KR20210065871A - 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치 - Google Patents

자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치 Download PDF

Info

Publication number
KR20210065871A
KR20210065871A KR1020200159924A KR20200159924A KR20210065871A KR 20210065871 A KR20210065871 A KR 20210065871A KR 1020200159924 A KR1020200159924 A KR 1020200159924A KR 20200159924 A KR20200159924 A KR 20200159924A KR 20210065871 A KR20210065871 A KR 20210065871A
Authority
KR
South Korea
Prior art keywords
region
msp
image
volumetric image
ventricular
Prior art date
Application number
KR1020200159924A
Other languages
English (en)
Other versions
KR102537214B1 (ko
Inventor
케니스 마크 설리번
조재두
싱 정
강진만
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Publication of KR20210065871A publication Critical patent/KR20210065871A/ko
Priority to KR1020230065592A priority Critical patent/KR102652749B1/ko
Application granted granted Critical
Publication of KR102537214B1 publication Critical patent/KR102537214B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/68Analysis of geometric attributes of symmetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • G06K9/00718
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Abstract

뇌의 복수의 자기 공명(MR) 이미지로부터 정중시상 평면(MSP)을 체적측정식으로 결정하기 위한, 컴퓨터에 의해 수행되는 방법이 개시된다. 복수의 MR 이미지가 수신되고 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환된다. 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화는 AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 수행된다. 라벨링된 3D 마스크 이미지에 기초하여, 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지가 작성된다. MSP는 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 결정된다.

