the method for producing an oxide bead catalyst carrying gold (Au) as a catalytically active metal is (a) titanium dioxide powder using a wet impregnation method heat-treating a mixture prepared by uniformly supporting 0.1 to 1 wt% of a gold precursor and 10 wt% or less of a ceria precursor on the mixture at 400 to 500°C; (b) preparing a spherical catalyst bead by mixing the mixture heat-treated in step (a) with an alginate-based polymer compound in distilled water and then dropwise in a calcium ion solution; (c) treating the surface of the spherical catalyst beads by adding a hydrochloric acid solution; and (d) drying the spherical catalyst beads and then heat-treating them at 600 to 800° C. to finally obtain an oxide bead catalyst carrying gold (Au) ( FIG. 2 ).

상기 본 발명에 따른 제조방법에 의해 제조된 촉매 활성 금속 담지 산화물 비드 촉매는 입경 0.1 ~ 10 nm의 촉매 활성 금속 입자를 0.1 ~ 10 중량% 포함할 수 있으며, 특히, 촉매 활성 금속으로서 금(Au)을 담지한 비드 촉매는 유해 독성가스 분자인 일산화탄소(CO)의 산화 반응에서 촉매로서 뛰어난 활성을 나타낸다. The catalytically active metal-supported oxide bead catalyst prepared by the method according to the present invention may contain 0.1 to 10 wt % of catalytically active metal particles having a particle diameter of 0.1 to 10 nm, in particular, gold (Au) as a catalytically active metal. The bead catalyst carrying the toxic gas exhibits excellent activity as a catalyst in the oxidation reaction of carbon monoxide (CO), a harmful toxic gas molecule.

본 발명에 의하면, 금(Au) 등 촉매 활성 금속 나노입자가 1종 이상의 금속 산화물 담지체에 담지된 구형 산화물 비드 입자를 간편하게 제조할 수 있으며, 또한 균일한 크기의 비드촉매를 제조할 수 있으며, 본 발명에 의해 제조된 금(Au) 등의 촉매 활성 금속이 담지된 산화물 비드 촉매는 유해배기 유기화합물 산화촉매 사용되어, 일산화탄소와 같은 유해배기가스 화합물들을 효과적으로 제거할 수 있다. According to the present invention, spherical oxide bead particles in which catalytically active metal nanoparticles such as gold (Au) are supported on one or more metal oxide carriers can be easily prepared, and a bead catalyst of a uniform size can be prepared, The oxide bead catalyst prepared by the present invention on which a catalytically active metal such as gold (Au) is supported is used as a catalyst for oxidizing harmful exhaust organic compounds, and can effectively remove harmful exhaust gas compounds such as carbon monoxide.

도 1은 본 발명에 따른 촉매 활성 금속 담지 산화물 비드 촉매 제조방법의 각 단계를 순서대로 도시한 공정 흐름도이다.
도 2는 본원 실시예에서 제조한 금(Au) 담지 산화물 비드 촉매를 제조하는 방법을 보여주는 개략도이다.
도 3은 본원 실시예에서 제조한 이산화티탄 산화물 비드 담체의, 크기별 디지털 카메라 관찰결과이다.
도 4는 본원 실시예에서 제조한 세리아-이산화티탄 담체 비드 입자 및 금-세리아-이산화티탄 산화물 비드 촉매의 디지털 카메라 관찰결과이다.
도 5는 본원 실시예에서 제조한 금-세리아-이산화티탄 산화물 비드 촉매의 에너지 분산 X선 분석 결과이다.
도 6은 본원 실시예에서 제조한 금-세리아-이산화티탄 촉매, 금 담지 산화물 비드 촉매의 X-선 회절 분석에 따른 θ-2 θ 곡선이다.
도 7은 본원 실시예에서 제조한 금 담지 산화물 비드 촉매(금-세리아-이산화티탄 비드 촉매)와 기존의 금 담지 이산화티탄 촉매(금-이산화티탄 비드 촉매)의 촉매화학적 성능을 나타내는 CO 산화 결과를 나타낸다.
1 is a process flow diagram sequentially illustrating each step of the method for preparing a catalyst for catalytically active metal-supported oxide bead according to the present invention.
2 is a schematic diagram showing a method for preparing a gold (Au) supported oxide bead catalyst prepared in Examples of the present application.
3 is a digital camera observation result for each size of the titanium dioxide bead carrier prepared in Example of the present application.
4 is a digital camera observation result of ceria-titanium dioxide carrier bead particles and gold-ceria-titanium dioxide oxide bead catalyst prepared in Example of the present application.
5 is an energy dispersive X-ray analysis result of the gold-ceria-titanium dioxide bead catalyst prepared in Examples of the present application.
6 is a θ-2 θ curve according to X-ray diffraction analysis of the gold-ceria-titanium dioxide catalyst and the gold-supported oxide bead catalyst prepared in Examples of the present application.
7 is a CO oxidation result showing the catalytic and chemical performance of the gold-supported oxide bead catalyst (gold-ceria-titanium dioxide bead catalyst) prepared in Examples of the present application and the conventional gold-supported titanium dioxide catalyst (gold-titanium dioxide bead catalyst). indicates.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the present invention may have various changes and may have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention with respect to a specific disclosed form, and should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate that the described feature, number, step, operation, component, part, or a combination thereof exists, and includes one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail by way of examples.