Description

자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치{METHOD AND APPARATUS FOR DETERMINING MID-SAGITTAL PLANE IN MAGNETIC RESONANCE IMAGES}
본 출원은 2019년 11월 26일에 출원된 미국 임시 특허 출원 제62/940,576호에 기초하고 우선권의 혜택을 주장하며, 그것의 전체 내용들은 본원에 참조로 포함된다.
본 개시는 일반적으로 자기 공명 이미징에 관한 것이고, 보다 구체적으로 뇌의 자기 공명 이미지들에서 정중시상 평면을 결정하는 것에 관한 것이다.
본 개시는 한국산업기술진흥원(KIAT)의 'WC300 프로젝트 기술개발지원'사업의 일환으로 수행한 연구로부터 도출된 것이다.
[과제고유번호: S2482672, 연구과제명: 정합정밀도 1mm 이하 수술용 내비게이션 융합 두경부 수술로봇 시스템 개발]
뇌는 인체에서 가장 복잡한 기관인 것으로 간주된다. 그와 같이, 환자의 뇌의 내부 부분들에 접근을 필요로 하는 수술이 필요해질 때, 의사들은 전형적으로 두피 상에 정확한 배치를 계획하고 뇌 내로 외과 기구들을 삽입하는 수술 전에 경로 계획을 수행한다. 예를 들어, 파킨슨 병을 치료하는 뇌심부 자극 수술의 경우에, 전극들과 같은 외과 기구들은 수술 동안 전기 임펄스들을 뇌 내의 타겟 면적들에 인가하기 위해 환자의 뇌 내로 삽입될 수 있다.
경로 계획 동안, 환자의 뇌의 자기 공명(magnetic resonance)(MR) 이미지들은 의사들을 위해 뇌 내의 전교련(anterior commissure)(AC) 및 후교련(posterior commissure)(PC)을 선택하기 위한 수단과 함께 컴퓨터 디스플레이 상에 제시될 수 있다. AC 및 PC는 뇌의 2개의 반구를 연결하는 신경 조직들의 다발들이다. 그와 같이, AC 및 PC는 뇌 내로 외과 기구를 삽입하기 위해 뇌 내의 타겟 면적을 정확히 식별하고 위치, 각도, 깊이 등을 결정할 시에 의사들을 보조하도록 종종 뇌 이미징에서의 해부학적 랜드마크들 또는 참조 프레임으로서 사용된다.
종래의 방법에서, 의사는 뇌의 MR 이미지들을 검토하고 뇌의 중심 평면을 수동으로 결정하여 이미지들을 추정된 평면에 정렬할 수 있다. 그러한 중심 평면은 또한 중간라인(midline)(ML) 평면, 중간평면, 또는 정중시상 평면(mid-sagittal plane)(MSP)으로 지칭되고, 수술 절차에 대한 경로 계획 동안 랜드마크로서 사용될 수 있다. 그러나, MSP를 수동으로 결정하는 것은 시간 소모적이며, 그것에 의해 경로 계획 프로세스를 연장할 수 있다. 게다가, 수동으로 결정된 MSP는 실질적으로 의사에 따라 다를 수 있거나 충분히 정확하지 않을 수 있다.
본 개시는 AC 영역, PC 영역, 및 제3 뇌실 영역의 3D 마스크 이미지에 기초하여 정중시상 평면을 체적측정식으로 결정하기 위한 방법 및 장치를 제공한다.
본 개시의 일 양태에 따르면, 뇌의 복수의 자기 공명(MR) 이미지로부터 정중시상 평면(MSP)을 체적측정식으로 결정하기 위한, 컴퓨터에 의해 수행되는 방법이 개시된다. 이러한 방법에서, 복수의 MR 이미지가 수신되고 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환된다. 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화는 AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 수행된다. 라벨링된 3D 마스크 이미지에 기초하여, 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지가 작성된다. MSP는 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 결정된다.
본 개시의 다른 양태에 따르면, 뇌의 복수의 MR 이미지로부터 MSP를 체적측정식으로 결정하기 위한 이미지 처리 디바이스가 개시된다. 이미지 처리 디바이스는 프로세서를 포함하며, 프로세서는 복수의 MR 이미지를 수신하고; 복수의 MR 이미지를 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환하고; AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화를 수행하고; 라벨링된 3D 마스크 이미지에 기초하여 세그먼트화된 제3 뇌실 영역의 3D 블랍을 작성하고; 제3 뇌실 영역의 3D 블랍에 기초하여 MSP를 결정하도록 구성된다.
본 개시의 또 다른 양태에 따르면, 뇌의 복수의 MR 이미지로부터 MSP를 체적측정식으로 결정하기 위한 명령어들을 포함하는 비일시적 컴퓨터 판독가능 저장 매체가 개시된다. 명령어들은 프로세서로 하여금 동작들을 수행하게 하며, 동작들은 뇌의 복수의 MR 이미지를 수신하는 동작; 복수의 MR 이미지를 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환하는 동작; AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화를 수행하는 동작; 라벨링된 3D 마스크 이미지에 기초하여 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 작성하는 동작; 및 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 MSP를 결정하는 동작을 포함한다.
일 실시예에서, 3D 체적 이미지의 시맨틱 세그먼트화는 3D 체적 이미지의 복수의 슬라이스 각각의 복수의 픽셀을 미리 결정된 범위 내의 세기 값들로 정규화하고; 3D 체적 이미지의 복수의 슬라이스 각각 내의 중심 관심 영역으로부터 복수의 픽셀의 세트를 추출하고; AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 정규화되고 추출된 3D 체적 이미지의 AC 영역, PC 영역, 및 제3 뇌실 영역을 세그먼트화하고; 3D 마스크 이미지에서 AC 영역 및 PC 영역 각각에 대한 질량 중심을 결정하고; AC 영역의 질량 중심에 대응하는 AC 지점을 AC 영역으로서 라벨링하고 PC 영역의 질량 중심에 대응하는 PC 지점을 3D 마스크 이미지 내의 PC 영역으로서 라벨링함으로써 수행될 수 있다.
일 실시예에서, MSP를 결정하는 것은 제3 뇌실 영역의 3D 체적측정 이미지의 골격에 기초하여 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 후보 평면을 결정하는 것 및 후보 평면을 MSP로서 지정하는 것을 포함할 수 있다.
일 실시예에서, MSP를 나타내는 정보 및 AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지가 출력될 수 있다.
일 실시예에서, MSP를 나타내는 정보는 MSP를 정의하는 한 세트의 좌표들 또는 방정식일 수 있다.
일 실시예에서, MSP를 정의하는 세트의 좌표들은 AC 영역을 나타내는 제1 좌표, PC 영역을 나타내는 제2 좌표, 및 제1 및 제2 좌표들과 함께 MSP를 정의하는 지점을 나타내는 제3 좌표를 포함할 수 있다.
일 실시예에서, AC 영역을 나타내는 제1 좌표는 AC 영역의 질량 중심에 대응할 수 있고 PC 영역을 나타내는 제2 좌표는 PC 영역의 질량 중심에 대응할 수 있다.
일 실시예에서, MSP를 결정하는 것은 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 후보 평면에 의해 제3 뇌실 영역의 3D 체적측정 이미지를 제1 부분 및 제2 부분으로 분할하는 것; 후보 평면이 제1 부분 내의 형상 및 복셀 수 및 제2 부분의 형상 및 복셀 수에 기초하여 3D 체적측정 이미지를 대칭적으로 분할하는지를 결정하는 것; 및 후보 평면이 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정할 때, 후보 평면을 MSP로서 지정하는 것을 포함할 수 있다.
일 실시예에서, 후보 평면은 AC 영역 및 PC 영역을 연결하는 라인에 할당될 수 있다.
일 실시예에서, MSP를 결정하는 것은 복수의 후보 평면 중 하나가 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 때까지 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 복수의 후보 평면에 의해 제3 뇌실의 3D 체적측정 이미지를 순차적으로 분할하는 것 및 복수의 후보 평면 중 하나를 MSP로서 지정하는 것을 포함할 수 있다.
명세서에 포함되고 이의 일부를 구성하는 첨부 도면들은 본 개시의 실시예들을 예시한다.
도 1은 본 개시의 일 실시예에 따른 뇌의 복수의 자기 공명(MR) 이미지로부터 정중시상 평면을 체적측정식으로 결정하도록 구성되는 이미지 처리 디바이스의 블록도를 예시한다.
도 2는 본 개시의 일 실시예에 따른 복수의 MR 이미지를 3D 체적 이미지로 변환하도록 구성되는 이미지 리더의 블록도를 도시한다.
도 3은 본 개시의 일 실시예에 따른 뇌의 3D 체적 이미지에서 AC, PC, 및 제3 뇌실 영역들을 세그먼트화하도록 구성되는 시맨틱 세그먼트화 유닛의 블록도를 예시한다.
도 4a 내지 도 4c는 본 개시의 일 실시예에 따른 시맨틱 세그먼트화 유닛에서 처리될 수 있는 3D 체적 이미지의 예시적 슬라이스들을 예시한다.
도 5는 본 개시의 일 실시예에 따른 뇌의 복수의 MR 이미지로부터 AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지를 발생시키고 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 정중시상 평면을 체적측정식으로 결정하기 위한 방법의 흐름도를 도시한다.
도 6은 본 개시의 일 실시예에 따른 AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지를 발생시키고 MSP를 체적측정식으로 결정하기 위한 시맨틱 세그먼트화 유닛에 의해 수행되는 방법의 흐름도를 도시한다.
도 7은 본 개시의 일 실시예에 따른 라벨링된 3D 마스크로부터 정중시상 평면을 결정하도록 구성되는 MSP 검출 유닛의 블록도를 도시한다.