본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.

<실시예><Example>

본 실시예에서는 이산화티탄과 다른 산화물 전구체(세리아 전구체)가 도입된 파우더를 소성 이후, 소듐 알지네이트 용액을 이용하여 점성의 혼합물을 만들고, 이를 칼슘 이온 용액에 떨어뜨려 구형 산화물 비드입자를 제조하여, 열처리 이후 금을 담지시켜 유해가스 화합물을 촉매 산화반응을 효과적으로 제거할 수 있는 고효율 금 담지 구형 촉매(금-세리아-이산화티탄 산화물 비드 촉매)를 제조하였다. In this embodiment, after calcining the powder introduced with titanium dioxide and another oxide precursor (ceria precursor), a viscous mixture is made using a sodium alginate solution, and dropped into a calcium ion solution to prepare spherical oxide bead particles, heat treatment Thereafter, a high-efficiency gold-supported spherical catalyst (gold-ceria-titanium dioxide oxide bead catalyst) capable of effectively removing catalytic oxidation of harmful gas compounds by supporting gold was prepared.

1. 이산화티탄 1 종 산화물 비드의 제조1. Preparation of titanium dioxide type 1 oxide beads

이산화티탄 파우더 2g을 증류수 50ml에 알지네이트 고분자 0.5g을 용해시킨 혼합물에 첨가하고 충분히 녹을 때까지 교반한다. 6시간 이상 교반한 후 실린지펌프를 이용하여 2g의 칼슘이온과 98ml 증류수가 섞인 혼합물에 방울방울 떨어트려준다. 합성된 구슬형태의 이산화티탄 비드를 1M의 염산 100ml에 넣은 후 1시간 동안 교반을 하여 표면 산처리를 진행한다. 표면 산처리 과정을 거친 이산화티탄 비드를 물과 에탄올로 충분히 세척해준다. 균일한 크기의 구슬모양 이산화티탄 비드를 분당 5℃로 하여 최종 600℃까지 승온이후 2시간 소성과정을 진행한다. Add 2 g of titanium dioxide powder to a mixture of 0.5 g of alginate polymer dissolved in 50 ml of distilled water, and stir until fully dissolved. After stirring for more than 6 hours, use a syringe pump to drop 2 g of calcium ions and 98 ml of distilled water into the mixture. After putting the synthesized titanium dioxide beads in the form of beads in 100 ml of 1M hydrochloric acid, the surface is acid-treated by stirring for 1 hour. The titanium dioxide beads that have undergone the surface acid treatment process are thoroughly washed with water and ethanol. After heating the bead-shaped titanium dioxide beads of uniform size at 5°C per minute to the final 600°C, the firing process is carried out for 2 hours.

도 3은 이산화티탄 파우더, 증류수, 알지네이트 고분자 양을 각각 다르게 하여 합성한 입자의 크기를 광학현미경을 통하여 관찰한 것이다. 도 3a 및 도 3b에서 관찰할 수 있는 것처럼 첨가하는 알지네이트 고분자, 이산화티탄의 양이 많아 질수록 구슬형태 입자크기가 증가하는 것을 확인할 수 있다. 도 3c를 보았을 때 증류수의 양이 증가할수록 입자크기가 작아지는 것을 보이는데, 구슬형태 비드를 합성할 때 증류수가 증가함에 따라 알지네이트 고분자의 상대적 농도가 낮아지고, 점도가 낮아지며, 그에 따른 입자크기를 결정하는 산화물-알지네이트 방울의 크기가 작아지기 때문이다. 3 is an observation of the size of particles synthesized by varying the amounts of titanium dioxide powder, distilled water, and alginate polymers, respectively, through an optical microscope. As can be observed in FIGS. 3a and 3b, it can be confirmed that the bead-shaped particle size increases as the amount of added alginate polymer and titanium dioxide increases. 3c, as the amount of distilled water increases, the particle size decreases. As the distilled water increases when synthesizing beads, the relative concentration of the alginate polymer decreases, the viscosity decreases, and the particle size is determined accordingly. This is because the size of the oxide-alginate droplets becomes smaller.

2. 세리아-이산화티탄 혼합 산화물 비드의 제조2. Preparation of ceria-titanium dioxide mixed oxide beads

에탄올 5ml에 세리아 전구체로서 Ce(N03)3 1.5494g을 용해시키고, 2g 의 이산화티탄 파우더(TiO2)를 추가로 넣어준 후 70℃ 전열기 위에서 Ce(N03)3가 충분히 섞이도록 플라스틱 수저를 이용하여 섞어준다. Ce(N03)3 섞인 이산화티탄 파우더를 소성기에 넣고 승온온도를 분당 5℃로 하여 최종 400℃까지 2시간 동안 소성과정을 진행한다. 10%의 세리아가 담지된 이산화티탄 파우더 2g을 증류수 50ml에 알지네이트 고분자 0.5g 을 용해시킨 혼합물에 첨가하고 충분히 녹을 때까지 교반한다. 6시간 이상 교반한 후 실린지펌프를 이용하여 2g의 칼슘이온과 98ml 증류수가 섞인 혼합물에 방울방울 떨어트려준다. 합성된 구슬형태의 세리아-이산화티탄 비드를 1M의 염산 100ml에 넣은 후 1시간동안 교반을 하여 표면 산처리를 진행한다. 표면 산처리 과정을 거친 세리아-이산화티탄 비드를 물과 에탄올로 충분히 세척해준다. 균일한 크기의 구슬모양 세리아-이산화티탄 비드를 분당 5℃로 하여 최종 600℃까지 승온 이후 2시간 소성과정을 진행한다. Dissolve 1.5494 g of Ce(N0 3 ) 3 as a ceria precursor in 5 ml of ethanol, add 2 g of titanium dioxide powder (TiO 2 ), and place a plastic spoon on the 70℃ electric heater so that Ce(N0 3 ) 3 is sufficiently mixed. use to mix. Ce(N0 3 ) 3 Mixed titanium dioxide powder is put in a calciner, and the temperature is raised at 5 °C per minute, and the calcination process is carried out for 2 hours to a final 400 °C. 2 g of titanium dioxide powder loaded with 10% ceria is added to a mixture of 0.5 g of alginate polymer dissolved in 50 ml of distilled water and stirred until fully dissolved. After stirring for more than 6 hours, use a syringe pump to drop 2 g of calcium ions and 98 ml of distilled water into the mixture. After putting the synthesized ceria-titanium dioxide beads in 100 ml of 1M hydrochloric acid, they are stirred for 1 hour to carry out surface acid treatment. The ceria-titanium dioxide beads that have undergone the surface acid treatment process are sufficiently washed with water and ethanol. After heating the bead-shaped ceria-titanium dioxide beads of uniform size at 5°C per minute to the final 600°C, the firing process is carried out for 2 hours.