도 8a는 라벨링된 3D 마스크 이미지에 기초하여 제3 뇌실 영역의 3D 체적측정 이미지를 도시한다.
도 8b는 본 개시의 일 실시예에 따른 제3 뇌실 영역의 3D 체적측정 이미지의 골격의 일 예를 예시한다.
도 8c는 본 개시의 일 실시예에 따른 3D 체적 이미지의 슬라이스 및 그 안에 나타낸 골격을 예시한다.
도 8d는 본 개시의 일 실시예에 따른 MSP 추정 유닛에 의해 결정되는 바와 같은 예시적 MSP 및 3D 체적 이미지의 예시적 슬라이스를 도시한다.
도 9a 내지 도 9c는 2개의 부분으로 분할되는 3D 체적측정 이미지의 예시적 3D 이미지들을 도시한다.
도 10은 본 개시의 일 실시예에 따른 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 정중시상 평면을 결정하기 위한 MSP 검출 유닛에 의해 수행되는 방법의 흐름도를 도시한다.
이제 다양한 실시예들이 참조될 것이며, 그것의 예들은 첨부 도면들에 예시된다. 이하의 상세한 설명에서, 다수의 특정 상세들은 본 개시의 철저한 이해를 제공하기 위해 제시된다. 그러나, 본 개시가 이러한 특정 상세들 없이 실시될 수 있는 점이 본 기술분야의 통상의 기술자에게 분명할 것이다. 다른 사례들에서, 널리 공지된 방법들, 절차들, 시스템들, 및 구성요소들은 다양한 실시예들의 양태들을 불필요하게 모호하지 않도록 상세히 설명되지 않았다.
본원에 사용되는 모든 기술적 또는 과학적 용어들은 달리 지정되지 않는 한, 본 개시가 속하는 기술분야에서 통상의 지식을 갖는 자에 의해 일반적으로 이해되는 의미들을 갖는다. 본원에 사용되는 용어들은 본 개시의 더 분명한 예시만을 위해 선택되고, 본 개시에 따라 청구항들의 범위를 제한하도록 의도되지 않는다.
단수 표현은 달리 언급되지 않는 한, 복수의 의미들을 포함할 수 있고, 동일한 것은 청구항들에 명시된 단수 표현에 적용된다.
본원에 사용되는 바와 같이, 용어 "유닛"은 소프트웨어 구성요소 또는 하드웨어 구성요소, 예컨대 필드 프로그램가능 게이트 어레이(field-programmable gate array)(FPGA) 및 주문형 집적 회로(application specific integrated circuit)(ASIC)를 의미한다. 그러나, "유닛"은 소프트웨어 및 하드웨어에 제한되지 않고, 그것은 어드레스가능 저장 매체이도록 구성될 수 있거나 하나 이상의 프로세서 상에 실행하도록 구성될 수 있다. 예를 들어, "유닛"은 구성요소들, 예컨대 소프트웨어 구성요소들, 객체 지향 소프트웨어 구성요소들, 클래스 구성요소들, 및 작업 구성요소들뿐만 아니라, 프로세서들, 기능들, 속성들, 절차들, 서브루틴들, 프로그램 코드들의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드들, 회로들, 데이터, 데이터베이스들, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함할 수 있다. 구성요소들 및 "유닛"에서 제공되는 기능들은 더 작은 수의 구성요소들 및 "유닛들"로 조합되거나 부가 구성요소들 및 "유닛들"로 추가로 세분될 수 있다.
본원에 사용되는 용어 "에 기초하여"는 관련 표현을 포함하는 구 또는 문장에 설명되는 결정, 판단 액션 또는 동작에 영향을 미치는 하나 이상의 인자를 설명하는 데 사용되고, 이러한 표현은 결정, 판단 액션 또는 동작에 영향을 미치는 부가 인자를 배제하지 않는다.
본원에 사용되는 바와 같이, 용어 "영역"은 하나 이상의 지점, 픽셀, 또는 복셀을 의미하고 그의 의미 내에서 하나 이상의 연속 또는 인접 지점, 픽셀, 또는 복셀에 대응하는 공간, 면적, 또는 체적을 포함할 수 있다. 명사 형태인 용어 "라벨"은 객체, 구조, 특징 등을 나타내는 주석, 단어, 이름, 마커, 지정, 컬러, 경계, 형상, 태그 등을 지칭하고, 동사 형태인 용어 "라벨링"은 라벨로 객체, 구조, 특징 등을 마킹, 주석, 첨부, 또는 표시하는 액트를 지칭한다.
본원에 도시된 바와 같이, 도면들에서 이미지들 또는 스크린샷들의 일부는 예시 및 설명의 용이성을 위한 시각적 특성들을 개선하기 위해 스케일, 밝기, 대비 등으로 수정될 수 있었고, 따라서 원래의 이미지들에 전적으로 대응하지 않을 수 있다.
이하, 본 개시의 실시예들은 첨부 도면들을 참조하여 설명될 것이다. 첨부 도면들에서, 비슷하거나 관련 구성요소들은 비슷한 참조 번호들에 의해 표시된다. 실시예들의 이하의 설명에서, 동일하거나 관련 구성요소들의 반복된 설명들은 생략될 것이다. 그러나, 구성요소의 설명이 생략될지라도, 그러한 구성요소는 일 실시예에서 배제되도록 의도되지 않는다.
도 1은 본 개시의 일 실시예에 따른 뇌의 복수의 자기 공명(MR) 이미지(132)로부터 정중시상 평면(MSP)을 체적측정식으로 결정하도록 구성되는 이미지 처리 디바이스(100)의 블록도를 예시한다. 본원에 사용되는 바와 같이, 용어 "정중시상 평면" 또는 "MSP"는 또한 뇌 내의 구조들 또는 특징들에 대한 랜드마크 또는 참조 평면의 역할을 할 수 있는 중간라인(ML) 평면 또는 중간평면으로 지칭될 수 있다. 이미지 처리 디바이스(100)는 프로세서(110), 인터페이스(120), 및 저장 유닛(130)을 포함한다. 저장 유닛(130)은 뇌의 복수의 MR 이미지(132)(예를 들어, 토모그래피) 및 사전 훈련된 세그먼트화 모델(134)을 저장할 수 있다. 일 실시예에서, MR 이미지들(132)은 외부 의학 영상 정보 시스템(picture archiving and communications system)(PACS)으로부터 인터페이스(120)를 경유하여 서버(140)를 통해 수신되고 처리를 위해 저장 유닛(130)에 저장되거나 프로세서(110)에 직접 제공될 수 있다. MR 이미지들(132)은 예를 들어, DICOM 이미지 포맷으로 수신되고 저장될 수 있다.
사전 훈련된 세그먼트화 모델(134)은 AC, PC, 및 제3 뇌실로 라벨링되는 참조 MR 뇌 이미지들로 사전 훈련되었던 하나 이상의 세그먼트화 모델을 포함할 수 있고 따라서 MR 이미지들에서 AC, PC, 및 제3 뇌실 영역들을 검출하기 위해 최적화될 수 있다. 일 실시예에서, 사전 훈련된 세그먼트화 모델은 임의의 적절한 2D 또는 3D 콘볼루셔널 신경 네트워크들을 구현할 수 있고 하나 이상의 세트의 MR 뇌 이미지들로 훈련될 수 있어 신경 네트워크들의 모델 파라미터들은 AC, PC, 및 제3 뇌실 영역들을 검출하도록 구성된다.
인터페이스(120)는 네트워크 또는 임의의 다른 컴퓨팅 디바이스들, 애플리케이션들, 또는 프로그램들을 통해 서버(140)에 인터페이스를 제공할 수 있는 임의의 적절한 인터페이스일 수 있고, 소프트웨어(S/W) 인터페이스, 하드웨어(H/W) 인터페이스, 또는 그것의 조합을 포함할 수 있다. 예를 들어, 인터페이스(120)는 이미지 처리 디바이스(100)를 위한 소프트웨어 인터페이스를 제공하도록 구성되는 애플리케이션 프로그래밍 인터페이스(application programming interface)(API) 또는 동적 링크 라이브러리(dynamic-link library)(DLL)로서 구현될 수 있다.
예시된 실시예에서, 이미지 처리 디바이스(100)는 네트워크를 통해 서버(140)에 연결되고 서버(140)로부터의 요청을 인터페이스(120)를 통해 수신할 수 있다. 서버(140)로부터의 요청은 지정된 환자의 뇌에 관한 MR 이미지 데이터에 대한 요청을 포함할 수 있다. 이에 응답하여, 이미지 처리 디바이스(100)는 MR 이미지들에 대한 AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지를 발생시키고 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 작성함으로써 MSP를 체적측정식으로 결정할 수 있다.
프로세서(110)는 이미지 리더(150), 시맨틱 세그먼트화 유닛(160), MSP 검출 유닛(170), 및 출력 유닛(180)을 포함한다. 프로세서(110)는 상기 설명된 바와 같이 인터페이스(120) 및 저장 유닛(130)과 통신하기 위해 결합될 수 있다. 초기에, 이미지 리더(150)는 서버(140)로부터 인터페이스(120)를 통해 MR 이미지 데이터에 대한 요청을 수신하고 저장 유닛(130)으로부터의 MR 이미지들(132)에 액세스할 수 있다. 이미지 리더(150)는 DICOM 이미지 포맷에서 원래의 MR 이미지들일 수 있는 MR 이미지들(132)을 체적측정 처리에 적절한 포맷으로 포맷팅할 수 있다. 예를 들어, 이미지 리더(150)는 적절한 매핑 및/또는 변환 방법을 사용하고 이중선형 및/또는 삼선형 보간을 수행함으로써 3D 좌표 공간(예를 들어, x, y, 및 z 축들에 정의되는 3D 데카르트 좌표 시스템)에서 MR 이미지들(132)을 3D 체적 이미지로 변환할 수 있다.
이미지 리더(150)는 체적측정 처리를 위해 3D 체적 이미지를 시맨틱 세그먼트화 유닛(160)에 제공한다. 프로세서(110) 내의 시맨틱 세그먼트화 유닛(160)은 저장 유닛(130)으로부터 액세스되는 사전 훈련된 세그먼트화 모델(134)에 기초하여 3D 체적 이미지 내의 AC, PC, 제3 뇌실 영역들을 검출 및 라벨링하고, AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지(136)를 발생시키도록 구성된다. 그 다음, 시맨틱 세그먼트화 유닛(160)은 응답을 서버(140)에 발생시키기 위해 3D 마스크 이미지(136)를 MSP 검출 유닛(170) 및 이미지 출력 유닛(180)에 제공할 수 있다.