3. 금-세리아-이산화티탄 산화물 비드 촉매의 제조3. Preparation of gold-ceria-titanium dioxide oxide bead catalyst

함침법을 이용하기 위해, 에탄올 5ml에 HAuCl4 10mg을 용해시키고, 상기 2.에서 제조한 세리아-이산화티탄 파우더(CeO2-TiO2) 2g을 추가로 넣어준 후 70℃에서 HAuCl4가 충분히 섞이도록 플라스틱 수저를 이용하여 섞어준다. 승온온도를 분당 5℃로 하여 최종 400℃까지 승온하여 2시간 동안 소성과정을 진행한다. 형성된 1%의 금이 담지된 세리아-이산화티탄 파우더 2g을 증류수 50ml에 알지네이트 고분자 0.5g 을 용해시킨 혼합물에 첨가하고 충분히 녹을 때까지 교반한다. 6시간 이상 교반한 후 실린지 펌프를 이용하여 2g의 칼슘 이온과 98ml 증류수가 섞인 혼합물에 방울방울 떨어트려준다. 합성된 구슬형태의 금-세리아-이산화티탄 비드를 1M의 염산 100ml에 넣은 후 1시간 동안 교반을 하여 표면 산처리를 진행한다. 표면 산처리과정을 거친 금-세리아-이산화티탄 비드를 물과 에탄올로 충분히 세척해준다. 균일한 크기의 구슬모양 세리아-이산화티탄 비드를 분당 5℃로 하여 최종 600℃까지 승온 이후 2시간 동안 소성과정을 진행한다. To take advantage of the impregnation method, it was dissolved in ethanol 5ml 10mg HAuCl 4, wherein 2. the ceria prepared in-titanium dioxide powder (CeO 2 -TiO 2) gave after putting an additional 2g in 70 ℃ HAuCl 4 is sufficiently blend Mix using a rock plastic spoon. The temperature was raised to 5 ℃ per minute, and finally, the temperature was raised to 400 ℃, and the firing process was carried out for 2 hours. 2 g of the formed 1% gold-supported ceria-titanium dioxide powder is added to a mixture obtained by dissolving 0.5 g of alginate polymer in 50 ml of distilled water and stirred until sufficiently dissolved. After stirring for more than 6 hours, use a syringe pump to drop 2 g of calcium ions and 98 ml of distilled water into the mixture. After putting the synthesized gold-ceria-titanium dioxide beads in the form of beads in 100 ml of 1M hydrochloric acid, the surface is acid-treated by stirring for 1 hour. The gold-ceria-titanium dioxide beads that have undergone the surface acid treatment process are sufficiently washed with water and ethanol. After heating the bead-shaped ceria-titanium dioxide beads of uniform size at 5°C per minute to the final 600°C, the firing process is carried out for 2 hours.

도 4는 구슬형태의 금-세리아-이산화티탄을 디지털카메라로 측정한 이미지 이다. 그림에서 볼 수 있는 바와 같이 금 입자가 세리아-이산화티탄 입자에 담지 되어 분산 되있는 것을 푸른색을 통해서 확인할 수 있다. 4 is an image of bead-shaped gold-ceria-titanium dioxide measured with a digital camera. As can be seen in the figure, it can be seen through the blue color that the gold particles are supported and dispersed on the ceria-titanium dioxide particles.

도 5는 도 4의 금 담지 세리아-이산화티탄 비드 촉매의 파장 분산형 형광 X-선 분광 분석 결과로서 1 중량%의 금이 세리아-이산화티탄에 담지되어 있음을 알 수 있다.FIG. 5 is a wavelength dispersion type fluorescence X-ray spectroscopy analysis of the gold-supported ceria-titanium dioxide bead catalyst of FIG. 4, and it can be seen that 1 wt% of gold is supported on ceria-titanium dioxide.