수신된 3D 마스크 이미지(136)에 기초하여, MSP 검출 유닛(170)은 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지(예를 들어, 3D 블랍)를 작성한다. 그 다음, 일 실시예에 따르면, MSP 검출 유닛(170)은 후보 평면들 중 하나가 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 때까지, 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지의 골격(예를 들어, 주축 평면)에 대응하는 후보 평면으로부터 시작하여 2개의 부분에서 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 분할(예를 들어, 절단, 파티션, 또는 양분)하기 위해 하나 이상의 후보 평면을 반복적으로 그리고 순차적으로 적용한다. 각각의 후보 평면에 대해, MSP 검출 유닛(170)은 후보 평면이 제3 뇌실 영역의 체적측정 이미지를 2개의 대칭 부분으로 대칭적으로 분할하는지를 결정할 수 있다. 후보 평면이 체적측정 이미지를 대칭적으로 분할하는 것으로 결정할 때, MSP 검출 유닛(170)은 후보 평면을 MSP로서 지정하고 MSP(즉, MSP 정보(138))를 나타내는 평면 정보를 출력 유닛(180)에 제공할 수 있다. 일 실시예에서, 출력 유닛(180)은 MSP 정보(138) 및 3D 마스크 이미지(136)를 포함하는 서버(140)로부터의 요청에 대한 응답을 발생시키고, 응답을 인터페이스(120)를 통해 송신할 수 있다. 부가적으로, 출력 유닛(180)은 MSP 정보(138) 및 3D 마스크 이미지(136)를 저장 유닛(130)에 저장할 수 있다.
도 2는 본 개시의 일 실시예에 따른 복수의 MR 이미지(132)를 수신하고 3D 체적 이미지(200)를 출력하도록 구성되는 이미지 리더(150)의 블록도를 도시한다. MR 이미지들(132)은 토모그래피 이미지들일 수 있다. 일 실시예에서, 복수의 MR 이미지(132)는 T1 가중된 이미지들일 수 있지만 또한 T2 가중된 이미지들일 수 있다.
서버(140)로부터 MR 이미지 데이터에 대한 요청을 수신할 때, 이미지 리더(150)는 저장 유닛(130)으로부터의 MR 이미지들(132)에 액세스하고, 예를 들어, DICOM 포맷일 수 있는 MR 이미지들(132)을 이미지 처리 디바이스(100)에 사용되는 3D 좌표 시스템(예를 들어, 탈라이라크 좌표 시스템, 세계 좌표 시스템, MNI 좌표 시스템 등) 내의 3D 체적 이미지(200)로 변환함으로써 MR 이미지들(132)을 체적측정 처리에 적절한 포맷으로 포맷팅할 수 있다. 이러한 프로세스에서, 원래의 MR 이미지들(132)은 스태킹될 수 있고 보간(예를 들어, 이중선형 또는 삼선형 보간)은 3D 체적 이미지(200)를 발생시키기 위해 수행될 수 있으며, 이 이미지는 저장 유닛(130)에 저장될 수 있다. 그 다음, 이미지 리더(150)는 3D 체적 이미지(200)를 시맨틱 세그먼트화 유닛(160)에 제공한다.
일 실시예에서, 이미지 리더(150)는 MR 이미지들(132)을 3D 좌표 공간 내의 x 및 y 좌표 평면들에 매핑하고 MR 이미지들(132)을 직교 z-축 방향으로 스태킹함으로써 3D 체적 이미지(200)를 작성할 수 있다. 3D 체적 이미지(200) 내의 갭들을 채우기 위해, 보간은 3D 체적 이미지(200)의 픽셀들 또는 복셀들(예를 들어, 세기 및 위치)을 발생시키기 위해 스태킹된 MR 이미지들(132)의 픽셀들(예를 들어, 세기 및 위치)을 사용하여 수행될 수 있다. 이러한 방식으로, 원래의 MR 이미지들(132)의 3D 체적 이미지(200)는 3D 좌표 공간에서 작성될 수 있다.
도 3은 본 개시의 일 실시예에 따른 3D 체적 이미지(200)에서 AC, PC, 및 제3 뇌실 영역들을 세그먼트화하도록 구성되는 시맨틱 세그먼트화 유닛(160)의 블록도를 예시한다. 시맨틱 세그먼트화 유닛(160)은 전처리 유닛(310), 패칭 유닛(320), 랜드마크 세그먼트화 유닛(330), 및 후처리 유닛(340)을 포함한다. 일부 실시예들에서, 전처리 유닛(310) 및/또는 패칭 유닛(320)은 임의적 유닛들이고 시맨틱 세그먼트화 유닛(160)에서 생략될 수 있다.
전처리 유닛(310)은 3D 체적 이미지(200)의 디스플레이 특성들을 향상시키도록 구성될 수 있다. 예를 들어, 원래의 MR 이미지들(132)의 픽셀들이 일반적으로 비교적 좁은 세기 값들(예를 들어, 70 내지 80의 범위 내임)을 가지므로, MR 이미지들(132)로부터 발생되는 3D 체적 이미지(200)는 어둡게 보일 수 있다. 이미지 특성들을 향상시키기 위해, 전처리 유닛(310)은 3D 체적 내의 픽셀들의 세기 값들을 미리 결정된 범위의 그레이 스케일 또는 컬러 세기 값들(예를 들어, 255 값)로 정규화함으로써 3D 체적 이미지(200)를 향상시킬 수 있다. 일 실시예에서, 3D 체적 이미지 내의 슬라이스들 각각은 3D 체적 이미지(200) 내의 슬라이스들의 이미지 특성들이 예를 들어, 밝기, 대비 등의 점에서 향상될 수 있도록 정규화될 수 있다.
게다가, 패칭 유닛(320)은 정규화된 3D 체적 이미지(200)를 수신하고 패칭 동작을 수행할 수 있다. 이러한 프로세스에서, 시맨틱 세그먼트화를 수행하는 데 필요한 3D 체적 이미지(200)의 슬라이스들 각각 내의 중심 관심 영역(region-of-interest)(ROI)으로부터의 픽셀들은 후속 세그먼트화 처리를 위해 3D 체적 이미지(200)를 형성하도록 추출될 수 있다. 중심 ROI의 크기 또는 그 안의 픽셀들 수는 사전 훈련된 세그먼트화 모델(134)의 신경 네트워크 내에 적합할 수 있는 체적의 퍼센티지에 기초하여 결정될 수 있다. 일 실시예에서, 추출되는 데이터 샘플들(즉, 픽셀들 또는 복셀들)의 퍼센티지는 신경 네트워크의 부하 용량의 2 내지 98%일 수 있다. 원래의 3D 체적 이미지(200)로부터의 중심 ROI들의 추출된 픽셀들만을 사용하는 것은 3D 체적의 크기를 감소시키고 따라서 처리 부하 및 속도를 개선한다.
일 실시예에서, 추출된 3D 체적 이미지(200)는 또한 복수의 출력 이미지 타입 중 하나를 출력하도록 필터링될 수 있다. 예를 들어, 복수의 출력 처리 스킴 예컨대 자동 조정 모드(예를 들어, 이미지를 원하는 범위로 조정함), 슬라이스 히스토그램 등화 모드, 3D 히스토그램 등화 모드, 및 슬라이스 적응 히스토그램 등화 모드가 제공될 수 있다. 4개의 모드 중 어느 하나 또는 그것의 조합은 이미지의 시각적 특성들을 개선하기 위해 선택되고 3D 체적 이미지(200)에 적용될 수 있다.
랜드마크 세그먼트화 유닛(330)은 패칭 유닛(320)으로부터 3D 체적 이미지(200)(예를 들어, 3D 체적 이미지(200)의 추출된 ROI 체적 이미지)를 수신하고, AC, PC, 및 제3 뇌실 영역들을 검출하고 세그먼트화하여 3D 마스크 이미지(136)를 발생시키도록 구성된다. 이러한 프로세스에서, 랜드마크 세그먼트화 유닛(330)은 사전 훈련된 세그먼트화 모델(134)을 사용함으로써 AC, PC, 및 제3 뇌실 영역들을 검출하고 세그먼트화한다. 예를 들어, U-Net, MNET 등과 같은 신경 네트워크는 사전 훈련된 세그먼트화 모델(134)을 발생시키기 위해 사용될 수 있으며, 이 모델은 AC, PC, 및 제3 뇌실 영역들을 검출하고 세그먼트화하기 위해 사용될 수 있다. 랜드마크 세그먼트화 유닛(330)이 AC, PC, 및 제3 뇌실 영역들의 세그먼트화를 동시에 수행하는 것으로 설명되지만, AC 및 PC 영역들의 세그먼트화는 제3 뇌실 영역의 세그먼트화와 별도로 수행될 수 있다. 예를 들어, 랜드마크 세그먼트화 유닛(330)은 우선 AC 및 PC 영역들을 세그먼트화하고 그 다음 제3 뇌실 영역을 세그먼트화할 수 있다.
일 실시예에서, 랜드마크 세그먼트화 유닛(330)은 AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지(136)를 발생시키기 위해 3D 체적 이미지(200)의 하나 이상의 슬라이스에 시맨틱 세그먼트화를 순차적으로 또는 동시에 수행하도록 사전 훈련된 세그먼트화 모델(134)을 사용할 수 있다. 예를 들어, 3D 체적 이미지(200)의 3D 좌표 공간 내의 픽셀들은 3D 마스크 이미지(136)를 발생시키기 위해 AC 영역(예를 들어, 적색 컬러 또는 "1"), PC 영역(예를 들어, 녹색 컬러 또는 "2"), 및 제3 뇌실 영역(예를 들어, 청색 컬러 또는 "3")에 대응을 표시하거나, 어떠한 대응(예를 들어, 원래의 픽셀 값 또는 "0")도 표시하지 않는 라벨들로 라벨링될 수 있다.
후처리 유닛(340)은 랜드마크 세그먼트화 유닛(330)으로부터 3D 마스크 이미지(136)를 수신하고 검출된 AC 및 PC 영역들 각각의 질량 중심을 결정할 수 있다. 이러한 프로세스에서, 세그먼트화된 AC 영역에 대한 질량 중심 및 PC 영역에 대한 질량 중심은 3D 마스크 이미지(136)로부터 결정될 수 있다. AC 및 PC 영역들 각각을 다수의 지점 또는 픽셀로 구성되는 면적으로서 라벨링하는 대신에, 후처리 유닛(340)은 AC 및 PC로서 AC 및 PC 영역들 각각에 대한 질량 중심에 대응하는 단일 지점(예를 들어, 픽셀 또는 복셀)을 지정하고 라벨링할 수 있다. 제3 뇌실 영역의 경우에, 질량 중심은 제3 뇌실의 전체 세그먼트화된 영역이 3D 마스크 이미지에 남아 있을 수 있도록 결정될 필요는 없다. 게다가, 후처리 유닛(340)은 라벨링된 3D 마스크 이미지(136)를 원래의 3D 좌표 공간으로 다시 변환할 수 있다.
도 4a 내지 도 4c는 본 개시의 일 실시예에 따른 시맨틱 세그먼트화 유닛(160)에서 처리될 수 있는 3D 체적 이미지(200)의 예시적 슬라이스들(410, 420, 및 430)을 예시한다. 도 4a는 본 개시의 일 실시예에 따른 전처리 유닛(310)에 의해 전처리되었던 3D 체적 이미지(200)의 예시적 슬라이스(410)를 도시한다. 도시된 바와 같이, 슬라이스(410)는 3D 체적 이미지(200)의 축방향 평면으로부터의 슬라이스일 수 있고 슬라이스(410)의 이미지는 밝기, 대비 등과 같은 이미지 특성들을 향상시키기 위해 정규화되었다. 설명을 용이하게 하기 위해, 직사각형 형상의 점선에 의해 표시되는 ROI(412)는 슬라이스(410)에 도시되고 패칭 유닛(320)에 의해 추출될 수 있는 슬라이스(410) 내의 영역을 표시한다. 도 4b는 패칭 유닛(320)에 의해 슬라이스(410) 내의 ROI(412)로부터 추출되었던 예시적 슬라이스(420)를 도시한다.