도 6은 본 발명의 방법을 통하여 제조한 구슬형태를 가지는 1 중량%의 금 담지 세리아-이산화탄소 촉매의 X-선 회절 분석에 따른 θ-2 θ 곡선이다. 구슬형태의 금-세리아-이산화티탄XRD 곡선의 피크가 파우더형태의 금-세리아-이산화티탄과의 XRD 피크가 동일하게 나오는 것을 확인하였으며, 이는 결정특성이 변하지 않아 화학적 활성이 파우더와 크게 다르지 않게 높은 촉매성능을 보일 것이라 점을 의미한다.6 is a θ-2 θ curve according to X-ray diffraction analysis of a 1 wt% gold-supported ceria-carbon dioxide catalyst having a bead shape prepared by the method of the present invention. It was confirmed that the peak of the gold-ceria-titanium dioxide XRD curve in the form of beads is the same as that of the gold-ceria-titanium dioxide in powder form. It means that it will show catalytic performance.

본 발명을 통해 제조된 금-세리아-이산화티탄 산화물 비드 촉매의 일산화탄소 산화반응 활성을 측정해 보았으며, 도 7에 그 결과를 나타냈다. 촉매의 활성 시험하기 위하여 실험실 규모의 연속식 기상 산화반응 시스템에서 테스트를 진행하였으며 반응온도를 50℃에서 200℃까지 점차 증가시켜 주며 진행하였을 때, 160℃ 부근부터 일산화탄소가 100% 제거 되는 것을 확인하였으며 이는 뛰어난 촉매성능을 가지는 것을 의미한다. The carbon monoxide oxidation reaction activity of the gold-ceria-titanium dioxide bead catalyst prepared through the present invention was measured, and the results are shown in FIG. 7 . In order to test the activity of the catalyst, the test was conducted in a laboratory-scale continuous gas phase oxidation reaction system. When the reaction temperature was gradually increased from 50°C to 200°C, it was confirmed that 100% of carbon monoxide was removed from around 160°C. This means that it has excellent catalytic performance.

전술한 본 발명에 따르면 금(Au) 등 촉매 활성 금속 나노입자가 1종 이상의 금속 산화물 담지체에 담지된 구형 산화물 비드 입자를 간편하게 제조할 수 있으며, 또한 균일한 크기의 비드촉매를 제조할 수 있으며, 본 발명에 의해 제조된 금(Au) 등의 촉매 활성 금속이 담지된 산화물 비드 촉매는 유해배기 유기화합물 산화촉매 사용되어, 일산화탄소와 같은 유해배기가스 화합물들을 효과적으로 제거할 수 있다. According to the present invention described above, spherical oxide bead particles in which catalytically active metal nanoparticles such as gold (Au) are supported on one or more metal oxide carriers can be easily prepared, and a bead catalyst of a uniform size can be prepared. , the oxide bead catalyst prepared by the present invention on which a catalytically active metal such as gold (Au) is supported is used as a catalyst for oxidizing harmful exhaust organic compounds, and can effectively remove harmful exhaust gas compounds such as carbon monoxide.

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but can be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains can take other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that it can be implemented as Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (10)

(a) 촉매 활성 금속이 담지된 금속 산화물을 제조하는 단계;
(b) 상기 촉매 활성 금속이 담지된 금속 산화물 및 알지네이트계 고분자를 포함한 용액을, 칼슘 이온(Ca2+) 용액에 첨가해 구형의 촉매 비드(bead)를 제조하는 단계;
(c) 산을 이용해 상기 촉매 비드를 표면 처리하는 단계; 및
(d) 상기 촉매 비드를 건조 및 열처리하는 단계;를 포함하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법.
(a) preparing a metal oxide on which a catalytically active metal is supported;
(b) preparing a spherical catalyst bead by adding a solution containing the catalytically active metal-supported metal oxide and alginate-based polymer to a calcium ion (Ca 2+ ) solution;
(c) surface-treating the catalyst beads with an acid; and
(d) drying and heat-treating the catalyst beads; a method for preparing a catalyst for catalytically active metal-supported oxide beads.
제1항에 있어서,
상기 단계 (a)에서 촉매 활성 금속 전구체 및 금속 산화물을 포함하는 혼합물을 열처리해 촉매 활성 금속이 담지된 금속 산화물을 형성하는 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법.
According to claim 1,
Method for producing a catalytically active metal-supported oxide bead catalyst, characterized in that by heat-treating a mixture comprising a catalytically active metal precursor and a metal oxide in step (a) to form a metal oxide on which a catalytically active metal is supported.
제1항에 있어서,
상기 단계 (a)에서 촉매 활성 금속 전구체, 제1 금속 산화물 전구체 및 제2 금속 산화물을 포함하는 혼합물을 열처리해 촉매 활성 금속이 담지된 금속 산화물을 형성하는 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법.
According to claim 1,
Catalytically active metal supported oxide bead catalyst, characterized in that the catalytically active metal supported metal oxide is formed by heat-treating a mixture including the catalytically active metal precursor, the first metal oxide precursor, and the second metal oxide in step (a) manufacturing method.
제1항에 있어서,
상기 촉매 활성 금속은 귀금속 및 전이금속으로부터 선택되는 1종의 금속, 2종 이상의 금속의 혼합물 또는 2종 이상의 금속의 합금으로 이루어진 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법.
According to claim 1,
The catalytically active metal is a method for producing a catalytically active metal-supported oxide bead catalyst, characterized in that it consists of one metal selected from noble metals and transition metals, a mixture of two or more metals, or an alloy of two or more metals.
제1항에 있어서,
상기 금속 산화물은 티타니아(TiO2), 세리아(CeO2), 알루미나(Al2O3), 실리카(SiO2), 지르코니아(ZrO2) 및 제올라이트(zeolite)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 금속 촉매 입자 담지 산화물 비드 촉매의 제조방법.
According to claim 1,
The metal oxide is at least one selected from the group consisting of titania (TiO 2 ), ceria (CeO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ) and zeolite. A method for producing an oxide bead catalyst supported on metal catalyst particles.
제1항에 있어서,
상기 단계 (b)에서 알지네이트계 고분자의 카르복실기와 칼슘 이온 간의 겔화 반응을 통해, 촉매 활성 금속이 담지된 금속 산화물을 포함하는 구형의 촉매 비드를 제조하는 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법.
According to claim 1,
Through the gelation reaction between the carboxyl group and calcium ion of the alginate-based polymer in step (b), a catalytically active metal-supported oxide bead catalyst, characterized in that to prepare a spherical catalyst bead comprising a metal oxide supported with a catalytically active metal manufacturing method.
제1항에 있어서,
상기 알지네이트계 고분자는 알긴산나트륨(sodium alginate), 알긴산칼륨(potassium alginate), 알긴산암모늄(ammonium alginate) 및 알지네이트트리에탄올아민(triethanolamine alginate)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매의 제조방법.
According to claim 1,
The alginate-based polymer is a catalytically active metal support, characterized in that at least one selected from the group consisting of sodium alginate, potassium alginate, ammonium alginate and triethanolamine alginate. A method for preparing an oxide bead catalyst.
제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 촉매 활성 금속 담지 산화물 비드 촉매.A catalytically active metal-supported oxide bead catalyst prepared according to the method of any one of claims 1 to 7. 제8항에 있어서,
일산화탄소(CO) 산화용 촉매인 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매.
9. The method of claim 8,
Catalytically active metal-supported oxide bead catalyst, characterized in that it is a catalyst for carbon monoxide (CO) oxidation.
제8항에 있어서,
입경 0.1 ~ 10 nm의 촉매 활성 금속 입자를 0.1 ~ 10 중량% 포함하는 것을 특징으로 하는 촉매 활성 금속 담지 산화물 비드 촉매.
9. The method of claim 8,
Catalytically active metal-supported oxide bead catalyst comprising 0.1 to 10 wt% of catalytically active metal particles having a particle diameter of 0.1 to 10 nm.
KR1020190154497A 2019-11-27 2019-11-27 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide KR20210066068A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190154497A KR20210066068A (en) 2019-11-27 2019-11-27 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide
KR1020210128159A KR102548892B1 (en) 2019-11-27 2021-09-28 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190154497A KR20210066068A (en) 2019-11-27 2019-11-27 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210128159A Division KR102548892B1 (en) 2019-11-27 2021-09-28 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide

Publications (1)

Publication Number Publication Date
KR20210066068A true KR20210066068A (en) 2021-06-07