도 4c는 본 개시의 일 실시예에 따른 슬라이스(410)의 ROI(412)로부터 랜드마크 세그먼트화 유닛(330)에 의해 발생되는 3D 체적 이미지의 3D 마스크 이미지(136)의 예시적 슬라이스(430)를 예시한다. 도시된 바와 같이, AC 영역(432), PC 영역(434), 및 제3 뇌실 영역(436)은 3D 마스크 이미지(136)의 슬라이스(430)에서 세그먼트화된다. 일 실시예에서, 영역들(432, 434, 및 436)은 각각, 상이한 표시기들 또는 컬러들 예컨대 적색, 녹색, 및 청색으로 라벨링될 수 있다. 대안적으로 또는 부가적으로, 영역들(432, 434, 및 436)은 영역들을 서로 식별하거나 구별하기 위한 임의의 적절한 라벨들 또는 표시기들로 라벨링될 수 있다. 3D 체적 이미지(200)의 시맨틱 세그먼트화 유닛(160)이 일 예로서 슬라이스들(410, 420, 및 430)을 가지고 예시되지만, 3D 체적 이미지(200)의 임의의 평면 배향을 따른 임의의 적절한 수의 슬라이스들이 3D 마스크 이미지(136)를 발생시키기 위해 처리될 수 있다는 점이 이해되어야 한다.
도 5는 본 개시의 일 실시예에 따른 복수의 MR 이미지(132)로부터 AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지(136)를 발생시키고 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 MSP를 체적측정식으로 결정하기 위한, 프로세서(110)에 의해 수행되는 방법의 흐름도를 도시한다. 이러한 방법에서, 원래의 MR 이미지들인 복수의 MR 이미지(132)는 510에서 수신되고 520에서 3D 좌표 공간 내의 3D 체적 이미지(200)로 변환될 수 있다. 이러한 프로세스에서, MR 이미지들(132)은 3D 좌표 공간에 매핑될 수 있고 보간은 3D 체적 이미지(200)를 발생시키기 위해 수행될 수 있다.
530에서, 프로세서(110)는 정규화 및 패칭을 포함하는 3D 체적 이미지(200)에 전처리를 수행할 수 있다. 예를 들어, 3D 체적 이미지(200) 내의 복셀들의 세기 값들은 미리 결정된 범위 내의 값들(예를 들어, 255 값)로 정규화될 수 있다. 게다가, 패칭 동작은 3D 체적의 크기를 감소시키기 위해 3D 체적 이미지(200)의 슬라이스들 각각으로부터의 중심 관심 영역(ROI)에서 한 세트의 픽셀들을 추출하도록 수행될 수 있다.
그 다음, 540에서, 프로세서(110)는 사전 훈련된 세그먼트화 모델(134)에 기초하여 3D 체적 이미지(200) 내의 AC, PC, 및 제3 뇌실 영역들을 검출하고 라벨링하며, 그것에 의해 영역들로 라벨링되는 3D 마스크 이미지(136)를 발생시키기 위해 시맨틱 세그먼트화를 수행한다. 일 실시예에서, AC 지점 및 PC 지점은 각각, 그것의 질량 중심에 기초하여 3D 마스크 이미지(136)에서 라벨링되는 AC 영역 및 PC 영역들에 대해 결정될 수 있다. 3D 마스크 이미지(136)에 기초하여, 프로세서(110)는 550에서 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 작성한다. 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 작성한 후에, 프로세서(110)는 560에서 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 MSP를 결정한다. 일 실시예에서, 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 평면은 MSP로서 지정된다. 그 다음, 570에서, 3D 마스크 이미지(136) 및 MSP를 나타내는 MSP 정보(138)는 서버(140)에 송신되기 위해 출력될 수 있다.
도 6은 본 개시의 일 실시예에 따른 AC, PC, 및 제3 뇌실 영역들로 라벨링되는 3D 마스크 이미지(136)를 발생시키기 위한, 시맨틱 세그먼트화 유닛(160)에 의해 수행되는 방법의 흐름도를 도시한다. 이러한 방법에서, 610에서, 3D 좌표 공간에 정의되고 복수의 2D 슬라이스를 포함하는, 3D 체적 이미지(200)를 수신할 때, 시맨틱 세그먼트화 유닛(160)은 620에서 슬라이스들 각각 내의 픽셀들을 미리 결정된 픽셀 해상도 및 세기 범위로 정규화하고 정렬을 위해 좌표 축들의 방향을 조정할 수 있다.
630에서, 3D 픽셀들은 처리 속도를 용이하게 하고 처리 부하를 감소시키기 위해 3D 체적 이미지(200)의 픽셀 입도를 감소시키도록 슬라이스들 각각 내의 중심 관심 영역으로부터 샘플링되거나 추출될 수 있다. 일 실시예에서, 중심 관심 영역은 AC 영역, PC 영역, 및 제3 뇌실 영역을 포함할 수 있다.
640에서, 시맨틱 세그먼트화 유닛(160)은 사전 훈련된 세그먼트화 모델(134)에 기초하여 추출된 3D 체적 이미지(200) 내의 AC, PC, 및 제3 뇌실 영역들을 검출하고 세그먼트화하여, AC, PC, 및 제3 뇌실 영역들을 표시하기 위해 라벨링되는 3D 마스크 이미지(136)를 발생시킬 수 있다. 그 다음, 650에서, 시맨틱 세그먼트화 유닛(160)은 AC 영역 및 PC 영역 각각의 질량 중심을 결정하고, 각각의 질량 중심에 대응하는 AC 지점 및 PC 지점으로서 3D 마스크 이미지 내의 AC 및 PC 영역들을 각각 라벨링할 수 있다. 그 다음, AC 지점, PC 지점, 및 제3 뇌실 영역으로 라벨링되는 라벨링된 3D 마스크 이미지(136)는 660에서 원래의 3D 좌표 공간으로 다시 변환되고 MSP 검출 유닛(170)에 제공될 수 있다.
도 7은 본 개시의 일 실시예에 따른 3D 마스크 이미지(136)로부터 MSP를 결정하도록 구성되는 MSP 검출 유닛(170)의 블록도를 도시한다. MSP 검출 유닛(170)은 3D 블랍 작성 유닛(710), MSP 추정 유닛(720), 및 MSP 출력 유닛(730)을 포함한다. 3D 블랍 작성 유닛(710)은 라벨링된 AC, PC, 및 제3 뇌실 영역들을 포함하는 라벨링된 3D 마스크 이미지(136)를 수신하고, 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지(예를 들어, 3D 블랍)를 작성하도록 구성된다.
그 다음, 작성된 3D 체적측정 이미지는 MSP 추정 유닛(720)에 제공되며, 이 유닛은 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 MSP를 결정한다. 이러한 프로세스에서, MSP 추정 유닛(720)은 3D 체적측정 이미지의 골격에 기초하여 3D 체적측정 이미지를 MSP로서 대칭적으로 분할하는 후보 평면을 결정한다. 골격은 내측 평면일 수 있고 제3 뇌실 영역의 3D 체적측정 이미지의 주축 평면을 나타낼 수 있다. 후보 평면은 AC 영역 및 PC 영역을 연결하는 라인에 할당되거나 라인을 포함할 수 있다. 일 실시예에서, MSP 추정 유닛(720)은 후보 평면들 중 하나가 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 때까지, 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 복수의 후보 평면에 의해 3D 체적측정 이미지를 순차적으로 분할할 수 있다. 그 다음, 3D 체적측정 이미지를 대칭적으로 분할하기 위해 결정되는 후보 평면은 MSP로서 지정된다.
다른 실시예에서, 제3 뇌실 영역의 3D 체적측정 이미지는 제3 뇌실 영역의 3D 체적측정 이미지의 골격에 대해 각도 증분으로 순차적으로 회전되고 병진될 수 있다. 3D 체적 이미지의 각각의 회전 및 병진 위치에서, 3D 체적측정 이미지는 후보 평면에 의해 분할될 수 있다. 후보 평면은 3D 체적측정 이미지를 2개의 대칭 부분으로 대칭적으로 분할하는 것으로 결정되면, 후보 평면은 MSP로서 지정된다. 그 다음, MSP 출력 유닛(730)은 MSP의 방정식 또는 MSP를 정의하는 한 세트의 좌표들과 같은 MSP를 나타내는 MSP 정보를 출력할 수 있다.
도 8a는 복수의 슬라이스(예를 들어, 슬라이스(430) 등)를 포함하는 라벨링된 3D 마스크 이미지(136)에 기초하여 3D 블랍 작성 유닛(710)에 의해 발생될 수 있는 3D 체적측정 이미지(800)(예를 들어, 3D 블랍)를 도시한다. 3D 체적측정 이미지(800)는 제3 뇌실 영역(830), AC 영역(810), 및 PC 영역(820)을 포함한다. AC 영역(810) 및 PC 영역(820)은 각각, MSP를 결정하기 위한 참조 라인을 정의하는 2개의 지점일 수 있다. AC 영역(810), PC 영역(820), 및 제3 뇌실 영역(830)은 또한 각각, 표시기들 또는 컬러들 예컨대, 적색, 녹색, 및 청색으로 라벨링될 수 있다.
일부 실시예들에서, 3D 체적측정 이미지(800)의 제3 뇌실 영역(830)은 골격으로서 모델링되거나 표현될 수 있다. 도 8b는 본 개시의 일 실시예에 따른 골격(840)의 일 예를 예시한다. 설명의 편의성을 위해, 3D 체적측정 이미지(800)의 제3 뇌실 영역(830)은 2D 픽셀화된 이미지로서 도시되고 MSP 추정 유닛(720)은 제3 뇌실 영역(830)에 대한 골격(840)을 발생시킬 수 있다. 예를 들어, MSP 추정 유닛(720)은 3D 체적측정 이미지(800)에서 제3 뇌실 영역(830)의 주축 평면을 결정하고 주축 평면에 대응하는 한 세트의 픽셀들을 식별할 수 있다. 그 다음, 세트의 식별된 픽셀들은 골격(840)을 정의하기 위해 선택될 수 있다.
설명의 용이성을 위해, 도 8c는 일 실시예에 따른 골격(840)의 예시적 이미지를 포함하는 3D 체적 이미지(200)의 슬라이스(850)를 도시한다. 제3 뇌실 영역(830)의 골격(840)으로부터 시작하여, MSP 추정 유닛(720)은 3D 체적측정 이미지를 회전시키고 병진시킴으로써 하나 이상의 후보 평면에 의해 제3 뇌실 영역(830)의 3D 체적측정 이미지를 순차적으로 분할할 수 있다. 후보 평면들 중 하나가 제3 뇌실 영역(830)의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 때, MSP 추정 유닛(720)은 후보 평면을 MSP로서 결정하고 MSP의 평면 방정식을 출력할 수 있다. 도 8d는 본 개시의 일 실시예에 따른 MSP 추정 유닛(720)에 의해 결정될 수 있는 MSP(860)를 포함하는 3D 체적 이미지(200)의 슬라이스(850)를 도시한다.
도 9a 내지 도 9c는 각각, 2개의 부분으로 분할되는 3D 체적측정 이미지(800)의 제3 뇌실 영역(830)의 예시적 3D 이미지들(910, 920, 및 930)을 도시한다. 도 9a는 본 개시의 일 실시예에 따른 제3 뇌실 영역(830)이 2개의 부분(910A 및 910B)으로 분할되는 3D 이미지(910)를 예시한다. 이러한 경우에, MSP 추정 유닛(720)은 골격(840)과 일치하는 후보 평면(912)에 의해 제3 뇌실 영역(830)을 초기에 분할하고 2개의 부분(910A 및 910B)이 후보 평면(912)에 대해 대칭이 아닌 것으로 결정할 수 있다. 그 다음, MSP 추정 유닛(720)은 제3 뇌실 영역(830)을 회전시키고 병진시킴으로써 다른 후보 평면을 선택할 수 있다.
도 9b는 본 개시의 일 실시예에 따른 제3 뇌실 영역(830)이 후보 평면(922)에 의해 2개의 부분(920A 및 920B)으로 분할되는 3D 이미지(920)를 도시한다. 이러한 경우에, MSP 추정 유닛(720)은 또한 2개의 부분(920A 및 920B)이 후보 평면(922)에 대해 대칭이 아닌 것으로 결정할 수 있다.
도 9c는 본 개시의 일 실시예에 따른 제3 뇌실 영역(830)이 후보 평면(932)에 의해 2개의 부분(930A 및 930B)으로 분할되는 3D 이미지(930)를 도시한다. 이러한 경우에, MSP 추정 유닛(720)은 2개의 부분(930A 및 930B)이 후보 평면(932)에 대해 대칭인 것으로 결정하고 후보 평면(932)을 MSP로서 지정할 수 있다.
일 실시예에서, MSP 추정 유닛(720)은 제3 뇌실 영역(830)의 2개의 분할된 부분(예를 들어, 2개의 부분(910A 및 910B, 920A 및 920B, 또는 930A 및 930B))이 하나의 부분의 형상 및 복셀 수를 다른 부분의 형상 및 복셀 수와 비교함으로써 대칭인지를 결정할 수 있다. 예를 들어, 도 9a의 부분들(910A 및 910B)은 그들의 형상들 및 복셀 수들에 있어서 서로 유사하지 않고 따라서 후보 평면(912)에 대해 대칭이 아닌 것으로 결정된다. 추가 예로서, 도 9b의 부분들(920A 및 920B)은 복셀 수들에 있어서 유사할 수 있지만 형상에 있어서 유사하지 않고, 따라서 후보 평면(922)에 대해 대칭이 아닌 것으로 결정된다. 다른 한편, 도 9c의 부분들(930A 및 930B)은 그들의 형상들 및 복셀 수들에 있어서 실질적으로 유사할 수 있고, 따라서 후보 평면(932)에 대해 대칭인 것으로 결정될 수 있다. 대칭이 제3 뇌실 영역(830)의 2개의 분할된 부분의 형상들 및 복셀 수들에 기초하여 결정되지만, 그것은 또한 2개의 부분의 복셀 수들을 고려하는 것 없이 형상들에 기초하여 결정될 수 있다. 본원에 사용되는 바와 같이, 구 "실질적으로 유사한"은 임계치 또는 미리 결정된 유사 정도 내에 있는 것을 의미한다. 따라서, 그 안의 2개의 형상 또는 복셀 수들은 그 안의 2개의 형상 또는 복셀 수들이 임계치 또는 미리 결정된 유사 정도 내에 있을 때 실질적으로 유사한 것으로 결정될 수 있다. 게다가, 도 9a 내지 도 9c에 도시된 바와 같이, 후보 평면들(912, 922, 및 932)은 설명의 용이성을 위해 예시되고, 각각, 3D 이미지들(910, 920, 및 930)에 포함될 수 있거나 포함되지 않지 않을 수 있다.
도 10은 본 개시의 일 실시예에 따른 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 MSP를 결정하기 위한 MSP 검출 유닛(170)에 의해 수행되는 방법의 흐름도를 도시한다. 초기에, 3D 블랍 작성 유닛(710)은 1010에서 AC, PC, 및 제3 뇌실 영역들을 표시하기 위해 라벨링되는 3D 마스크 이미지(136)를 수신한다. 일 실시예에서, 3D 마스크 이미지(136)는 AC 지점, PC 지점, 및 제3 뇌실 영역을 표시하기 위해 라벨링될 수 있다. 그 다음, 3D 블랍 작성 유닛(710)은 1020에서 3D 마스크 이미지(136)에 기초하여 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지(즉, 3D 블랍)를 작성하고, 3D 체적측정 이미지를 MSP 추정 유닛(720)에 제공한다.
제3 뇌실 영역의 3D 체적측정 이미지를 수신할 때, MSP 추정 유닛(720)은 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여, 1030에서 후보 평면에 의해 3D 체적측정 이미지를 2개의 부분으로 분할한다. 예를 들어, 도 9a를 참조하여, MSP 추정 유닛(720)은 골격(840)에 대응하는 후보 평면(912)에 의해 제3 뇌실 영역(830)의 3D 체적측정 이미지를 2개의 부분(910A 및 910B)으로 초기에 분할할 수 있다. 그 다음, 1040에서, 후보 평면(912)이 제3 뇌실 영역(830)의 3D 체적측정 이미지를 2개의 동일한 부분으로 대칭적으로 분할하는지가 결정된다. 일 실시예에서, 후보 평면은 2개의 부분이 후보 평면에 대해 그들의 형상들 및 복셀 수들에 있어서 실질적으로 유사할 때 제3 뇌실 영역(830)의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 수 있다. 도 9a의 3D 체적측정 이미지(800)의 예에서, MSP 추정 유닛은 2개의 부분(910A 및 910B)이 형상 및 복셀 수들에 있어서 유사하지 않은 것으로 결정한다.
MSP 추정 유닛(720)은 후보 평면이 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하지 않는 것으로 결정하면, 다른 평면은 1050에서 새로운 후보 평면으로서 선택될 수 있고 제3 뇌실 영역의 3D 체적측정 이미지는 1030에서 새로운 후보 평면에 의해 분할될 수 있다. 일 실시예에서, 새로운 후보 평면은 골격(840)에 대해 각도 증분으로 AC 및 PC(AC-PC 라인)를 연결하는 라인을 중심으로 제3 뇌실 영역(830)의 3D 체적측정 이미지를 회전시킴으로써 선택될 수 있다. 후보 평면들이 골격(840)으로부터 시작하여 선택되므로, 제3 뇌실(830)의 3D 체적측정 이미지를 대칭적으로 분할하는 후보 평면을 결정하기 위해 필요한 반복들 또는 각도 증분들의 수는 랜덤 후보 평면으로부터 시작하는 경우와 비교하여 감소된다.
도 9a의 예를 참조하여, MSP 추정 유닛(720)은 1050에서 제3 뇌실 영역(830)의 3D 체적측정 이미지를 회전시키고 병진시킴으로써 도 9b에 도시된 후보 평면(922)을 새로운 후보 평면으로서 선택하는 것으로 진행할 수 있다. 도 9b의 3D 체적측정 이미지(920)에서, MSP 추정 유닛(720)은 형상들이 유사하지 않으므로 2개의 부분(920A 및 920B) 이 후보 평면(922)에 대해 대칭이 아닌 것으로 결정한다. 따라서, MSP 추정 유닛(720)은 1050에서, 도 9c의 제3 뇌실 영역(830)의 3D 체적측정 이미지를 회전시키고 병진시킴으로써 후보 평면(932)을 선택하는 것으로 진행할 수 있다.
다른 한편, 후보 평면이 1040에서 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정되면, MSP 추정 유닛(720)은 1060에서 후보 평면을 MSP로서 지정할 수 있다. 도 9c의 예에서, MSP 추정 유닛(720)은 1030에서, 후보 평면(932)에 기초하여 제3 뇌실 영역(830)의 3D 체적측정 이미지를 2개의 부분(930A 및 930B)으로 분할하고 그 다음 1040에서 2개의 부분(930A 및 930B)이 후보 평면(932)에 대해 대칭인 것으로 결정한다. 따라서, 후보 평면(932)는 1060에서 MSP로서 지정된다.
그 다음, MSP 출력 유닛(730)은 1070에서 MSP를 나타내는 MSP 정보를 출력할 수 있다. 일 실시예에서, MSP를 나타내는 평면 정보는 MSP를 정의하는 한 세트의 좌표들 또는 방정식일 수 있으며, 이 좌표들은 AC 영역을 나타내는 제1 좌표, PC 영역을 나타내는 제2 좌표, 및 제1 및 제2 좌표들과 함께 MSP를 정의하는 지점을 나타내는 제3 좌표를 포함할 수 있다.
일 실시예에서, MSP는 세그먼트화된 3D 체적측정 이미지(예를 들어, 3D 블랍)로부터 축방향 및 완관 평면들 사이에서 각각의 교차 라인에 대해 결정될 수 있다. 예를 들어, MSP 검출 유닛(170)은 RANSAC와 같은 모델 피팅 툴을 사용하여 모든 정중시상 지점들에 최상으로 적합해지는 제3 뇌실 영역의 3D 체적측정 이미지의 주축 평면과 같은 골격으로부터 시작하여 평면을 추정할 수 있다. 그 다음, 모델 피팅 툴로부터 획득되는 인라이어 지점들을 사용하면, MSP 검출 유닛(170)은 최종 평면을 추정하고 최종 평면을 MSP로서 지정하기 위해 특이값 분해(singular value decomposition)(SVD) 방법을 사용할 수 있다.
상술한 방법들이 특정 실시예들에 대해 설명되었지만, 이러한 방법들은 또한 컴퓨터 판독가능 기록 매체 상에 컴퓨터 판독가능 코드로서 구현될 수 있다. 컴퓨터 판독가능 기록 매체는 컴퓨터 시스템에 의해 판독될 수 있는 임의의 종류의 데이터 저장 디바이스들을 포함한다. 컴퓨터 판독가능 기록 매체의 예들은 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 디바이스 등을 포함한다. 또한, 컴퓨터 판독가능 기록 매체는 컴퓨터 판독가능 코드들이 분산된 방식으로 저장되고 실행될 수 있도록 네트워크를 통해 연결된 컴퓨터 시스템들에 분산될 수 있다. 게다가, 상술한 실시예들을 구현하기 위한 함수 프로그램들, 코드들 및 코드 세그먼트들은 본 개시가 속하는 기술분야에서 프로그래머들에 의해 용이하게 추론될 수 있다.
특정 실시예들이 설명되었지만, 이러한 실시예들은 예로서만 제시되었고, 개시들의 범위를 제한하도록 의도되지 않는다. 실제로, 본원에 설명되는 실시예들은 여러가지 다른 형태들로 구체화될 수 있다. 더욱이, 본원에 설명되는 실시예들의 형태의 다양한 생략들, 치환들 및 변경들은 개시들의 사상으로부터 벗어나는 것 없이 이루어질 수 있다. 첨부한 청구항들 및 그들의 균등물들은 개시들의 범위 및 사상 내에 있는 것처럼 그러한 형태들 또는 수정들을 커버하도록 의도된다.

Claims (28)

  1. 뇌의 복수의 자기 공명(MR) 이미지로부터 정중시상 평면(MSP)을 체적측정식으로 결정하기 위한, 컴퓨터에 의해 수행되는 방법으로서,
    상기 복수의 MR 이미지를 수신하는 단계;
    상기 복수의 MR 이미지를 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환하는 단계;
    AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 상기 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화를 수행하는 단계;
    상기 라벨링된 3D 마스크 이미지에 기초하여 상기 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 작성하는 단계; 및
    상기 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 상기 MSP를 결정하는 단계
    를 포함하는, 방법.
  2. 제1항에 있어서, 상기 시맨틱 세그먼트화를 수행하는 단계는,
    상기 3D 체적 이미지의 복수의 슬라이스 각각의 복수의 픽셀을 미리 결정된 범위 내의 세기 값들로 정규화하는 단계;
    상기 3D 체적 이미지의 복수의 슬라이스 각각 내의 중심 관심 영역으로부터 상기 복수의 픽셀의 세트를 추출하는 단계;
    상기 AC 영역, 상기 PC 영역, 및 상기 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 상기 사전 훈련된 세그먼트화 모델에 기초하여 상기 정규화되고 추출된 3D 체적 이미지의 AC 영역, PC 영역, 및 제3 뇌실 영역을 세그먼트화하는 단계;
    상기 3D 마스크 이미지에서 상기 AC 영역 및 상기 PC 영역 각각에 대한 질량 중심을 결정하는 단계; 및
    상기 AC 영역의 질량 중심에 대응하는 AC 지점을 상기 AC 영역으로서 라벨링하고 상기 PC 영역의 질량 중심에 대응하는 PC 지점을 상기 3D 마스크 이미지 내의 PC 영역으로서 라벨링하는 단계를 포함하는, 방법.
  3. 제1항에 있어서, 상기 MSP를 결정하는 단계는,
    상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격에 기초하여 상기 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 후보 평면을 결정하는 단계; 및
    상기 후보 평면을 상기 MSP로서 지정하는 단계를 포함하는, 방법.
  4. 제2항에 있어서,
    상기 MSP를 나타내는 정보를 출력하는 단계; 및
    상기 AC 영역, 상기 PC 영역, 및 상기 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 출력하는 단계를 추가로 포함하는, 방법.
  5. 제4항에 있어서, 상기 MSP를 나타내는 정보는 상기 MSP를 정의하는 한 세트의 좌표들 또는 방정식인, 방법.
  6. 제5항에 있어서, 상기 MSP를 정의하는 한 세트의 좌표들은 상기 AC 영역을 나타내는 제1 좌표, 상기 PC 영역을 나타내는 제2 좌표, 및 상기 제1 및 제2 좌표들과 함께 상기 MSP를 정의하는 지점을 나타내는 제3 좌표를 포함하는, 방법.
  7. 제6항에 있어서, 상기 AC 영역을 나타내는 제1 좌표는 상기 AC 영역의 질량 중심에 대응하고 상기 PC 영역을 나타내는 제2 좌표는 상기 PC 영역의 질량 중심에 대응하는, 방법.
  8. 제1항에 있어서, 상기 MSP를 결정하는 단계는,
    상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 후보 평면에 의해 상기 제3 뇌실 영역의 3D 체적측정 이미지를 제1 부분 및 제2 부분으로 분할하는 단계;
    상기 후보 평면이 상기 제1 부분 내의 형상 및 복셀 수 및 상기 제2 부분의 형상 및 복셀 수에 기초하여 상기 3D 체적측정 이미지를 대칭적으로 분할하는지를 결정하는 단계; 및
    상기 후보 평면이 상기 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정할 때, 상기 후보 평면을 상기 MSP로서 지정하는 단계를 포함하는, 방법.
  9. 제8항에 있어서, 상기 후보 평면은 상기 AC 영역 및 상기 PC 영역을 연결하는 라인에 정렬되는, 방법.
  10. 제1항에 있어서, 상기 MSP를 결정하는 단계는,
    상기 복수의 후보 평면 중 하나가 상기 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 때까지 상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 복수의 후보 평면에 의해 상기 제3 뇌실 영역의 3D 체적측정 이미지를 순차적으로 분할하는 단계; 및
    상기 복수의 후보 평면 중 하나를 상기 MSP로서 지정하는 단계를 포함하는, 방법.
  11. 제10항에 있어서, 상기 제3 뇌실의 3D 체적측정 이미지를 순차적으로 분할하는 단계는,
    상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격에 대해 각도 증분으로 상기 제3 뇌실 영역의 3D 체적측정 이미지를 순차적으로 회전시키고 병진시키는 단계; 및
    상기 3D 체적측정 이미지의 각각의 회전 및 병진 위치에서,
    상기 후보 평면들 중 하나에 의해 상기 3D 체적측정 이미지를 분할하는 단계; 및
    상기 후보 평면들 중 하나가 상기 3D 체적측정 이미지를 대칭적으로 분할하는지를 결정하는 단계; 및
    상기 후보 평면들 중 하나가 상기 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정할 때, 상기 후보 평면을 상기 MSP로서 지정하는 단계를 포함하는, 방법.
  12. 뇌의 복수의 자기 공명(MR) 이미지로부터 정중시상 평면(MSP)을 체적측정식으로 결정하기 위한 이미지 처리 디바이스로서,
    프로세서를 포함하며, 상기 프로세서는,
    상기 복수의 MR 이미지를 수신하고;
    상기 복수의 MR 이미지를 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환하고;
    AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 상기 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화를 수행하고;
    상기 라벨링된 3D 마스크 이미지에 기초하여 상기 세그먼트화된 제3 뇌실 영역의 3D 블랍을 작성하고;
    상기 제3 뇌실 영역의 3D 블랍에 기초하여 상기 MSP를 결정하도록
    구성되는, 이미지 처리 디바이스.
  13. 제12항에 있어서, 상기 프로세서는,
    상기 3D 체적 이미지의 복수의 슬라이스 각각의 복수의 픽셀을 미리 결정된 범위 내의 세기 값들로 정규화하고;
    상기 3D 체적 이미지의 복수의 슬라이스 각각 내의 관심 영역으로부터 상기 복수의 픽셀의 세트를 추출하고;
    상기 AC 영역, 상기 PC 영역, 및 상기 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 상기 사전 훈련된 세그먼트화 모델에 기초하여 상기 정규화되고 추출된 3D 체적 이미지의 AC 영역, PC 영역, 및 제3 뇌실 영역을 세그먼트화하고;
    상기 3D 마스크 이미지에서 상기 AC 영역 및 상기 PC 영역 각각에 대한 질량 중심을 결정하고;
    상기 AC 영역의 질량 중심에 대응하는 AC 지점을 상기 AC 영역으로서 라벨링하고 상기 PC 영역의 질량 중심에 대응하는 PC 지점을 상기 3D 마스크 이미지 내의 PC 영역으로서 라벨링함으로써 시맨틱 세그먼트화를 수행하도록 구성되는, 이미지 처리 디바이스.
  14. 제12항에 있어서, 상기 프로세서는,
    상기 제3 뇌실 영역의 3D 블랍의 골격에 기초하여 상기 제3 뇌실 영역의 3D 블랍을 대칭적으로 분할하는 후보 평면을 결정하고;
    상기 후보 평면을 상기 MSP로서 지정함으로써 상기 MSP를 결정하도록 구성되는, 이미지 처리 디바이스.
  15. 제14항에 있어서, 상기 프로세서는,
    상기 MSP를 나타내는 정보를 출력하고;
    상기 AC 영역, 상기 PC 영역, 및 상기 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 출력하도록 추가로 구성되는, 이미지 처리 디바이스.
  16. 제15항에 있어서, 상기 MSP를 나타내는 정보는 상기 MSP를 정의하는 한 세트의 좌표들 또는 방정식인, 이미지 처리 디바이스.
  17. 제16항에 있어서, 상기 MSP를 정의하는 한 세트의 좌표들은 상기 AC 영역을 나타내는 제1 좌표, 상기 PC 영역을 나타내는 제2 좌표, 및 상기 제1 및 제2 좌표들과 함께 상기 MSP를 정의하는 지점을 나타내는 제3 좌표를 포함하는, 이미지 처리 디바이스.
  18. 제17항에 있어서, 상기 AC 영역을 나타내는 제1 좌표는 상기 AC 영역의 질량 중심에 대응하고 상기 PC 영역을 나타내는 제2 좌표는 상기 PC 영역의 질량 중심에 대응하는, 이미지 처리 디바이스.
  19. 제12항에 있어서, 상기 프로세서는,
    상기 제3 뇌실 영역의 3D 블랍의 골격으로부터 시작하여 후보 평면에 의해 상기 제3 뇌실 영역의 3D 블랍을 분할하고;
    상기 후보 평면이 상기 3D 블랍을 대칭적으로 분할하는지를 결정하고;
    상기 후보 평면이 상기 3D 블랍을 대칭적으로 분할하는 것으로 결정할 때, 상기 후보 평면을 상기 MSP로서 지정함으로써 상기 MSP를 결정하도록 구성되는, 이미지 처리 디바이스.
  20. 제19항에 있어서, 상기 후보 평면은 상기 AC 영역 및 상기 PC 영역을 연결하는 라인에 정렬되는, 이미지 처리 디바이스.
  21. 제12항에 있어서, 상기 프로세서는,
    상기 복수의 후보 평면 중 하나가 상기 제3 뇌실 영역의 3D 블랍을 대칭적으로 분할하는 것으로 결정될 때까지 상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 복수의 후보 평면에 의해 상기 제3 뇌실 영역의 3D 블랍을 순차적으로 분할하고;
    상기 복수의 후보 평면 중 하나를 상기 MSP로서 지정함으로써 상기 MSP를 결정하도록 구성되는, 이미지 처리 디바이스.
  22. 뇌의 복수의 자기 공명(MR) 이미지로부터 정중시상 평면(MSP)을 체적측정식으로 결정하기 위한 명령어들을 포함하는 비일시적 컴퓨터 판독가능 저장 매체로서, 상기 명령어들은 프로세서로 하여금 동작들을 수행하게 하며, 상기 동작들은,
    상기 복수의 MR 이미지를 수신하는 동작;
    상기 복수의 MR 이미지를 3D 좌표 공간에 정의되는 3D 체적 이미지로 변환하는 동작;
    AC 영역, PC 영역, 및 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 사전 훈련된 세그먼트화 모델에 기초하여 상기 3D 체적 이미지 내의 전교련(AC) 영역, 후교련(PC) 영역, 및 제3 뇌실 영역의 시맨틱 세그먼트화를 수행하는 동작;
    상기 라벨링된 3D 마스크 이미지에 기초하여 상기 세그먼트화된 제3 뇌실 영역의 3D 체적측정 이미지를 작성하는 동작; 및
    상기 제3 뇌실 영역의 3D 체적측정 이미지에 기초하여 상기 MSP를 결정하는 동작
    을 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
  23. 제22항에 있어서, 시맨틱 세그먼트화를 수행하는 동작은,
    상기 3D 체적 이미지의 복수의 슬라이스 각각의 복수의 픽셀을 미리 결정된 범위 내의 세기 값들로 정규화하는 동작;
    상기 3D 체적 이미지의 복수의 슬라이스 각각 내의 중심 관심 영역으로부터 상기 복수의 픽셀의 세트를 추출하는 동작;
    상기 AC 영역, 상기 PC 영역, 및 상기 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 발생시키기 위해 상기 사전 훈련된 세그먼트화 모델에 기초하여 상기 정규화되고 추출된 3D 체적 이미지의 AC 영역, PC 영역, 및 제3 뇌실 영역을 세그먼트화하는 동작;
    상기 3D 마스크 이미지에서 상기 AC 영역 및 상기 PC 영역 각각에 대한 질량 중심을 결정하는 동작; 및
    상기 AC 영역의 질량 중심에 대응하는 AC 지점을 상기 AC 영역으로서 라벨링하고 상기 PC 영역의 질량 중심에 대응하는 PC 지점을 상기 3D 마스크 이미지 내의 PC 영역으로서 라벨링하는 동작을 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
  24. 제22항에 있어서, 상기 MSP를 결정하는 동작은,
    상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격에 기초하여 상기 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 후보 평면을 결정하는 동작; 및
    상기 후보 평면을 상기 MSP로서 지정하는 동작을 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
  25. 제22항에 있어서,
    상기 MSP를 나타내는 정보를 출력하는 동작; 및
    상기 AC 영역, 상기 PC 영역, 및 상기 제3 뇌실 영역으로 라벨링되는 3D 마스크 이미지를 출력하는 동작을 추가로 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
  26. 제25항에 있어서, 상기 MSP를 나타내는 정보는 상기 MSP를 정의하는 한 세트의 좌표들 또는 방정식인, 비일시적 컴퓨터 판독가능 저장 매체.
  27. 제26항에 있어서, 상기 MSP를 정의하는 한 세트의 좌표들은 상기 AC 영역을 나타내는 제1 좌표, 상기 PC 영역을 나타내는 제2 좌표, 및 상기 제1 및 제2 좌표들과 함께 상기 MSP를 정의하는 지점을 나타내는 제3 좌표를 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
  28. 제22항에 있어서, 상기 MSP를 결정하는 동작은,
    상기 복수의 후보 평면 중 하나가 상기 제3 뇌실 영역의 3D 체적측정 이미지를 대칭적으로 분할하는 것으로 결정될 때까지 상기 제3 뇌실 영역의 3D 체적측정 이미지의 골격으로부터 시작하여 복수의 후보 평면에 의해 상기 제3 뇌실 영역의 3D 체적측정 이미지를 순차적으로 분할하는 동작; 및 상기 복수의 후보 평면 중 하나를 상기 MSP로서 지정하는 동작을 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
KR1020200159924A 2019-11-26 2020-11-25 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치 KR102537214B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230065592A KR102652749B1 (ko) 2019-11-26 2023-05-22 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962940576P 2019-11-26 2019-11-26
US62/940,576 2019-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230065592A Division KR102652749B1 (ko) 2019-11-26 2023-05-22 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20210065871A true KR20210065871A (ko) 2021-06-04
KR102537214B1 KR102537214B1 (ko) 2023-05-31

Family

ID=73598709

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200159924A KR102537214B1 (ko) 2019-11-26 2020-11-25 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치
KR1020230065592A KR102652749B1 (ko) 2019-11-26 2023-05-22 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230065592A KR102652749B1 (ko) 2019-11-26 2023-05-22 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치

Country Status (5)

Country Link
US (2) US11798161B2 (ko)
EP (2) EP4290457A3 (ko)
JP (2) JP7092431B2 (ko)
KR (2) KR102537214B1 (ko)
CN (1) CN112950648A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644342B1 (ko) * 2023-11-29 2024-03-06 주식회사 뉴큐어엠 파킨슨병 진단을 위한 뇌 구조 구획 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786309B2 (en) * 2020-12-28 2023-10-17 Advanced Neuromodulation Systems, Inc. System and method for facilitating DBS electrode trajectory planning
CN117372322A (zh) * 2022-06-30 2024-01-09 武汉联影智融医疗科技有限公司 人脸朝向的确定方法及装置、人脸图像的重建方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071163A1 (en) * 2006-09-20 2008-03-20 Siemens Corporate Research, Inc. System and Method for Magnetic Resonance Brain Scan Planning
US20080285829A1 (en) * 2007-05-14 2008-11-20 Siemens Corporate Research, Inc. System and Method for Consistent Detection of Mid-Sagittal Planes for Magnetic Resonance Brain Scans
US20140233824A1 (en) * 2008-09-24 2014-08-21 Cedara Software Corp. Anterior commissure and posterior commissure segmentation system and method
KR20170116100A (ko) * 2015-03-31 2017-10-18 소니 주식회사 T1 mri로부터의 자동 3d 분할 및 피질 표면 재구성
EP3298968A1 (en) 2006-09-08 2018-03-28 Medtronic, Inc. Method for identification of anatomical landmarks
KR20190028422A (ko) * 2016-07-08 2019-03-18 아벤트, 인크. 해부학적 대상들의 자동 검출, 국부화, 및 의미론적 세그먼트화를 위한 시스템 및 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337920A (ja) 1993-05-28 1994-12-06 Toshiba Medical Eng Co Ltd 画像処理装置
US8190232B2 (en) 2007-10-04 2012-05-29 Siemens Aktiengesellschaft Automatic alignment of magnetic resonance imaging (MRI) brain scan by anatomic landmarks
JP2011509141A (ja) * 2008-01-10 2011-03-24 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Mriスキャンデータにおける梗塞とアーティファクトとの識別
JP5415772B2 (ja) * 2009-01-07 2014-02-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 正中面決定装置および磁気共鳴イメージング装置
JP2012139260A (ja) 2010-12-28 2012-07-26 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置、正中面決定方法、およびプログラム
EP3514756A1 (en) 2018-01-18 2019-07-24 Koninklijke Philips N.V. Medical analysis method for predicting metastases in a test tissue sample
CN108961292B (zh) * 2018-05-31 2021-05-07 东软医疗系统股份有限公司 一种在脑部医学图像中检测msp的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3298968A1 (en) 2006-09-08 2018-03-28 Medtronic, Inc. Method for identification of anatomical landmarks
US20080071163A1 (en) * 2006-09-20 2008-03-20 Siemens Corporate Research, Inc. System and Method for Magnetic Resonance Brain Scan Planning
US20080285829A1 (en) * 2007-05-14 2008-11-20 Siemens Corporate Research, Inc. System and Method for Consistent Detection of Mid-Sagittal Planes for Magnetic Resonance Brain Scans
US20140233824A1 (en) * 2008-09-24 2014-08-21 Cedara Software Corp. Anterior commissure and posterior commissure segmentation system and method
KR20170116100A (ko) * 2015-03-31 2017-10-18 소니 주식회사 T1 mri로부터의 자동 3d 분할 및 피질 표면 재구성
KR20190028422A (ko) * 2016-07-08 2019-03-18 아벤트, 인크. 해부학적 대상들의 자동 검출, 국부화, 및 의미론적 세그먼트화를 위한 시스템 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Khagi B, Kwon G-R, Pixel-Label-Based Segmentation of Cross-Sectional Brain MRI Using Simplified SegNet Architecture-Based CNN. Hindawi Journal of Healthcare Engineering. (2018.10.28.)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644342B1 (ko) * 2023-11-29 2024-03-06 주식회사 뉴큐어엠 파킨슨병 진단을 위한 뇌 구조 구획 방법

Also Published As

Publication number Publication date
US20210158515A1 (en) 2021-05-27
JP2021084036A (ja) 2021-06-03
CN112950648A (zh) 2021-06-11
KR102537214B1 (ko) 2023-05-31
US20240013393A1 (en) 2024-01-11
EP4290457A3 (en) 2024-02-21
KR102652749B1 (ko) 2024-04-01
JP7092431B2 (ja) 2022-06-28
KR20230078608A (ko) 2023-06-02
JP7205034B2 (ja) 2023-01-17
EP4290457A2 (en) 2023-12-13
EP3828829B1 (en) 2023-12-13
US11798161B2 (en) 2023-10-24
JP2022111357A (ja) 2022-07-29
EP3828829C0 (en) 2023-12-13
EP3828829A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US8761475B2 (en) System and method for automatic recognition and labeling of anatomical structures and vessels in medical imaging scans
KR102652749B1 (ko) 자기 공명 이미지들에서 정중시상 평면을 결정하기 위한 방법 및 장치
US9155470B2 (en) Method and system for model based fusion on pre-operative computed tomography and intra-operative fluoroscopy using transesophageal echocardiography
CN104346821B (zh) 用于医学成像的自动规划
US8861891B2 (en) Hierarchical atlas-based segmentation
JP2007054636A (ja) イメージの対を位置合わせする方法およびコンピュータによって実行される命令からなるプログラムを具現化して該方法を実施するプログラム記憶装置
US9691157B2 (en) Visualization of anatomical labels
US11593519B2 (en) Anonymisation of medical patient images using an atlas
US10628963B2 (en) Automatic detection of an artifact in patient image
US11682115B2 (en) Atlas-based location determination of an anatomical region of interest
US20180064409A1 (en) Simultaneously displaying medical images
JP2019511268A (ja) 脳深部刺激療法の電極の三次元画像における回転配向の決定
US10176612B2 (en) System and method for retrieval of similar findings from a hybrid image dataset
US11928828B2 (en) Deformity-weighted registration of medical images
US10068351B2 (en) Automatic detection and identification of brain sulci in MRI
CN116997937A (zh) 用于在至少一个界面中可视化对象的至少一个区的方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
A107 Divisional application of patent
GRNT Written decision to grant