Family

ID=76374137

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190154497A KR20210066068A (en) 2019-11-27 2019-11-27 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide
KR1020210128159A KR102548892B1 (en) 2019-11-27 2021-09-28 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210128159A KR102548892B1 (en) 2019-11-27 2021-09-28 Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide

Country Status (1)

Country Link
KR (2) KR20210066068A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046314B1 (en) 2011-02-14 2011-07-05 (주)엔지텍 Preparation method of anti-bacterial and deodorization adsorbents using nano-metal doped metal oxides catalyst powder and thereof anti-bacterial and deoderization adsorbents
US20120263633A1 (en) 2009-12-17 2012-10-18 Basf Se Metal Oxide Support Material Containing Nanoscaled Iron-Platinum Group Metal Particles
US20130183221A1 (en) 2012-01-13 2013-07-18 National Central University Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264737A (en) 2007-04-24 2008-11-06 Kansai Coke & Chem Co Ltd Carbon monoxide oxidizing catalyst
JP5204633B2 (en) * 2007-12-17 2013-06-05 Jx日鉱日石エネルギー株式会社 Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2011140011A (en) * 2010-01-08 2011-07-21 Toyota Motor Corp Method for producing co oxidation catalyst and co oxidation catalyst obtained thereby
JP6486360B2 (en) * 2013-08-23 2019-03-20 ビーエーエスエフ コーポレーション Carbon monoxide and / or oxidation catalyst for volatile organic compounds
CN106076305B (en) * 2016-06-14 2019-08-27 石河子大学 A kind of grade spheric catalyst and preparation method thereof and its application in denitrating flue gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263633A1 (en) 2009-12-17 2012-10-18 Basf Se Metal Oxide Support Material Containing Nanoscaled Iron-Platinum Group Metal Particles
KR101046314B1 (en) 2011-02-14 2011-07-05 (주)엔지텍 Preparation method of anti-bacterial and deodorization adsorbents using nano-metal doped metal oxides catalyst powder and thereof anti-bacterial and deoderization adsorbents
US20130183221A1 (en) 2012-01-13 2013-07-18 National Central University Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream

Also Published As

Publication number Publication date
KR102548892B1 (en) 2023-06-28
KR20210122749A (en) 2021-10-12

Similar Documents

Publication Publication Date Title
JP6865681B2 (en) Synthesis of colloidal noble metal nanoparticles with controlled size and morphology
CN1980736B (en) A sol comprising hybrid transition metal oxide nanoparticles
US20140057781A1 (en) Sinter resistant catalytic material and process of producing the same
JP5821973B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08325015A (en) Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier
CN113423501B (en) Supported catalyst particles
CN102482116A (en) Composite metal oxide porous body, catalyst using same, and method for producing each
JP5336234B2 (en) Composite particle carrier, method for producing the same, and method for producing carboxylic acid ester
CN107626304B (en) Supported noble metal catalyst and preparation and application thereof
JP2005526596A (en) Method for fixing water-soluble nano-dispersed metal oxide colloids as they are
JP2014159031A (en) Catalyst for producing hydrogen, and method for producing hydrogen by using the catalyst
Tao et al. Surface molecule manipulated Pt/TiO2 catalysts for selective hydrogenation of cinnamaldehyde
CN102133546B (en) Preparation method of precious metal doped composite ABO3-type catalyst
WO2013187323A1 (en) Gold cluster catalyst and method for producing same
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
KR102548892B1 (en) Method for preparing bead type catalyst comprising catalytically active metal supported by metal oxide
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
CN101198407A (en) Method for preparing materials
CN1191128C (en) Prepn of composite aluminium oxide
WO2019159586A1 (en) Exhaust gas purification catalyst
JP2009279546A (en) Method for producing core-shell structure and catalyst comprising the structure produced thereby and for cleaning exhaust gas
CN1191119C (en) Prepn process of waste gas purifying catalyst containing noble metal
CN1202911C (en) Prepn process of base coating material for waste gas purifying catalyst containing noble metal
KR102255059B1 (en) Method for preparing high efficiency ceria catalyst for air pollution purification using hydrothermal synthesis
JP2001080917A (en) Production of ultrafine particle carrying body

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination