KR20210065870A - Access line management for an array of memory cells - Google Patents

Access line management for an array of memory cells Download PDF

Info

Publication number
KR20210065870A
KR20210065870A KR1020200159770A KR20200159770A KR20210065870A KR 20210065870 A KR20210065870 A KR 20210065870A KR 1020200159770 A KR1020200159770 A KR 1020200159770A KR 20200159770 A KR20200159770 A KR 20200159770A KR 20210065870 A KR20210065870 A KR 20210065870A
Authority
KR
South Korea
Prior art keywords
voltage
driver
access
line
memory cell
Prior art date
Application number
KR1020200159770A
Other languages
Korean (ko)
Other versions
KR102400518B1 (en
Inventor
다니엘레 비메르카티
Original Assignee
마이크론 테크놀로지, 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/695,848 external-priority patent/US10896713B2/en
Application filed by 마이크론 테크놀로지, 인크 filed Critical 마이크론 테크놀로지, 인크
Publication of KR20210065870A publication Critical patent/KR20210065870A/en
Application granted granted Critical
Publication of KR102400518B1 publication Critical patent/KR102400518B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2259Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/221Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using ferroelectric capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • G11C11/2257Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Abstract

Disclosed are a method, system and device for managing an access line for an array of memory cells. Some memory devices may include a plate which is joined to a memory cell related to a plurality of digit lines and/or a plurality of word lines. Because the plate is joined to a plurality of the digit lines and/or the word lines, unintended cross connection among various components of the memory device may be important. In order to mitigate an effect of the unintended cross connection among various components, the memory device may float a word line deselected during one or more of access operations. Accordingly, a voltage of each word line deselected may be related to a voltage of the plate because a change in the voltage of the plate can occur. The method for managing an access line for an array of memory cells comprises the following steps of: driving a plate joined to a first memory cell of an array of memory cells with a first voltage; identifying an access operation related to a second memory cell of the array of memory cells; floating the first access line joined to the first memory cell for the duration, based on at least some part of the access operation related to the second memory cell; and driving the plate for the duration with the first voltage to a second voltage, based on at least some part of the access operation related to the second memory cell.

Description

메모리 셀들의 어레이에 대한 액세스 라인 관리{ACCESS LINE MANAGEMENT FOR AN ARRAY OF MEMORY CELLS}ACCESS LINE MANAGEMENT FOR AN ARRAY OF MEMORY CELLS

교차 참조cross reference

본 특허 출원은 2019 년 11 월 26 일에 출원된 "ACCESS LINE MANAGEMENT FOR AN ARRAY OF MEMORY CELLS"라는 제목의 Vimercati에 의한 미국 특허 출원 번호 16/695,848에 대한 우선권을 주장하고, 이는 2018 년 5 월 4 일에 출원된 현재 심사중인 "ACCESS LINE MANAGEMENT FOR AN ARRAY OF MEMORY CELLS"라는 제목의 Vimercati에 의한 미국 특허 출원 번호 15/971,639의 일부 계속 출원이고, 이들의 각각은 양수인에게 양도되며, 이들의 각각은 그 전체가 본 출원에 참조로 명시적으로 통합된다.This patent application claims priority to U.S. Patent Application No. 16/695,848 by Vimercati, entitled “ACCESS LINE MANAGEMENT FOR AN ARRAY OF MEMORY CELLS,” filed on November 26, 2019, which is filed on May 4, 2018 is a continuation-in-part of U.S. Patent Application No. 15/971,639 to Vimercati, entitled "ACCESS LINE MANAGEMENT FOR AN ARRAY OF MEMORY CELLS," filed at This application is expressly incorporated by reference in its entirety.

이하는 전반적으로 메모리 셀에 대한 액세스 관리에 관한 것이고, 보다 구체적으로 메모리 셀들의 어레이에 대한 액세스 라인 관리에 관한 것이다.The following relates generally to access management for memory cells, and more specifically to access line management for an array of memory cells.

메모리 디바이스는 컴퓨터, 무선 통신 디바이스, 카메라, 디지털 디스플레이 등과 같은 다양한 전자 디바이스에 정보를 저장하는데 널리 사용된다. 정보는 메모리 디바이스의 다양한 상태를 프로그래밍하여 저장된다. 예를 들어, 이진 디바이스에는 종종 로직 "1” 또는 로직 "0"으로 표시되는 2 가지 상태가 있다. 다른 시스템에서는 2 개 초과의 상태가 저장될 수 있다. 저장된 정보에 액세스하기 위해, 전자 디바이스의 컴포넌트는 메모리 디바이스에 저장된 상태를 판독하거나 감지할 수 있다. 정보를 저장하기 위해, 전자 디바이스의 컴포넌트는 메모리 디바이스에 상태를 기록하거나 프로그램할 수 있다.BACKGROUND Memory devices are widely used to store information in various electronic devices such as computers, wireless communication devices, cameras, digital displays, and the like. Information is stored by programming the various states of the memory device. For example, a binary device has two states, often denoted as a logic "1" or a logic "0." In other systems, more than two states may be stored. To access the stored information, the electronic device's A component may read or sense the state stored in the memory device To store information, a component of the electronic device may write or program the state in the memory device.

자기 하드 디스크, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 동적 RAM(DRAM), 동기식 동적 RAM(SDRAM), 강유전성 RAM(FeRAM), 자기 RAM(MRAM), 저항성 RAM(RRAM), 플래시 메모리, 상 변화 메모리(PCM) 등을 포함하는 다양한 유형의 메모리 디바이스가 존재한다. 메모리 디바이스는 휘발성 또는 비 휘발성일 수 있다. FeRAM과 같은 비 휘발성 메모리는 외부 전원이 없는 경우에도 장기간 저장된 로직 상태를 유지할 수 있다. 예를 들어, DRAM과 같은 휘발성 메모리 디바이스는 외부 전원에 의해 주기적으로 리프레시(refresh)되지 않는 한 시간이 지남에 따라 저장된 상태를 잃을 수 있다. FeRAM은 휘발성 메모리와 유사한 디바이스 아키텍처를 사용할 수 있지만 저장 디바이스로 강유전성 커패시터를 사용하기 때문에 비 휘발성 속성을 가질 수 있다. 따라서, FeRAM 디바이스는 다른 비 휘발성 및 휘발성 메모리 디바이스에 비해 향상된 성능을 가질 수 있다.Magnetic Hard Disk, Random Access Memory (RAM), Read Only Memory (ROM), Dynamic RAM (DRAM), Synchronous Dynamic RAM (SDRAM), Ferroelectric RAM (FeRAM), Magnetic RAM (MRAM), Resistive RAM (RRAM), Flash Various types of memory devices exist, including memory, phase change memory (PCM), and the like. A memory device may be volatile or non-volatile. Non-volatile memories such as FeRAM can retain stored logic states for long periods of time even in the absence of an external power source. For example, volatile memory devices such as DRAMs may lose their stored state over time unless periodically refreshed by an external power source. FeRAM may use a device architecture similar to volatile memory, but may have non-volatile properties because it uses a ferroelectric capacitor as the storage device. Thus, FeRAM devices can have improved performance compared to other non-volatile and volatile memory devices.

메모리 디바이스를 개선하는 것은 다른 것들 중에서 일반적으로 메모리 셀 밀도 증가, 판독/기록 속도 증가, 신뢰성 증가, 데이터 보유 증가, 전력 소비 감소 또는 제조 비용 감소를 포함할 수 있다.Improving memory devices may generally include increasing memory cell density, increasing read/write speeds, increasing reliability, increasing data retention, reducing power consumption, or reducing manufacturing costs, among others.

도 1은 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 지원하는 메모리 어레이의 예를 예시한다.
도 2는 본 개시의 예에 따른 액세스 라인 관리를 위한 기술을 지원하는 회로의 예를 예시한다.
도 3은 본 개시의 예에 따른 액세스 라인 관리를 위한 기술을 지원하는 메모리 디바이스의 예를 예시한다.
도 4a 및 4b는 본 개시의 예에 따른 액세스 라인 관리를 위한 기술을 지원하는 메모리 디바이스 및 타이밍 다이어그램의 예를 예시한다.
도 5a 및 5b는 본 개시의 예에 따른 액세스 라인 관리를 위한 기술을 지원하는 메모리 디바이스 및 타이밍 다이어그램의 예를 예시한다.
도 6 및 7은 본 개시의 예에 따른 액세스 라인 관리를 위한 기술을 지원하는 디바이스의 블록도를 도시한다.
도 8 내지 10은 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 방법을 예시한다.
도 11은 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 회로의 예를 예시한다.
도 12a 내지 12d는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램을 예시한다.
도 13은 본 개시의 예에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 지원하는 액세스 라인 관리기의 블록도를 예시한다.
도 14는 본 개시의 예들에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 지원하는 디바이스를 포함하는 시스템의 다이어그램을 예시한다.
도 15는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 방법을 예시한다.
1 illustrates an example of a memory array that supports access line management for an array of memory cells in accordance with an example of the present disclosure.
2 illustrates an example of circuitry supporting techniques for access line management in accordance with examples of this disclosure.
3 illustrates an example of a memory device supporting techniques for access line management in accordance with examples of this disclosure.
4A and 4B illustrate examples of memory devices and timing diagrams supporting techniques for access line management in accordance with examples of this disclosure.
5A and 5B illustrate examples of memory devices and timing diagrams supporting techniques for access line management in accordance with examples of this disclosure.
6 and 7 show block diagrams of devices supporting techniques for access line management according to examples of the present disclosure.
8-10 illustrate a method for access line management for an array of memory cells in accordance with examples of the present disclosure.
11 illustrates an example of circuitry supporting techniques for managing access lines for an array of memory cells in accordance with examples of this disclosure.
12A-12D illustrate example timing diagrams supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure.
13 illustrates a block diagram of an access line manager that supports access line management for an array of memory cells in accordance with an example of the present disclosure.
14 illustrates a diagram of a system including a device that supports access line management for an array of memory cells in accordance with examples of this disclosure.
15 illustrates a method for access line management for an array of memory cells in accordance with an example of the present disclosure.

일부 메모리 어레이는 복수의 메모리 셀에 공통인 플레이트를 포함할 수 있으며, 메모리 셀은 또한 복수의 디지트 라인 및/또는 복수의 워드 라인과 관련된다. 선택된 메모리 셀에 대한 액세스 동작(예를 들어, 하이 전압과 로우 전압 사이)과 관련하여 플레이트의 전압(따라서 또한 관련 플레이트 라인의 전압)이 변동함에 따라, 일부 메모리 디바이스는 고정 전압에서 플레이트(선택 해제된(unselected) 워드 라인으로 지칭될 수 있음)에 공통인 선택 해제된 메모리 셀에 대해 각각의 워드 라인을 유지할 수 있다. 이것은 각각의 선택 해제된 워드 라인(예를 들어, 각각의 선택 해제된 워드 라인과 공통 플레이트 또는 플레이트 라인 사이)과 관련된 용량성(예를 들어, 기생) 교차 결합(cross-coupling)으로 인한 누설 전류 및 관련 전력 손실을 초래할 수 있다. 플레이트가 많은 메모리 셀에 공통인 경우, 커패시턴스(예를 들어, 기생 커패시턴스)의 양과 플레이트와 선택 해제된 워드 라인 사이의 의도하지 않은 교차 결합, 따라서, 관련 전력 손실의 양이 상당할 수 있다. 메모리 어레이에 의한 추가 전력 소비와 함께, 이러한 의도하지 않은 교차 결합으로 인한 기생 신호는 선택 해제된 메모리 셀에 저장된 로직 상태를 방해할 수 있다. 예를 들어, 기생 시그널링은 다른 영향 중에서도 메모리 셀에 저장된 상태를 변경하거나 액세스 동작에 오류를 도입함으로써 데이터에 오류가 도입될 수 있다.Some memory arrays may include a plate common to a plurality of memory cells, the memory cells also associated with a plurality of digit lines and/or a plurality of word lines. As the voltage of the plate (and thus also the voltage of the associated plate line) fluctuates in connection with an access operation (eg, between a high voltage and a low voltage) to a selected memory cell, some memory devices cause the plate (deselection) to occur at a fixed voltage. Each word line may be maintained for a common deselected memory cell (which may be referred to as an unselected word line). This is the leakage current due to capacitive (eg, parasitic) cross-coupling associated with each deselected word line (eg, between each deselected word line and a common plate or plate line). and associated power loss. If the plate is common to many memory cells, the amount of capacitance (eg, parasitic capacitance) and unintentional cross-coupling between the plate and the deselected word line, and thus the associated power loss, can be significant. Along with additional power consumption by the memory array, parasitic signals due to this unintended cross-coupling can disrupt the logic state stored in the deselected memory cells. For example, parasitic signaling can introduce errors into data by changing states stored in memory cells or introducing errors into access operations, among other effects.

복수의 디지트 라인 및/또는 복수의 워드 라인(직접 또는 간접)와 관련된 메모리 셀에 공통된 플레이트를 포함할 수 있는 메모리 디바이스에서 액세스 동작 동안 액세스 라인(예를 들어, 선택 해제된 액세스 라인, 선택 해제된 워드 라인)을 관리하기 위한 기술이 본 출원에서 설명된다. 예를 들어, 의도하지 않은 교차 결합의 영향을 줄이거나 완화하기 위해, 메모리 디바이스는 플레이트의 전압을 변경할 때 다수의 선택 해제된 액세스 라인(예를 들어, 워드 라인)을 플로팅(float)할 수 있다. 따라서, 메모리 디바이스는 선택된 메모리 셀에 대한 액세스 동작의 하나 이상의 부분 동안, 그리고 일부 경우에 액세스 동작 전 또는 후에 지속 시간 동안 선택 해제된 워드 라인을 플로팅할 수 있다. 선택 해제된 액세스 라인을 플로팅하면 플레이트 및 플레이트 라인의 전압을 추적(예를 들어, 일정하거나 거의 일정한 차이를 유지)하는 각각의 선택 해제된 액세스 라인의 전압을 가능하게 하여 메모리 어레이의 전체적인 전력 소비를 낮출 수 있고 뿐만 아니라 선택 해제된 메모리 셀과 관련된 오류를 적게할 수 있다. 본 출원에서 사용되는, 노드 플로팅은 임의의 정의된 전압 소스로부터 노드를 전기적으로 절연시키는 것을 의미할 수 있다.Access lines (e.g., deselected access lines, deselected A technique for managing word lines) is described in this application. For example, to reduce or mitigate the effects of unintentional cross-coupling, the memory device may float a number of deselected access lines (eg, word lines) when changing the voltage of the plate. . Accordingly, the memory device may float the deselected word line during one or more portions of an access operation to the selected memory cell, and in some cases for a duration before or after the access operation. Floating deselected access lines reduces the overall power consumption of the memory array by enabling the voltage of each deselected access line to track (eg, maintain a constant or near constant difference) the voltage of the plate and plate line can be lowered as well as errors associated with deselected memory cells. As used herein, node floating may refer to electrically isolating a node from any defined voltage source.

상기에서 소개된 개시 내용의 특징은 도 1 내지 도 3의 맥락에서 아래에 더 설명된다. 그런 다음, 특정 예가 도 4a-4b 및 5a-5b, 11 및 12a-12d를 참조하여 설명된다. 본 개시의 이들 및 다른 특징들은 메모리 셀들의 어레이에 대한 액세스 라인 관리를 위한 기술들과 관련된 장치 다이어그램들, 시스템 다이어그램들 및 흐름도들에 의해 추가로 예시되고 설명된다.Features of the disclosure introduced above are further described below in the context of FIGS. 1-3 . Specific examples are then described with reference to FIGS. 4A-4B and 5A-5B, 11 and 12A-12D. These and other features of the present disclosure are further illustrated and described by apparatus diagrams, system diagrams, and flow diagrams related to techniques for managing an access line for an array of memory cells.

도 1 은 본 개시의 다양한 실시예들에 따른 예시적인 메모리 어레이(100)를 예시한다. 메모리 어레이(100)는 또한 전자 메모리 디바이스로 지칭될 수 있다. 메모리 어레이(100)는 상이한 상태를 저장하도록 프로그래밍 가능한 메모리 셀(105)을 포함한다. 각각의 메모리 셀(105)은 로직 0 및 로직 1로 표시된 2 개의 상태를 저장하도록 프로그래밍 가능할 수 있다. 일부 경우에, 메모리 셀(105)은 2 개 이상의 로직 상태를 저장하도록 구성된다. 메모리 셀(105)은 커패시터에 프로그램 가능 상태를 나타내는 전하를 저장할 수 있다; 예를 들어, 충전된 커패시터와 충전되지 않은 커패시터는 개별적으로 2 가지 로직 상태를 나타낼 수 있다. DRAM 아키텍처는 일반적으로 이러한 디자인을 사용할 수 있으며, 사용되는 커패시터는 절연체로서 선형 또는 초 전기 분극 속성을 갖는 유전체 재료를 포함할 수 있다. 반대로, 강유전성 메모리 셀은 절연 재료로서 강유전체를 갖는 커패시터를 포함할 수 있다. 강유전성 커패시터의 서로 다른 충전 레벨은 서로 다른 로직 상태를 나타낼 수 있다. 강유전성 재료는 비선형 분극 속성을 가지고 있다; 강유전성 메모리 셀(105)의 일부 세부 사항 및 이점이 아래에서 논의된다.1 illustrates an exemplary memory array 100 in accordance with various embodiments of the present disclosure. Memory array 100 may also be referred to as an electronic memory device. Memory array 100 includes memory cells 105 programmable to store different states. Each memory cell 105 may be programmable to store two states, denoted logic 0 and logic 1. In some cases, memory cell 105 is configured to store two or more logic states. Memory cell 105 may store charge in a capacitor representing a programmable state; For example, a charged capacitor and an uncharged capacitor may individually exhibit two logic states. DRAM architectures may typically use such designs, and the capacitors used may include dielectric materials with linear or super-electrically polarizing properties as insulators. Conversely, a ferroelectric memory cell may include a capacitor having a ferroelectric as an insulating material. Different charge levels of ferroelectric capacitors can represent different logic states. Ferroelectric materials have nonlinear polarization properties; Some details and advantages of ferroelectric memory cell 105 are discussed below.

메모리 어레이(100)는 2 차원(2D) 메모리 어레이가 서로의 상부에 형성되는 3 차원(3D) 메모리 어레이일 수 있다. 이는 2D 어레이와 비교하여 단일 다이 또는 기판 상에 형성될 수 있는 메모리 셀의 수를 증가시킬 수 있으며, 이는 결국 생산 비용을 감소시키거나 메모리 어레이의 성능을 증가시킬 수 있거나, 또는 둘 모두일 수 있다. 도 1에 도시된 예에 따르면, 메모리 어레이(100)는 2 개의 레벨의 메모리 셀(105)을 포함하므로 3 차원 메모리 어레이로 간주될 수 있다; 그러나 레벨 수는 2 개로 제한되지 않는다. 각각의 레벨은 메모리 셀(105)이 각각의 레벨에 걸쳐 서로 대략적으로 정렬되어 메모리 셀 스택(145)을 형성하도록 정렬되거나 위치될 수 있다. 일부 경우에, 메모리 어레이(100)는 메모리 디바이스(100)로 지칭될 수 있다.The memory array 100 may be a three-dimensional (3D) memory array in which two-dimensional (2D) memory arrays are formed on top of each other. This can increase the number of memory cells that can be formed on a single die or substrate compared to a 2D array, which in turn can reduce production costs or increase the performance of the memory array, or both . According to the example shown in FIG. 1 , the memory array 100 includes two levels of memory cells 105 and thus may be considered a three-dimensional memory array; However, the number of levels is not limited to two. Each level may be aligned or positioned such that the memory cells 105 are approximately aligned with each other across each level to form a memory cell stack 145 . In some cases, the memory array 100 may be referred to as a memory device 100 .

메모리 셀(105)의 각각의 행(row)은 액세스 라인(110)에 연결되고, 메모리 셀(105)의 각각의 열(column)은 비트 라인(115)에 연결된다. 액세스 라인(110)과 비트 라인(115)은 어레이를 생성하기 위해 서로 실질적으로 수직일 수 있다. 추가하여, 메모리 셀(105)의 각각의 행은 적어도 하나의 플레이트 라인(미도시)에 결합될 수 있다. 본 출원에 사용된 용어 플레이트 노드, 플레이트 라인, 또는 단순히 플레이트는 상호 교환하여 사용될 수 있다. 도 1에 도시된 바와 같이, 메모리 셀 스택(145)의 각각의 메모리 셀(105)은 비트 라인(115)과 같은 별개의 전도성 라인에 결합될 수 있다. 다른 예들(미도시)에서, 메모리 셀 스택(145)의 2 개의 메모리 셀(105)은 공통 전도성 라인 예컨대, 비트 라인(115)을 공유할 수 있다. 즉, 비트 라인(115)은 상부 메모리 셀(105)의 바닥 전극 및 하부 메모리 셀(105)의 상부 전극과 전자 통신할 수 있다. 다른 구성이 가능할 수 있고 예를 들어, 제 3 데크는 하부 데크와 액세스 라인(110)을 공유할 수 있다. 일반적으로, 하나의 메모리 셀(105)은 액세스 라인(110) 및 비트 라인(115)과 같은 2 개의 전도성 라인의 인터섹션에 위치될 수 있다. 이 인터섹션은 메모리 셀의 어드레스라고 할 수 있다. 타겟 메모리 셀(105)은 에너자이즈된 액세스 라인(110)과 비트 라인(115)의 인터섹션에 위치된 메모리 셀(105)일 수 있다; 즉, 액세스 라인(110) 및 비트 라인(115)은 그들의 인터섹션에서 메모리 셀(105)을 판독하거나 기록하기 위해 에너자이즈될 수 있다. 동일한 액세스 라인(110) 또는 비트 라인(115)과 전자 통신하는(예를 들어, 접속된) 다른 메모리 셀(105)은 비 타겟 메모리 셀(105)로 지칭될 수 있다.Each row of memory cells 105 is coupled to an access line 110 , and each column of memory cells 105 is coupled to a bit line 115 . Access line 110 and bit line 115 may be substantially perpendicular to each other to create an array. Additionally, each row of memory cells 105 may be coupled to at least one plate line (not shown). As used herein, the terms plate node, plate line, or simply plate may be used interchangeably. 1 , each memory cell 105 of the memory cell stack 145 may be coupled to a separate conductive line, such as a bit line 115 . In other examples (not shown), two memory cells 105 of memory cell stack 145 may share a common conductive line, eg, bit line 115 . That is, the bit line 115 may be in electronic communication with the bottom electrode of the upper memory cell 105 and the upper electrode of the lower memory cell 105 . Other configurations may be possible and for example the third deck may share the access line 110 with the lower deck. In general, one memory cell 105 may be located at the intersection of two conductive lines, such as an access line 110 and a bit line 115 . This intersection may be referred to as an address of a memory cell. The target memory cell 105 may be a memory cell 105 located at the intersection of the energized access line 110 and the bit line 115 ; That is, the access line 110 and the bit line 115 may be energized to read or write the memory cell 105 at their intersection. Another memory cell 105 in electronic communication with (eg, connected to) the same access line 110 or bit line 115 may be referred to as a non-target memory cell 105 .

상기에서 논의된 바와 같이, 전극은 메모리 셀(105) 및 액세스 라인(110) 또는 비트 라인(115)에 결합될 수 있다. 전극이라는 용어는 전기 전도체를 지칭할 수 있고, 일부 경우에 메모리 셀(105)에 대한 전기적 컨택으로 사용될 수 있다. 전극은 메모리 어레이(100)의 엘리먼트 또는 컴포넌트 사이의 전도성 경로를 제공하는 트레이스, 와이어, 전도성 라인, 전도성 층 등을 포함할 수 있다. As discussed above, the electrode may be coupled to the memory cell 105 and the access line 110 or bit line 115 . The term electrode may refer to an electrical conductor and in some cases may be used as an electrical contact to the memory cell 105 . Electrodes may include traces, wires, conductive lines, conductive layers, etc. that provide conductive paths between elements or components of memory array 100 .

판독 및 기록과 같은 동작은 액세스 라인(110) 및 디지트 라인(115)을 활성화 또는 선택함으로써 메모리 셀(105) 상에서 수행될 수 있다. 액세스 라인(110)은 또한 워드 라인(110)으로 알려질 수 있고, 비트 라인(115)은 또한 공지된 디지트 라인(115)일 수 있다. 일반적으로, 액세스 라인이라는 용어는 워드 라인, 비트 라인, 디지트 라인 또는 플레이트 라인을 지칭할 수 있다. 워드 라인과 비트 라인 또는 그 유사어에 대한 참조는 이해 또는 동작 손실없이 상호 교환할 수 있다. 워드 라인(110) 또는 디지트 라인(115)을 활성화 또는 선택하는 것은 개별 라인에 전압을 인가하는 것을 포함할 수 있다. 워드 라인(110) 및 디지트 라인(115)은 전도성 재료 예컨대, 금속(예를 들어, 구리(Cu), 알루미늄(Al), 금(Au), 텅스텐(W) 등), 금속 합금, 탄소, 도핑된 반도체, 또는 기타 전도성 재료, 합금, 화합물 등으로 만들어 질 수 있다. Operations such as read and write may be performed on memory cell 105 by activating or selecting access line 110 and digit line 115 . Access line 110 may also be known as word line 110 , and bit line 115 may also be known digit line 115 . In general, the term access line may refer to a word line, bit line, digit line, or plate line. References to word lines and bit lines or the like are interchangeable without loss of understanding or operation. Activating or selecting the word line 110 or digit line 115 may include applying a voltage to the respective line. The word line 110 and the digit line 115 may be formed of a conductive material such as a metal (eg, copper (Cu), aluminum (Al), gold (Au), tungsten (W), etc.), a metal alloy, carbon, doping. semiconductors, or other conductive materials, alloys, compounds, etc.

일부 아키텍처에서, 셀의 로직 저장 디바이스, 예를 들어, 커패시터는 선택 컴포넌트에 의해 디지트 라인으로부터 전기적으로 절연될 수 있다. 워드 라인(110)은 선택 컴포넌트와 연결되어 제어할 수 있다. 예를 들어, 선택 컴포넌트는 트랜지스터일 수 있고 워드 라인(110)은 트랜지스터의 게이트에 연결될 수 있다. 워드 라인(110)을 활성화하면 메모리 셀(105)의 커패시터와 그에 대응하는 디지트 라인(115) 사이의 전기적 연결 또는 폐쇄 회로가 발생한다. 그런 다음, 디지트 라인은 메모리 셀(105)을 판독하거나 기록 위해 액세스될 수 있다. 메모리 셀(105)을 선택하면, 결과 신호는 저장된 로직 상태를 결정하는데 사용될 수 있다. In some architectures, the cell's logic storage device, eg, a capacitor, may be electrically isolated from the digit line by a select component. The word line 110 may be controlled by being connected to a selection component. For example, the select component may be a transistor and the word line 110 may be coupled to the gate of the transistor. Activating the word line 110 creates an electrical connection or closed circuit between the capacitor of the memory cell 105 and the corresponding digit line 115 . The digit line can then be accessed to read or write the memory cell 105 . Upon selection of memory cell 105, the resulting signal can be used to determine a stored logic state.

메모리 셀(105)의 액세스는 행 디코더(120) 및 열 디코더(130)를 통해 제어될 수 있다. 예를 들어, 행 디코더(120)는 메모리 제어기(140)로부터 행 어드레스를 수신하고, 수신된 행 어드레스에 기초하여 적절한 워드 라인(110)을 활성화할 수 있다. 유사하게, 열 디코더(130)는 메모리 제어기(140)로부터 열 어드레스를 수신하고 적절한 디지트 라인(115)을 활성화한다. 예를 들어, 메모리 어레이 (100)는 다수의 워드 라인 (110) 및 다수의 디지트 라인 (115)을 포함할 수 있다. 따라서, 워드 라인 (110) 및 디지트 라인 (115)을 활성화함으로써, 그들의 인터섹션에 있는 메모리 셀 (105)이 액세스 될 수 있다. 이하에서 더 상세히 설명되는 바와 같이, 선택 해제된 액세스 라인 (예를 들어, 선택 해제된 워드 라인)을 플로팅함으로써 의도하지 않은 교차 결합의 영향이 완화될 수 있다. 예를 들어, 플레이트는 복수의 메모리 셀과 결합될 수 있으며, 이는 결국 복수의 워드 라인 및 복수의 디지트 라인과 (직접 또는 간접적으로) 결합될 수 있다. 하나의 메모리 셀의 액세스 동작과 관련된 기간 동안, 플레이트와 결합된 나머지 선택 해제된 메모리 셀과 관련된 워드 라인은 플로팅될 수 있다. 선택 해제된 워드 라인을 플로팅함으로써, 선택 해제된 워드 라인과 플레이트 사이의 교차 결합과 관련된 영향이 완화될 수 있다. Access of the memory cell 105 may be controlled through the row decoder 120 and the column decoder 130 . For example, the row decoder 120 may receive a row address from the memory controller 140 and activate an appropriate word line 110 based on the received row address. Similarly, the column decoder 130 receives the column address from the memory controller 140 and activates the appropriate digit line 115 . For example, memory array 100 may include multiple word lines 110 and multiple digit lines 115 . Thus, by activating the word line 110 and the digit line 115, the memory cell 105 at their intersection can be accessed. As described in more detail below, the effects of unintentional cross coupling can be mitigated by floating deselected access lines (eg, deselected word lines). For example, a plate may be coupled to a plurality of memory cells, which in turn may be coupled (directly or indirectly) to a plurality of word lines and a plurality of digit lines. During a period associated with an access operation of one memory cell, the word line associated with the remaining deselected memory cell associated with the plate may float. By floating the deselected word lines, the effects associated with cross coupling between the deselected word lines and the plate can be mitigated.

액세스 할 때, 메모리 셀 (105)은 메모리 셀 (105)의 저장된 상태를 결정하기 위해 감지 컴포넌트 (125)에 의해 판독 또는 감지될 수 있다. 예를 들어, 메모리 셀 (105)에 액세스 한 후, 메모리 셀 (105)의 강유전성 커패시터는 대응하는 디지트 라인 (115) 상으로 방전될 수 있다. 커패시터를 방전시키는 것은 커패시터에 전압을 바이어스(bias) 또는 인가함으로써 야기될 수 있다. 방전은 메모리 셀 (105)의 저장된 상태를 결정하기 위해 감지 컴포넌트 (125)가 기준 전압 (미도시)과 비교할 수 있는 디지트 라인 (115)의 전압의 변화를 야기할 수 있다. 예시적인 액세스 동작은 도 4a 내지 4b 및 5a 내지 5b를 참조하여 후술된다.When accessed, the memory cell 105 may be read or sensed by the sensing component 125 to determine the stored state of the memory cell 105 . For example, after accessing the memory cell 105 , the ferroelectric capacitor of the memory cell 105 may be discharged onto the corresponding digit line 115 . Discharging the capacitor can be caused by biasing or applying a voltage to the capacitor. The discharge can cause a change in the voltage on the digit line 115 that the sensing component 125 can compare to a reference voltage (not shown) to determine the stored state of the memory cell 105 . Exemplary access operations are described below with reference to FIGS. 4A-4B and 5A-5B.

감지 컴포넌트 (125)는 신호의 차이를 검출하고 증폭하기 위해 다양한 트랜지스터 또는 증폭기를 포함할 수 있으며, 이를 래칭(latching)이라고 할 수 있다. 메모리 셀(105)의 검출된 로직 상태는 그런 다음 출력(135)으로서 열 디코더(130)를 통해 출력될 수 있다. 일부 경우에, 감지 컴포넌트(125)는 열 디코더(130) 또는 행 디코더(120)의 일부일 수 있다. 또는, 감지 컴포넌트(125)는 열 디코더 (130) 또는 행 디코더 (120)와 연결되거나 전자 통신할 수 있다. 이하에서 더 상세히 설명되는 바와 같이, 선택 해제된 워드 라인은 워드 라인의 교차 결합과 관련된 영향을 완화하기 위해 액세스 동작과 관련된 기간 동안 플로팅될 수 있다. The sensing component 125 may include various transistors or amplifiers to detect and amplify differences in signals, which may be referred to as latching. The detected logic state of memory cell 105 may then be output via column decoder 130 as output 135 . In some cases, sensing component 125 may be part of column decoder 130 or row decoder 120 . Alternatively, the sensing component 125 may be connected or in electronic communication with the column decoder 130 or the row decoder 120 . As described in more detail below, deselected word lines may be floated for a period associated with an access operation to mitigate the effects associated with cross-coupling of word lines.

일부 메모리 아키텍처에서, 메모리 셀 (105)에 액세스하는 것은 저장된 로직 상태를 저하시키거나 파괴할 수 있고, 원래의 로직 상태를 메모리 셀 (105)로 복귀시키기 위해 재기록 또는 리프레시 동작이 수행될 수 있다. 예를 들어, DRAM에서, 커패시터는 감지 동작 동안에 부분적으로 또는 완전히 방전되어 저장된 로직 상태를 손상시킬 수 있다. 따라서 로직 상태는 감지 동작 후에 재기록될 수 있다. 추가적으로, 단일 워드 라인 (110)을 활성화하는 것은 행의 모든 메모리 셀의 방전을 초래할 수 있다; 따라서, 행의 몇몇 또는 모든 메모리 셀 (105)이 재기록 될 필요가 있을 수 있다. 그러나 강유전체를 사용하는 어레이와 같은 비 휘발성 메모리에서, 메모리 셀 (105)에 액세스하는 것은 로직 상태를 파괴하지 않을 수 있고, 따라서 메모리 셀 (105)은 액세스 후에 재기록을 요구하지 않을 수 있다. 일부 예들에서, 다수의 레벨의 메모리 셀이 동일한 플레이트에 결합될 수 있다. 그러한 플레이트 구성은 더 높은 레벨의 메모리 셀을 기판에 연결하는 데 사용되는 더 적은 양의 영역을 초래할 수 있다. In some memory architectures, accessing the memory cell 105 may degrade or destroy a stored logic state, and a rewrite or refresh operation may be performed to return the original logic state to the memory cell 105 . For example, in DRAMs, capacitors can be partially or fully discharged during a sensing operation to corrupt stored logic states. Thus, the logic state can be rewritten after the sensing operation. Additionally, activating a single word line 110 may result in the discharge of all memory cells in a row; Accordingly, some or all of the memory cells 105 in a row may need to be rewritten. However, in a non-volatile memory, such as an array using a ferroelectric, accessing the memory cell 105 may not destroy the logic state, and thus the memory cell 105 may not require rewriting after access. In some examples, multiple levels of memory cells may be coupled to the same plate. Such a plate configuration may result in a smaller amount of area used to connect higher level memory cells to the substrate.

DRAM을 포함한 일부 메모리 아키텍처는 외부 전원에 의해 주기적으로 리프레시되지 않는 한 시간이 지남에 따라 저장된 상태를 잃을 수 있다. 예를 들어, 충전된 커패시터는 누설 전류를 통해 시간이 지남에 따라 방전되어 저장된 정보가 손실될 수 있다. 이러한 소위 휘발성 메모리 디바이스의 리프레시 레이트(refresh rate)은 비교적 높을 수 있으며, 예를 들어, DRAM 어레이의 경우 초당 수십 번의 리프레시 동작로 인해 상당한 전력 소비가 발생할 수 있다. 점점 더 큰 메모리 어레이로 인해 전력 소비가 증가하면 특히 배터리와 같은 유한한 전원을 사용하는 모바일 디바이스의 경우 메모리 어레이 (예를 들어, 파워 서플라이, 열 생성, 재료 제한 등)의 배치 또는 동작을 방해할 수 있다. Some memory architectures, including DRAM, can lose their stored state over time unless they are periodically refreshed by an external power source. For example, a charged capacitor may discharge over time through leakage current, resulting in loss of stored information. The refresh rate of these so-called volatile memory devices can be relatively high, and for example, in the case of DRAM arrays, significant power consumption can occur due to tens of refresh operations per second. Increased power consumption due to increasingly larger memory arrays may impede the placement or operation of memory arrays (e.g., power supplies, heat generation, material limitations, etc.) can

메모리 제어기(140)는 다양한 컴포넌트, 예를 들어, 행 디코더 (120), 열 디코더 (130) 및 감지 컴포넌트 (125)를 통해 메모리 셀들 (105)의 동작 (예를 들어, 판독, 기록, 재기록, 리프레시, 방전 등)을 제어할 수 있다. 일부 경우에, 행 디코더 (120), 열 디코더 (130) 및 감지 컴포넌트 (125) 중 하나 이상이 메모리 제어기 (140)와 같은 장소에 배치될 수 있다. 메모리 제어기(140)는 원하는 워드 라인(110) 및 디지트 라인(115)을 활성화하기 위해 행 및 열 어드레스 신호를 생성할 수 있다. 메모리 제어기 (140)는 또한 메모리 어레이 (100)의 동작 동안 사용되는 다양한 전압 또는 전류를 생성하고 제어 할 수 있다. 예를 들어, 하나 이상의 메모리 셀 (105)에 액세스한 후 워드 라인 (110) 또는 디지트 라인 (115)에 방전 전압을 인가할 수 있다. 일반적으로, 본 출원에서 논의되는 인가된 전압 또는 전류의 진폭, 형상 또는 지속 시간은 조정되거나 변경될 수 있고 메모리 어레이 (100)를 동작시키는데 논의된 다양한 동작에 대해 상이할 수 있다. 더욱이, 메모리 어레이 (100) 내의 하나, 다수 또는 모든 메모리 셀 (105)이 동시에 액세스 될 수 있다; 예를 들어, 메모리 어레이 (100)의 다수 또는 모든 셀은 모든 메모리 셀 (105) 또는 메모리 셀 그룹 (105)이 단일 로직 상태로 설정되는 리셋(reset) 동작 동안 동시에 액세스될 수 있다.Memory controller 140 operates (eg, reads, writes, rewrites, reads, writes, rewrites, refresh, discharge, etc.) can be controlled. In some cases, one or more of the row decoder 120 , the column decoder 130 , and the sensing component 125 may be co-located with the memory controller 140 . Memory controller 140 may generate row and column address signals to activate desired word lines 110 and digit lines 115 . Memory controller 140 may also generate and control various voltages or currents used during operation of memory array 100 . For example, a discharge voltage may be applied to the word line 110 or digit line 115 after accessing one or more memory cells 105 . In general, the amplitude, shape, or duration of the applied voltage or current discussed herein may be adjusted or varied and may be different for the various operations discussed in operating the memory array 100 . Moreover, one, multiple, or all memory cells 105 in memory array 100 may be accessed simultaneously; For example, many or all cells of memory array 100 may be accessed concurrently during a reset operation in which all memory cells 105 or groups of memory cells 105 are set to a single logic state.

일부 예들에서, 메모리 제어기 (140)는 액세스 동작과 관련된 하나 이상의 기간 동안 메모리 어레이 (100)의 하나 이상의 액세스 라인 (예를 들어, 워드 라인 (110))을 플로팅하도록 구성될 수 있다. 예를 들어, 메모리 제어기 (140)는 선택된 메모리 셀 (104)과 관련된 액세스 동작을 식별할 수 있다. 액세스 동작을 식별 할 때, 메모리 제어기 (140)는 선택된 메모리 셀 (105)과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 전압에서 제 2 전압으로 플레이트 (미도시)를 드라이빙을 개시할 수 있다. 일부 예들에서, 메모리 제어기 (140)는 선택된 메모리 셀 (105)과 관랸된 액세스 동작에 적어도 부분적으로 기초하여 선택 해제된 메모리 셀 (105)에 대한 액세스 라인 (예를 들어, 워드 라인 (110)) 플로팅을 개시할 수 있다. 메모리 제어기(140)는 플레이트를 제 2 전압으로 드라이빙하기 시작하기 전에 또는 동시에 선택 해제된 액세스 라인 플로팅을 개시하도록 구성될 수 있다. 따라서, 액세스 동작 동안, 메모리 제어기 (140)는 메모리 어레이 (100)의 다른 액세스 라인들 (예를 들어, 선택된 메모리 셀 (105)과 플레이트를 공유하는 선택 해제된 메모리 셀들 (105)과 관련된 다른 액세스 라인들)이 플로팅되는 동안 하나의 액세스 라인을 선택할 수 있다. 선택 해제된 액세스 라인을 플로팅함으로써, 선택 해제된 액세스 라인과 다른 양태의 메모리 어레이 (100) (예를 들어, 선택된 메모리 셀 (105) 및 하나 이상의 선택 해제된 메모리 셀 (105)에 공통인 플레이트) 사이의 교차 결합과 관련된 원하지 않는 영향을 피할 수 있거나 완화할 수 있다.In some examples, memory controller 140 can be configured to float one or more access lines (eg, word line 110 ) of memory array 100 for one or more periods associated with an access operation. For example, the memory controller 140 can identify an access operation associated with the selected memory cell 104 . Upon identifying the access operation, the memory controller 140 may initiate driving the plate (not shown) from the first voltage to the second voltage based at least in part on the access operation associated with the selected memory cell 105 . In some examples, the memory controller 140 provides an access line (eg, word line 110 ) to the deselected memory cell 105 based at least in part on an access operation associated with the selected memory cell 105 . Floating can be initiated. Memory controller 140 may be configured to initiate floating of the deselected access line before or at the same time as starting to drive the plate to the second voltage. Thus, during an access operation, the memory controller 140 controls other access lines of the memory array 100 (eg, other accesses associated with the deselected memory cells 105 sharing a plate with the selected memory cell 105 ). lines) while floating, one access line can be selected. By floating deselected access lines, an aspect of the memory array 100 differs from the deselected access lines (eg, a plate common to the selected memory cell 105 and one or more deselected memory cells 105 ). Undesirable effects associated with cross-linking between the two can be avoided or mitigated.

도 2는 본 개시의 다양한 실시예들에 따른 예시적인 회로 (200)를 예시한다. 회로 (200)는 메모리 셀 (105-a), 워드 라인 (110-a), 디지트 라인 (115-a) 및 감지 컴포넌트 (125-a)를 포함하고, 이는 도 1를 참고하여 설명된 메모리 셀 (105), 워드 라인 (110), 디지트 라인 (115) 및 감지 컴포넌트(125) 각각의 예일 수 있다. 메모리 셀(105-a)는 제 1 플레이트, 셀 플레이트(230) 및 제 2 플레이트, 셀 바닥(cell bottom)(215)을 갖는 로직 저장 컴포넌트 예컨대, 커패시터(205)를 포함할 수 있다. 셀 플레이트(230) 및 셀 바닥(215)은 그것들 사이에 위치된 강유전성 재료를 통해 용량성으로(capacitively) 결합될 수 있다. 셀 플레이트 (230) 및 셀 바닥(215)의 방위는 메모리 셀 (105-a)의 동작 변경없이 플립(flip)될 수 있다. 회로 (200)는 선택 컴포넌트 (220) 및 기준 라인 (225)을 또한 포함한다. 2 illustrates an example circuit 200 in accordance with various embodiments of the present disclosure. Circuit 200 includes a memory cell 105 - a, a word line 110 - a, a digit line 115 - a, and a sensing component 125 - a, which is the memory cell described with reference to FIG. 1 . 105 , word line 110 , digit line 115 , and sense component 125 , respectively. The memory cell 105 - a may include a logic storage component having a first plate, a cell plate 230 and a second plate, a cell bottom 215 , such as a capacitor 205 . Cell plate 230 and cell bottom 215 may be capacitively coupled via a ferroelectric material positioned therebetween. The orientation of the cell plate 230 and the cell bottom 215 can be flipped without changing the operation of the memory cell 105 - a. The circuit 200 also includes a selection component 220 and a reference line 225 .

셀 플레이트 (230)는 플레이트 라인 (210)을 통해 액세스될 수 있고, 셀 바닥 (215)은 디지트 라인 (115-a)을 통해 액세스될 수 있다. 일부 경우에, 일부 메모리 셀 (105-a)은 다른 메모리 셀과 액세스 라인 (예를 들어, 디지트 라인, 워드 라인, 플레이트 라인)을 공유할 수 있다. 예를 들어, 디지트 라인 (115-a)은 동일한 열의 메모리 셀 (105-a)과 공유될 수 있고, 워드 라인 (110-a)은 동일한 행의 메모리 셀 (105-a) 및 플레이트 라인 (210)(및 대응하는 플레이트 (230))과 공유될 수 있고, 동일한 섹션, 타일(tile), 데크(deck) 또는 심지어 다수의 데크에서 메모리 셀 (105-a)과 공유될 수 있다. 전술한 바와 같이, 다양한 상태가 충전 또는 방전 커패시터(205)에 의해 저장될 수 있다. 많은 예들에서, 커넥터 또는 소켓은 메모리 셀들의 어레이 아래에 위치된 기판에 메모리 셀들의 상위 레벨 레벨들의 디지트 라인들 (115-a) 또는 플레이트 라인들 (210)을 결합하는데 사용될 수 있다. 커넥터 또는 소켓의 크기는 메모리 어레이의 플레이트 라인 구성에 기초하여 수정될 수 있다. Cell plate 230 can be accessed via plate line 210 and cell bottom 215 can be accessed via digit line 115 - a. In some cases, some memory cells 105 - a may share access lines (eg, digit lines, word lines, plate lines) with other memory cells. For example, digit line 115 - a can be shared with memory cells 105 - a in the same column, and word line 110 - a can be shared with memory cells 105 - a and plate line 210 in the same row. ) (and corresponding plate 230 ), and may be shared with memory cell 105 - a in the same section, tile, deck or even multiple decks. As described above, various states may be stored by the charging or discharging capacitor 205 . In many examples, a connector or socket may be used to couple the digit lines 115 - a or plate lines 210 of higher level levels of memory cells to a substrate located below the array of memory cells. The size of the connector or socket may be modified based on the plate line configuration of the memory array.

일부 경우에, 복수의 상이한 워드 라인 (110) 및/또는 디지트 라인 (115)과 관련된 다수의 메모리 셀 (105)과 결합된 플레이트 (미도시)를 포함하는 메모리 어레이 (100)는 본 출원에 설명된 고유한 액세스 동작을 가질 수 있다. 예를 들어, 선택 해제된 워드 라인은 플레이트 전압이 변하는 동안 고정 전압으로 유지되는 경우, 선택 해제된 워드 라인과 플레이트 사이 또는 선택 해제된 워드 라인과 하나 이상의 디지트 라인 사이의 커패시턴스로 인해 원하지 않는 누설 또는 전력 소비가 발생할 수 있다. 결과적으로, 공통 플레이트로 지칭될 수 있는 하나 초과의 메모리 셀 (105)에 공통된 플레이트를 포함하는 메모리 어레이의 액세스 동작 동안 이러한 커패시턴스 또는 교차 결합의 영향을 완화 또는 감소시키기 위한 기술이 제공된다.In some cases, a memory array 100 comprising a plate (not shown) associated with a plurality of memory cells 105 associated with a plurality of different word lines 110 and/or digit lines 115 is described herein. It can have its own unique access behavior. For example, if an deselected word line is held at a fixed voltage while the plate voltage changes, unwanted leakage or leakage due to capacitance between the deselected word line and the plate or between the deselected word line and one or more digit lines Power consumption may occur. Consequently, techniques are provided for mitigating or reducing the effects of such capacitances or cross-coupling during access operations of a memory array comprising a plate common to more than one memory cell 105 , which may be referred to as a common plate.

커패시터 (205)의 저장된 상태는 회로 (200)에 표현된 다양한 엘리먼트들을 동작시킴으로써 판독 또는 감지될 수 있다. 커패시터 (205)는 디지트 라인 (115-a)과 전자 통신할 수 있다. 예를 들어, 커패시터 (205)는 선택 컴포넌트 (220)가 비활성화 될 때 디지트 라인 (115-a)으로부터 절연될 수 있고, 커패시터 (205)는 선택 컴포넌트 (220)가 활성화 될 때 디지트 라인 (115-a)에 연결될 수 있다. 선택 컴포넌트 (220)를 활성화하는 것은 메모리 셀 (105-a)을 선택하는 것으로 지칭될 수 있다. 일부 경우에, 선택 컴포넌트 (220)는 트랜지스터이고, 그것의 동작은 전압 크기가 트랜지스터의 임계 크기보다 큰 트랜지스터 게이트에 전압을 인가함으로써 제어된다. 워드 라인 (110-a)은 선택 컴포넌트 (220)를 활성화할 수 있고; 예를 들어, 워드 라인 (110-a)에 인가된 전압이 트랜지스터 게이트에 인가되어 커패시터 (205)를 디지트 라인 (115-a)과 연결한다. 이하에서 보다 상세히 설명되는 바와 같이, 액세스 동작 (예를 들어, 판독 동작 또는 기록 동작)은 메모리 어레이의 플레이트 구성에 기초하여 수행될 수 있다. 예를 들어, 하나 이상의 선택 해제된 액세스 라인 (예를 들어, 선택 해제된 워드 라인, 미도시)이 플로팅될 수 있다. 선택 해제된 액세스 라인을 플로팅함으로써 부정적인 교차 결합 효과를 방지하거나 완화할 수 있다.The stored state of capacitor 205 may be read or sensed by operating various elements represented in circuit 200 . Capacitor 205 may be in electronic communication with digit line 115 - a. For example, capacitor 205 may be insulated from digit line 115 - a when selection component 220 is inactive, and capacitor 205 may be insulated from digit line 115 - a when selection component 220 is activated. a) can be connected. Activating the selection component 220 may refer to selecting the memory cell 105 - a. In some cases, select component 220 is a transistor, and its operation is controlled by applying a voltage to the transistor gate whose voltage magnitude is greater than a threshold magnitude of the transistor. word line 110 - a can activate selection component 220 ; For example, a voltage applied to word line 110-a is applied to the transistor gate to connect capacitor 205 to digit line 115-a. As described in more detail below, an access operation (eg, a read operation or a write operation) may be performed based on the plate configuration of the memory array. For example, one or more deselected access lines (eg, deselected word lines, not shown) may be floated. By floating deselected access lines, negative cross-linking effects can be prevented or mitigated.

다른 예들에서, 선택 컴포넌트 (220) 및 커패시터 (205)의 위치는 스위칭 될 수 있어서, 선택 컴포넌트 (220)가 플레이트 라인 (210)과 셀 플레이트 (230) 사이에 연결되고 커패시터 (205)가 디지트 라인 (115-a)과 선택 컴포넌트(220)의 다른 단자 사이에 있도록 연결된다. 이 실시예에서, 선택 컴포넌트 (220)는 커패시터 (205)를 통해 디지트 라인 (115-a)과 전자 통신 상태를 유지할 수 있다. 이 구성은 판독 및 기록 동작을 위한 대안적인 타이밍 및 바이어싱과 관련될 수 있다.In other examples, the positions of selection component 220 and capacitor 205 may be switched such that selection component 220 is connected between plate line 210 and cell plate 230 and capacitor 205 is a digit line connected to be between 115 - a and the other terminal of the selection component 220 . In this embodiment, the selection component 220 may maintain electronic communication with the digit line 115 - a via the capacitor 205 . This configuration may involve alternative timing and biasing for read and write operations.

일부 경우에, 커패시터 (205)의 플레이트 사이의 강유전성 재료로 인해, 커패시터 (205)는 디지트 라인 (115-a)에 연결될 때 방전되지 않을 수 있다. 하나의 방식에서, 강유전성 캐패시터 (205)에 저장된 로직 상태를 감지하기 위해, 워드 라인 (110-a)은 메모리 셀 (105)을 선택하도록 바이어스될 수 있고, 전압이 플레이트 라인(210)에 인가될 수 있다. 일부 경우들에서, 플레이트 라인 (210) 및 워드 라인 (110-a)을 바이어싱 하기 전에, 디지트 라인 (115-a)은 가상적으로 접지된 다음 가상 접지(virtual ground)로부터 절연된다. 플레이트 라인 (210)을 바이어싱하는 것은 캐패시터 (205)에 걸쳐 전압 차이 (예를 들어, 플레이트 라인 (210) 전압 - 디지트 라인 (115-a) 전압)를 초래할 수 있다. 전압 차이는 캐패시터 (205) 상의 저장된 전하의 변화를 얻을 수 있으며, 여기서, 저장된 전하의 변화의 크기는 예를 들어, 초기 상태가 로직 1 또는 로직 0을 저장하는지 여부와 같은 커패시터 (205)의 초기 상태에 의존할 수 있다. 이것은 커패시터 (205)에 저장된 전하에 기초하여 디지트 라인 (115-a)의 전압을 변화시킬 수 있다. 셀 플레이트(230)에 대한 전압을 변화시킴으로써 메모리 셀 (105-a)의 동작은 "셀 플레이트를 움직이는 것(moving cell plate)"으로 지칭될 수 있다. 이하에서 보다 상세히 설명되는 바와 같이, 액세스 동작 (예를 들어, 판독 동작 또는 기록 동작)의 일부 양태는 메모리 어레이의 플레이트 구성에 기초하여 수행될 수 있다. In some cases, due to the ferroelectric material between the plates of capacitor 205 , capacitor 205 may not discharge when connected to digit line 115 - a. In one approach, to sense the logic state stored in the ferroelectric capacitor 205 , the word line 110 - a may be biased to select the memory cell 105 , and a voltage will be applied to the plate line 210 . can In some cases, prior to biasing plate line 210 and word line 110 - a, digit line 115 - a is virtually grounded and then isolated from a virtual ground. Biasing the plate line 210 may result in a voltage difference across the capacitor 205 (eg, the plate line 210 voltage minus the digit line 115 - a voltage). The voltage difference may result in a change in the stored charge on the capacitor 205 , where the magnitude of the change in the stored charge depends on the initial state of the capacitor 205 , such as whether the initial state stores a logic one or a logic zero. can depend on the state. This may change the voltage on digit line 115 - a based on the charge stored in capacitor 205 . The operation of the memory cell 105 - a by varying the voltage across the cell plate 230 may be referred to as "moving the cell plate." As described in more detail below, some aspects of an access operation (eg, a read operation or a write operation) may be performed based on the plate configuration of the memory array.

디지트 라인(115-a)의 전압의 변화는 그것의 고유한 커패시턴스에 의존할 수 있다. 즉, 디지트 라인 (115-a)을 통해 전하가 흐르기 때문에, 일부 한정된 전하가 디지트 라인 (115-a)에 저장될 수 있고 결과적인 전압은 고유 커패시턴스에 의존한다. 고유 커패시턴스는 디지트 라인(115-a)의 치수를 포함한 물리적 특성에 의존할 수 있다. 디지트 라인(115-a)은 많은 메모리 셀(105)을 연결할 수 있으므로 디지트 라인(115-a)은 무시할 수 없는 커패시턴스를 야기하는 길이를 가질 수 있다 (예를 들어, 피코 패럿 (pF)의 크기). 디지트 라인 (115-a)의 결과 전압은 그런 다음 메모리 셀 (105-a)에 저장된 로직 상태를 결정하기 위해 감지 컴포넌트 (125-a)에 의해 기준 (예를 들어, 기준 라인 (225)의 전압)과 비교될 수 있다. 다른 감지 프로세스가 사용될 수 있다. The change in voltage on digit line 115 - a may depend on its intrinsic capacitance. That is, since charge flows through digit line 115 - a , some limited charge can be stored in digit line 115 - a and the resulting voltage depends on the intrinsic capacitance. The intrinsic capacitance may depend on physical properties including the dimensions of the digit line 115 - a. Since digit line 115 - a may connect many memory cells 105 , digit line 115 - a may have a length that results in a non-negligible capacitance (eg, a size in picofarads (pF)). ). The resulting voltage on digit line 115 - a is then applied to a reference (eg, the voltage on reference line 225 ) by sense component 125 - a to determine a logic state stored in memory cell 105 - a . ) can be compared with Other sensing processes may be used.

감지 컴포넌트 (125-a)는 신호의 차이를 검출하고 증폭하기 위한 다양한 트랜지스터 또는 증폭기를 포함할 수 있으며, 이를 래칭이라고 할 수 있다. 감지 컴포넌트 (125-a)는 기준 전압일 수 있는 기준 라인 (225) 및 디지트 라인 (115-a)의 전압을 수신하고 비교하는 감지 증폭기를 포함할 수 있다. 감지 증폭기 출력은 비교에 기초하여 더 높은 (예를 들어, 양(positive)의) 또는 더 낮은 (예를 들어, 음(negative)의 또는 접지) 서플라이 전압으로 드라이빙될 수 있다. 예를 들어, 만약 디지트 라인 (115-a)이 기준 라인 (225)보다 높은 전압을 갖는다면, 감지 증폭기 출력은 양의 서플라이 전압으로 드라이빙될 수 있다. Sensing component 125 - a may include various transistors or amplifiers for detecting and amplifying differences in signals, which may be referred to as latching. Sense component 125 - a may include a sense amplifier that receives and compares voltages on digit line 115 - a and reference line 225 , which may be a reference voltage. The sense amplifier output may be driven to a higher (eg, positive) or lower (eg, negative or ground) supply voltage based on the comparison. For example, if digit line 115 - a has a higher voltage than reference line 225 , the sense amplifier output can be driven with a positive supply voltage.

일부 경우에, 감지 증폭기는 추가적으로 디지트 라인 (115-a)을 공급 전압으로 드라이빙할 수 있다. 감지 컴포넌트 (125-a)는 감지 증폭기의 출력 및/또는 디지트 라인 (115-a)의 전압을 래치할 수 있으며, 이는 메모리 셀 (105-a)의 저장된 상태, 예를 들어, 로직 1을 결정하는 데 사용될 수 있다. 대안적으로, 디지트 라인 (115-a)이 기준 라인 (225)보다 낮은 전압을 갖는 경우, 감지 증폭기 출력은 음 또는 접지 전압으로 드라이빙될 수 있다. 감지 컴포넌트 (125-a)는 메모리 셀 (105-a)의 저장된 상태, 예를 들어, 로직 0를 결정하기 위해 감지 증폭기 출력을 유사하게 래치할 수 있다. 메모리 셀(105-a)의 래치된 로직 상태는 그런 다음, 예를 들어, 도 1을 참고로 하여 출력(135)으로서 열 디코더(130)를 통해 출력될 수 있다. In some cases, the sense amplifier may additionally drive the digit line 115 - a to a supply voltage. The sense component 125 - a may latch the output of the sense amplifier and/or the voltage of the digit line 115 - a, which determines the stored state of the memory cell 105 - a, eg, a logic one. can be used to Alternatively, if digit line 115 - a has a lower voltage than reference line 225 , the sense amplifier output may be driven to a negative or ground voltage. The sense component 125 - a may similarly latch the sense amplifier output to determine the stored state of the memory cell 105 - a, eg, a logic zero. The latched logic state of memory cell 105 - a may then be output via column decoder 130 , for example, as output 135 with reference to FIG. 1 .

메모리 셀(105-a)을 기록하기 위해, 전압이 커패시터(205)에 걸쳐 인가될 수 있다. 다양한 방법이 사용될 수 있다. 일 예에서, 선택 컴포넌트 (220)는 커패시터 (205)를 디지트 라인 (115-a)에 전기적으로 연결하기 위해 워드 라인 (110-a)을 통해 활성화될 수 있다. 셀 플레이트 (230) (플레이트 라인 (210)을 통해) 및 셀 바닥 (215) (디지트 라인 (115-a)을 통해)의 전압을 제어함으로써 커패시터 (205)에 전압이 인가될 수 있다. 로직 0을 기록하기 위해, 셀 플레이트 (230)는 하이(high)로 취해질 수 있고, 즉 양의 전압이 플레이트 라인 (210)에 인가될 수 있고, 셀 바닥 (215)은 예를 들어, 사실상 접지 또는 음의 전압을 디지트 라인 (115-a)에 인가함으로써 로우(low)를 취할 수 있다. 로직 1을 기록하기 위해 반대 프로세스가 수행되고, 여기서는 셀 플레이트(230)는 로우를 취하고, 셀 바닥 (215)은 하이를 취한다.To write memory cell 105 - a, a voltage may be applied across capacitor 205 . Various methods can be used. In one example, select component 220 can be activated via word line 110 - a to electrically connect capacitor 205 to digit line 115 - a. A voltage may be applied to capacitor 205 by controlling the voltages of cell plate 230 (via plate line 210 ) and cell bottom 215 (via digit line 115 - a ). To write a logic zero, the cell plate 230 can be taken high, ie a positive voltage can be applied to the plate line 210 and the cell bottom 215 is, for example, effectively grounded. Alternatively, it can be taken low by applying a negative voltage to digit line 115 - a. The reverse process is performed to write a logic one, where cell plate 230 takes low and cell bottom 215 takes high.

도 3은 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 메모리 디바이스 (300)의 예를 예시한다. 메모리 디바이스 (300)는 어레이 (320)를 형성하기 위해 하나 이상의 워드 라인 (310) 및 하나 이상의 디지트 라인 (315)과 결합된 복수의 메모리 셀 (305)을 포함할 수 있다. 메모리 디바이스 (300)는 어레이 (320)의 다수의 워드 라인 (310) 또는 다수의 디지트 라인 (315)과 관련된 하나 이상의 메모리 셀 (305)과 결합되는 플레이트 (325)를 포함할 수 있다. 일부 예에서, 메모리 어레이 (320)는 복수의 강유전성 메모리 셀 또는 다른 커패시터 기반 메모리 셀을 포함할 수 있다. 3 illustrates an example of a memory device 300 supporting techniques for managing access lines for an array of memory cells in accordance with examples of this disclosure. Memory device 300 may include a plurality of memory cells 305 coupled with one or more word lines 310 and one or more digit lines 315 to form an array 320 . Memory device 300 may include a plate 325 coupled with one or more memory cells 305 associated with a plurality of word lines 310 or a plurality of digit lines 315 of an array 320 . In some examples, memory array 320 may include a plurality of ferroelectric memory cells or other capacitor based memory cells.

예를 들어, 플레이트 (325)는 제 1 워드 라인 (310-a) 및 제 2 워드 라인 (310-b)과 관련된 메모리 셀 (305) 및/또는 제 1 디지트 라인 (315-a), 제 2 디지트 라인 (315-b) 및 제 3 디지트 라인 (315-c)과 관련된 메모리 셀 (305)과 결합될 수 있다. 일부 경우에, 단일 플레이트 (325)는 임의의 수의 워드 라인 (310) 또는 디지트 라인과 관련된 (예를 들어, 결합된) 메모리 셀 (305)과 결합될 수 있다. 메모리 디바이스 (300)는 도 1을 참조하여 설명된 메모리 어레이 (100)의 예일 수 있거나 그에 포함될 수 있다. For example, plate 325 may include memory cells 305 and/or first digit lines 315 - a, a second associated with first word line 310 - a and second word line 310 - b , A digit line 315 - b and a memory cell 305 associated with a third digit line 315 - c may be coupled. In some cases, a single plate 325 may be associated with any number of word lines 310 or memory cells 305 associated with (eg, coupled to) digit lines. The memory device 300 may be an example of or may be included in the memory array 100 described with reference to FIG. 1 .

일부 예들에서, 메모리 셀들의 어레이 내의 플레이트 노드들의 수량은 다수의 메모리 셀들에 각각 공통인 하나 이상의 플레이트들을 가짐으로써 대안적인 아키텍처들에 비해 감소될 수 있다. 이것은 메모리 어레이에서 다이 면적의 보다 효율적인 사용 및/또는 액세스 동작 동안 전력의 보다 효율적인 사용을 초래할 수 있다. 일부 경우에, 플레이트 (325)와 관련된 플레이트 드라이버는 메모리 어레이 (320)의 외부에 위치될 수 있고, 이에 의해 어레이 (320)의 다른 컴포넌트에 더 많은 공간을 제공할 수 있다. 또한, 플레이트의 수를 줄임으로써, 메모리 디바이스 (300)는 대체 아키텍처에 비해 메모리 셀의 어레이에서 플레이트 드라이버의 수를 줄이도록 구성될 수 있다. In some examples, the quantity of plate nodes in the array of memory cells can be reduced compared to alternative architectures by having one or more plates each common to multiple memory cells. This may result in more efficient use of die area in the memory array and/or more efficient use of power during access operations. In some cases, plate drivers associated with plate 325 may be located external to memory array 320 , thereby providing more space for other components of array 320 . Also, by reducing the number of plates, the memory device 300 can be configured to reduce the number of plate drivers in the array of memory cells compared to an alternative architecture.

일부 경우에, 단일 플레이트 (325)는 상이한 데크의 메모리 셀 (305)과 결합될 수 있다. 그러한 경우에, 단일 플레이트 (325)는 제 1 데크의 메모리 셀 및 제 2 데크의 메모리 셀과 결합될 수 있다. 이러한 배열은 어레이 (320)에서 플레이트 및 플레이트 드라이버를 훨씬 더 감소시킬 수 있다.In some cases, a single plate 325 may be combined with memory cells 305 in different decks. In such a case, a single plate 325 may be combined with the memory cells of the first deck and the memory cells of the second deck. This arrangement can further reduce the plate and plate drivers in the array 320 .

다수의 메모리 셀에 공통된 플레이트 (325)를 갖는 것은 어레이 (320)의 상이한 컴포넌트들 사이에 바람직하지 않은 결합의 관련된 위험을 생성할 수 있다. 선택된 메모리 셀의 액세스 동작 동안, 선택 해제된 액세스 라인들 (예를 들어, 선택 해제된 워드 라인들)은 액세스 동작 동안 하나 이상의 디지트 라인들 (315) 및 플레이트 (325)와의 교차 결합에 민감할 수 있다. 일부 경우에, 교차 결합은 각각의 선택 해제된 워드 라인 (310)과 개개의 디지트 라인 (315) 사이 및 각각의 선택 해제된 워드 라인 (310)과 플레이트 (325) 사이에 기생 신호 (예를 들어, 누설 전류)를 야기할 수 있다. 이러한 기생 효과는 선택 해제된 모든 워드 라인 (310)에서 발생할 수 있기 때문에, 다수의 워드 라인 및 다수의 디지트 라인을 포함하는 메모리 어레이에서, 그러한 효과의 영향은 상당할 수 있다. 일부 예에서, 그러한 교차 결합 및 관련 효과는 선택 해제된 메모리 셀에 저장된 로직 상태를 "방해(disturb)"시킬 수 있다. 예를 들어, 기생 신호는 선택 해제된 메모리 셀 (305)의 중간 전극에 전하가 저장되도록 할 수 있다. 일부 경우에, 이러한 축적 또는 다른 기생 효과는 메모리 디바이스 (300)에 의한 추가 전력 소비를 초래할 수 있다. Having a plate 325 common to multiple memory cells can create an associated risk of undesirable coupling between different components of the array 320 . During an access operation of a selected memory cell, deselected access lines (eg, deselected word lines) may be susceptible to cross coupling with one or more digit lines 315 and plate 325 during an access operation. have. In some cases, cross-coupling may result in a parasitic signal (e.g., between each deselected word line 310 and an individual digit line 315 and between each deselected word line 310 and a plate 325). , leakage current). Because these parasitic effects can occur on every deselected word line 310 , in a memory array comprising multiple word lines and multiple digit lines, the impact of such effects can be significant. In some examples, such cross-coupling and related effects can “disturb” the logic state stored in the deselected memory cell. For example, the parasitic signal may cause charge to be stored in the middle electrode of the deselected memory cell 305 . In some cases, this accumulation or other parasitic effect may result in additional power consumption by the memory device 300 .

액세스 동작 동안, 일반적으로 어레이 (320)의 주어진 세그먼트에서 적은 수의 메모리 셀 (예를 들어, 하나 이상)만이 액세스된다. 도 3의 예시적인 예에서, 메모리 셀 (305-b)은 액세스 동작 (예를 들어, 판독, 기록 및/또는 프리 차지)을 위해 선택된 메모리 셀일 수 있고 메모리 셀 (305-a, 305-c, 305-d, 305-e 및 305-f)는 선택 해제된 메모리 셀일 수 있다. 이들 메모리 셀 (305) 각각은 공통 플레이트 (325)와 결합된다. 이러한 예에서, 기생 신호 (예를 들어, 의도하지 않은 용량성 교차 결합으로 인한)는 선택 해제된 워드 라인 (310-b)과 선택 해제된 디지트 라인 (예 : 315-b, 315-c) 사이 및 각각의 선택 해제된 워드 라인과 플레이트 (325)사이에서 전개될 수 있다. During an access operation, typically only a small number of memory cells (eg, one or more) in a given segment of array 320 are accessed. In the illustrative example of FIG. 3 , memory cell 305 - b may be a memory cell selected for an access operation (eg, read, write, and/or precharge) and may include memory cells 305 - a, 305 - c, 305-d, 305-e, and 305-f) may be deselected memory cells. Each of these memory cells 305 is coupled to a common plate 325 . In this example, a parasitic signal (eg, due to unintentional capacitive cross-coupling) is transmitted between the deselected word line 310-b and the deselected digit line (eg 315-b, 315-c). and between each deselected word line and plate 325 .

일부 경우에, 플레이트 (325)가 제 1 상태에서 제 2 상태로 바이어스 될 때 (예를 들어, 제 1 전압에서 제 2 전압으로 드라이빙됨), 기생 신호가 다수의 컴포넌트 사이에서 발생할 수 있다. 예를 들어, 선택 해제된 워드 라인 (315-b, 315-c)을 고정 전압에서 유지하면서 플레이트 (325)를 제 1 전압으로 바이어스하는 것은 각각의 선택 해제된 워드 라인과 개개의 디지트 라인 사이 및 각각의 선택 해제된 워드 라인과 플레이트(325) 사이의 커패시턴스로 인해 기생 신호를 유발할 수 있다. 이러한 원하지 않는 효과를 피하거나 완화하기 위해, 선택 해제된 워드 라인 (315-b, 315-c)은 플레이트 (325)에 대해 플로팅될 수 있다. 예를 들어, 플레이트 (325)가 선택된 메모리 셀 (305-b)에 대한 액세스 동작의 일부로서 제 1 전압에서 제 2 전압으로 바이어스되면, 선택 해제된 디지트 라인 (315-b, 315-c)은 플레이트 (325)의 전압이 변함에 따라 플로팅 될 수 있고, 결국 플레이트 (325)의 전압을 추적 (예를 들어, 공통 차이를 유지)할 수 있다. In some cases, when the plate 325 is biased from a first state to a second state (eg, driven from a first voltage to a second voltage), a parasitic signal may occur between multiple components. For example, biasing plate 325 to a first voltage while maintaining deselected word lines 315-b and 315-c at a fixed voltage can be performed between each deselected word line and an individual digit line and Capacitance between each deselected word line and plate 325 can cause parasitic signals. To avoid or mitigate this undesirable effect, deselected word lines 315 - b and 315 - c may be floated relative to plate 325 . For example, if plate 325 is biased from a first voltage to a second voltage as part of an access operation to selected memory cell 305 - b, then deselected digit lines 315 - b and 315 - c are It can float as the voltage on the plate 325 changes, eventually tracking the voltage on the plate 325 (eg, maintaining a common difference).

이러한 동작은 선택 해제된 워드 라인의 임의 조합에서 수행될 수 있다. 예를 들어, 메모리 어레이는 복수의 워드 라인 (예를 들어, 1024 개의 워드 라인) 및 복수의 디지트 라인 (예를 들어, 1024 개의 디지트 라인)을 포함할 수 있다. 단일 액세스 동작 동안, 많은 수량의 워드 라인이 선택 해제될 수 있다 (예를 들어, 1023 개의 선택 해제된 워드 라인). 선택된 워드 라인과 관련된 액세스 동작과 관련된 기간 동안 선택 해제된 워드 라인의 임의의 조합 (예를 들어, 1023 개의 선택 해제된 워드 라인 중 임의의 것)을 플로팅하면 전체 메모리 디바이스 (300)에 대한 성능이 개선될 수 다 (예를 들어, 전력 소비 감소, 증가된 신뢰성). These operations can be performed on any combination of deselected word lines. For example, the memory array may include a plurality of word lines (eg, 1024 word lines) and a plurality of digit lines (eg, 1024 digit lines). During a single access operation, a large number of word lines may be deselected (eg, 1023 deselected word lines). Plotting any combination of deselected word lines (e.g., any of 1023 deselected word lines) for a period associated with an access operation associated with the selected word line results in performance for the entire memory device 300 . can be improved (eg, reduced power consumption, increased reliability).

메모리 셀 (305)은 도 1을 참조하여 설명된 메모리 셀 (105)의 예일 수 있다. 일부 경우에, 메모리 셀 (305)은 강유전성 메모리 셀, DRAM 메모리 셀, NAND 메모리 셀, 상 변화 메모리 셀, 또는 임의의 다른 유형의 메모리 셀일 수 있다. 워드 라인 (310)은 도 1을 참조하여 설명된 워드 라인 (110)의 예일 수 있다. 디지트 라인 (315)은 도 1을 참조하여 설명된 디지트 라인 (115)의 예일 수 있다. 플레이트 (325)는 도 2를 참조하여 설명된 플레이트 (230) 및/또는 플레이트 라인 (210)의 예일 수 있고 그에 관련될 수 있다.Memory cell 305 may be an example of memory cell 105 described with reference to FIG. 1 . In some cases, the memory cell 305 may be a ferroelectric memory cell, a DRAM memory cell, a NAND memory cell, a phase change memory cell, or any other type of memory cell. The word line 310 may be an example of the word line 110 described with reference to FIG. 1 . Digit line 315 may be an example of digit line 115 described with reference to FIG. 1 . Plate 325 may be an example of and related to plate 230 and/or plate line 210 described with reference to FIG. 2 .

예로서, 도 3은 제 1 메모리 셀 (305-a) 및 제 2 메모리 셀 (305-f)을 포함하는 메모리 어레이 (320)를 예시할 수 있다. 상술한 바와 같이, 메모리 어레이 (320)는 제 1 메모리 셀 (305-a) 및 제 2 메모리 셀 (305-f)과 결합된 플레이트 (325)를 포함하고, 플레이트 (325)와 결합된 플레이트 라인 드라이버 (미도시)를 포함할 수 있다. 일부 예들에서, 제 1 액세스 라인 (310-a)은 제 1 메모리 셀 (305-a)에 결합될 수 있고, 액세스 라인 드라이버 (미도시)는 제 1 액세스 라인 (310-a)에 결합될 수 있다. 일부 예들에서, 액세스 라인 드라이버는 제 2 메모리 셀 (305-f)과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 제 1 액세스 (310-a) 라인을 플로팅하도록 구성될 수 있다. 일부 예들에서, 메모리 셀들 (305-a, 305-b, 305-c, 305-d 및 305-e) 각각은 메모리 셀 (305-f)과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 플로팅될 수 있다. 일부 예들에서, 플레이트 라인 드라이버는 지속 시간 이전에 플레이트 (325)를 제 1 전압으로 드라이빙하도록 구성될 수 있고, 제 2 메모리 셀(305-f)와 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 플레이트 (325)를 제 2 전압으로 드라이빙하도록 구성될 수 있다. As an example, FIG. 3 can illustrate a memory array 320 including a first memory cell 305 - a and a second memory cell 305 - f. As described above, the memory array 320 includes a plate 325 coupled with a first memory cell 305 - a and a second memory cell 305 - f, and a plate line coupled with the plate 325 . A driver (not shown) may be included. In some examples, a first access line 310 - a can be coupled to a first memory cell 305 - a, and an access line driver (not shown) can be coupled to a first access line 310 - a have. In some examples, the access line driver can be configured to float the first access 310 - a line for a duration based at least in part on an access operation associated with the second memory cell 305 - f. In some examples, each of memory cells 305 - a , 305 - b , 305 - c , 305 - d and 305 - e is floating for a duration based at least in part on an access operation associated with memory cell 305 - f . can be In some examples, the plate line driver can be configured to drive the plate 325 to the first voltage prior to a duration of time based at least in part on an access operation associated with the second memory cell 305 - f for a duration of time. The plate 325 may be configured to drive at the second voltage.

도 4a는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 메모리 디바이스 (400-a)의 예를 예시한다. 일부 예들에서, 메모리 디바이스 (400-a)는 메모리 드라이버 (405)로 지칭될 수 있는 드라이버 (405)를 포함할 수 있다. 메모리 드라이버 (405)는 임의의 수의 액세스 라인과 결합될 수 있고, 하나 이상의 메모리 셀 (예를 들어,도 3을 참조하여 설명된 메모리 셀 (305a 내지 305f))의 액세스 동작을 가능하게 할 수 있다. 메모리 드라이버 (405)는 예를 들어, 액세스 라인 (420), 액세스 라인 (425), 액세스 라인 (430) 및 액세스 라인 (435)과 결합될 수 있다. 액세스 라인 (420, 425, 430, 435) 각각은 메모리 어레이의 워드 라인 (예를 들어, 도 3을 참조하여 설명된 워드 라인 (310-a, 310-b))의 예일 수 있다. 메모리 드라이버 (405)는 드라이버 컴포넌트 (410) 및 드라이버 컴포넌트 (415)와 같은 다양한 서브 컴포넌트를 포함할 수 있다. 다른 예들 (미도시)에서, 메모리 드라이버 (405)는 임의의 수의 서브 컴포넌트 (예를 들어, 임의의 수의 드라이버 컴포넌트)를 포함할 수 있다. 4A illustrates an example of a memory device 400 - a supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure. In some examples, the memory device 400 - a may include a driver 405 , which may be referred to as a memory driver 405 . Memory driver 405 may be coupled with any number of access lines and may enable access operations of one or more memory cells (eg, memory cells 305a - 305f described with reference to FIG. 3 ). have. The memory driver 405 may be coupled with an access line 420 , an access line 425 , an access line 430 , and an access line 435 , for example. Each of the access lines 420 , 425 , 430 , and 435 may be an example of a word line of a memory array (eg, the word line 310 - a , 310 - b described with reference to FIG. 3 ). The memory driver 405 may include various sub-components such as a driver component 410 and a driver component 415 . In other examples (not shown), the memory driver 405 can include any number of sub-components (eg, any number of driver components).

전술한 바와 같이, 각각의 액세스 라인 (420, 425, 430, 435)은 메모리 어레이 (예를 들어, 도 3을 참조하여 설명된 메모리 어레이 (320))의 워드 라인의 예일 수 있다. 예를 들어, 액세스 라인 (420)은 제 1 액세스 라인 (420)으로 지칭될 수 있고 액세스 라인 (425)은 제 2 액세스 라인 (425)으로 지칭될 수 있다. 추가적으로 또는 대안적으로, 액세스 라인 (430) 및 액세스 라인 (435)은 메모리 디바이스 (400-a)와 관련된 총 액세스 라인 수를 나타내는 액세스 라인의 예일 수 있다. As noted above, each access line 420 , 425 , 430 , 435 may be an example of a word line of a memory array (eg, memory array 320 described with reference to FIG. 3 ). For example, the access line 420 may be referred to as a first access line 420 and the access line 425 may be referred to as a second access line 425 . Additionally or alternatively, access line 430 and access line 435 may be examples of access lines representing the total number of access lines associated with memory device 400 - a .

예를 들어, 액세스 라인 (435)은 액세스 라인 "ALn"으로 지칭될 수 있으며, 여기서, "n"은 메모리 어레이와 관련된 총 액세스 라인의 수이고, 액세스 라인 (430)은 액세스 라인 "ALn-1"로 지칭될 수 있다. 일부 예들에서, 드라이버 (405)와 관련된 메모리 어레이는 1024 개의 액세스 라인 (예를 들어, 워드 라인)을 포함 할 수 있고, 따라서 액세스 라인 (430)은 메모리 어레이의 1023 번째 액세스 라인을 나타낼 수 있고, 액세스 라인 (435)은 메모리 어레이의 1024 번째 액세스 라인을 나타낼 수 있다. 액세스 라인 (420, 425, 430, 435) 각각은 각각의 개별 메모리 셀과 관련될 수 있다 - 예를 들어, 어떠한 메모리 셀 (105)도 액세스 라인 (420, 425, 430 및 435) 중 어느 하나가 단일 메모리 셀 (105) 또는 다수의 메모리 셀 (105)과 관련되는지 여부에 관계없이 액세스 라인 (420, 425, 430 및 435)에 걸쳐 공통일 수 없다. For example, access line 435 may be referred to as access line “AL n ”, where “n” is the total number of access lines associated with the memory array, and access line 430 is referred to as access line “AL n ” -1 ". In some examples, the memory array associated with driver 405 may include 1024 access lines (eg, word lines), such that access line 430 may represent the 1023th access line of the memory array, Access line 435 may represent the 1024th access line of the memory array. Each of the access lines 420 , 425 , 430 , 435 may be associated with a respective individual memory cell - for example, no memory cell 105 can be associated with any one of the access lines 420 , 425 , 430 and 435 . It cannot be common across access lines 420 , 425 , 430 and 435 , whether associated with a single memory cell 105 or multiple memory cells 105 .

일부 예에서, 메모리 드라이버 (405)는 액세스 라인 (420, 425, 430 또는 435) 중 하나와 결합된 메모리 셀의 액세스 동작을 가능하게 할 수 있다. 예를 들어, 액세스 동작은 액세스 라인 (425)과 결합된 메모리 셀 상에서 수행될 수 있으며, 이는 제 2 메모리 셀이라고 지칭될 수 있다. 메모리 제어기 (예를 들어, 도 1을 참조하여 설명된 메모리 제어기(140))는 제 2 메모리 셀과 관련된 액세스 동작을 식별할 수 있다. 그런 다음, 드라이버 (405)는 제 1 액세스 라인 (420)을 플로팅할 수 있다 (예를 들어, 지속 시간 동안). 일부 예에서, 드라이버 (405)는 액세스 라인 (425) 이외의 액세스 라인 (420 내지 435) 각각을 플로팅할 수 있다. 달리 말하면, 드라이버 (405)는 선택된 메모리 셀과 공통 플레이트를 갖는 메모리 셀 (105)과 관련된 모든 선택 해제된 액세스 라인을 플로팅할 수 있다. 선택 해제된 액세스 라인을 플로팅하면 각각의 선택 해제된 액세스 라인의 전압이 관련 플레이트 (예를 들어, 도 3을 참조하여 설명된 플레이트 (325))의 전압을 추적할 수 있다. In some examples, the memory driver 405 may enable an access operation of a memory cell coupled with one of the access lines 420 , 425 , 430 or 435 . For example, an access operation may be performed on a memory cell coupled with access line 425 , which may be referred to as a second memory cell. A memory controller (eg, memory controller 140 described with reference to FIG. 1 ) may identify an access operation associated with the second memory cell. The driver 405 can then float the first access line 420 (eg, for a duration). In some examples, the driver 405 can float each of the access lines 420 - 435 other than the access line 425 . In other words, the driver 405 may float all deselected access lines associated with the selected memory cell and the memory cell 105 having a common plate. Floating the deselected access lines allows the voltage of each deselected access line to track the voltage of the associated plate (eg, plate 325 described with reference to FIG. 3 ).

전술한 예들에서, 메모리 드라이버 (405)는 임의의 수의 서브 컴포넌트를 포함할 수 있고, 각각의 서브 컴포넌트는 임의의 수의 액세스 라인과 결합될 수 있다. 예를 들어, 메모리 드라이버 (405)는 각각의 액세스 라인에 대한 개별 드라이버 컴포넌트를 포함할 수 있고, 각각의 고유 액세스 라인 서브 세트에 대한 개별 드라이버 컴포넌트를 포함할 수 있다. In the examples described above, the memory driver 405 may include any number of sub-components, and each sub-component may be coupled with any number of access lines. For example, the memory driver 405 may include a separate driver component for each access line, and may include a separate driver component for each unique subset of access lines.

도 4b는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램 (400-b)을 예시한다. 일부 예들에서, 타이밍 다이어그램 (400-b)은 도 4a를 참조하여 상기에서 설명된 바와 같이 메모리 디바이스 (400-a)와 관련된 액세스 동작을 예시할 수 있다. 일부 예들에서, 타이밍 다이어그램 (400-b)은 도 4a를 참조하여 상기에서 설명된 바와 같이 플레이트 라인 (440), 선택 해제된 액세스 라인 (445, 445-a) 및 선택된 액세스 라인 (450)의 전압을 예시할 수 있다. 타이밍 다이어그램 (400-b)은 간격 (455, 458, 460, 462 및 465) 동안 플레이트 라인 (440), 선택 해제된 액세스 라인 (445, 445-a) 및 선택된 액세스 라인 (450)의 전압을 예시할 수 있다. 4B illustrates an example timing diagram 400 - b supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure. In some examples, timing diagram 400 - b can illustrate an access operation associated with memory device 400 - a as described above with reference to FIG. 4A . In some examples, timing diagram 400 - b shows voltages of plate line 440 , deselected access lines 445 , 445 - a , and selected access line 450 as described above with reference to FIG. 4A . can be exemplified. Timing diagram 400 - b illustrates the voltages on plate line 440 , deselected access lines 445 , 445 - a , and selected access line 450 during intervals 455 , 458 , 460 , 462 and 465 . can do.

전술한 바와 같이, 메모리 어레이는 복수의 메모리 셀에 대한 복수의 개개의 액세스 라인 (예를 들어, 도 4a를 참조하여 전술한 바와 같은 액세스 라인 (420, 425, 430 및 435))을 포함할 수 있으며, 각각의 메모리 셀은 공통 플레이트를 갖는다. 각각의 액세스 라인은 워드 라인으로 지칭될 수 있으며 특정 액세스 동작에 기초하여 선택되거나 선택 해제될 수 있다 (예를 들어, 드라이버에 의해). 특정 액세스 동작 동안 임의의 하나의 액세스 라인이 선택될 수 있으며, 플레이트와 관련된 나머지 액세스 라인 수는 동작 동안 선택 해제된 상태로 남아 있을 수 있다. 예를 들어, 플레이트가 공통인 메모리 셀은 1024 개의 액세스 라인 (예를 들어, 워드 라인)과 관련될 수 있다. 따라서, 액세스 동작 동안, 액세스될 메모리 셀과 관련된 하나의 액세스 라인이 선택될 수 있고 (예를 들어, 선택된 액세스 라인 (450)), 나머지 수의 액세스 라인은 선택 해제된 상태로 남아 있을 수 있다 (예를 들어, 선택 해제된 액세스 라인 (445, 445-a)). 도 3을 참조하여 전술한 바와 같이, 플레이트 (예를 들어, 플레이트 라인 (440))가 메모리 어레이와 결합될 수 있다. As noted above, the memory array may include a plurality of individual access lines to a plurality of memory cells (eg, access lines 420 , 425 , 430 and 435 as described above with reference to FIG. 4A ). and each memory cell has a common plate. Each access line may be referred to as a word line and may be selected or deselected (eg, by a driver) based on a particular access operation. Any one access line may be selected during a particular access operation, and the remaining number of access lines associated with the plate may remain deselected during the operation. For example, a memory cell with a common plate may be associated with 1024 access lines (eg, word lines). Thus, during an access operation, one access line associated with the memory cell to be accessed may be selected (eg, selected access line 450 ) and the remaining number of access lines may remain deselected ( For example, deselected access lines (445, 445-a)). As described above with reference to FIG. 3 , a plate (eg, plate line 440 ) may be coupled with the memory array.

메모리 셀과 관련된 액세스 동작이 식별될 수 있다 (예를 들어, 도 1을 참조하여 설명된 메모리 제어기 (140)에 의해). 간격 (455)에서, 플레이트 라인 (440)은 처음에 제 1 전압 (예를 들어, 1.5V와 같은 하이 전압)으로 드라이빙되는 것으로 도시된다. 선택된 액세스 라인 (450)은 하이 전압 (예를 들어, 3V)으로 드라이빙되는 것으로 도시되고, 선택 해제된 액세스 라인 (445)은 다른 전압 (예를 들어, 0V)으로 드라이빙되는 것으로 도시된다. 선택 해제된 액세스 라인 (445)은 선택 해제된 라인이 도 4b에 도시된 간격 동안 전압 (예를 들어, 0V)과 음의 전압 사이에서 천이(transition) 할 수 있기 때문에 상이한 전압 (예를 들어, 0V)에 있는 것으로 지칭될 수 있다. An access operation associated with the memory cell may be identified (eg, by the memory controller 140 described with reference to FIG. 1 ). At gap 455 , plate line 440 is shown initially driven to a first voltage (eg, a high voltage such as 1.5V). The selected access line 450 is shown driven with a high voltage (eg, 3V), and the deselected access line 445 is shown driven with a different voltage (eg, 0V). The deselected access line 445 may have a different voltage (e.g., 0V).

간격 (458)에서, 플레이트 라인 (440)은 제 1 전압 (예를 들어, 하이 전압)에서 제 2 전압 (예를 들어, 0V와 같은 로우 전압)으로 천이할 수 있다. 선택된 액세스 라인 (450)은 하이 값 (예를 들어, 3V)으로 유지될 수 있고, 선택 해제된 액세스 라인 (445)은 플로팅될 수 있다. 일부 예에서, 선택 해제된 액세스 라인 (445)은 플레이트 라인 (440)이 제 2 전압으로 천이하는 것과 동시에 플로팅될 수 있거나, 플레이트 라인 (440)의 전압이 천이하기 시작할 때 선택 해제된 액세스 라인 (445)이 플로팅되는 것을 보장하기 위해 선택 해제된 액세스 라인 (445)은 플레이트 라인 (440)이 제 2 전압으로 천이하기 전에 일부 가드 기간(guard period)에 플로팅되기 시작할 수 있다. At spacing 458 , plate line 440 may transition from a first voltage (eg, a high voltage) to a second voltage (eg, a low voltage such as 0V). The selected access line 450 can be held at a high value (eg, 3V), and the deselected access line 445 can be floated. In some examples, the deselected access line 445 can float at the same time as the plate line 440 transitions to the second voltage, or when the voltage on the plate line 440 begins to transition. To ensure that 445 is floating, the deselected access line 445 may begin to float in some guard period before the plate line 440 transitions to the second voltage.

선택 해제된 액세스 라인 (445)과 플레이트 라인 (440) 사이의 용량성 결합으로 인해, 선택 해제된 액세스 라인 (445)을 플로팅하면 선택 해제된 액세스 라인 (445)의 전압이 플레이트 라인 (440)의 전압을 추적할 수 있다. 달리 말하면, 플레이트 라인 (440)의 전압이 간격 (458) 동안 감소함에 따라, 플로팅 선택 해제된 액세스 라인 (445)의 전압을 동일하거나 실질적으로 유사한 양만큼 낮출 수 있다. 예를 들어, 플레이트 라인 (440)의 전압이 1.5V에서 0V로 감소하면, 선택 해제된 액세스 라인 (445)의 전압은 0V에서 대략 -1.5V로 감소할 수 있다. 플레이트 라인 (440)의 전압이 변화함에 따라 선택 해제된 액세스 라인 (445)의 전압이 플레이트 라인 (440)의 전압을 추적하도록 허용함으로써, 플레이트 라인 (440)과 선택 해제된 액세스 라인 (445) 사이의 전압 차이는 일정하거나 실질적으로 일정하게 유지될 수 있다. 따라서, 플레이트 라인 (440)의 전압이 변화함에 따라, 누설 전류 (예를 들어, 플레이트 라인 (440)와 선택 해제된 액세스 라인 (445) 사이의 용량성 결합으로 인한)가 감소되거나 제거될 수 있고, 액세스 동작과 관련된 전력 소비가 감소될 수 있다. Due to the capacitive coupling between the deselected access line 445 and the plate line 440 , floating the deselected access line 445 causes the voltage on the deselected access line 445 to be the voltage can be tracked. In other words, as the voltage on the plate line 440 decreases during the interval 458 , it may lower the voltage on the floating deselected access line 445 by the same or substantially similar amount. For example, if the voltage on the plate line 440 decreases from 1.5V to 0V, the voltage on the deselected access line 445 may decrease from 0V to approximately -1.5V. Between the plate line 440 and the deselected access line 445 by allowing the voltage on the deselected access line 445 to track the voltage on the plate line 440 as the voltage on the plate line 440 changes. The voltage difference between s may be constant or may be kept substantially constant. Thus, as the voltage of plate line 440 changes, leakage current (eg, due to capacitive coupling between plate line 440 and deselected access line 445 ) can be reduced or eliminated and , the power consumption associated with the access operation can be reduced.

간격(460)에서, 플레이트 라인 (440)은 제 2 전압 (예를 들어, 0V와 같은 로우 전압)으로 유지될 수 있고, 선택된 액세스 라인 (450)은 하이 전압 (예를 들어, 3V)으로 유지될 수 있다. 일부 예들에서, 선택 해제된 액세스 라인 (445)은 간격 (460) 전체에 걸쳐 계속 플로팅될 수 있고, 따라서 선택 해제된 액세스 라인 (445)의 전압은 간격 (458)의 끝에서 획득된 레벨에 스테이(stay)될 수 있다. 이러한 예들에서, 선택 해제된 액세스 라인 (445)의 전압과 간격 (460) 동안 플레이트 라인 (440)의 전압 사이의 차이는 간격 (455) 동안의 것과 정확히 일치하지 않을 수 있다. 예를 들어, 플레이트 라인 (440)의 전압이 1.5V에서 0V로 감소하면, 선택 해제된 액세스 라인 (445)의 전압은 간격 (458) 동안 0V에서 -1.5V에 근접하지만 정확히 동일하지는 않은 레벨 (예를 들어, -1.4 V)으로 감소할 수 있고, 선택 해제된 액세스 라인 (445)의 전압은 간격 (460) 전체에 걸쳐 대략적인 레벨 (예를 들어, -1.4V)로 유지 될 수 있다.At interval 460 , plate line 440 can be maintained at a second voltage (eg, a low voltage such as 0V) and the selected access line 450 is maintained at a high voltage (eg, 3V). can be In some examples, the deselected access line 445 may continue to float throughout the interval 460 such that the voltage of the deselected access line 445 stays at the level obtained at the end of the interval 458 . (stay) In these examples, the difference between the voltage on the deselected access line 445 and the voltage on the plate line 440 during the gap 460 may not exactly match that during the gap 455 . For example, if the voltage on plate line 440 decreases from 1.5V to 0V, the voltage on deselected access line 445 approaches a level that is close to but not exactly equal from 0V to -1.5V during interval 458 ( For example, it may decrease to -1.4 V), and the voltage on the deselected access line 445 may remain at an approximate level (eg, -1.4 V) throughout the gap 460 .

일부 예들에서, 플로팅된 후, 선택 해제된 액세스 라인 (445-a)에 의해 도 4b에 도시된 바와 같이, 선택 해제된 액세스 라인 (445)은 간격 (458) 동안 플레이트 라인 (440)의 전압 변화에 기초하여 원하는 로우 전압으로 드라이빙될 수 있다. 선택 해제된 액세스 라인 (445-a)은 플레이트 전압 스윙(swing)에 기초하여 원하는 전압으로 드라이빙될 수 있어서 예를 들어, 플레이트 라인 (440)과 선택 해제된 액세스 라인 (445-a) 사이의 후속 전압 차이가 간격 (455) 동안과 동일하게 보장된다 (예를 들어, 플레이트의 전압이 간격 (458) 동안 1.5V에서 0V로 변경되고, 간격 (455) 동안 선택 해제된 액세스 라인 (445)의 전압이 0V 인 경우, 선택 해제된 액세스 라인 (445)의 전압은 1.5V의 전압 차이를 보장하기 위해 -1.5V로 드라이빙될 수 있다). In some examples, after floating, as shown in FIG. 4B by deselected access line 445 - a , deselected access line 445 changes the voltage of plate line 440 during interval 458 . may be driven with a desired low voltage based on The deselected access line 445 - a may be driven to a desired voltage based on a plate voltage swing such that, for example, subsequent connections between the plate line 440 and the deselected access line 445 - a The voltage difference is guaranteed to be the same as during interval 455 (eg, the voltage on the plate changes from 1.5V to 0V during interval 458 and the voltage on access line 445 deselected during interval 455 ) When this is 0V, the voltage on the deselected access line 445 can be driven to -1.5V to ensure a voltage difference of 1.5V).

일부 예들에서, 선택 해제된 액세스 라인들 (445-a)은 간격 (460)의 시작에서 (예를 들어, 플레이트 라인 (440)이 제 2 전압에 도달하면) 또는 간격 (460) 동안 (예를 들어, 시간 t'에서) 원하는 전압으로 드라이빙될 수 있다. 다른 예들에서, 선택 해제된 액세스 라인들 (445-a)은 간격 (460)의 시작에서 원하는 전압으로 드라이빙될 수 있다. 플레이트 라인 (440)의 전압에 대해 원하는 전압 차이 (예를 들어, 간격 (455) 동안의 것과 동일한 전압 차이)를 보장하기 위해 선택 해제된 액세스 라인 (445)을 원하는 전압으로 드라이빙하는 것은 간격 (460) 동안 선택 해제된 액세스 라인 (445)을 계속 플로팅하는 것과는 반대로 약간의 추가 복잡성을 도입할 수 있지만, 그러나 플레이트 라인 (440)의 전압 변경의 결과로서 누설 전류 및 관련 전력 소비를 더 감소시킬 수 있고, 간격 (460) 동안 선택 해제된 액세스 라인 (445)의 전압에 대한 더 큰 제어를 제공할 수 있다. 따라서, 선택 해제된 액세스 라인 (445)의 전압은 플레이트 라인 (440)의 전압을 추적할 수 있다.In some examples, the deselected access lines 445 - a are either at the beginning of the interval 460 (eg, when the plate line 440 reaches the second voltage) or during the interval 460 (eg, For example, at time t') it can be driven to the desired voltage. In other examples, deselected access lines 445 - a can be driven to a desired voltage at the beginning of interval 460 . Driving the deselected access line 445 to the desired voltage to ensure a desired voltage difference (eg, the same voltage difference as that during interval 455) relative to the voltage on plate line 440 is ) may introduce some additional complexity as opposed to continuing to float the deselected access line 445 during , but may further reduce leakage current and associated power consumption as a result of voltage changes on the plate line 440 and , can provide greater control over the voltage of the deselected access line 445 during the interval 460 . Thus, the voltage on the deselected access line 445 can track the voltage on the plate line 440 .

간격 (462)에서, 플레이트 라인 (440)은 제 2 전압 (예를 들어, 로우 전압에서)에서 제 1 전압 (예를 들어, 하이 전압)으로 드라이빙될 수 있다. 선택된 액세스 라인 (450)은 하이 전압 (예를 들어, 3V)으로 유지될 수 있고 선택 해제된 액세스 라인 (445)은 플로팅될 수 있다(간격 (460) 동안 플로팅된 경우 플로팅 상태로 유지되거나, 선택 해제된 액세스 라인 (445-a)의 경우 플레이트 라인 (440) 전압이 천이를 시작하기 전에 또는 일부 가드 기간에 플로팅을 시작한다). 선택 해제된 액세스 라인 (445)과 플레이트 라인 (440) 사이의 용량성 결합으로 인해, 선택 해제된 액세스 라인 (445)을 플로팅하면 선택 해제된 액세스 라인 (445)의 전압이 플레이트 라인 (440)의 전압을 추적 (예를 들어, 실질적으로 추적) 할 수 있다. 따라서, 선택 해제된 액세스 라인 (445)의 전압은 플레이트 라인 (440)의 전압이 증가함에 따라 증가할 수 있다. 플레이트 라인 (440)의 전압을 추적함으로써, 플레이트 라인 (440)의 전압과 선택 해제된 액세스 라인 (445)의 전압 사이의 전압 차이는 일정하거나 실질적으로 일정하게 유지될 수 있다. 따라서, 플레이트 라인 (440) 및 선택 해제된 액세스 라인 (445)과 관련된 누설 전류가 완화될 수 있고, 관련 메모리 디바이스의 전력 소비가 감소될 수 있다.At interval 462 , plate line 440 can be driven from a second voltage (eg, at a low voltage) to a first voltage (eg, at a high voltage). The selected access line 450 can be held at a high voltage (eg, 3V) and the deselected access line 445 can be floated (remain floating if floated for the interval 460, or selected For the unlocked access line 445 - a, the plate line 440 voltage starts to float before it starts to transition or at some guard period). Due to the capacitive coupling between the deselected access line 445 and the plate line 440 , floating the deselected access line 445 causes the voltage on the deselected access line 445 to flow across the plate line 440 . The voltage may be tracked (eg, substantially tracked). Accordingly, the voltage on the deselected access line 445 may increase as the voltage on the plate line 440 increases. By tracking the voltage on the plate line 440 , the voltage difference between the voltage on the plate line 440 and the voltage on the deselected access line 445 can be kept constant or substantially constant. Accordingly, the leakage current associated with the plate line 440 and the deselected access line 445 can be mitigated, and the power consumption of the associated memory device can be reduced.

간격 (465)에서, 선택된 액세스 라인 (450)은 하이 전압 (예를 들어, 3V)으로 유지될 수 있다. 플레이트 라인 (440)은 간격 (455)에서 설명한 바와 같이 제 1 전압 (예를 들어, 하이 전압)으로 복귀할 수 있고, 선택 해제된 액세스 라인 (445)은 하이 전압 (예를 들어, 0V)으로 드라이빙될 수 있다. 전술한 바와 같이, 선택 해제된 액세스 라인 (445)은 하이 전압 (예를 들어, 0V)과 음의 전압 사이의 천이로 인해 하이 전압 (예를 들어, 0V)에 있는 것으로 지칭될 수 있다. At interval 465 , the selected access line 450 can be held at a high voltage (eg, 3V). Plate line 440 may return to a first voltage (eg, high voltage) as described in interval 455 , and deselected access line 445 may return to high voltage (eg, 0V). can be driven As noted above, the deselected access line 445 may be referred to as being at a high voltage (eg, 0V) due to the transition between the high voltage (eg, 0V) and the negative voltage.

도 4b의 예에서는 하이 전압에서 로우 전압으로 다시 하이 전압으로 천이하는 것으로 도시되었지만, 일부 예에서, 본 출원에 설명된 기술은 플레이트 라인 (440)이 로우 전압에서 하이 전압으로 그리고 다시 로우 전압으로 천이할 때 적용될 수 있다. 플레이트 라인 (440)이 로우 전압에서 하이 전압으로 또는 하이 전압에서 로우 전압으로 천이될 때, 이는 플레이트 라인 (440)의 전압을 토글링(toggling) 또는 토글링하는 것으로 지칭될 수 있다. 토글링의 방향에 관계없이, 선택 해제된 액세스 라인 (445, 445-a)은 플레이트 라인 (440)의 전압이 토글링될 때 플로팅될 수 있다. Although the example of FIG. 4B is illustrated as transitioning from a high voltage to a low voltage back to a high voltage, in some examples, the techniques described herein allow plate line 440 to transition from a low voltage to a high voltage and back to a low voltage. can be applied when When the plate line 440 transitions from a low voltage to a high voltage or from a high voltage to a low voltage, it may be referred to as toggling or toggling the voltage of the plate line 440 . Regardless of the direction of toggling, deselected access lines 445 , 445 - a may float when the voltage on plate line 440 is toggled.

다양한 예들에서, 플레이트 토글링이 발생할 수 있고, 따라서 선택 해제된 액세스 라인 (445, 445-a)은 액세스 동작과 관련하여 언제든지 플로팅될 수 있다. 예를 들어, 선택 해제된 액세스 라인 (445, 445-a)은 선택된 메모리 셀이 액세스되기 전, 도중 또는 후에 플로팅될 수 있다 (예를 들어, 판독 또는 기록). In various examples, plate toggling may occur, such that deselected access lines 445 , 445 - a may float at any time in connection with an access operation. For example, deselected access lines 445 , 445 - a can be floated (eg, read or written) before, during, or after the selected memory cell is accessed.

본 출원에 설명된 일부 예에서, 액세스 라인 관리를 위한 기술을 지원하는 동작은 하나의 공통 플레이트 (즉, 어레이의 모든 메모리 셀에 공통)를 갖는 메모리 셀들의 어레이의 맥락에서 설명된다. 본 출원에 설명된 동일한 기술은 하나 초과의 공통 플레이트를 포함하는 메모리 셀들의 어레이에 의해 지원될 수 있으며, 여기서 각각의 플레이트는 어레이의 메모리 셀의 서브 세트에 공통될 수 있음을 이해해야 한다. 따라서, 본 출원에 설명된 기술은 임의의 개수의 플레이트를 갖는 메모리 어레이의 맥락에서 적용될 수 있다.In some examples described herein, operations supporting techniques for access line management are described in the context of an array of memory cells having one common plate (ie, common to all memory cells in the array). It should be understood that the same techniques described herein may be supported by an array of memory cells comprising more than one common plate, wherein each plate may be common to a subset of memory cells in the array. Accordingly, the techniques described herein may be applied in the context of a memory array having any number of plates.

본 출원에 설명된 예에서, 설명된 절대 전압 레벨 (예를 들어, 3V, 0V, -1.5V 등)은 단지 설명을 위한 것이다. 따라서, 본 출원에 설명된 절대 전압 레벨과 다른 임의의 절대 전압 레벨(들)이 사용될 수 있다. In the examples described herein, the absolute voltage levels described (eg, 3V, 0V, -1.5V, etc.) are for illustrative purposes only. Accordingly, any absolute voltage level(s) other than the absolute voltage levels described herein may be used.

도 5a는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 메모리 디바이스 (500-a)의 예를 예시한다. 일부 예들에서, 메모리 디바이스 (500-a)는 메모리 드라이버 (505)로 지칭될 수 있는 드라이버 (505)를 포함할 수 있다. 메모리 드라이버 (505)는 임의의 수의 액세스 라인과 결합될 수 있고, 하나 이상의 메모리 셀 (예를 들어,도 3을 참조하여 설명된 메모리 셀 (305a 내지 305f))의 액세스 동작을 가능하게 할 수 있다. 메모리 드라이버 (505)는 예를 들어, 액세스 라인 (520), 액세스 라인 (525), 액세스 라인 (530), 액세스 라인 (535) 및 액세스 라인 (537)과 결합될 수 있다. 각각의 액세스 라인 (520, 525, 530, 535, 537)은 메모리 어레이의 워드 라인 (예를 들어, 도 3을 참조하여 설명된 워드 라인 (310-a, 310-b))의 예일 수 있다. 메모리 드라이버 (505)는 드라이버 컴포넌트 (510) 및 드라이버 컴포넌트 (515)와 같은 다양한 서브 컴포넌트를 포함할 수 있다. 다른 예들 (미도시)에서, 메모리 드라이버 (505)는 임의의 수의 서브 컴포넌트 (예를 들어, 임의의 수의 드라이버 컴포넌트)를 포함할 수 있다. 5A illustrates an example of a memory device 500 - a that supports techniques for managing access lines for an array of memory cells in accordance with examples of this disclosure. In some examples, the memory device 500 - a may include a driver 505 , which may be referred to as a memory driver 505 . Memory driver 505 may be coupled with any number of access lines and may enable access operations of one or more memory cells (eg, memory cells 305a - 305f described with reference to FIG. 3 ). have. The memory driver 505 may be coupled with an access line 520 , an access line 525 , an access line 530 , an access line 535 , and an access line 537 , for example. Each access line 520 , 525 , 530 , 535 , 537 may be an example of a word line of a memory array (eg, word line 310 - a , 310 - b described with reference to FIG. 3 ). The memory driver 505 may include various sub-components such as a driver component 510 and a driver component 515 . In other examples (not shown), the memory driver 505 may include any number of sub-components (eg, any number of driver components).

전술한 바와 같이, 각각의 액세스 라인 (520, 525, 530, 535, 537)은 메모리 어레이 (예를 들어, 도 3을 참조하여 설명된 메모리 어레이 (320))의 워드 라인의 예일 수 있다. 예를 들어, 액세스 라인 (520)은 제 1 액세스 라인 (520)이거나 또는 그렇게 지칭될 수 있고, 액세스 라인 (525)은 제 2 액세스 라인 (525)이거나 또는 그렇게 지칭될 수 있고, 액세스 라인 (530)은 제 3 액세스 라인(530)이거나 또는 그렇게 지칭될 수 있다. As noted above, each access line 520 , 525 , 530 , 535 , 537 may be an example of a word line of a memory array (eg, memory array 320 described with reference to FIG. 3 ). For example, access line 520 may be or may be referred to as a first access line 520 , access line 525 may be or may be referred to as a second access line 525 , and access line 530 may be referred to as a second access line 525 . ) may be or may be referred to as the third access line 530 .

추가적으로 또는 대안적으로, 액세스 라인 (430) 및 액세스 라인 (435)은 메모리 디바이스 (500-a)와 관련된 총 액세스 라인 수를 나타내는 액세스 라인의 예일 수 있다. 예를 들어, 액세스 라인 (537)은 액세스 라인 "ALn"으로 지칭될 수 있으며, 여기서, "n"은 메모리 어레이와 관련된 총 액세스 라인의 수이고, 액세스 라인 (535)은 액세스 라인 "ALn-1"로 지칭될 수 있다. 일부 예들에서, 드라이버 (505)와 관련된 메모리 어레이는 1024 개의 액세스 라인 (예를 들어, 워드 라인)을 포함 할 수 있고, 따라서 액세스 라인 (535)은 메모리 어레이의 1023 번째 액세스 라인을 나타낼 수 있고, 액세스 라인 (537)은 메모리 어레이의 1024 번째 액세스 라인을 나타낼 수 있다. 액세스 라인 (520, 525, 530, 535, 및 537) 각각은 각각의 개별 메모리 셀과 관련될 수 있다 - 예를 들어, 어떠한 메모리 셀 (105)도 액세스 라인 (520, 525, 530, 535, 및 537) 중 어느 하나가 단일 메모리 셀 (105) 또는 다수의 메모리 셀 (105)과 관련되는지 여부에 관계없이 액세스 라인 (520, 525, 530, 535, 및 537)에 걸쳐 공통일 수 없다.Additionally or alternatively, access line 430 and access line 435 can be examples of access lines representing the total number of access lines associated with memory device 500 - a . For example, access line 537 may be referred to as access line “AL n ”, where “n” is the total number of access lines associated with the memory array, and access line 535 is access line “AL n ” -1 ". In some examples, the memory array associated with driver 505 may include 1024 access lines (eg, word lines), such that access line 535 may represent the 1023th access line of the memory array, Access line 537 may represent the 1024th access line of the memory array. Each of the access lines 520 , 525 , 530 , 535 , and 537 may be associated with a respective individual memory cell - for example, any memory cell 105 may be associated with an access line 520 , 525 , 530 , 535 , and No one of 537 may be common across access lines 520 , 525 , 530 , 535 , and 537 , regardless of whether it relates to a single memory cell 105 or multiple memory cells 105 .

일부 예에서, 메모리 드라이버 (505)는 액세스 라인 (520, 525, 530, 535, 및 537) 중 하나와 결합된 메모리 셀의 액세스 동작을 가능하게 할 수 있다. 예를 들어, 액세스 동작은 액세스 라인 (525)과 결합된 메모리 셀 상에서 수행될 수 있으며, 이는 제 2 메모리 셀이라고 지칭될 수 있다. 일부 예에서, 메모리 제어기 (예를 들어, 도 1을 참조하여 설명된 메모리 제어기(140))는 제 2 메모리 셀과 관련된 액세스 동작을 식별할 수 있다. 그런 다음, 드라이버 (505)는 제 1 액세스 라인 (520)을 플로팅할 수 있다 (예를 들어, 지속 시간 동안). 다른 예에서, 드라이버 (505)는 액세스 라인 (455) 이외의 액세스 라인 (520 내지 537) 각각을 플로팅할 수 있다. 달리 말하면, 드라이버 (505)는 선택된 메모리 셀과 공통 플레이트를 갖는 메모리 셀 (105)과 관련된 모든 선택 해제된 액세스 라인을 플로팅할 수 있다. 선택 해제된 액세스 라인을 플로팅함으로써, 각각의 선택 해제된 액세스 라인의 전압이 관련 플레이트 (예를 들어, 도 3을 참조하여 설명된 플레이트 (325))의 전압을 추적할 수 있다. In some examples, memory driver 505 may enable an access operation of a memory cell coupled with one of access lines 520 , 525 , 530 , 535 , and 537 . For example, an access operation may be performed on a memory cell coupled with access line 525 , which may be referred to as a second memory cell. In some examples, a memory controller (eg, memory controller 140 described with reference to FIG. 1 ) can identify an access operation associated with the second memory cell. The driver 505 can then float the first access line 520 (eg, for a duration). In another example, the driver 505 can float each of the access lines 520 - 537 other than the access line 455 . In other words, the driver 505 may float all deselected access lines associated with the selected memory cell and the memory cell 105 having a common plate. By plotting the deselected access lines, the voltage of each deselected access line can track the voltage of the associated plate (eg, plate 325 described with reference to FIG. 3 ).

일부 예들에서, 드라이버 (505)는 다수의 플로팅 동작 및/또는 다수의 서브 컴포넌트를 사용하여 선택 해제된 액세스 라인을 플로팅할 수 있다. 예를 들어, 선택 해제된 액세스 라인의 제 1 서브 세트는 드라이버 (505)의 서브 컴포넌트의 제 1 플로팅 동작 및/또는 제 1 조합을 사용하여 플로팅될 수 있으며, 선택 해제된 액세스 라인의 제 2 서브 세트는 드라이버 (505)의 서브 컴포넌트의 제 2 플로팅 동작 및/또는 제 2 조합을 사용하여 플로팅될 수 있다. 드라이버 (505)는 메모리 어레이의 크기 (예를 들어, 1024 개의 선택 해제된 액세스 라인 중 1023 개와 결합 됨)에 따라 하나를 제외한 모든 선택 해제된 액세스 라인과 결합될 수 있기 때문에, 서브 컴포넌트의 제 1 플로팅 동작 및/또는 제 1 조합을 사용하여 프로팅된 선택 해제된 액세스 라인의 제 1 서브 세트 및 서브 컴포넌트의 제 2 플로팅 동작 및/또는 제 2 조합을 사용하여 플로팅된 선택 해제된 액세스 라인의 제 2 서브 세트는 총 1023 개의 액세스 라인을 가질 수 있다. In some examples, the driver 505 can float the deselected access line using multiple floating operations and/or multiple subcomponents. For example, a first subset of deselected access lines may be floated using a first floating operation and/or a first combination of subcomponents of driver 505 , and a second sub set of deselected access lines The set may be floated using a second floating operation and/or a second combination of subcomponents of the driver 505 . Since the driver 505 may be associated with all but one deselected access line depending on the size of the memory array (eg, associated with 1023 of 1024 deselected access lines), the first A first subset of deselected access lines floated using a floating operation and/or a first combination and a second set of deselected access lines floated using a second floating operation and/or a second combination of subcomponents The two subsets may have a total of 1023 access lines.

일부 경우에, 드라이버 (505)의 서브 컴포넌트 (예를 들어, 드라이버 컴포넌트 (510))는 선택된 액세스 라인 (예를 들어, 액세스 라인 (520)) 및 하나 이상의 선택 해제된 액세스 라인 (예를 들어, 액세스 라인 (525, 530))에 공통일 수 있지만, 드라이버 (505)의 하나 이상의 다른 서브 컴포넌트 (예를 들어, 드라이버 컴포넌트 (515))는 복수의 다른 선택 해제된 액세스 라인 (예를 들어, 액세스 라인 (535, 537))에 공통일 수 있다. 이러한 예에서, 드라이버 컴포넌트 (510)는 드라이버 컴포넌트 (515)가 선택 해제된 액세스 라인 (535, 537)을 동작할 수 있는 방식과 달리 선택 해제된 액세스 라인 (525, 530)을 동작시킬 수 있다. 예를 들어, 드라이버 컴포넌트 (515)는 실질적으로 도 4를 참조하여 설명된 바와 같이 선택 해제된 액세스 라인 (535, 537)을 동작시킬 수 있지만, 드라이버 컴포넌트 (510)는 드라이버 컴포넌트 (510)가 선택된 액세스 라인 (520)과 공통이기 때문에 드라이버 컴포넌트 (510) 내의 컴포넌트 (예를 들어, 트랜지스터) 상의 전압 스트레스(voltage stress)를 최소화하도록 구성된 전압으로 선택 해제된 액세스 라인 (525, 530)을 드라이빙할 수 있다.In some cases, a subcomponent of driver 505 (eg, driver component 510 ) includes a selected access line (eg, access line 520 ) and one or more deselected access lines (eg, Although common to access lines 525 and 530 ), one or more other subcomponents of driver 505 (eg, driver component 515 ) may be connected to a plurality of other deselected access lines (eg, access lines 535 and 537). In this example, driver component 510 may operate deselected access lines 525 , 530 unlike the way driver component 515 may operate deselected access lines 535 , 537 . For example, driver component 515 may operate deselected access lines 535 , 537 substantially as described with reference to FIG. 4 , while driver component 510 does not allow driver component 510 to be selected. Deselected access lines 525 , 530 can be driven with a voltage configured to minimize voltage stress on a component (eg, a transistor) in driver component 510 because it is common with access line 520 . have.

전술한 예들에서, 메모리 드라이버 (505)는 임의의 수의 서브 컴포넌트를 포함할 수 있고, 각각의 서브 컴포넌트는 임의의 수의 액세스 라인과 결합될 수 있다. 예를 들어, 메모리 드라이버 (505)는 각각의 액세스 라인에 대한 개별 드라이버 컴포넌트를 포함할 수 있거나 각각의 고유 액세스 라인 서브 세트에 대한 개별 드라이버 컴포넌트를 포함할 수 있다. In the examples described above, the memory driver 505 may include any number of sub-components, and each sub-component may be coupled with any number of access lines. For example, the memory driver 505 may include a separate driver component for each access line or may include a separate driver component for each unique subset of access lines.

도 5b는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램 (500-b)를 예시한다. 일부 예들에서, 타이밍 다이어그램 (500-b)은 도 5a를 참조하여 상기에서 설명된 바와 같이 메모리 디바이스 (500-a)와 관련된 액세스 동작을 예시할 수 있다. 일부 예들에서, 타이밍 다이어그램 (500-b)은 플레이트 라인 (540), 선택 해제된 액세스 라인 (545, 545-a), 선택된 액세스 라인 (550), 및 선택 해제된 액세스 라인 (552)의 서브 세트의 전압을 예시할 수 있다. 타이밍 다이어그램 (500-b)은 간격 (555, 558, 560, 562 및 565) 동안 플레이트 라인 (540), 선택 해제된 액세스 라인 (545, 545-a), 선택된 액세스 라인 (550) 및 선택 해제된 액세스 라인 (552)의 서브 세트의 전압을 예시할 수 있다. 일부 예에서, 선택 해제된 액세스 라인 (552)의 서브 세트는 선택된 액세스 라인 (550)과 하나 이상의 드라이버 또는 드라이버 컴포넌트 (예를 들어, 도 5a를 참조하여 전술한 바와 같은 드라이버 컴포넌트 (510))를 공유하는 선택 해제된 액세스 라인이거나 이를 지칭할 수 있다. 5B illustrates an example timing diagram 500 - b supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure. In some examples, timing diagram 500 - b can illustrate an access operation associated with memory device 500 - a as described above with reference to FIG. 5A . In some examples, timing diagram 500 - b shows a subset of plate line 540 , deselected access line 545 , 545 - a , selected access line 550 , and deselected access line 552 . voltage can be exemplified. Timing diagram 500 - b shows plate lines 540 , deselected access lines 545 and 545 - a , selected access lines 550 and deselected access lines 550 during intervals 555 , 558 , 560 , 562 and 565 . The voltage of a subset of the access lines 552 can be illustrated. In some examples, the subset of deselected access lines 552 includes selected access lines 550 and one or more drivers or driver components (eg, driver components 510 as described above with reference to FIG. 5A ). It may be or refer to a shared deselected access line.

전술한 바와 같이, 메모리 어레이는 복수의 메모리 셀에 대한 복수의 개개의 액세스 라인 (예를 들어, 도 5a를 참조하여 전술한 바와 같은 액세스 라인 (520, 525, 530, 535 및 537))을 포함할 수 있으며, 각각의 메모리 셀은 공통 플레이트를 갖는다. 각각의 액세스 라인은 워드 라인으로 지칭될 수 있으며 특정 액세스 동작에 기초하여 선택되거나 선택 해제될 수 있다 (예를 들어, 드라이버에 의해). 특정 액세스 동작 동안 임의의 하나의 액세스 라인이 선택될 수 있으며, 플레이트와 관련된 나머지 액세스 라인 수는 동작 동안 선택 해제된 상태로 남아 있을 수 있다. 예를 들어, 플레이트가 공통인 메모리 셀은 1024 개의 액세스 라인 (예를 들어, 워드 라인)과 관련될 수 있다. 따라서, 액세스 동작 동안, 액세스될 메모리 셀과 관련된 하나의 액세스 라인이 선택될 수 있고 (예를 들어, 선택된 액세스 라인 (550)), 나머지 수의 액세스 라인은 선택 해제된 상태로 남아 있을 수 있다 (예를 들어, 선택 해제된 액세스 라인 (545, 545-a)). 도 3을 참조하여 전술한 바와 같이, 플레이트 (예를 들어, 플레이트 라인 (540))가 메모리 어레이와 결합될 수 있다. As noted above, the memory array includes a plurality of individual access lines to a plurality of memory cells (eg, access lines 520 , 525 , 530 , 535 and 537 as described above with reference to FIG. 5A ). and each memory cell has a common plate. Each access line may be referred to as a word line and may be selected or deselected (eg, by a driver) based on a particular access operation. Any one access line may be selected during a particular access operation, and the remaining number of access lines associated with the plate may remain deselected during the operation. For example, a memory cell with a common plate may be associated with 1024 access lines (eg, word lines). Thus, during an access operation, one access line associated with the memory cell to be accessed may be selected (eg, selected access line 550 ), and the remaining number of access lines may remain deselected ( For example, deselected access lines (545, 545-a)). As described above with reference to FIG. 3 , a plate (eg, plate line 540 ) may be coupled with the memory array.

메모리 셀과 관련된 액세스 동작이 식별될 수 있다 (예를 들어, 도 1을 참조하여 설명된 메모리 제어기 (140)에 의해). 간격 (555)에서, 플레이트 라인 (540)은 처음에 제 1 전압 (예를 들어, 하이 전압)으로 드라이빙되는 것으로 도시된다. 선택된 액세스 라인 (550)은 하이 전압 (예를 들어, 3V)으로 드라이빙되는 것으로 도시되고, 선택 해제된 액세스 라인 (552)은 다른 전압 (예를 들어, 0V)으로 드라이빙되는 것으로 도시된다. 선택 해제된 액세스 라인 (445)은 선택 해제된 라인이 전압 (예를 들어, 0V)과 음의 전압 사이에서 천이할 수 있기 때문에 상이한 전압 (예를 들어, 0V)에 있는 것으로 지칭될 수 있다. An access operation associated with the memory cell may be identified (eg, by the memory controller 140 described with reference to FIG. 1 ). At gap 555 , plate line 540 is shown initially driven to a first voltage (eg, a high voltage). The selected access line 550 is shown driven with a high voltage (eg, 3V), and the deselected access line 552 is shown driven with a different voltage (eg, 0V). A deselected access line 445 may be referred to as being at a different voltage (eg, 0V) because the deselected line may transition between a voltage (eg, 0V) and a negative voltage.

간격 (558)에서, 플레이트 라인 (540)은 제 1 전압 (예를 들어, 하이 전압)에서 제 2 전압 (예를 들어, 로우 전압)으로 천이할 수 있다. 선택된 액세스 라인 (550)은 하이 값 (예를 들어, 3V)으로 유지될 수 있고, 선택 해제된 액세스 라인 (545)은 플로팅될 수 있다. 일부 예에서, 선택 해제된 액세스 라인 (545)은 플레이트 라인 (540)이 제 2 전압으로 천이하는 동시에 플로팅되기 시작할 수 있거나, 선택 해제된 액세스 라인 (545)은 플레이트 라인 (540)이 제 2 전압으로 천이하기 전에 플로팅되기 시작할 수 있다. 선택 해제된 액세스 라인과 플레이트 라인 (540) 사이의 용량성 결합으로 인해, 선택 해제된 액세스 라인 (545)을 플로팅하면 선택 해제된 액세스 라인 (545)의 전압이 플레이트 라인 (540)의 전압을 추적할 수 있다. 달리 말하면, 플레이트 라인 (540)의 전압이 간격 (558) 동안 감소함에 따라, 플로팅 선택 해제된 액세스 라인 (545)의 전압을 동일하거나 실질적으로 유사한 양만큼 낮출 수 있다. At interval 558 , plate line 540 can transition from a first voltage (eg, a high voltage) to a second voltage (eg, a low voltage). The selected access line 550 can be held at a high value (eg, 3V) and the deselected access line 545 can be floated. In some examples, deselected access line 545 may begin to float at the same time plate line 540 transitions to the second voltage, or deselected access line 545 may cause plate line 540 to transition to the second voltage. may start to float before transitioning to . Due to the capacitive coupling between the deselected access line and plate line 540 , floating the deselected access line 545 causes the voltage on the deselected access line 545 to track the voltage on the plate line 540 . can do. In other words, as the voltage on the plate line 540 decreases during the interval 558 , it can lower the voltage on the floating deselected access line 545 by an equal or substantially similar amount.

예를 들어, 플레이트 라인 (540)의 전압이 1.5V에서 0V로 감소하면, 선택 해제된 액세스 라인 (545)의 전압은 0V에서 대략 -1.5V로 감소할 수 있다. 플레이트 라인 (540)의 전압이 변화함에 따라 선택 해제된 액세스 라인 (545)의 전압이 플레이트 라인 (540)의 전압을 추적하도록 허용함으로써, 플레이트 라인 (540)과 선택 해제된 액세스 라인 (545) 사이의 전압 차이는 일정하거나 실질적으로 일정하게 유지될 수 있다. 따라서, 플레이트 라인 (540)의 전압이 변화함에 따라, 누설 전류 (예를 들어, 플레이트 라인 (540)와 선택 해제된 액세스 라인 (545) 사이의 용량성 결합으로 인한)가 감소되거나 제거될 수 있고, 액세스 동작과 관련된 전력 소비가 감소될 수 있다. For example, if the voltage on plate line 540 decreases from 1.5V to 0V, the voltage on deselected access line 545 may decrease from 0V to approximately -1.5V. Between the plate line 540 and the deselected access line 545 by allowing the voltage on the deselected access line 545 to track the voltage on the plate line 540 as the voltage on the plate line 540 changes. The voltage difference between s may be constant or may be kept substantially constant. Thus, as the voltage of plate line 540 changes, leakage current (eg, due to capacitive coupling between plate line 540 and deselected access line 545 ) can be reduced or eliminated and , the power consumption associated with the access operation may be reduced.

간격(560)에서, 플레이트 라인 (540)은 제 2 전압 (예를 들어, 로우 전압)으로 유지될 수 있고, 선택된 액세스 라인 (550)은 하이 전압 (예를 들어, 3V)으로 유지될 수 있다. 일부 예들에서, 선택 해제된 액세스 라인 (545)은 간격 (560) 전체에 걸쳐 계속 플로팅될 수 있고, 따라서 선택 해제된 액세스 라인 (545)의 전압은 간격 (558)의 끝에서 획득된 레벨에 스테이될 수 있다. 이러한 예들에서, 선택 해제된 액세스 라인 (545)의 전압과 간격 (560) 동안 플레이트 라인 (540)의 전압 사이의 차이는 간격 (555) 동안의 것과 정확히 일치하지 않을 수 있다. 예를 들어, 플레이트 라인 (540)의 전압이 1.5V에서 0V로 감소하면, 선택 해제된 액세스 라인 (545)의 전압은 간격 (558) 동안 0V에서 -1.5V에 근접하지만 정확히 동일하지는 않은 레벨 (예를 들어, -1.4 V)으로 감소할 수 있고, 선택 해제된 액세스 라인 (545)의 전압은 간격 (560) 전체에 걸쳐 대략적인 레벨 (예를 들어, -1.4V)로 유지 될 수 있다.At spacing 560 , plate line 540 may be maintained at a second voltage (eg, low voltage) and selected access line 550 may be maintained at a high voltage (eg, 3V). . In some examples, the deselected access line 545 may continue to float throughout the interval 560 such that the voltage of the deselected access line 545 stays at the level obtained at the end of the interval 558 . can be In these examples, the difference between the voltage on the deselected access line 545 and the voltage on the plate line 540 during the gap 560 may not exactly match that during the gap 555 . For example, if the voltage on plate line 540 decreases from 1.5V to 0V, the voltage on deselected access line 545 approaches a level that is close to, but not exactly equal to, 0V to -1.5V during interval 558 ( For example, it may decrease to -1.4 V), and the voltage on the deselected access line 545 may remain at an approximate level (eg, -1.4 V) throughout the interval 560 .

일부 예들에서, 플로팅된 후, 선택 해제된 액세스 라인 (545-a)에 의해 도 5b에 도시된 바와 같이, 선택 해제된 액세스 라인 (545)은 간격 (458) 동안 플레이트 라인 (540)의 전압 변화에 기초하여 원하는 로우 전압으로 드라이빙될 수 있다. 선택 해제된 액세스 라인 (545-a)은 플레이트 전압 스윙에 기초하여 원하는 전압으로 드라이빙될 수 있어서 예를 들어, 플레이트 라인 (540)과 선택 해제된 액세스 라인 (545-a) 사이의 후속 전압 차이가 간격 (555) 동안과 동일하게 보장된다 (예를 들어, 플레이트의 전압이 간격 (558) 동안 1.5V에서 0V로 변경되고, 간격 (555) 동안 선택 해제된 액세스 라인 (545)의 전압이 0V 인 경우, 선택 해제된 액세스 라인 (545)의 전압은 1.5V의 전압 차이를 보장하기 위해 -1.5V로 드라이빙될 수 있다). In some examples, after floating, as shown in FIG. 5B by deselected access line 545 - a , deselected access line 545 changes the voltage of plate line 540 during interval 458 . may be driven with a desired low voltage based on Deselected access line 545 - a can be driven to a desired voltage based on the plate voltage swing so that, for example, a subsequent voltage difference between plate line 540 and deselected access line 545 - a is guaranteed to be the same as during interval 555 (e.g., the voltage on the plate changes from 1.5V to 0V during interval 558, and the voltage on deselected access line 545 during interval 555 is 0V In this case, the voltage on the deselected access line 545 can be driven to -1.5V to ensure a voltage difference of 1.5V).

일부 예들에서, 선택 해제된 액세스 라인들 (545-a)은 간격 (560)의 시작에서 (예를 들어, 플레이트 라인 (540)이 제 2 전압에 도달하면) 또는 간격 (560) 동안 (예를 들어, 시간 t'에서) 원하는 전압으로 드라이빙될 수 있다. 다른 예들에서, 선택 해제된 액세스 라인들 (545-a)은 간격 (560)의 시작에서 원하는 전압으로 드라이빙될 수 있다. 플레이트 라인 (540)의 전압에 대해 원하는 전압 차이 (예를 들어, 간격 (555) 동안의 것과 동일한 전압 차이)를 보장하기 위해 선택 해제된 액세스 라인 (545)을 원하는 전압으로 드라이빙하는 것은 간격 (460) 동안 선택 해제된 액세스 라인 (545)을 계속 플로팅하는 것과는 반대로 약간의 추가 복잡성을 도입할 수 있지만, 그러나 플레이트 라인 (540)의 전압 변경의 결과로서 누설 전류 및 관련 전력 소비를 더 감소시킬 수 있고, 간격 (560) 동안 선택 해제된 액세스 라인 (545)의 전압에 대한 더 큰 제어를 제공할 수 있다. 따라서, 선택 해제된 액세스 라인 (545)의 전압은 플레이트 라인 (540)의 전압을 추적할 수 있다.In some examples, deselected access lines 545 - a are either at the beginning of interval 560 (eg, when plate line 540 reaches a second voltage) or during interval 560 (eg, For example, at time t') it can be driven to the desired voltage. In other examples, deselected access lines 545 - a can be driven to a desired voltage at the beginning of interval 560 . Driving the deselected access line 545 to the desired voltage to ensure the desired voltage difference (eg, the same voltage difference as during the interval 555) relative to the voltage on the plate line 540 is ) may introduce some additional complexity as opposed to continuing to float the deselected access line 545 during , but may further reduce leakage current and associated power consumption as a result of changing the voltage on the plate line 540 and , can provide greater control over the voltage of the deselected access line 545 during the interval 560 . Thus, the voltage on the deselected access line 545 can track the voltage on the plate line 540 .

간격 (562)에서, 플레이트 라인 (540)은 제 2 전압 (예를 들어, 로우 전압에서)에서 제 1 전압 (예를 들어, 하이 전압)으로 드라이빙될 수 있다. 선택된 액세스 라인 (550)은 하이 전압 (예를 들어, 3V)으로 유지될 수 있고 선택 해제된 액세스 라인 (545)은 플로팅될 수 있다(간격 (460) 동안 플로팅된 경우 플로팅 상태로 유지되거나, 선택 해제된 액세스 라인 (545-a)의 경우 플레이트 라인 (540) 전압이 천이를 시작하기 전에 또는 일부 가드 기간에 플로팅을 시작한다). 선택 해제된 액세스 라인 (545)과 플레이트 라인 (540) 사이의 용량성 결합으로 인해, 선택 해제된 액세스 라인 (545)을 플로팅하면 선택 해제된 액세스 라인 (545)의 전압이 플레이트 라인 (540)의 전압을 추적(예를 들어, 실질적으로 추적)할 수 있다. 따라서, 선택 해제된 액세스 라인 (545)의 전압은 플레이트 라인 (540)의 전압이 증가함에 따라 증가할 수 있다. 플레이트 라인 (540)의 전압을 추적함으로써, 플레이트 라인 (540)의 전압과 선택 해제된 액세스 라인 (545)의 전압 사이의 전압 차이는 제한될 수 있다. 따라서, 플레이트 라인 (540) 및 선택 해제된 액세스 라인 (545)과 관련된 누설 전류가 완화될 수 있고, 관련 메모리 디바이스의 전력 소비가 감소될 수 있다.At interval 562 , plate line 540 can be driven from a second voltage (eg, at a low voltage) to a first voltage (eg, a high voltage). The selected access line 550 can be held at a high voltage (eg, 3V) and the deselected access line 545 can be floated (remain floating if floated for the interval 460, or selected For the unlocked access line 545 - a, the plate line 540 voltage starts to float before it starts to transition or at some guard period). Due to the capacitive coupling between the deselected access line 545 and the plate line 540 , floating the deselected access line 545 causes the voltage on the deselected access line 545 to rise from The voltage may be tracked (eg, substantially tracked). Accordingly, the voltage on the deselected access line 545 may increase as the voltage on the plate line 540 increases. By tracking the voltage on the plate line 540 , the voltage difference between the voltage on the plate line 540 and the voltage on the deselected access line 545 can be limited. Accordingly, the leakage current associated with the plate line 540 and the deselected access line 545 can be mitigated, and the power consumption of the associated memory device can be reduced.

간격 (565)에서, 선택된 액세스 라인 (550)은 하이 전압 (예를 들어, 3V)으로 유지될 수 있다. 플레이트 라인 (540)은 간격 (555)에서 설명한 바와 같이 제 1 전압 (예를 들어, 하이 전압)으로 복귀할 수 있고, 선택 해제된 액세스 라인 (545)은 하이 전압 (예를 들어, 0V)으로 드라이빙될 수 있다. 전술한 바와 같이, 선택 해제된 액세스 라인 (545)은 하이 전압 (예를 들어, 0V)과 음의 전압 사이의 천이로 인해 하이 전압 (예를 들어, 0V)에 있는 것으로 지칭될 수 있다.At interval 565 , the selected access line 550 can be held at a high voltage (eg, 3V). Plate line 540 may return to a first voltage (eg, high voltage) as described in interval 555 , and deselected access line 545 may return to high voltage (eg, 0V). can be driven As noted above, the deselected access line 545 may be referred to as being at a high voltage (eg, 0V) due to the transition between the high voltage (eg, 0V) and the negative voltage.

전술한 바와 같이, 선택 해제된 액세스 라인 (552)의 서브 세트는 간격 (555, 558, 560, 562 및 565)에 걸쳐 일정한 전압 (예를 들어, 0V)으로 유지될 수 있다. 선택 해제된 액세스 라인 (552)의 서브 세트가 선택된 액세스 라인 (550)과 하나 이상의 드라이버 컴포넌트 (예를 들어, 도 5a를 참조하여 상기에서 설명된 드라이버 컴포넌트 (510))를 공유하는 선택 해제된 액세스 라인이거나 이를 지칭할 수 있기 때문에, 이러한 구성은 메모리 디바이스에 추가적인 복잡성을 추가할 수 있다 (예를 들어, 도 5a를 참조하여 설명된 메모리 디바이스 (500-a); 도 4a를 참조하여 설명된 메모리 디바이스 (400-a)와 비교). 그러나, 일부 예들에서, 그러한 구성은 전압 스트레스를 감소시킬 수 있고, 따라서 선택 해제된 액세스 라인들 (545, 545-a)과 선택된 액세스 라인(550) 사이에 공통인 하나 이상의 트랜지스터 (예를 들어, 드라이버 컴포넌트 내에 위치된 하나 이상의 트랜지스터)의 필수 전압 허용 오차를 감소시킬 수 있다. As noted above, the subset of deselected access lines 552 may be maintained at a constant voltage (eg, 0V) across intervals 555 , 558 , 560 , 562 and 565 . Deselected access in which a subset of deselected access lines 552 share one or more driver components (eg, driver components 510 described above with reference to FIG. 5A ) with selected access lines 550 . As may be or refer to a line, this configuration may add additional complexity to the memory device (eg, memory device 500 - a described with reference to FIG. 5A ; the memory described with reference to FIG. 4A ) device (compare 400-a)). However, in some examples, such a configuration may reduce voltage stress and thus one or more transistors in common between the deselected access lines 545 , 545 - a and the selected access line 550 (eg, one or more transistors located within the driver component) may reduce the required voltage tolerance.

추가적으로 또는 대안적으로, 선택된 액세스 라인 (550)과 선택 해제된 액세스 라인 (552)의 서브 세트 사이의 전압 차이는 도 4b를 참조하여 상기에서 설명된 선택된 액세스 라인 (450)과 선택 해제된 액세스 라인 (445, 445-a) 사이의 전압 차이보다 작을 수 있다. 예를 들어, 도 4b를 참조하여 전술한 바와 같이, 선택된 액세스 라인 (450)과 선택 해제된 액세스 라인 (445, 445-a) 사이의 전압 차이는 4.5V 일 수 있다 (예를 들어, -1.5V에서 선택 해제된 액세스 라인 (445, 445-a)); 3V에서 선택된 액세스 라인). 도 5b를 참조하여 설명된 바와 같이, 선택된 액세스 라인 (450)과 선택 해제된 액세스 라인 (552)의 서브 세트 사이의 전압 차이는 3V 일 수 있다 (예를 들어, 0V에서 선택 해제된 액세스 라인 (552)의 서브 세트; 3V에서 선택된 액세스 라인). 드라이버 (505)가 다수의 드라이버 컴포넌트 (510)를 포함하는 경우, 각각의 드라이버 컴포넌트는 선택된 액세스 라인 (550)을 참조하여 설명된 임의의 하나의 대응 액세스 라인의 동작을 한편 선택 해제된 액세스 라인 (552)의 서브 세트를 참조하여 설명된 임의의 다른 대응 액세스 라인 동작을 지원할 수 있고, 뿐만 아니라 드라이버 컴포넌트 (510)에 대응하는 임의의 액세스 라인이 선택되었는지 여부에 따라, 선택 해제된 액세스 라인 (545)을 참조하여 설명된 모든 대응 액세스 라인을 지원할 수 있다. Additionally or alternatively, the voltage difference between the selected access line 550 and the subset of deselected access lines 552 may be determined by determining the selected access line 450 and the deselected access line as described above with reference to FIG. 4B . may be less than the voltage difference between (445, 445-a). For example, as described above with reference to FIG. 4B , the voltage difference between the selected access line 450 and the deselected access lines 445 , 445-a may be 4.5V (eg, -1.5V). deselected access lines at V (445, 445-a)); Access line selected at 3V). As described with reference to FIG. 5B , the voltage difference between the selected access line 450 and a subset of the deselected access lines 552 may be 3V (eg, 0V to the deselected access line ( 552); selected access lines at 3V). When the driver 505 includes multiple driver components 510, each driver component performs the operation of any one corresponding access line described with reference to the selected access line 550 while the deselected access line ( It can support any other corresponding access line operation described with reference to the subset of 552 , as well as deselected access line 545 depending on whether any access line corresponding to driver component 510 is selected. ) can support all corresponding access lines described with reference to

도 5b의 예에서는 하이 전압에서 로우 전압으로 천이하고 다시 하이 전압으로 천이하는 것으로 도시되어 있지만,일부 예에서, 본 출원에 설명된 기술은 플레이트 라인 (540)이 로우 전압에서 하이 전압으로 또는 하이 전압에서 로우 전압으로 천이할 때 적용될 수 있으며, 이것은 플레이트 라인 (540)의 전압을 토글링 또는 토글링하는 것으로 지칭될 수 있다. 토글링의 방향에 상관없이, 선택 해제된 액세스 라인 (545, 545-a) 및/또는 선택 해제된 액세스 라인 (552)의 서브 세트는 플레이트 라인 (540)의 전압이 토글링될 때 플로팅될 수 있다. Although the example of FIG. 5B is illustrated as transitioning from a high voltage to a low voltage and back to a high voltage, in some examples, the techniques described herein allow the plate line 540 to move from a low voltage to a high voltage or to a high voltage. may be applied when transitioning from to a low voltage, which may be referred to as toggling or toggling the voltage on the plate line 540 . Regardless of the direction of toggling, deselected access lines 545 , 545 - a and/or a subset of deselected access lines 552 can float when the voltage on plate line 540 is toggled. have.

다양한 예들에서, 플레이트 토글링이 발생할 수 있고, 따라서 선택 해제된 액세스 라인 (545, 545-a) 및/또는 선택 해제된 액세스 라인 (552)의 서브 세트는 액세스 동작과 관련된 임의의 시간에 플로팅될 수 있다. 예를 들어, 선택 해제된 액세스 라인 (545, 545-a) 및/또는 선택 해제된 액세스 라인 (552)의 서브 세트는 선택된 메모리 셀이 액세스되기 전, 도중 또는 후에 (예를 들어, 판독되거나 기록된) 플로팅될 수 있다. In various examples, plate toggling may occur, such that a subset of deselected access lines 545 , 545 - a and/or deselected access lines 552 may float at any time associated with an access operation. can For example, deselected access lines 545 , 545 - a and/or a subset of deselected access lines 552 may be used before, during, or after a selected memory cell is accessed (eg, read or written to). ) can be floated.

본 출원에 설명된 일부 예에서, 액세스 라인 관리를 위한 기술을 지원하는 동작은 하나의 공통 플레이트 (즉, 어레이의 모든 메모리 셀에 공통)를 갖는 메모리 셀들의 어레이의 맥락에서 설명된다. 본 출원에 설명된 동일한 기술은 하나 초과의 공통 플레이트를 포함하는 메모리 셀들의 어레이에 의해 지원될 수 있으며, 여기서 각각의 플레이트는 어레이의 메모리 셀의 서브 세트에 공통될 수 있음을 이해해야 한다. 따라서, 본 출원에 설명된 기술은 임의의 개수의 플레이트를 갖는 메모리 어레이의 맥락에서 적용될 수 있다.In some examples described herein, operations supporting techniques for access line management are described in the context of an array of memory cells having one common plate (ie, common to all memory cells in the array). It should be understood that the same techniques described herein may be supported by an array of memory cells comprising more than one common plate, wherein each plate may be common to a subset of memory cells in the array. Accordingly, the techniques described herein may be applied in the context of a memory array having any number of plates.

본 출원에 설명된 예에서, 설명된 절대 전압 레벨 (예를 들어, 3V, 0V, -1.5V 등)은 단지 설명을 위한 것이다. 따라서, 본 출원에 설명된 절대 전압 레벨과 다른 임의의 절대 전압 레벨(들)이 사용될 수 있다. In the examples described herein, the absolute voltage levels described (eg, 3V, 0V, -1.5V, etc.) are for illustrative purposes only. Accordingly, any absolute voltage level(s) other than the absolute voltage levels described herein may be used.

도 6은 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 지원하는 액세스 라인 관리기 (615)의 블록도 (600)를 도시한다. 액세스 라인 관리기(615)는 도 7을 참조하여 설명된 액세스 라인 관리기(715)의 양태들의 예일 수 있다. 액세스 라인 관리기 (615)는 바이어싱 컴포넌트 (620), 타이밍 컴포넌트 (625), 드라이빙 컴포넌트 (630), 식별 컴포넌트 (635), 플로팅 컴포넌트 (640) 및 개시 컴포넌트 (645)를 포함할 수 있다. 이러한 모듈 각각은 직접 또는 간접적으로 서로 통신할 수 있다 (예를 들어, 하나 이상의 버스를 통해).6 shows a block diagram 600 of an access line manager 615 that supports access line management for an array of memory cells in accordance with an example of the present disclosure. Access line manager 615 may be an example of aspects of access line manager 715 described with reference to FIG. 7 . The access line manager 615 can include a biasing component 620 , a timing component 625 , a driving component 630 , an identification component 635 , a floating component 640 , and an initiation component 645 . Each of these modules may communicate with each other directly or indirectly (eg, via one or more buses).

드라이빙 컴포넌트 (630)는 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 플레이트를 제 1 전압으로 드라이빙할 수 있다. 일부 예들에서, 드라이빙 컴포넌트 (630)는 지속 시간 동안, 제 2 메모리 셀과 관련된 액세스 동작에 기초하여 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙할 수 있다. 다른 예들에서, 드라이빙 컴포넌트 (630)는 제 1 전압과 제 2 전압 사이의 차이에 적어도 부분적으로 기초하여 지속 시간 후에 제 1 액세스 라인을 원하는 전압으로 드라이빙할 수 있다. 추가적으로 또는 대안적으로, 드라이빙 컴포넌트 (630)는 플레이트를 제 2 전압으로부터 제 1 전압으로 드라이빙할 수 있다. 일부 예들에서, 드라이빙 컴포넌트 (630)는 지속 시간 동안 제 2 메모리 셀과 결합된 제 2 액세스 라인을 제 3 전압으로 드라이빙할 수 있다. 다른 예들에서, 드라이빙 컴포넌트 (630)는 지속 시간 동안 제 3 메모리 셀과 결합된 제 3 액세스 라인을 제 4 전압으로 드라이빙할 수 있고 동시에 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙할 수 있다. Driving component 630 can drive a plate coupled with at least a first memory cell of the array of memory cells to a first voltage. In some examples, the driving component 630 can drive the plate from the first voltage to the second voltage based on an access operation associated with the second memory cell for a duration. In other examples, the driving component 630 can drive the first access line to a desired voltage after a duration based at least in part on a difference between the first voltage and the second voltage. Additionally or alternatively, the driving component 630 can drive the plate from the second voltage to the first voltage. In some examples, the driving component 630 can drive the second access line coupled with the second memory cell to the third voltage for a duration. In other examples, the driving component 630 can drive the third access line coupled with the third memory cell to the fourth voltage for a duration and simultaneously drive the plate from the first voltage to the second voltage.

식별 컴포넌트 (635)는 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별할 수 있다. Identification component 635 can identify an access operation associated with a second memory cell of the array of memory cells.

플로팅 컴포넌트 (640)는 제 2 메모리 셀과 관련된 액세스 동작에 기초하여 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인을 지속 시간 동안 플로팅할 수 있다. 다른 예들에서, 플로팅 컴포넌트 (640)는 제 1 액세스 라인을 원하는 전압으로 드라이빙한 후에 제 1 액세스 라인을 플로팅할 수 있고 동시에 제 2 전압으로부터 제 1 전압으로 플레이트를 드라이빙할 수 있다. 다른 예들에서, 플로팅 컴포넌트 (640)는 지속 시간 바로 다음의 제 2 지속 시간 동안 제 1 액세스 라인을 플로팅할 수 있다. 추가적으로 또는 대안적으로, 플로팅 컴포넌트 (640)는 제 1 액세스 라인을 플로팅하고 동시에 플레이트를 제 2 전압으로 드라이빙할 수 있다. The floating component 640 can float a first access line coupled with a first memory cell of the array of memory cells for a duration based on an access operation associated with the second memory cell. In other examples, the floating component 640 can float the first access line after driving the first access line to a desired voltage and simultaneously drive the plate from the second voltage to the first voltage. In other examples, floating component 640 can float the first access line for a second duration immediately following the duration. Additionally or alternatively, floating component 640 can float the first access line and simultaneously drive the plate to a second voltage.

개시 컴포넌트 (645)는 제 3 액세스 라인을 제 5 전압으로 드라이빙하는 것을 개시할 수 있다. 제 5 전압은 제 3 메모리 셀의 제 2 로직 값과 관련될 수 있다. 일부 예들에서, 개시 컴포넌트 (645)는 제 2 메모리 셀과 관련된 액세스 동작에 기초하여 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙하는 것을 개시할 수 있다. 일부 예들에서, 개시 컴포넌트 (645)는 제 2 메모리 셀과 관련된 액세스 동작에 기초하여 제 1 액세스 라인의 플로팅을 개시할 수 있다. 추가적으로 또는 대안적으로, 개시 컴포넌트 (645)는 제 2 메모리 셀과 관련된 액세스 동작에 기초하여 메모리 셀 세트의 제 3 메모리 셀과 관련된 제 3 액세스 라인을 제 3 전압으로 드라이빙하는 것을 개시할 수 있다. The initiating component 645 can initiate driving the third access line to the fifth voltage. The fifth voltage may be associated with a second logic value of the third memory cell. In some examples, the initiating component 645 can initiate driving the plate from the first voltage to the second voltage based on an access operation associated with the second memory cell. In some examples, initiating component 645 can initiate floating of the first access line based on an access operation associated with the second memory cell. Additionally or alternatively, initiating component 645 can initiate driving a third access line associated with a third memory cell of the set of memory cells to a third voltage based on an access operation associated with the second memory cell.

일부 예에서, 액세스 라인 관리기 (615)의 하나 이상의 컴포넌트가 결합될 수 있다는 것이 이해되어야 한다 (예를 들어, 바이어싱 컴포넌트 (620), 드라이빙 컴포넌트 (630) 및 플로팅 컴포넌트 (640)).It should be understood that, in some examples, one or more components of access line manager 615 may be coupled (eg, biasing component 620 , driving component 630 , and floating component 640 ).

도 7은 본 개시의 예들에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 지원하는 디바이스 (705)를 포함하는 시스템 (700)의 다이어그램을 도시한다. 장치 (705)는 예를 들어, 도 1을 참조하여 전술한 메모리 어레이 (100)의 컴포넌트의 예이거나 이를 포함할 수 있다. 디바이스(705)는 액세스 라인 관리기 (715), 메모리 셀 (720), BIOS (Basic Input/Output System) 컴포넌트 (725), 프로세서 (730), I/O 제어기(735) 및 주변 컴포넌트(740)를 포함하여 통신을 송수신하기 위한 컴포넌트를 포함하는 양방향 음성 및 데이터 통신을 위한 컴포넌트를 포함할 수 있다. 이들 컴포넌트는 하나 이상의 버스 (예를 들어, 버스 710)를 통해 전자 통신할 수 있다.7 shows a diagram of a system 700 that includes a device 705 that supports access line management for an array of memory cells in accordance with examples of this disclosure. Apparatus 705 may be or include, for example, components of memory array 100 described above with reference to FIG. 1 . The device 705 includes an access line manager 715 , a memory cell 720 , a Basic Input/Output System (BIOS) component 725 , a processor 730 , an I/O controller 735 , and a peripheral component 740 . It may include a component for two-way voice and data communication including a component for transmitting and receiving communication. These components may communicate electronically via one or more buses (eg, bus 710 ).

메모리 셀 (720)은 본 출원에 설명된 바와 같이 정보 (즉, 로직 상태의 형태로)를 저장할 수 있다.Memory cell 720 may store information (ie, in the form of logic states) as described herein.

BIOS 컴포넌트 (725)는 다양한 하드웨어 컴포넌트를 초기화하고 실행할 수 있는 펌웨어로 작동되는 BIOS를 포함하는 소프트웨어 컴포넌트이다. BIOS 컴포넌트 (725)는 또한 프로세서와 다양한 다른 컴포넌트, 예를 들어, 주변 컴포넌트, 입력/출력 제어 컴포넌트 등 간의 데이터 흐름을 관리할 수 있다. BIOS 컴포넌트 (725)는 ROM (read-only memory), 플래시 메모리, 또는 임의의 다른 비 휘발성 메모리에 저장된 프로그램 또는 소프트웨어를 포함할 수 있다.The BIOS component 725 is a software component including a firmware-operated BIOS capable of initializing and executing various hardware components. BIOS component 725 may also manage data flow between the processor and various other components, eg, peripheral components, input/output control components, and the like. BIOS component 725 may include programs or software stored in read-only memory (ROM), flash memory, or any other non-volatile memory.

프로세서 (730)는 지능형 하드웨어 디바이스 (예를 들어, 범용 프로세서, DSP, 중앙 처리 장치 (CPU), 마이크로컨트롤러, ASIC, FPGA, 프로그램 가능한 로직 디바이스, 이산 게이트 또는 트랜지스터 로직 컴포넌트, 개별 하드웨어 컴포넌트 또는 이들의 조합)를 포함할 수 있다. 일부 경우에, 프로세서 (730)는 메모리 제어기를 사용하여 메모리 어레이를 동작 시키도록 구성될 수 있다. 다른 경우에, 메모리 제어기는 프로세서(730)에 통합될 수 있다. 프로세서 (730)는 다양한 기능 (예를 들어, 메모리 셀들의 어레이에 대한 액세스 라인 관리를 지원하는 기능 또는 태스크)을 수행하기 위해 메모리에 저장된 컴퓨터 판독 가능 명령을 실행하도록 구성될 수 있다.Processor 730 may be an intelligent hardware device (eg, a general purpose processor, DSP, central processing unit (CPU), microcontroller, ASIC, FPGA, programmable logic device, discrete gate or transistor logic component, discrete hardware component, or a combinations) may be included. In some cases, the processor 730 may be configured to operate a memory array using a memory controller. In other cases, the memory controller may be integrated into the processor 730 . Processor 730 may be configured to execute computer readable instructions stored in memory to perform various functions (eg, functions or tasks that support access line management for an array of memory cells).

I/O 제어기 (735)는 디바이스(705)에 대한 입력 및 출력 신호를 관리할 수 있다. I/O 제어기 (735)는 또한 디바이스 (705)에 통합되지 않은 주변 기기를 관리할 수 있다. 일부 경우에, I/O 제어기 (735)는 외부 주변 기기에 대한 물리적 연결 또는 포트를 나타낼 수 있다. 일부 경우에, I/O 제어기 (735)는 iOS®, 안드로이드®, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, LINUX® 또는 다른 알려진 운영 체제와 같은 운영 체제를 사용할 수 있다. 다른 경우에, I/O 제어기 (735)는 모뎀, 키보드, 마우스, 터치 스크린 또는 유사한 디바이스를 나타내거나 이와 상호 작용할 수 있다. 일부 경우에, I/O 제어기 (735)는 프로세서의 일부로서 구현될 수 있다. 일부 경우에, 사용자는 I/O 제어기 (735) 또는 I/O 제어기 (735)에 의해 제어되는 하드웨어 컴포넌트를 통해 디바이스(705)와 상호 작용할 수 있다.I/O controller 735 may manage input and output signals to device 705 . The I/O controller 735 may also manage peripherals not integrated into the device 705 . In some cases, I/O controller 735 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 735 may use an operating system such as iOS®, Android®, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, LINUX®, or other known operating systems. have. In other cases, I/O controller 735 may represent or interact with a modem, keyboard, mouse, touch screen, or similar device. In some cases, I/O controller 735 may be implemented as part of a processor. In some cases, a user may interact with device 705 via I/O controller 735 or a hardware component controlled by I/O controller 735 .

주변 컴포넌트 (740)는 임의의 입력 또는 출력 장치, 또는 그러한 디바이스를 위한 인터페이스를 포함할 수 있다. 예들은 디스크 제어기, 사운드 제어기, 그래픽 제어기, 이더넷 제어기, 모뎀, USB (범용 직렬 버스) 제어기, 직렬 또는 병렬 포트, PCI (Peripheral Component Interconnect) 또는 AGP(accelerated graphics port)와 같은 주변 기기 카드 슬롯을 포함할 수 있다.Peripheral component 740 may include any input or output device, or an interface for such a device. Examples include peripheral card slots such as disk controllers, sound controllers, graphics controllers, Ethernet controllers, modems, USB (Universal Serial Bus) controllers, serial or parallel ports, Peripheral Component Interconnect (PCI) or accelerated graphics port (AGP). can do.

입력 (745)은 디바이스 (705) 또는 그 컴포넌트에 입력을 제공하는 디바이스 (705) 외부의 디바이스 또는 신호를 나타낼 수 있다. 이것은 사용자 인터페이스 또는 다른 디바이스와의 또는 다른 디바이스간의 인터페이스를 포함할 수 있다. 일부 경우에, 입력 (745)은 I/O 제어기 (735)에 의해 관리될 수 있고 주변 컴포넌트 (740)를 통해 디바이스(705)와 상호 작용할 수 있다.Input 745 may represent a device or signal external to device 705 that provides an input to device 705 or a component thereof. This may include a user interface or an interface with or between other devices. In some cases, input 745 may be managed by I/O controller 735 and may interact with device 705 via peripheral component 740 .

출력 (750)은 또한 디바이스 (705) 또는 그 컴포넌트 중 임의의 것으로부터 출력을 수신하도록 구성된 디바이스 (705) 외부의 디바이스 또는 신호를 나타낼 수 있다. 출력 (750)의 예는 디스플레이, 오디오 스피커, 프린팅 디바이스, 다른 프로세서 또는 인쇄 회로 기판 등을 포함 할 수 있다. 일부 경우에, 출력 (750)은 주변 컴포넌트 (들) (740)을 통해 디바이스 (705)와 인터페이스하는 주변 엘리먼트일 수 있다.일부 경우에, 출력 (750)은 I/O 제어기(735)에 의해 관리될 수 있다.The output 750 can also represent a device or signal external to the device 705 configured to receive an output from the device 705 or any of its components. Examples of output 750 may include displays, audio speakers, printing devices, other processors or printed circuit boards, and the like. In some cases, output 750 may be a peripheral element that interfaces with device 705 via peripheral component(s) 740 . In some cases, output 750 is can be managed

디바이스 (705)의 컴포넌트는 그 기능을 수행하도록 디자인된 회로부를 포함할 수 있다. 이것은 본 출원에 설명된 기능을 수행하도록 구성된 다양한 회로 소자, 예를 들어, 전도성 라인, 트랜지스터, 커패시터, 인덕터, 저항기, 증폭기 또는 다른 활성 또는 비활성 엘리먼트를 포함할 수 있다. 디바이스(705)는 컴퓨터, 서버, 랩톱 컴퓨터, 노트북 컴퓨터, 태블릿 컴퓨터, 휴대폰, 웨어러블 전자 디바이스, 개인용 전자 디바이스 등일 수 있다. 또는 디바이스(705)는 이러한 디바이스의 일부 또는 양태일 수 있다.Components of device 705 may include circuitry designed to perform its functions. It may include various circuit elements configured to perform the functions described herein, for example, conductive lines, transistors, capacitors, inductors, resistors, amplifiers or other active or non-active elements. Device 705 may be a computer, server, laptop computer, notebook computer, tablet computer, mobile phone, wearable electronic device, personal electronic device, or the like. Alternatively, device 705 may be a part or aspect of such a device.

도 8은 본 개시의 예들에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 위한 방법 (800)을 예시하는 흐름도를 도시한다. 방법 (800)의 동작은 본 출원에 설명된 그 컴포넌트를 메모리 제어기에 의해 구현될 수 있다. 예를 들어, 방법 (800)의 동작은 도 6을 참조하여 설명된 액세스 라인 관리기에 의해 수행될 수 있다. 8 shows a flow diagram illustrating a method 800 for access line management for an array of memory cells in accordance with examples of this disclosure. The operations of method 800 may be implemented by a memory controller whose components described herein. For example, the operations of method 800 may be performed by the access line manager described with reference to FIG. 6 .

(805)에서 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 메모리 어레이 (100) 플레이트가 제 1 전압으로 드라이빙될 수 있다. (805)의 동작은 본 출원에 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (805)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 805 the memory array 100 plate coupled with at least a first memory cell of the array of memory cells may be driven to a first voltage. The operation of 805 may be performed according to the method described herein. In certain examples, aspects of the operations of 805 may be performed by the driving component described with reference to FIG. 6 .

(810)에서, 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작이 식별될 수 있다. (810)의 동작은 본 출원에 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (810)의 동작들의 양태들은 도 6을 참조하여 설명된 식별 컴포넌트에 의해 수행될 수 있다.At 810 , an access operation associated with a second memory cell of the array of memory cells may be identified. The operation of 810 may be performed according to a method described herein. In certain examples, aspects of the operations of 810 may be performed by the identification component described with reference to FIG. 6 .

(815)에서, 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인은 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 플로팅될 수 있다. (815)의 동작은 본 출원에 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (815)의 동작들의 양태들은 도 6을 참조하여 설명된 플로팅 컴포넌트에 의해 수행될 수 있다.At 815 , a first access line coupled with a first memory cell of the array of memory cells may be floated for a duration based at least in part on an access operation associated with the second memory cell. The operation of 815 may be performed according to the method described herein. In certain examples, aspects of the operations of 815 may be performed by the floating component described with reference to FIG. 6 .

(820)에서, 플레이트는 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 제 1 전압으로부터 제 2 전압으로 드라이빙될 수 있다. (820)의 동작은 본 출원에 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (820)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 820 , the plate may be driven from the first voltage to the second voltage for a duration based at least in part on an access operation associated with the second memory cell. The operation of 820 may be performed according to the method described herein. In certain examples, aspects of the operations of 820 may be performed by the driving component described with reference to FIG. 6 .

도 9는 본 개시의 예들에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 위한 방법 (900)을 예시하는 흐름도를 도시한다. 방법 (900)의 동작은 본 출원에 설명된 메모리 제어기 또는 그 컴포넌트에 의해 구현될 수 있다. 예를 들어, 방법 (900)의 동작은 도 6을 참조하여 설명된 액세스 라인 관리기에 의해 수행될 수 있다. 9 shows a flow diagram illustrating a method 900 for access line management for an array of memory cells in accordance with examples of this disclosure. The operations of method 900 may be implemented by a memory controller or a component thereof described herein. For example, the operations of method 900 may be performed by the access line manager described with reference to FIG. 6 .

(905)에서, 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 플레이트가 제 1 전압으로 드라이빙될 수 있다. (905)의 동작은 본 출원에 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (905)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 905 , a plate coupled with at least a first memory cell of the array of memory cells may be driven to a first voltage. The operation of 905 may be performed according to a method described herein. In certain examples, aspects of the operations of 905 may be performed by the driving component described with reference to FIG. 6 .

(910)에서 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작이 식별될 수 있다. (910)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (910)의 동작들의 양태들은 도 6을 참조하여 설명된 식별 컴포넌트에 의해 수행될 수 있다.At 910 an access operation associated with a second memory cell of the array of memory cells can be identified. The operation of 910 may be performed according to the method described in this application. In certain examples, aspects of the operations of 910 may be performed by the identification component described with reference to FIG. 6 .

(915)에서, 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인은 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 플로팅될 수 있다. (915)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (915)의 동작들의 양태들은 도 6을 참조하여 설명된 플로팅 컴포넌트에 의해 수행될 수 있다.At 915 , a first access line coupled with a first memory cell of the array of memory cells may be floated for a duration based at least in part on an access operation associated with the second memory cell. The operation of 915 may be performed according to the method described in the present application. In certain examples, aspects of the operations of 915 may be performed by the floating component described with reference to FIG. 6 .

(920)에서, 플레이트는 지속 시간 동안 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 전압으로부터 제 2 전압으로 드라이빙될 수 있다. (920)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (920)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 920 , the plate may be driven from the first voltage to the second voltage based at least in part on an access operation associated with the second memory cell for a duration of time. The operation of 920 may be performed according to a method described herein. In certain examples, aspects of the operations of 920 may be performed by the driving component described with reference to FIG. 6 .

(925)에서, 제 1 액세스 라인은 제 1 전압과 제 2 전압 사이의 차이에 적어도 부분적으로 기초하여 지속 시간 후에 원하는 전압으로 드라이빙될 수 있다. (925)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (925)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 925 , the first access line may be driven to a desired voltage after a duration based at least in part on a difference between the first voltage and the second voltage. The operation of 925 may be performed according to the method described herein. In certain examples, aspects of the operations of 925 may be performed by the driving component described with reference to FIG. 6 .

도 10은 본 개시의 예들에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 위한 방법(1000)을 예시하는 흐름도를 도시한다. 방법 (1000)의 동작은 본 출원에 설명된 메모리 제어기 또는 그 컴포넌트에 의해 구현될 수 있다. 예를 들어, 방법 (1000)의 동작은 도 6을 참조하여 설명된 액세스 라인 관리기에 의해 수행될 수 있다. 10 shows a flow diagram illustrating a method 1000 for access line management for an array of memory cells in accordance with examples of this disclosure. The operations of method 1000 may be implemented by a memory controller or a component thereof described herein. For example, the operations of method 1000 may be performed by the access line manager described with reference to FIG. 6 .

(1005)에서, 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 플레이트는 제 1 전압으로 드라이빙될 수 있다. (1005)의 동작은 본 출원에 기재된 방법에 따라 수행될 수 있다. 특정 예들에서, (1005)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 1005 , a plate coupled with at least a first memory cell of the array of memory cells may be driven to a first voltage. The operation of 1005 may be performed according to a method described in the present application. In certain examples, aspects of the operations of 1005 may be performed by the driving component described with reference to FIG. 6 .

(1010)에서, 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작이 식별될 수 있다. (1010)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1010)의 동작들의 양태들은 도 6을 참조하여 설명된 식별 컴포넌트에 의해 수행될 수 있다.At 1010 , an access operation associated with a second memory cell of the array of memory cells can be identified. The operation of 1010 may be performed according to the method described in this application. In certain examples, aspects of the operations of 1010 may be performed by the identification component described with reference to FIG. 6 .

(1015)에서, 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인은 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 플로팅될 수 있다. (1015)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1015)의 동작들의 양태들은 도 6을 참조하여 설명된 플로팅 컴포넌트에 의해 수행될 수 있다.At 1015 , a first access line coupled with a first memory cell of the array of memory cells may be floated for a duration based at least in part on an access operation associated with the second memory cell. The operation of 1015 may be performed according to the method described in the present application. In certain examples, aspects of the operations of 1015 may be performed by the floating component described with reference to FIG. 6 .

(1020)에서, 플레이트는 지속 시간 동안 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 전압으로부터 제 2 전압으로 드라이빙될 수 있다. (1020)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1020)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 1020 , the plate may be driven from the first voltage to the second voltage based at least in part on an access operation associated with the second memory cell for a duration of time. The operation of 1020 may be performed according to the method described in this application. In certain examples, aspects of the operations of 1020 may be performed by the driving component described with reference to FIG. 6 .

(1025)에서, 제 1 액세스 라인은 지속 시간 바로 다음에 제 2 지속 시간 동안 플로팅될 수 있다. (1025)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1025)의 동작들의 양태들은 도 6을 참조하여 설명된 플로팅 컴포넌트에 의해 수행될 수 있다.At 1025 , the first access line may be floated for a second duration immediately following the duration. The operation of 1025 may be performed according to the method described in this application. In certain examples, aspects of the operations of 1025 may be performed by the floating component described with reference to FIG. 6 .

일부 경우에, 방법은 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 플레이트를 제 1 전압으로 드라이빙하는 단계를 포함할 수 있다. 일부 예들에서, 제 1 액세스 라인을 플로팅하고 플레이트를 제 2 전압으로 드라이빙하는 것은 동시에 발생할 수 있다. 다른 예들에서, 방법은 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인을 지속 시간 동안 플로팅하는 단계를 포함할 수 있다. In some cases, the method may include driving a plate coupled with at least a first memory cell of the array of memory cells to a first voltage. In some examples, floating the first access line and driving the plate to the second voltage can occur simultaneously. In other examples, the method can include floating a first access line coupled with a first memory cell of the array of memory cells for a duration based at least in part on an access operation associated with the second memory cell.

일부 경우에, 방법은 지속 시간 동안 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙하는 단계를 포함할 수 있다. 일부 예들에서, 방법은 제 1 전압과 제 2 전압 사이의 차이에 적어도 부분적으로 기초하여 지속 시간 후에 제 1 액세스 라인을 원하는 전압으로 드라이빙하는 단계를 포함할 수 있다. 추가적으로 또는 대안적으로, 방법은 제 2 전압으로부터 제 1 전압으로 플레이트를 드라이빙하는 단계를 포함할 수 있다. 다른 경우에, 방법은 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하는 단계를 포함할 수 있다. In some cases, the method can include driving the plate from the first voltage to the second voltage based at least in part on an access operation associated with the second memory cell for a duration of time. In some examples, the method can include driving the first access line to a desired voltage after a duration based at least in part on a difference between the first voltage and the second voltage. Additionally or alternatively, the method may include driving the plate from the second voltage to the first voltage. In other cases, the method may include identifying an access operation associated with a second memory cell of the array of memory cells.

일부 경우에, 방법은 지속 시간 동안 제 2 메모리 셀과 결합된 제 2 액세스 라인을 제 3 전압으로 드라이빙하는 단계를 포함할 수 있다. 일부 예들에서, 방법은 지속 시간 동안 제 3 메모리 셀과 결합된 제 3 액세스 라인을 제 4 전압으로 드라이빙하고 동시에 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙하는 단계를 포함할 수 있다. 일부 경우에, 방법은 지속 시간 바로 다음에 제 2 지속 시간 동안 제 1 액세스 라인을 플로팅하는 단계를 포함할 수 있다. 추가적으로 또는 대안적으로, 플레이트는 메모리 셀들의 어레이의 복수의 메모리 셀과 결합될 수 있다. 복수의 메모리 셀은 제 1 메모리 셀 및 제 2 메모리 셀을 포함할 수 있다. In some cases, the method may include driving a second access line coupled with the second memory cell to a third voltage for a duration. In some examples, the method can include driving a third access line coupled with the third memory cell to a fourth voltage for a duration and simultaneously driving the plate from the first voltage to the second voltage. In some cases, the method may include floating the first access line for a second duration immediately following the duration. Additionally or alternatively, the plate may be coupled with a plurality of memory cells of the array of memory cells. The plurality of memory cells may include a first memory cell and a second memory cell.

일부 경우에, 플레이트는 메모리 셀들의 어레이의 제 1 데크의 메모리 셀의 다수의 행 또는 다수의 열과 결합될 수 있고, 메모리 셀들의 어레이의 제 2 데크의 메모리 셀의 다수의 행 또는 다수의 열과 결합될 수 있다. 다른 경우에, 상기 방법은 플레이트를 제 2 전압으로 드라이빙한 후 제 1 액세스 라인을 플로팅하고 동시에 플레이트를 제 2 전압에서 제 1 전압으로 드라이빙하는 단계를 포함할 수 있다. In some cases, the plate may be associated with multiple rows or multiple columns of memory cells of a first deck of an array of memory cells, and with multiple rows or multiple columns of memory cells of a second deck of memory cells. can be In other cases, the method may include floating the first access line after driving the plate to the second voltage and simultaneously driving the plate from the second voltage to the first voltage.

도 11 은 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 회로(1100)의 예를 예시한다. 일부 예들에서, 회로(1100)는 일부 경우에 워드 라인 드라이버의 예일 수 있는 드라이버(1105)를 포함할 수 있다. 드라이버(1105)는 액세스 라인(1110)과 결합될 수 있으며, 이는 일부 경우에 본 출원에서 논의되는 워드 라인의 예일 수 있다. 드라이버(1105)는 액세스 라인(1110)과 결합된 하나 이상의 메모리 셀의 액세스 동작을 가능하게 할 수 있다. 일부 예들에서, 회로(1100)는 본 출원에서 설명된 액세스 라인 디코더 예컨대, 워드 라인 디코더(또는 행 디코더) 또는 디지트 라인 디코더(또는 열 디코더)와 결합되거나 그 안에 포함될 수 있다.11 illustrates an example of a circuit 1100 supporting techniques for managing access lines for an array of memory cells in accordance with examples of this disclosure. In some examples, circuit 1100 may include driver 1105 , which may in some cases be an example of a word line driver. Driver 1105 may be coupled with access line 1110 , which in some cases may be an example of a word line discussed in this application. Driver 1105 may enable an access operation of one or more memory cells coupled with access line 1110 . In some examples, circuit 1100 may be combined with or included in an access line decoder described herein, such as a word line decoder (or row decoder) or a digit line decoder (or column decoder).

드라이버(1105)는 제어 회로(1115), 제어 회로(1120) 및 제어 회로(1125)와 같은 다양한 제어 회로와 결합될 수 있다. 드라이버(1105) 및/또는 제어 회로(1115, 1120 및/또는 1125)의 동작은 본 출원에서 설명된 하나 이상의 메모리 셀의 액세스 동작을 가능하게 할 수 있다. 제어 회로(1115), 제어 회로(1120) 및 제어 회로(1125)의 하나 이상의 구조적 또는 기능적 양태는 일부 경우에 드라이버(1105)의 일부에 대안적으로 통합되거나 그렇지 않으면 드라이버의 일부로 고려될 수 있다는 것이 이해된다.Driver 1105 may be coupled with various control circuits, such as control circuitry 1115 , control circuitry 1120 , and control circuitry 1125 . Operation of driver 1105 and/or control circuitry 1115 , 1120 , and/or 1125 may enable an access operation of one or more memory cells described herein. It is noted that one or more structural or functional aspects of the control circuit 1115 , the control circuit 1120 , and the control circuit 1125 may in some cases be alternatively integrated into or otherwise considered part of the driver 1105 . It is understood.

일부 예들에서, 드라이버(1105)는 메모리 디바이스의 복수의 워드 라인 드라이버들 중 하나를 나타낼 수 있다. 예를 들어, 드라이버(1105)는 메모리 디바이스의 1,024 개의 워드 라인 드라이버 중 하나를 나타낼 수 있다. 여기 및 어디 다른 곳에서 특정 번호는 설명의 명확성을 위해서만 사용되며 청구 범위는 이에 제한되지 않음을 이해해야 한다. 각각의 드라이버(1105)는 하나 이상의 트랜지스터를 포함할 수 있다. 예를 들어, 드라이버(1105)는 트랜지스터(1130)(예를 들어, 제 1 트랜지스터(1130)) 및 트랜지스터(1135)(예를 들어, 제 2 트랜지스터(1135))를 포함할 수 있다. 제 1 트랜지스터(1130) 및 제 2 트랜지스터(1135)는 캐스 코드 구성(cascode configuration)으로 배열될 수 있다. 드라이버(1105)는 또한 트랜지스터(1140)(예를 들어, 제 3 트랜지스터(1140)) 및 트랜지스터(1145)(예를 들어, 제 4 트랜지스터(1145))를 포함할 수 있다. 일부 예에서, 제 1 트랜지스터(1130) 및 제 2 트랜지스터(1135)는 PMOS 트랜지스터일 수 있고, 제 3 트랜지스터(1140) 및 제 4 트랜지스터(1145)는 NMOS 트랜지스터일 수 있다. In some examples, driver 1105 may represent one of a plurality of word line drivers of a memory device. For example, driver 1105 may represent one of 1,024 word line drivers of a memory device. It is to be understood that specific numbers herein and elsewhere are used only for clarity of description and not limitation of the scope of the claims. Each driver 1105 may include one or more transistors. For example, the driver 1105 may include a transistor 1130 (eg, a first transistor 1130 ) and a transistor 1135 (eg, a second transistor 1135 ). The first transistor 1130 and the second transistor 1135 may be arranged in a cascode configuration. The driver 1105 may also include a transistor 1140 (eg, a third transistor 1140 ) and a transistor 1145 (eg, a fourth transistor 1145 ). In some examples, the first transistor 1130 and the second transistor 1135 may be PMOS transistors, and the third transistor 1140 and the fourth transistor 1145 may be NMOS transistors.

일부 예들에서, 드라이버(1105)는 드라이버(1105)의 출력 노드로 지칭될 수 있고 액세스 라인(1110)과 결합될 수 있는 노드(1180)를 포함할 수 있다. 노드(180)는 또한 제 2 트랜지스터(1135)의 드레인 단자, 제 4 트랜지스터(1145)의 소스 단자 및 제 3 트랜지스터(1140)의 소스 단자와 결합될 수 있다. In some examples, driver 1105 may include a node 1180 that may be referred to as an output node of driver 1105 and may be coupled with access line 1110 . Node 180 may also be coupled with the drain terminal of the second transistor 1135 , the source terminal of the fourth transistor 1145 , and the source terminal of the third transistor 1140 .

드라이버(1105)는 또한 제어 회로(1115, 1120 및/또는 1125)로부터 제어 신호를 수신하도록 구성된 하나 이상의 노드를 포함할 수 있다. 예를 들어, 드라이버 (1105)는 제어 회로 (1125)로부터 제어 신호 (1160)를 수신하도록 구성된 노드 (1170) (예를 들어, 제 1 노드 (1170))를 포함할 수 있다. 노드 (1170)는 제 1 트랜지스터 (1130)의 단자 (예를 들어, 소스 단자)를 의미할 수 있다. 일부 예들에서, 제어 신호 (1160)는 ARFX로 지칭될 수 있다. 드라이버(1105)는 또한 제어 회로(1125)로부터 제어 신호(1167)를 수신하도록 구성된 노드(1185)(예를 들어, 제 3 노드)를 포함할 수 있다. 노드(1185)는 제 3 트랜지스터(1140)의 게이트를 지칭할 수 있다. 제어 신호(1185)는 ARFX '로 지칭될 수 있고 제어 신호(1160)에 대해 반전될 수 있다.Driver 1105 may also include one or more nodes configured to receive control signals from control circuitry 1115 , 1120 and/or 1125 . For example, the driver 1105 can include a node 1170 (eg, a first node 1170 ) configured to receive a control signal 1160 from the control circuit 1125 . The node 1170 may refer to a terminal (eg, a source terminal) of the first transistor 1130 . In some examples, the control signal 1160 may be referred to as ARFX. The driver 1105 may also include a node 1185 (eg, a third node) configured to receive a control signal 1167 from the control circuit 1125 . The node 1185 may refer to the gate of the third transistor 1140 . Control signal 1185 may be referred to as ARFX' and may be inverted relative to control signal 1160 .

워드 라인 드라이버는 또한 제어 회로(1120)로부터 제어 신호(1165)를 수신하도록 구성된 노드(1175)(예를 들어, 제 2 노드)를 포함할 수 있다. 노드 (1175)는 서로 결합될 수 있는 제 3 트랜지스터 (1140)의 단자 (예를 들어, 소스 단자) 및 제 4 트랜지스터 (1145)의 단자 (예를 들어, 소스 단자)를 지칭할 수 있다. 일부 예들에서, 제어 신호(1165)의 상태 는 제어 회로(1120)의 설정에 기초할 수 있다. The word line driver may also include a node 1175 (eg, a second node) configured to receive a control signal 1165 from the control circuit 1120 . Node 1175 may refer to a terminal (eg, source terminal) of third transistor 1140 and a terminal (eg, source terminal) of fourth transistor 1145 , which may be coupled together. In some examples, the state of the control signal 1165 may be based on a setting of the control circuit 1120 .

일부 예들에서, 드라이버(1105)는 제어 회로(1115)로부터 2 개의 제어 신호를 수신하도록 구성될 수 있다. 제어 회로(115)에 의해 생성된 제 1 제어 신호(1150)는 MWLF_H로 지칭될 수 있고 트랜지스터(1130)의 게이트에서 수신될 수 있다. 또한, 제 4 트랜지스터(1145)의 게이트는 제어 회로(1115)로부터 제 2 제어 신호(1155)를 수신하도록 구성될 수 있다. 제어 신호(1155)는 MWLF_L로 지칭될 수 있다. 일부 예들에서, 제어 신호(1150)는 제어 신호(1155)와 상이한(예를 들어, 더 높은) 전압 스윙을 가질 수 있다. In some examples, the driver 1105 may be configured to receive two control signals from the control circuit 1115 . The first control signal 1150 generated by the control circuit 115 may be referred to as MWLF_H and may be received at the gate of the transistor 1130 . Also, the gate of the fourth transistor 1145 may be configured to receive the second control signal 1155 from the control circuit 1115 . The control signal 1155 may be referred to as MWLF_L. In some examples, control signal 1150 can have a different (eg, higher) voltage swing than control signal 1155 .

도 11에 도시된 제어 회로(1115) 는 메모리 디바이스의 복수의 제어 회로(1115) 중 하나일 수 있다. 예를 들어, 제어 회로(1115)는 메모리 디바이스의 64 개의 제어 회로(1115) 중 하나를 나타낼 수 있다. 즉, 1,024 개의 드라이버(1105)가 각각의 액세스 라인(1110)과 각각 결합되는 위의 예를 계속하면, 단일 제어 회로(1115)는 16 개의 드라이버(1105)와 결합될 수 있다. 따라서, 각각의 제어 회로(1115)에 대해, 제어 회로(1115)에 의해 생성되고 출력되는 제어 신호(1150) 및 제어 신호(1155)는 16 개의 드라이버(1105)에 공통(각각에 의해 수신)일 수 있다. The control circuit 1115 shown in FIG. 11 may be one of a plurality of control circuits 1115 of the memory device. For example, the control circuit 1115 may represent one of 64 control circuits 1115 of a memory device. That is, continuing the above example where 1,024 drivers 1105 are each coupled with each access line 1110 , a single control circuit 1115 can be coupled with 16 drivers 1105 . Thus, for each control circuit 1115 , the control signal 1150 and the control signal 1155 generated and output by the control circuit 1115 are common (received by each) to the 16 drivers 1105 . can

일부 예들에서, 전술한 바와 같이, 제어 신호(1150)는 드라이버(1105)의 트랜지스터(1130)의 게이트에 인가될 수 있다. 예를 들어, 트랜지스터(1130)의 게이트에 제어 신호(1150)를 인가하는 것은 트랜지스터(1130)는 PMOS 디바이스일 수 있기 때문에, 제어 신호가 로우 상태(로우 전압) 또는 비활성화(예를 들어, 턴 오프)될 때 트랜지스터(1130)가 활성화(예를 들어, 턴 온)될 수 있거나 제어 신호가 하이 상태(하이 전압) 일 때 비활성화(예를 들어, 턴 오프)될 수 있다. 유사하게, 트랜지스터 (1145)의 게이트에 제어 신호 (1155)를 인가하는 것은 트랜지스터 (1145)는 NMOS 디바이스일 수 있기 때문에, 제어 신호가 하이 상태 (하이 전압)에 있을 때 트랜지스터 (1145)가 활성화 (예를 들어, 턴 온) 될 수 있거나 또는 제어 신호가 로우 상태 (로우 전압)에있을 때 비활성화 (예를 들어, 턴 오프)될 수 있다. In some examples, as described above, the control signal 1150 may be applied to the gate of the transistor 1130 of the driver 1105 . For example, applying a control signal 1150 to the gate of transistor 1130 may cause the control signal to be in a low state (low voltage) or inactive (eg, turn off) because transistor 1130 may be a PMOS device. ), the transistor 1130 may be activated (eg, turned on) or deactivated (eg, turned off) when the control signal is in a high state (high voltage). Similarly, applying a control signal 1155 to the gate of transistor 1145 causes transistor 1145 to activate ( For example, it may be turned on) or it may be deactivated (eg, turned off) when the control signal is in a low state (low voltage).

제어 신호(1150, 1155)는 서로 다른 전압 스윙을 가질 수 있다. 예를 들어, 제어 신호(1155)의 전압 스윙은 제어 신호(1150)의 전압 스윙보다 작거나 그 반대일 수 있다. 일부 예들에서, 제어 신호들(1150 및 1155) 각각은 동일한 하한(lower bound)(예를 들어, 0V)과 관련될 수 있지만, 상이한 상한(upper bound)을 가질 수 있다. 예를 들어, 제어 신호(1150)의 상한은 3V이고 제어 신호(1155)의 상한은 1.5V일 수 있다. 일부 예에서, 동일한 디바이스 내의 복수의 상이한 제어 회로(1115)는 액세스 동작의 다양한 위상(phase) 동안 상이한 개개의 드라이버(1105)에 상이한 제어 신호를 인가할 수 있다.The control signals 1150 and 1155 may have different voltage swings. For example, the voltage swing of the control signal 1155 may be less than the voltage swing of the control signal 1150 or vice versa. In some examples, each of the control signals 1150 and 1155 may be associated with the same lower bound (eg, 0V), but may have a different upper bound. For example, the upper limit of the control signal 1150 may be 3V and the upper limit of the control signal 1155 may be 1.5V. In some examples, a plurality of different control circuits 1115 within the same device may apply different control signals to different individual drivers 1105 during various phases of an access operation.

2 개의 다른 제어 신호 (1150 및 1155)를 생성하고 드라이버 (1105)에 출력하도록 제어 회로 (1115)를 구성하고, 추가로 다른 전압 스윙을 갖는 2 개의 제어 신호 (1150 및 1155)를 사용하여, 일부 경우에 드라이버 (1105)의 하나 이상의 컴포넌트 (예를 들어, 트랜지스터)에 과도한 스트레스 (예를 들어, 바람직하지 않게 높은 전압)를 배치하는 것을 방지할 수 있으며, 이는 당업자에 의해 인식될 수 있는 다른 장점들 중에서 더 낮은 전압 허용 오차 디바이스의 사용을 지원할 수 있고 따라서 공간, 스위칭 속도 및 효율성 장점을 제공할 수 있다. 추가적으로 또는 대안적으로, 트랜지스터 (1130)와 캐스 코드 구성으로 트랜지스터 (1135)를 포함하는 것은 드라이버 (1105)의 하나 이상의 컴포너트 (예를 들어, 트랜지스터)에 걸쳐 과도한 스트레스 (예를 들어, 바람직하지 않게 높은 전압)를 배치하는 것을 방지할 수 있으며, 이는 당업자에 의해 인식될 수 있는 다른 장점들 중에서도 더 낮은 전압 허용 오차 디바이스의 사용을 지원할 수 있고 따라서 공간, 스위칭 속도 및 효율성 장점을 제공할 수 있다.configure control circuit 1115 to generate two different control signals 1150 and 1155 and output them to driver 1105, further using two control signals 1150 and 1155 with different voltage swings, some placing excessive stresses (eg, undesirably high voltages) on one or more components (eg, transistors) of the driver 1105 in this case may be another advantage that will be appreciated by those skilled in the art. Among them, it can support the use of lower voltage tolerance devices and thus provide space, switching speed and efficiency advantages. Additionally or alternatively, including transistor 1130 and transistor 1135 in a cascode configuration may result in excessive stress (eg, undesirable) across one or more components (eg, transistors) of driver 1105 . undesirably high voltages) can be avoided, which can support the use of lower voltage tolerance devices and thus provide space, switching speed and efficiency advantages, among other advantages that will be recognized by those skilled in the art. .

도 11에 도시된 제어 회로(1120)는 메모리 디바이스의 복수의 제어 회로(1120) 중 하나일 수 있다. 예를 들어, 제어 회로(1120)는 메모리 디바이스의 16 개의 제어 회로(1120) 중 하나를 나타낼 수 있다. 즉, 1,024 개의 드라이버(1105)가 각각의 액세스 라인(1110)에 각각 결합되는 위의 예를 계속하면, 단일 제어 회로(1120)는 64 개의 드라이버(1105)와 결합될 수 있다. 따라서, 각각의 제어 회로(1120)에 대해, 제어 회로(1120)에 의해 생성되고 출력되는 제어 신호(1165)는 64 개의 드라이버(1105)에 공통(각각에 의해 수신됨)될 수 있다. 제어 회로 (1120)는 제어 회로 (1120)가 결합된 각각의 드라이버 (1105)의 개개의 노드 (1175)에 제어 신호 (1165)를 인가하도록 구성될 수 있다. The control circuit 1120 shown in FIG. 11 may be one of a plurality of control circuits 1120 of the memory device. For example, the control circuit 1120 may represent one of 16 control circuits 1120 of a memory device. That is, continuing the above example in which 1,024 drivers 1105 are each coupled to each access line 1110 , a single control circuit 1120 may be coupled to 64 drivers 1105 . Thus, for each control circuit 1120 , the control signal 1165 generated and output by the control circuit 1120 can be common (received by each) to the 64 drivers 1105 . The control circuit 1120 may be configured to apply a control signal 1165 to a respective node 1175 of each driver 1105 to which the control circuit 1120 is coupled.

일부 예들에서, 메모리 디바이스에서 하나 이상의 메모리 셀들에 대한 액세스 동작 동안 상이한 시간에, 제어 신호 (1165)는 VNWL (예를 들어, 0V)로 지칭될 수 있는 비교적 높은 전압으로 노드 (1175)를 드라이빙할 수 있고, VNNWL (예를 들어, -1.5V, VNNWL)로 지칭될 수 있는 비교적 낮은 전압으로 노드 (1175)를 드라이빙할 수 하거나, 노드 (1175)를 전기적으로 플로팅 (예를 들어, FLOAT)할 수 있다. 제어 신호(1165)의 상태는 제어 회로(1120)에 의해(예를 들어, 제어기로부터) 수신된 하나 이상의 제어 신호에 기초할 수 있다. 제어 신호(1165)의 가능한 전압들 사이의 전압 스윙은 액세스 동작 동안 메모리 디바이스의 플레이트의 전압 변화와 동일할 수 있다. 즉, 상대적으로 높은 전압과 상대적으로 낮은 전압 사이의 전압 스윙은 1.5V일 수 있으며, 이는 액세스 동작 중 플레이트의 전압 변화와 동일할 수 있다(예를 들어, 플레이트가 1.5V에서 0V로 변경되는 경우). 일부 예들에서, 동일한 디바이스 내의 복수의 상이한 제어 회로(1120)는 액세스 동작의 다양한 위상 동안 상이한 각각의 드라이버(1105)에 상이한 제어 신호를 인가할 수 있다. In some examples, at different times during an access operation to one or more memory cells in the memory device, the control signal 1165 may drive the node 1175 to a relatively high voltage, which may be referred to as VNWL (eg, 0V). may drive node 1175 to a relatively low voltage, which may be referred to as VNNWL (eg, -1.5V, VNNWL), or electrically float (eg, FLOAT) node 1175 . can The state of the control signal 1165 may be based on one or more control signals received by the control circuit 1120 (eg, from a controller). The voltage swing between the possible voltages of the control signal 1165 may be equal to the voltage change of the plate of the memory device during an access operation. That is, the voltage swing between a relatively high voltage and a relatively low voltage may be 1.5V, which may be equal to the voltage change of the plate during an access operation (eg, when the plate changes from 1.5V to 0V). ). In some examples, a plurality of different control circuits 1120 within the same device may apply different control signals to different respective drivers 1105 during various phases of an access operation.

도 11에 도시된 제어 회로(1125) 는 메모리 디바이스의 복수의 제어 회로(1125) 중 하나일 수 있다. 예를 들어, 제어 회로(1125)는 메모리 디바이스의 16 개의 제어 회로(1125) 중 하나를 나타낼 수 있다. 즉, 1,024 개의 드라이버(1105)가 각각의 액세스 라인(1110)과 결합되는 위의 예를 계속하여, 단일 제어 회로(1125)가 64 개의 드라이버(1105)와 결합될 수 있다. 따라서, 각각의 제어 회로(1125)에 대해, 제어 회로(1125)에 의해 생성되고 출력되는 제어 신호(1160 및 1167)는 64 개의 드라이버(1105)에 공통(각각에 의해 수신 됨)될 수 있다. 각각의 제어 회로 (1125)는 제어 회로 (1125)가 결합되는 각각의 드라이버 (1105)의 각각의 노드 (1185)에 제어 신호 (1160)를 및/또는 각각의 노드 (1170)에 제어 신호 (1167)를 인가하도록 구성될 수 있다. 일부 경우에, 제어 회로 (1125)는 대응하는 제어 회로 (1120)와 관련될 수 있어서 제어 회로 (1125) 및 대응하는 제어 회로 (1120)는 모두 동일한 세트의 드라이버 (1105)와 결합될 수 있다 - 즉, 2 개 이상의 드라이버 (1105)가 동일한 제어 회로 (1125)와 결합되면, 이들은 또한 동일한 제어 회로 (1120)와 결합될 수 있다.The control circuit 1125 shown in FIG. 11 may be one of a plurality of control circuits 1125 of the memory device. For example, control circuit 1125 may represent one of 16 control circuits 1125 of a memory device. That is, continuing the above example where 1,024 drivers 1105 are coupled with each access line 1110 , a single control circuit 1125 can be coupled with 64 drivers 1105 . Thus, for each control circuit 1125 , the control signals 1160 and 1167 generated and output by the control circuit 1125 can be common (received by each) to the 64 drivers 1105 . Each control circuit 1125 provides a control signal 1160 to each node 1185 and/or a control signal 1167 to each node 1170 of each driver 1105 to which the control circuit 1125 is coupled. ) can be configured to apply. In some cases, a control circuit 1125 may be associated with a corresponding control circuit 1120 such that both the control circuit 1125 and the corresponding control circuit 1120 may be coupled with the same set of drivers 1105 - That is, if two or more drivers 1105 are coupled with the same control circuit 1125 , they may also be coupled with the same control circuit 1120 .

일부 예에서, 제어 회로(1125)는 트랜지스터(1190, 1192, 1194)를 포함할 수 있다. 트랜지스터(1190, 1192)는 NMOS 트랜지스터일 수 있고, 트랜지스터(1194)는 PMOS 트랜지스터일 수 있다. 일부 예에서, 트랜지스터(1190)는 트랜지스터(1192)와 함께 캐스 코드 구성으로 배열될 수 있다. 일부 예에서, 트랜지스터(1194)의 단자(예를 들어, 소스 단자)는 제 1 전압 소스(예를 들어, VCCP)와 결합될 수 있고, 트랜지스터(1190)의 단자(예를 들어, 소스 단자)는 다른 전압 소스(예를 들어, VSS)와 결합될 수 있다. 트랜지스터(1190, 1192, 1194)는 인버터를 포함(구현)할 수 있지만, 인버터의 2 레그(leg)에 비대칭인 트랜지스터의 수를 갖는다. 더구나, 제어 회로(1125)는 트랜지스터(1194) 및/또는 트랜지스터(1190)의 게이트와 결합될 수 있는 제 2 인버터(1196)를 또한 포함할 수 있다. In some examples, control circuit 1125 may include transistors 1190 , 1192 , 1194 . Transistors 1190 and 1192 may be NMOS transistors, and transistor 1194 may be PMOS transistors. In some examples, transistor 1190 may be arranged with transistor 1192 in a cas code configuration. In some examples, a terminal (eg, source terminal) of transistor 1194 may be coupled with a first voltage source (eg, VCCP) and a terminal (eg, source terminal) of transistor 1190 . may be coupled with another voltage source (eg, VSS). Transistors 1190, 1192, 1194 may include (implement) an inverter, but have an asymmetric number of transistors in the two legs of the inverter. Moreover, the control circuit 1125 may also include a second inverter 1196 that may be coupled with the gate of the transistor 1194 and/or the transistor 1190 .

제어 회로(1125)는 제어 신호(1160) 및 제어 신호(1167)를 출력(예를 들어, 생성)하도록 구성될 수 있다. 제어 신호 (1160, 1167)는 서로 로직 역일 수 있다 (예를 들어, 트랜지스터 (1190, 1192, 1194)에 의해 형성된 인버터가 제어 신호 (1160 및 1167)의 개별 출력 노드 사이에 있기 때문에). 즉, 하나가 하이일 때 다른 하나는 로우이다. The control circuit 1125 may be configured to output (eg, generate) a control signal 1160 and a control signal 1167 . Control signals 1160 , 1167 may be logic inverses of each other (eg, since the inverter formed by transistors 1190 , 1192 , 1194 is between the respective output nodes of control signals 1160 and 1167 ). That is, when one is high, the other is low.

일부 예들에서, 제어 회로(1125)는 또한 FLOAT2 제어 신호에 기초하여 노드(1170)를 플로팅하도록 구성될 수 있다. FLOAT2 제어 신호는 제어 회로(1125)에 의해(예를 들어, 제어기로부터) 수신될 수 있고, 활성화될 때 제어 신호(1160)가 전기적으로 플로팅될 수 있다. 일부 예들에서, FLOAT2는 활성 행일 수 있고, FLOAT2가 하이일 때, 트랜지스터(1190, 1192, 1194)는 인버터(1196)와 직렬로 인버터 역할을 할 수 있다. 그러나, FLOAT2가 로우이고 반면 인버터(1196)의 출력이 하이이면, 제어 신호(1160) 및 따라서, 노드(1170)는 플로팅될 수 있다. 예를 들어, 노드 (1170)는 인버터 (1196)의 출력이 하이이기 때문에 트랜지스터 (1194)가 비활성화 (예를 들어, 오프)되기 때문에, FLOAT2가 로우이기 때문에 트랜지스터 (1192)가 동시에 비활성화 (예를 들어, 오프)되기 때문에 플로팅될 수 있다. 일부 예들에서, 동일한 디바이스 내의 복수의 상이한 제어 회로(1125)는 액세스 동작의 다양한 위상 동안 상이한 개개의 드라이버(1105)에 상이한 제어 신호를 인가할 수 있다.In some examples, the control circuit 1125 may also be configured to float the node 1170 based on the FLOAT2 control signal. The FLOAT2 control signal may be received by (eg, from a controller) control circuitry 1125 , and when activated, the control signal 1160 may be electrically floated. In some examples, FLOAT2 can be the active row, and when FLOAT2 is high, transistors 1190 , 1192 , 1194 can act as an inverter in series with inverter 1196 . However, if FLOAT2 is low while the output of inverter 1196 is high, then control signal 1160 and thus node 1170 can be floated. For example, node 1170 indicates that transistor 1192 is simultaneously deactivated (e.g., off) because FLOAT2 is low because transistor 1194 is disabled (eg, off) because the output of inverter 1196 is high. For example, it may float because it is off). In some examples, a plurality of different control circuits 1125 within the same device may apply different control signals to different individual drivers 1105 during various phases of an access operation.

도 12a 는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램(1200-a)를 도시한다. 일부 예들에서, 타이밍 다이어그램(1200-a)는 도 1을 참조하여 상기에서 설명된 회로(1100)와 관련된(예를 들어, 사용하여 실행되는) 액세스 동작을 예시할 수 있다. 일부 예들에서, 타이밍 다이어그램(1200-a)은 플레이트 라인(1205), 워드 라인(1110-a), 노드(1170-a) 및 노드(1175-a)의 전압을 예시할 수 있다. 워드 라인(1110-a), 노드 (1170-a) 및 노드 (1175-a)의 전압은 도 11을 참조하여 설명한 액세스 라인 (1110), 노드 (1170) 및 노드 (1175)에 인가되는 전압을 나타낼 수 있다. 타이밍 다이어그램(1200-a)은 간격 (1210, 1215, 1220, 1225 및 1230) 동안 플레이트 라인(1205), 워드 라인(1110-a) 및 노드(1170-a 및 1175-a)의 전압을 예시할 수 있다. 12A shows an example timing diagram 1200 - a supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure. In some examples, timing diagram 1200 - a may illustrate an access operation associated with (eg, executed using) circuit 1100 described above with reference to FIG. 1 . In some examples, timing diagram 1200 - a may illustrate voltages at plate line 1205 , word line 1110 - a , node 1170 - a , and node 1175 - a. The voltages of the word line 1110 - a , the node 1170 - a , and the node 1175 - a are the voltages applied to the access line 1110 , the node 1170 , and the node 1175 described with reference to FIG. 11 . can indicate Timing diagram 1200 - a will illustrate the voltages at plate line 1205 , word line 1110 - a , and nodes 1170 - a and 1175 - a during intervals 1210 , 1215 , 1220 , 1225 and 1230 . can

본 출원에 설명된, 메모리 어레이는 복수의 메모리 셀에 대한 복수의 개별 액세스 라인(예를 들어, 복수의 워드 라인)을 포함할 수 있으며, 각각의 메모리 셀은 공통 플레이트를 갖는다. 각각의 액세스 라인은 액세스 라인과 결합된 셀이 특정 액세스 동작에 의해 타겟화(액세스)되는지 여부에 기초하여 선택되거나 선택 해제될 수 있다(예를 들어, 도 11을 참조하여 설명된 드라이버(1105)에 의해). 일부 경우에, 주어진 유형의 임의의 하나의 액세스 라인이 특정 액세스 동작 동안 선택될 수 있고, 플레이트와 관련된 동일한 유형의 나머지 액세스 라인 수가 동작 동안 선택 해제된 상태로 유지될 수 있다. As described herein, a memory array may include a plurality of individual access lines (eg, a plurality of word lines) to a plurality of memory cells, each memory cell having a common plate. Each access line may be selected or deselected based on whether the cell associated with the access line is targeted (accessed) by a particular access operation (eg, driver 1105 described with reference to FIG. 11 ). by). In some cases, any one access line of a given type may be selected during a particular access operation, and the remaining number of access lines of the same type associated with the plate may remain deselected during the operation.

타이밍 다이어그램(1200-a)는 선택된 액세스 라인 (예를 들어, 선택된 워드 라인)에 대해 도 11을 참조하여 전술한 바와 같이 회로 (1100)와 관련된 액세스 동작을 예시할 수 있다. 선택된 액세스 라인과 관련된 메모리 셀은 도 12a에 예시된 하나 이상의 간격 동안 액세스될 수 있다. The timing diagram 1200 - a may illustrate an access operation associated with the circuit 1100 as described above with reference to FIG. 11 for a selected access line (eg, a selected word line). The memory cells associated with the selected access line may be accessed during one or more intervals illustrated in FIG. 12A .

간격(1210) 동안, 플레이트 라인(1205)의 전압은 처음에 제 1 전압(예를 들어, 1.5V와 같은 하이 전압)으로 드라이빙되는 것으로 도시된다. 플레이트가 제 1 전압으로 드라이빙되는 동안, 간격 (1210) 이전에, 워드 라인(1110-a)이 선택될 수 있다. 도 12a 내지 12d에서, 예는 워드 라인의 관점에서 설명되지만, 교시는 임의의 유형의 액세스 라인에 적용될 수 있음을 이해해야 한다. 일부 예들에서, 선택된 워드 라인은 (1210) 간격의 시작 부분에서 3V와 같은 하이 전압에 있는 워드 라인(1110-a)의 전압으로 표현될 수 있다. 워드 라인 (1110-a)을 선택하기 위해, 제어 회로 (1125)는 노드 (1170)에 하이 제어 신호 (1160)를 인가할 수 있고 (예를 들어, 트랜지스터 (1194)를 활성화함으로써), 이는 인버터 (1196)의 입력에서 수신되는 로직 하이 신호에 기초할 수 있고), 노드 (1170-a)의 전압이 3V와 같은 하이 전압으로 드라이빙되는 결과를 초래할 수 있다. 노드 (1170-a)가 하이 전압에 있는 동안, 제어 회로 (1115)는 트랜지스터 (1130)에 로우 제어 신호 (1150)를 인가할 수 있다. 로우 제어 신호(1150)는 예를 들어 0V일 수 있다. 제어 신호(1160, 1150)를 드라이버(1105)에 인가하면 트랜지스터(1130, 1135)가 활성화(예를 들어, 온)될 수 있다. 따라서, 워드 라인(1110-a)의 전압은 3V로 드라이빙될 수 있다. During interval 1210 , the voltage on plate line 1205 is shown initially driven to a first voltage (eg, a high voltage such as 1.5V). While the plate is being driven at the first voltage, before the interval 1210 , the word line 1110 - a may be selected. 12A-12D , although the examples are described in terms of word lines, it should be understood that the teachings can be applied to any type of access line. In some examples, the selected word line may be represented by the voltage of the word line 1110 - a at a high voltage, such as 3V, at the beginning of the 1210 interval. To select word line 1110 - a, control circuit 1125 may apply high control signal 1160 to node 1170 (eg, by activating transistor 1194 ), which is an inverter may be based on a logic high signal received at the input of 1196), resulting in the voltage at node 1170 - a being driven to a high voltage, such as 3V. While node 1170 - a is at a high voltage, control circuit 1115 may apply low control signal 1150 to transistor 1130 . The row control signal 1150 may be, for example, 0V. When the control signals 1160 and 1150 are applied to the driver 1105 , the transistors 1130 and 1135 may be activated (eg, turned on). Accordingly, the voltage of the word line 1110 - a may be driven to 3V.

일부 예들에서, 제어 회로(1120)는 노드(1175)에 하이 제어 신호(1165)(예를 들어, VNWL)를 인가할 수 있다. 따라서, 노드(1175-a)의 전압은 0V일 수 있다. 노드(1175)가 0V 인 동안, 제어 회로(1115)는 트랜지스터(1145)에 로우 제어 신호(1155)를 인가할 수 있고, 제어 회로(1125)는 트랜지스터(1140)에 로우 제어 신호(1167)를 인가할 수 있다. 로우 제어 신호(1155, 1167)는 예를 들어, 0V일 수 있다. 따라서, 드라이버(1105)에 제어 신호(1155, 1167)를 인가하면 트랜지스터(1140, 1145)가 비활성화(예를 들어, 오프)될 수 있다. 따라서, 워드 라인(1110-a) 은 노드(1175)로부터 절연될 수 있다. In some examples, the control circuit 1120 can apply a high control signal 1165 (eg, VNWL) to the node 1175 . Accordingly, the voltage at node 1175-a may be 0V. While node 1175 is 0V, control circuit 1115 may apply low control signal 1155 to transistor 1145 , and control circuit 1125 may apply low control signal 1167 to transistor 1140 . can be authorized The row control signals 1155 and 1167 may be, for example, 0V. Accordingly, when the control signals 1155 and 1167 are applied to the driver 1105 , the transistors 1140 and 1145 may be deactivated (eg, turned off). Thus, word line 1110 - a may be isolated from node 1175 .

간격(1215) 동안, 플레이트 라인(1205)의 전압은 제 1 전압(예를 들어, 하이 전압)에서 제 2 전압(예를 들어, 0V와 같은 로우 전압)으로 천이할 수 있다. 선택된 워드 라인(1110-a)의 전압 및 노드(1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있고, 노드(1175-a)의 전압은 로우에(예를 들어, 0V에서) 유지될 수 있다. During the interval 1215 , the voltage on the plate line 1205 may transition from a first voltage (eg, a high voltage) to a second voltage (eg, a low voltage such as 0V). The voltage of the selected word line 1110 - a and the voltage at node 1170 - a may be held high (eg, at 3V), and the voltage at node 1175 - a may be held low (eg, at 3V). , at 0V) can be maintained.

간격(1220) 동안, 플레이트 라인(1205)의 전압은 제 2 전압(예를 들어, 0V와 같은 로우 전압)으로 유지될 수 있다. 워드 라인 (1110-a)의 전압과 노드 (1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있고, 노드 (1175-a)의 전압은 로우에(예를 들어, 0V에서) 유지될 수 있다.During interval 1220 , the voltage on plate line 1205 may be maintained at a second voltage (eg, a low voltage such as 0V). The voltage at word line 1110 - a and the voltage at node 1170 - a can be held high (eg, at 3V), and the voltage at node 1175 - a is held low (eg, at 3V) at 0V) can be maintained.

간격(1225) 동안, 플레이트 라인(1205)의 전압은 제 2 전압(예를 들어, 로우 전압에서)에서 제 1 전압(예를 들어, 하이 전압)으로 드라이빙될 수 있다. 선택된 워드 라인(1110-a)의 전압 및 노드(1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있고, 노드(1175-a)의 전압은 로우에(예를 들어, 0V에서) 유지될 수 있다.During interval 1225 , the voltage of plate line 1205 may be driven from a second voltage (eg, at a low voltage) to a first voltage (eg, a high voltage). The voltage of the selected word line 1110 - a and the voltage at node 1170 - a may be held high (eg, at 3V), and the voltage at node 1175 - a may be held low (eg, at 3V). , at 0V) can be maintained.

간격(1230) 동안, 플레이트 라인(1205)의 전압은 제 1 전압(예를 들어, 하이 전압)으로 유지될 수 있다. 워드 라인 (1110-a)의 전압과 노드 (1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있고, 노드 (1175-a)의 전압은 로우에(예를 들어, 0V에서) 유지될 수 있다. 본 출원에 설명된 예에서, 설명된 절대 전압 레벨(예를 들어, 3V, 0V, -1.5V 등)은 단지 설명을 위한 것이다. 따라서, 본 출원에 기술된 절대 전압 레벨과 다른 임의의 절대 전압 레벨(들)이 사용될 수 있다.During the interval 1230 , the voltage on the plate line 1205 may be maintained at a first voltage (eg, a high voltage). The voltage at word line 1110 - a and the voltage at node 1170 - a can be held high (eg, at 3V), and the voltage at node 1175 - a is held low (eg, at 3V) at 0V) can be maintained. In the examples described herein, the absolute voltage levels described (eg, 3V, 0V, -1.5V, etc.) are for illustrative purposes only. Accordingly, any absolute voltage level(s) other than the absolute voltage levels described herein may be used.

일부 예들에서, 선택된 워드 라인 (1110-a)에 대한 드라이버 (1105) 내의 트랜지스터들 (1130, 1135, 1140 및 1145) 각각은 액세스 동작 내내 비교적 낮은 게이트-소스 전압 (예를 들어, Vgs) 및/또는 드레인-소스 전압 (예를 들어, Vds)을 가질 수 있다. 예를 들어, 액세스 동작 동안, 트랜지스터(1130, 1135, 1140, 1145) 중 어느 것도 제어 신호(1150)의 전압 스윙보다 큰 Vgs 및/또는 Vds(예를 들어, 3V일 수 있는 MWLF_H)를 갖지 않는다.In some examples, each of transistors 1130 , 1135 , 1140 , and 1145 in driver 1105 for selected word line 1110 - a has a relatively low gate-to-source voltage (eg, V gs ) and /or a drain-source voltage (eg, V ds ). For example, during an access operation, none of transistors 1130 , 1135 , 1140 , 1145 generates V gs and/or V ds (eg, MWLF_H, which may be 3V) greater than the voltage swing of control signal 1150 . don't have

도 12b 는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램(1200-b)을 도시한다. 일부 예들에서, 타이밍 다이어그램(1200-b)는 도 11을 참조하여 상기에서 설명된 회로(1100)와 관련된(예를 들어, 사용하여 실행되는) 액세스 동작을 예시할 수 있다. 일부 예들에서, 타이밍 다이어그램(1200-b)은 플레이트 라인(1205), 워드 라인(1110-b), 노드(1170-b) 및 노드(1175-b)의 전압을 예시할 수 있다. 워드 라인(1110-b), 노드 (1170-b) 및 노드 (1175-b)의 전압은 도 11을 참조하여 설명한 액세스 라인 (1110), 노드 (1170) 및 노드 (1175)에 인가되는 전압을 나타낼 수 있다. 타이밍 다이어그램(1200-b)은 간격 (1210, 1215, 1220, 1225 및 1230) 동안 플레이트 라인(1205), 워드 라인(1110-b) 및 노드(1170-b 및 1175-b)의 전압을 예시할 수 있다. 12B shows an example timing diagram 1200 - b supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure. In some examples, timing diagram 1200 - b may illustrate an access operation associated with (eg, executed using) circuit 1100 described above with reference to FIG. 11 . In some examples, timing diagram 1200 - b may illustrate voltages at plate line 1205 , word line 1110 - b , node 1170 - b , and node 1175 - b . The voltages at the word line 1110-b, the node 1170-b, and the node 1175-b are the voltages applied to the access line 1110, the node 1170, and the node 1175 described with reference to FIG. can indicate Timing diagram 1200 - b illustrates the voltages at plate line 1205 , word line 1110 - b and nodes 1170 - b and 1175 - b during intervals 1210 , 1215 , 1220 , 1225 and 1230 . can

본 출원에 설명된, 메모리 어레이는 복수의 메모리 셀에 대한 복수의 개개의 액세스 라인(예를 들어, 복수의 워드 라인)을 포함할 수 있으며, 각각의 메모리 셀은 공통 플레이트를 갖는다. 각각의 액세스 라인은 액세스 라인과 결합된 셀이 특정 액세스 동작에 의해 타겟(액세스)되는지 여부에 기초하여 선택되거나 선택 해제될 수 있다(예를 들어, 도 11을 참조하여 설명된 드라이버(1105)에 의해). 일부 경우에, 특정 액세스 동작 중에 임의의 하나의 액세스 라인이 선택될 수 있고, 플레이트와 관련된 동일한 유형의 나머지 액세스 라인 수가 동작 중에 선택 해제된 상태로 유지될 수 있다. As described herein, a memory array may include a plurality of individual access lines (eg, a plurality of word lines) to a plurality of memory cells, each memory cell having a common plate. Each access line may be selected or deselected based on whether a cell associated with the access line is targeted (accessed) by a particular access operation (eg, to the driver 1105 described with reference to FIG. 11 ). due to). In some cases, any one access line may be selected during a particular access operation, and the remaining number of access lines of the same type associated with the plate may remain deselected during operation.

타이밍 다이어그램(1200-a)은 선택 해제된 액세스 라인의 제 1 서브 세트에 대해 도 11을 참조하여 전술한 바와 같이 회로 (1100)와 관련된 액세스 동작을 예시할 수 있다. 예를 들어, 타이밍 다이어그램 (1200-b)은 선택된 워드 라인의 드라이버 (1105)와 동일한 제어 회로 (1120) 및 제어 회로 (1125)를 공유하는 워드 라인들 (1110-b)의 전압을 예시할 수 있다 (예를 들어, 도 12a를 참조하여 논의된 선택된 워드 라인 (1110-a)). 따라서, 1,024 개의 드라이버 (1105)가 각각의 워드 라인 (1110)과 결합되는 상기의 예를 계속하여, 선택 해제된 워드 라인 (1110-b)의 전압은 선택된 워드 라인의 드라이버 (1105)와 동일한 제어 회로 (1120) 및 제어 회로 (1125)를 공유하는 63 개의 선택 해제된 워드 라인 (1110)의 전압을 나타낼 수 있다.Timing diagram 1200 - a may illustrate an access operation associated with circuit 1100 as described above with reference to FIG. 11 for a first subset of deselected access lines. For example, timing diagram 1200 - b may illustrate the voltage of word lines 1110 - b sharing the same control circuit 1120 and control circuit 1125 as driver 1105 of the selected word line. (eg, selected word line 1110 - a discussed with reference to FIG. 12A ). Thus, continuing the above example where 1,024 drivers 1105 are coupled with each word line 1110, the voltage of the deselected word line 1110 - b is controlled equal to the driver 1105 of the selected word line. It can represent the voltage of 63 deselected word lines 1110 sharing circuit 1120 and control circuit 1125 .

간격(1210) 동안, 플레이트 라인(1205)의 전압은 처음에 제 1 전압(예를 들어, 1.5V와 같은 하이 전압)으로 드라이빙되는 것으로 도시된다. 플레이트가 제 1 전압으로 드라이빙되는 동안, 간격(1210) 이전에 하나의 워드 라인(1110-a) 이 선택될 수 있고, 워드 라인(1110)의 서브 세트가 선택 해제된 상태로 유지될 수 있다. 일부 예들에서, 선택 해제된 상태로 남아있는 워드 라인들의 서브 세트는 0V와 같은 로우 전압으로 남아있는 워드 라인들(1110-b)의 전압으로 표현될 수 있다. 워드 라인 (1110-b)의 서브 세트가 선택 해제되었지만 선택된 워드 라인 (1110-a)과 공통 제어 회로 (1125)를 공유하는 경우, 제어 회로 (1125)는 노드 (1170)에 하이 제어 신호 (1160)를 인가할 수 있고, 이는 노드 (1170-b)의 전압이 3V와 같은 하이 전압으로 드라이빙되는 결과를 초래할 수 있다. 노드 (1170-b)가 하이 전압에 있는 동안 제어 회로 (1115)는 - 이는 선택된 워드 라인 (1110-a) 및 선택 해제된 워드 라인 (1110-b)의 제 1 서브 세트와 공통되지 않을 수 있다 - 트랜지스터 (1130)에 하이 제어 신호 (1150)를 인가 할 수 있다. 하이 제어 신호 (1150)는 예를 들어, 3V 일 수 있다. 따라서, 드라이버(1105)에 제어 신호(1160, 1150)를 인가하면 트랜지스터(1130, 1135)가 비활성화(예를 들어, 오프)될 수 있다. 따라서, 선택 해제된 워드 라인(1110-b) 은 노드(1170)로부터 절연될 수 있다. During interval 1210 , the voltage on plate line 1205 is shown initially driven to a first voltage (eg, a high voltage such as 1.5V). While the plate is being driven at the first voltage, one word line 1110 - a may be selected prior to the interval 1210 , and a subset of the word lines 1110 may remain deselected. In some examples, the subset of word lines that remain deselected can be represented by the voltage of the remaining word lines 1110 - b with a low voltage, such as 0V. When a subset of word lines 1110-b is deselected but shares a common control circuit 1125 with the selected word line 1110-a, control circuit 1125 sends a high control signal 1160 to node 1170. ), which may result in the voltage of node 1170 - b being driven to a high voltage, such as 3V. While node 1170 - b is at a high voltage, control circuit 1115 - which may not be in common with the first subset of selected word lines 1110 - a and deselected word lines 1110 - b - A high control signal 1150 may be applied to the transistor 1130 . The high control signal 1150 may be, for example, 3V. Accordingly, when the control signals 1160 and 1150 are applied to the driver 1105 , the transistors 1130 and 1135 may be deactivated (eg, turned off). Accordingly, the deselected word line 1110 - b may be isolated from the node 1170 .

일부 예들에서(예를 들어, 워드 라인들(1110-b)의 서브 세트가 선택되지 않았지만 선택된 워드 라인(1110-a) 과 공통 제어 회로(1120)를 공유하는 경우), 제어 회로(1120)는 하이 제어 신호(1165)(예를 들어, VNWL)를 인가할 수 있다. 예를 들어, 노드(1175-a)의 전압은 0V일 수 있다. 제어 신호(1165)가 노드(1175)에 인가되는 동안, 제어 회로(1115)는 트랜지스터(1145)에 하이 제어 신호(1155)를 인가할 수 있고, 제어 회로(1125)는 트랜지스터(1140)에 로우 제어 신호(1167)를 인가할 수 있다. 하이 제어 신호(1155)는 예를 들어, 1.5V일 수 있고, 로우 제어 신호(1167)는 0V일 수 있다. 따라서, 드라이버(1105)에 제어 신호(1155, 1167)를 인가하면 트랜지스터(1145)가 활성화(예를 들어, 온)되고 트랜지스터(1140)가 비활성화(예를 들어, 오프)될 수 있다. 따라서, 선택 해제된 워드 라인은 트랜지스터(1145)를 통해 노드(1175)와 결합될 수 있으며, 이는 노드(1175)와 선택 해제된 워드 라인이 동일한 전압(예를 들어, 0V)을 가질 수 있다. In some examples (eg, when the subset of word lines 1110 - b is not selected but shares a common control circuit 1120 with the selected word line 1110 - a), the control circuit 1120 is A high control signal 1165 (eg, VNWL) may be applied. For example, the voltage at node 1175-a may be 0V. While control signal 1165 is applied to node 1175 , control circuit 1115 may apply high control signal 1155 to transistor 1145 , and control circuit 1125 may apply low to transistor 1140 . A control signal 1167 may be applied. The high control signal 1155 may be, for example, 1.5V, and the low control signal 1167 may be 0V. Accordingly, when the control signals 1155 and 1167 are applied to the driver 1105 , the transistor 1145 may be activated (eg, turned on) and the transistor 1140 may be deactivated (eg, turned off). Thus, the deselected word line may be coupled to node 1175 via transistor 1145 , which may cause node 1175 and the deselected word line to have the same voltage (eg, 0V).

간격(1215) 동안, 플레이트 라인(1205)의 전압은 제 1 전압(예를 들어, 하이 전압)에서 제 2 전압(예를 들어, 0V와 같은 로우 전압)으로 천이할 수 있다. 선택 해제된 워드 라인 (1110-b)의 전압은 로우에 유지될 수 있으며 (예를 들어, 0V에서), 노드 (1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있으며, 노드 (1175-a)의 전압은 로우에 유지될 수 있다 (예를 들어, 0V에서). During the interval 1215 , the voltage on the plate line 1205 may transition from a first voltage (eg, a high voltage) to a second voltage (eg, a low voltage such as 0V). The voltage of the deselected word line 1110 - b may be held low (eg, at 0V) and the voltage at node 1170 - a may be held high (eg, at 3V). and the voltage at node 1175-a may be held low (eg, at 0V).

간격(1220) 동안, 플레이트 라인(1205)의 전압은 제 2 전압(예를 들어, 0V와 같은 로우 전압)으로 유지될 수 있다. 선택 해제된 워드 라인 (1110-b)의 전압은 로우에 유지될 수 있으며 (예를 들어, 0V에서), 노드 (1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있으며, 노드 (1175-a)의 전압은 로우에 유지될 수 있다 (예를 들어, 0V에서).During interval 1220 , the voltage on plate line 1205 may be maintained at a second voltage (eg, a low voltage such as 0V). The voltage of the deselected word line 1110 - b may be held low (eg, at 0V) and the voltage at node 1170 - a may be held high (eg, at 3V). and the voltage at node 1175-a may be held low (eg, at 0V).

간격(1225) 동안, 플레이트 라인(1205)의 전압은 제 2 전압(예를 들어, 로우 전압에서)에서 제 1 전압(예를 들어, 하이 전압)으로 드라이빙될 수 있다. 선택 해제된 워드 라인 (1110-b)의 전압은 로우에 유지될 수 있으며 (예를 들어, 0V에서), 노드 (1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있으며, 노드 (1175-a)의 전압은 로우에 유지될 수 있다 (예를 들어, 0V에서).During interval 1225 , the voltage of plate line 1205 may be driven from a second voltage (eg, at a low voltage) to a first voltage (eg, a high voltage). The voltage of the deselected word line 1110 - b may be held low (eg, at 0V) and the voltage at node 1170 - a may be held high (eg, at 3V). and the voltage at node 1175-a may be held low (eg, at 0V).

간격(1230) 동안, 플레이트 라인(1205)의 전압은 제 1 전압(예를 들어, 하이 전압)으로 유지될 수 있다. 선택 해제된 워드 라인 (1110-b)의 전압은 로우에 유지될 수 있으며 (예를 들어, 0V에서), 노드 (1170-a)의 전압은 하이에(예를 들어, 3V에서) 유지될 수 있으며, 노드 (1175-a)의 전압은 로우에 유지될 수 있다 (예를 들어, 0V에서). 본 출원에 설명된 예에서, 설명된 절대 전압 레벨(예를 들어, 3V, 0V, -1.5V 등)은 단지 설명을 위한 것이다. 따라서, 본 출원에 기술된 절대 전압 레벨과 다른 임의의 절대 전압 레벨(들)이 사용될 수 있다.During the interval 1230 , the voltage on the plate line 1205 may be maintained at a first voltage (eg, a high voltage). The voltage of the deselected word line 1110 - b may be held low (eg, at 0V) and the voltage at node 1170 - a may be held high (eg, at 3V). and the voltage at node 1175-a may be held low (eg, at 0V). In the examples described herein, the absolute voltage levels described (eg, 3V, 0V, -1.5V, etc.) are for illustrative purposes only. Accordingly, any absolute voltage level(s) other than the absolute voltage levels described herein may be used.

일부 예들에서, 선택 해?サ? 워드 라인 (1110-b)에 대한 드라이버 (1105) 내의 트랜지스터들 (1130, 1135, 1140 및 1145) 각각은 액세스 동작 내내 비교적 낮은 게이트-소스 전압 (예를 들어, Vgs) 및/또는 드레인-소스 전압 (예를 들어, Vds)을 가질 수 있다. 예를 들어, 액세스 동작 동안, 트랜지스터(1130, 1135, 1140, 1145) 중 어느 것도 제어 신호(1150)의 전압 스윙보다 큰 Vgs 및/또는 Vds(예를 들어, 3V일 수 있는 MWLF_H)를 갖지 않는다.In some instances, choose ?サ? Each of transistors 1130 , 1135 , 1140 , and 1145 in driver 1105 for word line 1110 - b has a relatively low gate-to-source voltage (eg, V gs ) and/or drain-to-source throughout the access operation. voltage (eg, V ds ). For example, during an access operation, none of transistors 1130 , 1135 , 1140 , 1145 generates V gs and/or V ds (eg, MWLF_H, which may be 3V) greater than the voltage swing of control signal 1150 . don't have

도 12c 는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램(1200-c)를 도시한다. 일부 예들에서, 타이밍 다이어그램(1200-c)는 도 11을 참조하여 상기에서 설명된 회로(1100)와 관련된(예를 들어, 사용하여 실행되는) 액세스 동작을 예시할 수 있다. 일부 예들에서, 타이밍 다이어그램(1200-c)는 플레이트 라인(1205), 워드 라인(1110-c), 노드(1170-c) 및 노드(1175-c)의 전압을 예시할 수 있다. 타이밍 다이어그램(1200-c)는 또한 (1110-c')로 표시된 전압 트레이스에 의해 도시된 워드 라인(1110-c)의 대체 전압을 예시할 수 있다. 워드 라인(1110-c), 노드 (1170-c) 및 노드 (1175-c)의 전압은 도 11을 참조하여 설명한 워드 라인 (1110), 노드 (1170) 및 노드 (1175)에 인가되는 전압을 나타낼 수 있다. 타이밍 다이어그램(1200-c)은 간격 (1210, 1215, 1220, 1225 및 1230) 동안 플레이트 라인(1205), 워드 라인(1110-c) 및 노드(1170-c 및 1175-c)의 전압을 예시할 수 있다. 12C shows an example timing diagram 1200 - c supporting techniques for managing access lines for an array of memory cells in accordance with examples of this disclosure. In some examples, timing diagram 1200 - c may illustrate an access operation associated with (eg, executed using) circuit 1100 described above with reference to FIG. 11 . In some examples, timing diagram 1200 - c may illustrate voltages at plate line 1205 , word line 1110 - c , node 1170 - c , and node 1175 - c . Timing diagram 1200 - c may also illustrate the replacement voltage of word line 1110 - c shown by the voltage trace labeled 1110 - c′. The voltages of the word line 1110 - c , the node 1170 - c , and the node 1175 - c are the voltages applied to the word line 1110 , the node 1170 , and the node 1175 described with reference to FIG. 11 . can indicate Timing diagram 1200 - c illustrates the voltages of plate line 1205 , word line 1110 - c , and nodes 1170 - c and 1175 - c during intervals 1210 , 1215 , 1220 , 1225 and 1230 . can

본 출원에 설명된, 메모리 어레이는 복수의 메모리 셀에 대한 복수의 개별 액세스 라인(예를 들어, 복수의 워드 라인)을 포함할 수 있으며, 각각의 메모리 셀은 공통 플레이트를 갖는다. 각각의 액세스 라인은 액세스 라인과 결합된 셀이 특정 액세스 동작에 의해 타겟(액세스)되는지 여부에 기초하여 선택되거나 선택 해제될 수 있다(예를 들어, 도 11을 참조하여 설명된 드라이버(1105)에 의해). 일부 경우에, 특정 액세스 동작 중에 임의의 하나의 액세스 라인이 선택될 수 있고, 플레이트와 관련된 동일한 유형의 나머지 액세스 라인 수가 동작 중에 선택 해제된 상태로 유지될 수 있다. As described herein, a memory array may include a plurality of individual access lines (eg, a plurality of word lines) to a plurality of memory cells, each memory cell having a common plate. Each access line may be selected or deselected based on whether a cell associated with the access line is targeted (accessed) by a particular access operation (eg, to the driver 1105 described with reference to FIG. 11 ). due to). In some cases, any one access line may be selected during a particular access operation, and the remaining number of access lines of the same type associated with the plate may remain deselected during operation.

타이밍 다이어그램(1200-c)은 선택 해제된 액세스 라인의 서브 세트에 대해 도 11을 참조하여 전술한 바와 같이 회로 (1100)와 관련된 액세스 동작을 예시할 수 있다. 예를 들어, 타이밍 다이어그램 (1200-c)는 선택된 액세스 라인의 드라이버 (1105)와 다른 제어 회로 (1115), 다른 제어 회로 (1120) 및 다른 제어 회로 (1125)를 공유하는 워드 라인 (1110-c)의 전압을 예시할 수 있다 (예를 들어, 도 12a를 참조하여 논의된 선택된 워드 라인 (1110-a)). 따라서, 1,024 개의 드라이버 (1105)가 각각의 워드 라인 (1110)과 결합된 위의 예를 계속하면, 선택 해제된 워드 라인 (1110-c)의 전압은 945 개의 선택 해제된 워드 라인 (1110)의 전압을 예시할 수 있다.Timing diagram 1200 - c may illustrate an access operation associated with circuit 1100 as described above with reference to FIG. 11 for a subset of deselected access lines. For example, timing diagram 1200 - c shows a word line 1110 - c sharing another control circuit 1115 , another control circuit 1120 and another control circuit 1125 with the driver 1105 of the selected access line. ) (eg, selected word line 1110 - a discussed with reference to FIG. 12A ). Thus, continuing the above example with 1,024 drivers 1105 coupled with each word line 1110 , the voltage on the deselected word line 1110 - c is equal to that of the 945 deselected word line 1110 . voltage can be exemplified.

간격(1210) 동안, 플레이트 라인(1205)의 전압은 처음에 제 1 전압(예를 들어, 1.5V와 같은 하이 전압)으로 드라이빙되는 것으로 도시된다. 플레이트가 제 1 전압으로 드라이빙되는 동안, 간격(1210) 이전에, 워드 라인들(1110-c)의 서브 세트는 선택 해제된 상태로 유지될 수 있다. 일부 예들에서, 선택 해제된 상태로 남아있는 워드 라인들 (1110-c)은 0V와 같은 로우 전압으로 남아있는 워드 라인들 (1110-c)의 전압으로 표현될 수 있다. 워드 라인의 서브 세트가 선택되지 않고 선택된 워드 라인 (1110-a)과 공통 제어 회로 (1125)를 공유하지 않는 경우, 제어 회로 (1125)는 노드 (1170)에 로우 제어 신호 (1160)를 인가할 수 있으며, 이는 노드 (1170-c)의 전압이 0V와 같은 로우 전압으로 드라이빙되는 결과를 초래할 수 있다. 노드 (1170-c)가 로우 전압에 있는 동안, 제어 회로 (1115)는 트랜지스터 (1130)에 하이 제어 신호 (1150)를인가할 수 있다. 하이 제어 신호 (1150)는 예를 들어, 3V 일 수 있다. 따라서, 드라이버(1105)에 제어 신호(1160, 1150)를 인가하면 트랜지스터(1130, 1135)가 비활성화(예를 들어, 오프)될 수 있다. 따라서, 선택 해제된 워드 라인은 노드(1170)로부터 절연될 수 있다. During interval 1210 , the voltage on plate line 1205 is shown initially driven to a first voltage (eg, a high voltage such as 1.5V). While the plate is being driven at the first voltage, before the interval 1210 , the subset of word lines 1110 - c may remain deselected. In some examples, the word lines 1110 - c that remain deselected can be represented by the voltage of the remaining word lines 1110 - c with a low voltage, such as 0V. If the subset of word lines is not selected and does not share the common control circuit 1125 with the selected word line 1110 - a , the control circuit 1125 applies the row control signal 1160 to the node 1170 . This may result in the voltage of node 1170 - c being driven to a low voltage such as 0V. While node 1170 - c is at a low voltage, the control circuit 1115 may apply a high control signal 1150 to the transistor 1130 . The high control signal 1150 may be, for example, 3V. Accordingly, when the control signals 1160 and 1150 are applied to the driver 1105 , the transistors 1130 and 1135 may be deactivated (eg, turned off). Accordingly, the deselected word line may be isolated from node 1170 .

일부 예들에서, 제어 회로(1115)는 트랜지스터(1145)에 하이 제어 신호(1155)를 인가할 수 있고, 제어 회로(1125)는 노드(1185)에 하이 제어 신호(1167)를 인가할 수 있다. 일부 예들에서, 하이 제어 신호(1155)는 1.5V일 수 있고, 하이 제어 신호(1167)는 1.5V일 수 있다. 따라서, 트랜지스터(1145)가 활성화(예를 들어, 온)되고 트랜지스터(1140)가 활성화(예를 들어, 온)될 수 있다. 따라서, 선택 해제된 워드 라인(1110-c)은 트랜지스터(1140) 및 트랜지스터(1145)를 통해 노드(1175)와 결합될 수 있으며, 제어 회로(1120)의 출력과 동일한 전압(예를 들어, 제어 신호(1165)의 전압과 동일한 전압)일 수 있다. 간격 (1210) 동안, 제어 회로(1120)는 예를 들어, 0V일 수 있는 VNWL에 대응하는 제어 신호(1165)를 출력할 수 있다. 따라서, 간격(1210) 동안 노드(1175-c)의 전압과 선택 해제된 워드 라인(1110-c)의 전압은 0V일 수 있다. In some examples, the control circuit 1115 can apply the high control signal 1155 to the transistor 1145 , and the control circuit 1125 can apply the high control signal 1167 to the node 1185 . In some examples, high control signal 1155 can be 1.5V and high control signal 1167 can be 1.5V. Accordingly, transistor 1145 may be activated (eg, on) and transistor 1140 may be activated (eg, on). Thus, deselected word line 1110 - c may be coupled with node 1175 via transistor 1140 and transistor 1145 , at a voltage equal to the output of control circuit 1120 (eg, control voltage equal to the voltage of signal 1165). During interval 1210 , control circuit 1120 may output control signal 1165 corresponding to VNWL, which may be, for example, 0V. Accordingly, the voltage at node 1175-c and the voltage at deselected word line 1110-c during interval 1210 may be 0V.

간격(1215) 동안, 플레이트 라인(1205)의 전압은 제 1 전압(예를 들어, 하이 전압)에서 제 2 전압(예를 들어, 0V와 같은 로우 전압)으로 천이할 수 있다. 일부 경우에, 간격(1215) 동안, 노드(1170)는 또한 플로팅될 수 있으며, 이는 노드(1170-c)의 전압이 플로팅될 수 있다. 예를 들어, 제어 회로(1125)는 트랜지스터(1192)의 게이트에서 FLOAT2 제어 신호를 수신할 수 있는데, 이는 인버터(1196)에 대한 입력이 로우인 동안 로우일 수 있으며, 이는 제어 신호(1160) 및 이에 따라 노드(1170)가 플로팅되게 할 수 있다. 노드 (1170)는 인버터 (1196)의 출력이 하이이기 때문에 트랜지스터 (1194)가 비활성화 (예를 들어, 오프가 됨)되기 때문에, FLOAT2가 로우이기 때문에 트랜지스터 (1192)가 비활성화 (예를 들어, 오프)되기 때문에 플로팅될 수 있다. During the interval 1215 , the voltage on the plate line 1205 may transition from a first voltage (eg, a high voltage) to a second voltage (eg, a low voltage such as 0V). In some cases, during interval 1215 , node 1170 may also float, in which the voltage at node 1170 - c may float. For example, control circuit 1125 may receive the FLOAT2 control signal at the gate of transistor 1192, which may be low while the input to inverter 1196 is low, which may include control signal 1160 and This may cause node 1170 to float. Node 1170 indicates that transistor 1192 is disabled (e.g., off) because FLOAT2 is low because transistor 1194 is disabled (e.g., turned off) because the output of inverter 1196 is high. ), so it can be floated.

제어 회로(1120)는 간격(1215) 동안 제어 신호(1165) 및 따라서, 노드(1175)를 플로팅할 수 있다. 노드(1170)로부터 절연되고 노드(1175)가 플로팅됨에 따라, 선택 해제된 워드 라인(1110-c)은 플로팅될 수 있다. 그리고 선택 해제된 워드 라인 (1110)과 플레이트 라인 (1205) 사이의 용량성 결합으로 인해, 선택 해제된 워드 라인 (1110)을 플로팅하면 선택 해제된 워드 라인 (1110)의 전압이 플레이트 라인 (1205)의 전압을 추적할 수 있다. 달리 말하면, 플레이트 라인 (1205)의 전압이 간격 (1215) 동안 감소함에 따라, 플로팅 선택 해제된 워드 라인 (1110)의 전압을 동일하거나 실질적으로 유사한 양만큼 낮출 수 있다. 예를 들어, 플레이트 라인 (1205)의 전압이 1.5V에서 0V로 감소하면, 선택 해제된 액세스 라인 (1105)의 전압은 0V에서 대략 -1.5V로 감소할 수 있다. The control circuit 1120 may float the control signal 1165 and thus the node 1175 during the interval 1215 . As node 1175 is isolated from node 1170 and node 1175 is floating, the deselected word line 1110 - c may float. And due to the capacitive coupling between the deselected word line 1110 and the plate line 1205 , floating the deselected word line 1110 causes the voltage on the deselected word line 1110 to increase to the plate line 1205 . voltage can be tracked. In other words, as the voltage on the plate line 1205 decreases during the interval 1215 , it can lower the voltage on the floating deselected word line 1110 by an equal or substantially similar amount. For example, if the voltage on the plate line 1205 decreases from 1.5V to 0V, the voltage on the deselected access line 1105 may decrease from 0V to approximately -1.5V.

따라서, 간격 (1215) 동안, 노드 (1175)에 인가되는 제어 신호 (1165)를 조정함으로써 선택 해제된 액세스 라인 (1105)이 플로팅될 수 있다. 예를 들어, 제어 회로 (1120)는 선택 해제된 워드 라인 (1110)을 플로팅할 수 있는 FLOAT 제어 신호 (1165)를 출력할 수 있다. 따라서, 선택 해제된 워드 라인 (1110-c)의 전압은 예를 들어 -1.4V로 감소할 수 있다. Thus, during the interval 1215 , the deselected access line 1105 may float by adjusting the control signal 1165 applied to the node 1175 . For example, the control circuit 1120 can output a FLOAT control signal 1165 that can float the deselected word line 1110 . Accordingly, the voltage of the deselected word line 1110 - c may be reduced to, for example, -1.4V.

간격 (1220) 동안, 플레이트 라인 (1205)의 전압은 제 2 전압 (예를 들어, 0V와 같은 로우 전압)으로 유지될 수 있다. 일부 예들에서, 선택 해제된 워드 라인들 (1110-c)은 노드 (1175)에 인가되는 제어 신호 (1165)에 기초하여 플로팅 상태를 유지할 수 있다. During the interval 1220 , the voltage on the plate line 1205 may be maintained at a second voltage (eg, a low voltage such as 0V). In some examples, the deselected word lines 1110 - c can remain floating based on the control signal 1165 applied to the node 1175 .

다른 예에서, 선택 해제된 워드 라인 (1110-c)은 간격 (1220) 동안 원하는 전압으로 드라이빙될 수 있다 (예를 들어, 간격 (1220) 동안 선택 해제된 워드 라인들 (1110-c)과 간격 (1210) 동안 선택 해제된 워드 라인들 (1110-c) 사이의 전압 차이가 간격 (1220) 동안 플레이트와 간격(1210) 동안 플레이트사이의 전압 차이와 동일하도록 전압으로 드라이빙될 수 있다). 예를 들어, 간격 (1220) 동안 (예를 들어, 간격 (1220)의 시작 전, 동시 또는 그 후일 수 있는 시간 t'에서), 다른 제어 신호 (1165)가 노드 (1175)에 인가될 수 있다. 제어 신호 (1165)는 VNNWL 일 수 있으며, 이는 -1.5V일 수 있다. 따라서, 선택 해제된 워드 라인 (1110-c)이 노드 (1175)와 결합되어 선택 해제된 워드 라인 (1110-c)의 전압은 -1.5V로 드라이빙될 수 있으며, 이는 일부 경우에 도 12c에서 (1110-c')와 관련된 대안 전압 트레이스에 의해 도시된 바와 같이, 간격 (1220)을 통해 플로팅되면 선택 해제된 워드 라인 (1110-c)의 전압과 약간 다를 수 있다.In another example, deselected word line 1110 - c can be driven to a desired voltage during interval 1220 (eg, with deselected word lines 1110 - c during interval 1220 ). may be driven with a voltage such that the voltage difference between the deselected word lines 1110 - c during 1210 is equal to the voltage difference between the plate during interval 1220 and the plate during interval 1210). For example, during interval 1220 (eg, at time t′, which may be before, concurrently with, or after the beginning of interval 1220 ), another control signal 1165 may be applied to node 1175 . . Control signal 1165 may be VNNWL, which may be -1.5V. Accordingly, the deselected word line 1110 - c is coupled with the node 1175 so that the voltage of the deselected word line 1110 - c can be driven to -1.5V, which in some cases is shown in FIG. 12C ( As shown by the alternative voltage trace associated with 1110-c', it may be slightly different from the voltage of the deselected word line 1110-c when floated through gap 1220.

일부 경우에, 간격(1220) 동안, 노드 (1170)는 간격 (1215)에 있는 것 처럼 계속 플로팅될 수 있다. 다른 예들에서, 노드 (1170)는 0V와 같은 간격 (1220) 동안 로우 전압으로 드라이빙될 수 있다. 선택 해제된 워드 라인 (1110)과 플레이트 (1205) 사이의 잠재적인 용량성 결합으로 인해, 노드 (1170-c)의 전압은 간격 (1215) 동안 약간 변경 (드리프트(drift)) (예를 들어, 0V 약간 아래의 전압으로 감소)되었을 수 있고, 노드 (1170)는 간격 (1220) 동안 0V로 또는 간격 (1215) 동안 예상 드리프트에 기초하여 다른 전압으로 드라이빙될 수 있다. In some cases, during interval 1220 , node 1170 may continue to float as if it were at interval 1215 . In other examples, node 1170 can be driven at a low voltage for an interval 1220 such as 0V. Due to the potential capacitive coupling between the deselected word line 1110 and the plate 1205, the voltage at node 1170-c changes slightly (drifts) during the interval 1215 (e.g., reduced to a voltage slightly below 0V), and node 1170 can be driven to 0V during interval 1220 or another voltage based on expected drift during interval 1215 .

간격 (1225) 동안, 플레이트 라인 (1205)의 전압은 제 2 전압 (예를 들어, 로우 전압에서)에서 제 1 전압 (예를 들어, 하이 전압)으로 드라이빙될 수 있다. 제어 회로 (1120)는 간격 (1215)를 참조하여 전술한 바와 같이 선택 해제된 워드 라인 (1110)을 플로팅할 수 있는 FLOAT 제어 신호 (1165)를 출력할 수 있다. 따라서, 선택 해제된 워드 라인 (1110-c)의 전압은 예를 들어 -0.1V로 증가할 수 있다. 추가적으로, 제어 회로 (1125)는 간격 (1215)을 참조하여 설명된 바와 같이 노드 (1170)를 플로팅 (예를 들어, 계속 플로팅) 할 수 있다.During interval 1225 , the voltage of plate line 1205 may be driven from a second voltage (eg, at a low voltage) to a first voltage (eg, a high voltage). The control circuit 1120 can output a FLOAT control signal 1165 that can float the deselected word line 1110 as described above with reference to the spacing 1215 . Accordingly, the voltage of the deselected word line 1110 - c may increase to -0.1V, for example. Additionally, the control circuit 1125 can float (eg, keep floating) the node 1170 as described with reference to the spacing 1215 .

간격 (1230) 동안, 플레이트 라인 (1205)의 전압은 제 1 전압 (예를 들어, 하이 전압)으로 유지될 수 있다. 제어 회로 (1120)는 예를 들어, 0V일 수 있는 하이 제어 신호 (1165) (예를 들어, VNWL)를 출력할 수 있다. 따라서, 간격 (1230) 동안 노드 (1175-c)의 전압과 선택 해제된 워드 라인 (1110-c)의 전압은 0V 일 수 있다. 추가적으로 또는 대안적으로, 간격 (1230) 동안, 노드 (1170-c)는 0V로 드라이빙될 수 있다. 본 출원에 설명된 예에서, 설명된 절대 전압 레벨 (예를 들어, -1.4 V, -1.5V, 3V, 0V, 등)은 단지 설명을 위한 것이다. 따라서, 본 출원에 설명된 절대 전압 레벨과 다른 임의의 절대 전압 레벨(들)이 사용될 수 있다.During the interval 1230 , the voltage on the plate line 1205 may be maintained at a first voltage (eg, a high voltage). Control circuit 1120 can output high control signal 1165 (eg, VNWL), which can be, for example, 0V. Accordingly, the voltage at node 1175-c and the voltage at deselected word line 1110-c during interval 1230 may be 0V. Additionally or alternatively, during interval 1230 , node 1170 - c may be driven to 0V. In the examples described herein, the absolute voltage levels described (eg, -1.4 V, -1.5V, 3V, 0V, etc.) are for illustrative purposes only. Accordingly, any absolute voltage level(s) other than the absolute voltage levels described herein may be used.

일부 예들에서, 선택 해제된 워드 라인들 (1110-c)에 대한 드라이버들 (1105) 내의 트랜지스터들 (1130, 1135, 1140 및 1145) 각각은 액세스 동작 전체에 걸쳐 상대적으로 낮은 게이트-소스 전압 (예를 들어, Vgs) 및/또는 드레인-소스 전압 (예를 들어, Vds)을 가질 수 있다. 예를 들어, 액세스 동작 동안, 트랜지스터 (1130, 1135, 1140, 1145) 중 어느 것도 제어 신호 (1150)(예를 들어, 3V 일 수 있는 MWLF_H)의 전압 스윙보다 큰 Vgs 및/또는 Vds를 갖지 않는다.In some examples, each of transistors 1130 , 1135 , 1140 , and 1145 in drivers 1105 for deselected word lines 1110 - c has a relatively low gate-to-source voltage (e.g., for example, V gs ) and/or a drain-to-source voltage (eg, V ds ). For example, during an access operation, none of transistors 1130 , 1135 , 1140 , 1145 generates V gs and/or V ds greater than the voltage swing of control signal 1150 (eg, MWLF_H, which may be 3V). don't have

추가적으로 또는 대안적으로, 트랜지스터 (1130 및 1135)의 캐스 코드 구성은 플레이트 라인 (1205)이 로우 전압 (예를 들어, 0V)에 있고 선택 해제된 액세스 라인 (1105)이 로우 전압 (예를 들어, -1.4V)에 있는 경우 트랜지스터 (1130)가 상대적으로 낮은 게이트-소스 전압 (예를 들어, Vgs)을 가질 수 있다. 또한, 제어 신호 (1167 및 1155)는 상대적으로 낮은 전압 스윙을 가질 수 있기 때문에, 트랜지스터 (1145)는 플레이트 라인 (1205)이 로우 전압 (예를 들어, 0V)에 있고 선택 해제된 액세스 라인 (1105)이 로우 전압(예를 들어, -1.4V)에 있을 때 과도한 Vgs를 피할 수 있다. Additionally or alternatively, the cascode configuration of transistors 1130 and 1135 allows plate line 1205 to be at a low voltage (eg, 0V) and deselected access line 1105 to a low voltage (eg, 0V). -1.4V), transistor 1130 may have a relatively low gate-to-source voltage (eg, V gs ). Also, since control signals 1167 and 1155 may have relatively low voltage swings, transistor 1145 indicates that plate line 1205 is at a low voltage (eg, 0V) and deselected access line 1105 ) is at low voltage (eg -1.4V) to avoid excessive V gs .

도 12d는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 위한 기술을 지원하는 예시적인 타이밍 다이어그램 (1200-d)을 예시한다. 일부 예들에서, 타이밍 다이어그램 (1200-d)은 도 11을 참조하여 전술한 바와 같이 회로 (1100)와 관련된 (예를 들어, 사용하여 실행되는) 액세스 동작을 예시할 수 있다. 일부 예들에서, 타이밍 다이어그램 (1200-d)은 플레이트 라인 (1205), 워드 라인 (1110-d), 노드 (1170-d) 및 노드 (1175-d)의 전압을 예시할 수 있다. 타이밍 다이어그램 (1200-d)은 또한 (1110-d')로 표시된 전압 트레이스에 의해 도시된 바와 같이 워드 라인 (1110-d)의 대체 전압을 예시할 수 있다. 워드 라인 (1110-d 및 1110-d'), 노드 (1170-d) 및 노드 (1175-d)의 전압은 도 11을 참조하여 설명된 워드 라인 (1110), 노드 (1170) 및 노드 (1175)에 인가되는 전압을 예시할 수 있다. 타이밍 다이어그램 (1200-d)은 간격 (1210, 1215, 1220, 1225 및 1230) 동안 플레이트 라인 (1205), 워드 라인 (1110-d) (및 워드 라인 1110-d') 및 노드 (1170-d 및 1175-d)의 전압을 예시할 수 있다. 12D illustrates an example timing diagram 1200 - d supporting techniques for access line management for an array of memory cells in accordance with examples of this disclosure. In some examples, timing diagram 1200 - d can illustrate an access operation associated with (eg, executed using) circuit 1100 as described above with reference to FIG. 11 . In some examples, timing diagram 1200 - d can illustrate voltages at plate line 1205 , word line 1110 - d , node 1170 - d , and node 1175 - d . Timing diagram 1200 - d may also illustrate the replacement voltage of word line 1110 - d as shown by the voltage trace labeled 1110 - d′. The voltages at word lines 1110 - d and 1110 - d′, node 1170 - d and node 1175 - d are the voltages at word line 1110 , node 1170 and node 1175 described with reference to FIG. 11 . ) can be exemplified by the voltage applied to it. Timing diagram 1200-d shows plate line 1205, word line 1110-d (and word line 1110-d') and node 1170-d and node 1170-d during intervals 1210, 1215, 1220, 1225 and 1230. 1175-d) can be exemplified.

본 출원에 설명된 바와 같이, 메모리 어레이는 복수의 메모리 셀에 대한 복수의 개개의 액세스 라인 (예를 들어, 복수의 워드 라인)을 포함할 수 있으며, 각각의 메모리 셀은 공통 플레이트를 갖는다. 각각의 액세스 라인은 액세스 라인과 결합된 셀이 특정 액세스 동작에 의해 타겟화 (액세스)되는지 여부에 기초하여 선택되거나 선택 해제될 수 있다 (예를 들어, 도 11을 참조하여 설명된 드라이버 (1105)에 의해). 특정 액세스 동작 동안 임의의 하나의 액세스 라인이 선택될 수 있으며, 플레이트와 관련된 동일한 유형의 나머지 액세스 라인 수는 동작 동안 선택 해제된 상태로 남아 있을 수 있다. As described herein, a memory array may include a plurality of individual access lines (eg, a plurality of word lines) to a plurality of memory cells, each memory cell having a common plate. Each access line may be selected or deselected based on whether the cell associated with the access line is targeted (accessed) by a particular access operation (eg, the driver 1105 described with reference to FIG. 11 ). by). Any one access line may be selected during a particular access operation, and the remaining number of access lines of the same type associated with the plate may remain deselected during the operation.

타이밍 다이어그램(1200-d)는 선택 해제된 액세스 라인들의 서브 세트에 대해 도 11을 참조하여 상기에서 설명된 회로 (1100)와 관련된 액세스 동작을 예시할 수 있다. 예를 들어, 타이밍 다이어그램 (1200-d)는 선택된 액세스 라인 (예를 들어, 도 12a를 참조하여 논의된 선택된 워드 라인(1110-a))의 드라이버 (1105)와 동일한 제어 회로 (1115)를 공유하는 워드 라인 (1110-d (및/또는 1110-d'))의 전압을 예시할 수 있다. 따라서, 1,024 개의 드라이버 (1105)가 각각의 워드 라인 (1110)과 결합되는 상기의 예를 계속하면, 선택 해제된 워드 라인 (1110-d)의 전압은 15 개의 선택 해제된 워드 라인 (1110)의 전압을 예시할 수 있다.Timing diagram 1200 - d may illustrate an access operation associated with circuit 1100 described above with reference to FIG. 11 for a subset of deselected access lines. For example, timing diagram 1200 - d shares the same control circuitry 1115 as driver 1105 of a selected access line (eg, selected word line 1110 - a discussed with reference to FIG. 12A ). may illustrate the voltage of word line 1110-d (and/or 1110-d′). Thus, continuing the above example where 1,024 drivers 1105 are coupled with each word line 1110 , the voltage on the deselected word line 1110 - d is equal to that of the 15 deselected word line 1110 . voltage can be exemplified.

간격 (1210)동안, 플레이트 라인 (1205)의 전압은 처음에 제 1 전압 (예를 들어, 1.5V와 같은 하이 전압)으로 드라이빙되는 것으로 도시된다. 플레이트가 제 1 전압으로 드라이빙되는 동안, 간격 (1210) 이전에, 워드 라인 (1110)의 서브 세트는 선택 해제된 상태로 유지될 수 있다. 일부 예들에서, 선택 해제된 상태로 남아있는 선택 해제된 워드 라인들 (1110-d)은 0V와 같은 로우 전압에 남아 있는 워드 라인들 (1110-d)의 전압으로 표현될 수 있다. 워드 라인 (1110-d)의 서브 세트가 선택되지 않고 선택된 워드 라인 (1110-a)과 제어 회로 (1125)를 공유하지 않는 경우, 제어 회로 (1125)는 노드 (1170)에 로우 제어 신호 (1160)를 인가할 수 있으며, 이는 0V와 같은 로우 전압으로 드라이빙되는 노드 (1170-d)의 전압을 초래할 수 있다. 노드 (1170-d)가 로우 전압에 있는 동안, 워드 라인 (1110-d)의 서브 세트가 선택되지 않고 선택된 워드 라인 (1110-a)과 제어 회로 (1115)를 공유할 때, 제어 회로 (1115)는 로우 전압 제어 신호 (1150)를 트랜지스터 (1130)에 인가할 수 있다. 로우 제어 신호 (1150)는 예를 들어, 0V일 수 있다. 따라서, 드라이버(1105)에 제어 신호 (1160, 1150)를 인가하면 트랜지스터 (1130, 1135)가 비활성화 (예를 들어, 오프) 될 수 있다. 따라서, 선택 해제된 워드 라인은 노드 (1170)로부터 절연될 수 있다. During interval 1210, the voltage on plate line 1205 is shown initially driven to a first voltage (eg, a high voltage such as 1.5V). While the plate is driven to the first voltage, prior to the interval 1210 , a subset of the word lines 1110 may remain deselected. In some examples, the deselected word lines 1110 - d that remain deselected can be represented by the voltage of the remaining word lines 1110 - d at a low voltage, such as 0V. If the subset of word lines 1110 - d is not selected and does not share the control circuit 1125 with the selected word line 1110 - a , the control circuit 1125 sends a low control signal 1160 to node 1170 . ), which may result in the voltage at node 1170-d being driven to a low voltage, such as 0V. While node 1170 - d is at a low voltage, when a subset of word lines 1110 - d is unselected and shares the control circuit 1115 with the selected word line 1110 - a, the control circuit 1115 ) may apply the low voltage control signal 1150 to the transistor 1130 . The row control signal 1150 may be, for example, 0V. Accordingly, when the control signals 1160 and 1150 are applied to the driver 1105 , the transistors 1130 and 1135 may be deactivated (eg, turned off). Accordingly, the deselected word line may be isolated from node 1170 .

일부 예들에서, 워드 라인들 (1110-d)의 서브 세트가 선택되지 않고 선택된 워드 라인 (1110-a)과 제어 회로 (1115)를 공유할 때, 제어 회로 (1115)는 트랜지스터 (1145)에 로우 제어 신호 (1155)를 인가할 수 있고 제어 회로(1125)는 노드 (1185)에 하이 제어 신호 (1167)를 인가할 수 있다. 일부 예들에서, 로우 제어 신호 (1155)는 0V 일 수 있고 하이 제어 신호 (1167)는 1.5V 일 수 있다. 따라서, 트랜지스터 (1145)는 비활성화 (예를 들어, 오프) 될 수 있고 트랜지스터 (1140)는 활성화 (예를 들어, 온) 될 수 있다. 따라서 선택 해제된 워드 라인 (1110-d)은 트랜지스터 (1140)를 통해 노드 (1175)와 결합될 수 있고, 제어 회로 (1120)의 출력과 동일한 전압 (예를 들어, 제어 신호 (1165)의 전압과 동일한 전압)일 수 있다. 간격 (1210) 동안, 제어 회로 (1120)는 예를 들어, 0V일 수 있는 VNWL에 대응하는 제어 신호 (1165)를 출력할 수 있다. 따라서, 간격 (1210) 동안 노드 (1175-d)의 전압과 선택 해제된 워드 라인 (1110-d)의 전압은 0V 일 수 있다. In some examples, when the subset of word lines 1110 - d is unselected and shares the control circuit 1115 with the selected word line 1110 - a , the control circuit 1115 is low on the transistor 1145 . A control signal 1155 may be applied and the control circuit 1125 may apply a high control signal 1167 to the node 1185 . In some examples, the low control signal 1155 can be 0V and the high control signal 1167 can be 1.5V. Accordingly, transistor 1145 can be deactivated (eg, off) and transistor 1140 can be activated (eg, on). Thus, deselected word line 1110 - d can be coupled with node 1175 via transistor 1140 , with a voltage equal to the output of control circuit 1120 (eg, the voltage of control signal 1165 ). the same voltage as ). During interval 1210 , control circuit 1120 may output control signal 1165 corresponding to VNWL, which may be, for example, 0V. Thus, the voltage at node 1175-d and the voltage at deselected word line 1110 - d during interval 1210 may be 0V.

간격 (1215) 동안, 플레이트 라인 (1205)의 전압은 제 1 전압 (예를 들어, 하이 전압)에서 제 2 전압 (예를 들어, 0V와 같은 로우 전압)으로 천이할 수 있다. 선택 해제된 워드 라인 (1110)과 플레이트 라인 (1205) 사이의 용량성 결합으로 인해, 선택 해제된 워드 라인 (1110)을 플로팅하면 선택 해제된 워드 라인 (1110)의 전압이 플레이트 라인 (1205)의 전압을 추적할 수 있다. 달리 말하면, 플레이트 라인 (1205)의 전압이 간격 (1215) 동안 감소함에 따라, 플로팅 선택 해제된 워드 라인 (1110)의 전압을 동일하거나 실질적으로 유사한 양만큼 낮출 수 있다. 예를 들어, 플레이트 라인 (1205)의 전압이 1.5V에서 0V로 감소하면, 선택 해제된 액세스 라인 (1105)의 전압은 0V에서 대략 -1.5V로 감소할 수 있다. During the interval 1215 , the voltage on the plate line 1205 may transition from a first voltage (eg, a high voltage) to a second voltage (eg, a low voltage such as 0V). Due to the capacitive coupling between the deselected word line 1110 and the plate line 1205 , floating the deselected word line 1110 causes the voltage on the deselected word line 1110 to be applied to the plate line 1205 . voltage can be tracked. In other words, as the voltage on the plate line 1205 decreases during the interval 1215 , it can lower the voltage on the floating deselected word line 1110 by an equal or substantially similar amount. For example, if the voltage on the plate line 1205 decreases from 1.5V to 0V, the voltage on the deselected access line 1105 may decrease from 0V to approximately -1.5V.

따라서, 간격 (1215) 동안, 노드 (1175)에 상이한 제어 신호 (1165)를 인가함으로써 선택 해제된 액세스 라인 (1105)이 플로팅될 수 있다. 예를 들어, 제어 회로 (1120)는 선택 해제된 워드 라인 (1110)을 플로팅할 수 있는 FLOAT 제어 신호 (1165)를 출력할 수 있다. 따라서, 선택 해제된 워드 라인 (1110-d)의 전압은 예를 들어 -1.4V로 감소할 수 있다. Thus, during the interval 1215 , the deselected access line 1105 may float by applying a different control signal 1165 to the node 1175 . For example, the control circuit 1120 can output a FLOAT control signal 1165 that can float the deselected word line 1110 . Accordingly, the voltage of the deselected word line 1110 - d may be reduced to, for example, -1.4V.

일부 경우에, 간격(1215) 동안, 노드 (1170)도 플로팅될 수 있다. 예를 들어, 제어 회로 (1125)는 트랜지스터 (1192)의 게이트에서 FLOAT2 제어 신호를 수신할 수 있는데, 이는 인버터 (1196)에 대한 입력이 로우인 동안 로우일 수 있으며, 이는 제어 신호 (1160)를 야기할 수 있고 이에 따라 노드 (1170)가 플로팅되게 할 수 있다. 노드 (1170)는 인버터 (1196)의 출력이 하이로 인해 트랜지스터 (1194)가 비활성화 (예를 들어, 오프)되기 때문에, FLOAT2가 로우로 인해 트랜지스터 (1192)가 비활성화 (예를 들어, 오프)되기 때문에 플로팅될 수 있다. In some cases, during interval 1215 , node 1170 may also float. For example, the control circuit 1125 may receive the FLOAT2 control signal at the gate of the transistor 1192 , which may be low while the input to the inverter 1196 is low, which sends the control signal 1160 . may cause node 1170 to float accordingly. Node 1170 indicates that FLOAT2 is low because transistor 1192 is disabled (eg, off) because transistor 1194 is disabled (eg, off) because the output of inverter 1196 is high. Because of this, it can float.

간격 (1220) 동안, 플레이트 라인 (1205)의 전압은 제 2 전압 (예를 들어, 0V와 같은 로우 전압)으로 유지될 수 있다. 일부 예들에서, 선택 해제된 워드 라인들 (1110-d)은 노드 (1175)에 인가되는 제어 신호 (1165)에 기초하여 플로팅 상태를 유지할 수 있다. 다른 예들에서, 선택 해제된 워드 라인들 (1110)은 간격 (1220) 동안 원하는 전압으로 드라이빙될 수 있다. 예를 들어, 간격 (1220) 동안 (예를 들어, 시간 t'에서), 다른 제어 신호 (1165)가 노드 (1175)에 인가될 수 있다. 제어 신호 (1165)는 VNNWL 일 수 있으며, 이는 -1.5V일 수 있다. During the interval 1220 , the voltage on the plate line 1205 may be maintained at a second voltage (eg, a low voltage such as 0V). In some examples, the deselected word lines 1110 - d can remain floating based on the control signal 1165 applied to the node 1175 . In other examples, deselected word lines 1110 may be driven to a desired voltage during interval 1220 . For example, during interval 1220 (eg, at time t′), another control signal 1165 may be applied to node 1175 . Control signal 1165 may be VNNWL, which may be -1.5V.

일부 경우에, 간격(1220) 동안, 노드 (1170)는 간격 (1215)에 있는 것 처럼 계속 플로팅될 수 있다. 다른 예들에서, 노드 (1170)는 0V와 같은 간격 (1220) 동안 로우 전압으로 드라이빙될 수 있다. 선택 해제된 워드 라인 (1110)과 플레이트 (1205) 사이의 잠재적인 용량성 결합으로 인해, 노드 (1170-d)의 전압은 간격 (1215) 동안 약간 변경 (드리프트(drift)) (예를 들어, 0V 약간 아래의 전압으로 감소)되었을 수 있고, 노드 (1170)는 간격 (1220) 동안 0V로 또는 간격 (1215) 동안 예상 드리프트에 기초하여 다른 전압으로 드라이빙될 수 있다. In some cases, during interval 1220 , node 1170 may continue to float as if it were at interval 1215 . In other examples, node 1170 can be driven at a low voltage for an interval 1220 such as 0V. Due to potential capacitive coupling between deselected word line 1110 and plate 1205, the voltage at node 1170-d changes slightly (drifts) during interval 1215 (e.g., reduced to a voltage slightly below 0V), and node 1170 can be driven to 0V during interval 1220 or another voltage based on expected drift during interval 1215 .

간격 (1225) 동안, 플레이트 라인 (1205)의 전압은 제 2 전압 (예를 들어, 로우 전압에서)에서 제 1 전압 (예를 들어, 하이 전압)으로 드라이빙될 수 있다. 제어 회로 (1120)는 선택 해제된 워드 라인 (1110)을 플로팅할 수 있는 FLOAT 제어 신호 (1165)를 출력할 수 있다. 추가적으로, 제어 회로 (1125)는 간격 (1215)을 참조하여 설명된 바와 같이 노드 (1170)를 플로팅 (예를 들어, 계속 플로팅) 할 수 있다. 간격(1225)동안, 선택 해제된 워드 라인(1110-d) (또는 1110-d')의 전압은 예를 들어 -0.1V로 증가할 수 있다. During interval 1225 , the voltage of plate line 1205 may be driven from a second voltage (eg, at a low voltage) to a first voltage (eg, a high voltage). The control circuit 1120 can output a FLOAT control signal 1165 that can float the deselected word line 1110 . Additionally, the control circuit 1125 can float (eg, keep floating) the node 1170 as described with reference to the spacing 1215 . During interval 1225, the voltage on deselected word line 1110-d (or 1110-d') may increase to -0.1V, for example.

간격 (1230) 동안, 플레이트 라인 (1205)의 전압은 제 1 전압 (예를 들어, 하이 전압)으로 유지될 수 있다. 제어 회로 (1120)는 예를 들어, 0V일 수 있는 하이 제어 신호 (1165) (예를 들어, VNWL)를 출력할 수 있다. 따라서, 간격 (1230) 동안 노드 (1175-d)의 전압과 선택 해제된 워드 라인 (1110-d)(및 1110-d')의 전압은 0V 일 수 있다. 추가적으로 또는 대안적으로, 간격 (1230) 동안, 노드 (1170-d)는 0V로 드라이빙될 수 있다. 본 출원에 설명된 예에서, 설명된 절대 전압 레벨 (예를 들어, -1.4 V, -1.5V, 3V, 0V, 등)은 단지 설명을 위한 것이다. 따라서, 본 출원에 설명된 절대 전압 레벨과 다른 임의의 절대 전압 레벨(들)이 사용될 수 있다.During the interval 1230 , the voltage on the plate line 1205 may be maintained at a first voltage (eg, a high voltage). Control circuit 1120 can output high control signal 1165 (eg, VNWL), which can be, for example, 0V. Thus, during interval 1230 , the voltage at node 1175-d and the voltage at deselected word line 1110 - d (and 1110 - d′) may be 0V. Additionally or alternatively, during interval 1230 , node 1170 - d may be driven to 0V. In the examples described herein, the absolute voltage levels described (eg, -1.4 V, -1.5V, 3V, 0V, etc.) are for illustrative purposes only. Accordingly, any absolute voltage level(s) other than the absolute voltage levels described herein may be used.

일부 예들에서, 선택 해제된 워드 라인들 (1110-d)에 대한 드라이버들 (1105) 내의 트랜지스터들 (1130, 1135, 1140 및 1145) 각각은 액세스 동작 전체에 걸쳐 상대적으로 낮은 게이트-소스 전압 (예를 들어, Vgs) 및/또는 드레인-소스 전압 (예를 들어, Vds)을 가질 수 있다. 예를 들어, 액세스 동작 동안, 트랜지스터 (1130, 1135, 1140, 1145) 중 어느 것도 제어 신호 (1150)(예를 들어, 3V 일 수 있는 MWLF_H)의 전압 스윙보다 큰 Vgs 및/또는 Vds를 갖지 않는다.In some examples, each of transistors 1130 , 1135 , 1140 , and 1145 in drivers 1105 for deselected word lines 1110 - d has a relatively low gate-to-source voltage (e.g., for example, V gs ) and/or a drain-to-source voltage (eg, V ds ). For example, during an access operation, none of transistors 1130 , 1135 , 1140 , 1145 generates V gs and/or V ds greater than the voltage swing of control signal 1150 (eg, MWLF_H, which may be 3V). don't have

추가적으로 또는 대안적으로, 트랜지스터 (1130 및 1135)의 캐스 코드 구성은 플레이트 라인 (1205)이 로우 전압 (예를 들어, 0V)에 있고 선택 해제된 액세스 라인 (1105)이 로우 전압 (예를 들어, -1.4V)에 있는 경우 트랜지스터 (1130)가 상대적으로 낮은 게이트-소스 전압 (예를 들어, Vgs)을 가질 수 있다. 또한, 제어 신호 (1167 및 1155)는 상대적으로 낮은 전압 스윙을 가질 수 있기 때문에, 트랜지스터 (1145)는 플레이트 라인 (1205)이 로우 전압 (예를 들어, 0V)에 있고 선택 해제된 액세스 라인 (1105)이 로우 전압(예를 들어, -1.4V)에 있을 때 과도한 Vgs를 피할 수 있다.Additionally or alternatively, the cascode configuration of transistors 1130 and 1135 allows plate line 1205 to be at a low voltage (eg, 0V) and deselected access line 1105 to a low voltage (eg, 0V). -1.4V), transistor 1130 may have a relatively low gate-to-source voltage (eg, V gs ). Also, since control signals 1167 and 1155 may have relatively low voltage swings, transistor 1145 indicates that plate line 1205 is at a low voltage (eg, 0V) and deselected access line 1105 ) is at low voltage (eg -1.4V) to avoid excessive V gs .

도 13은 본 개시의 예에 따른 메모리 셀들의 어레이에 대한 액세스 라인 관리를 지원하는 액세스 라인 관리기(1315)의 블록도(1300)를 도시한다. 액세스 라인 관리기(1315)는 도 14를 참조하여 설명된 액세스 라인 관리기(1415)의 양태들의 예일 수 있다. 액세스 라인 관리기(1315)는 바이어싱 컴포넌트(1320), 타이밍 컴포넌트(1325), 드라이빙 컴포넌트(1330), 식별 컴포넌트(1335), 플로팅 컴포넌트(1340), 및 애플리케이션 컴포넌트(1345)를 포함할 수 있다. 이러한 모듈 각각은 직접 또는 간접적으로 서로 통신 할 수 있습니다 (예를 들어, 하나 이상의 버스를 통해).13 shows a block diagram 1300 of an access line manager 1315 that supports access line management for an array of memory cells in accordance with an example of the present disclosure. Access line manager 1315 may be an example of aspects of access line manager 1415 described with reference to FIG. 14 . The access line manager 1315 can include a biasing component 1320 , a timing component 1325 , a driving component 1330 , an identification component 1335 , a floating component 1340 , and an application component 1345 . Each of these modules can communicate with each other either directly or indirectly (for example, via one or more buses).

드라이빙 컴포넌트(1330)는 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 플레이트를 제 1 전압으로 드라이빙할 수 있다. 일부 예들에서, 드라이빙 컴포넌트(1330)는 제 2 메모리 셀과 관련된 액세스 동작에 기초하여, 지속 시간 동안 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙할 수 있다. Driving component 1330 can drive a plate coupled with at least a first memory cell of the array of memory cells to a first voltage. In some examples, driving component 1330 can drive the plate from the first voltage to the second voltage for a duration based on an access operation associated with the second memory cell.

식별 컴포넌트(1335)는 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별할 수 있다. The identification component 1335 can identify an access operation associated with a second memory cell of the array of memory cells.

플로팅 컴포넌트(1340)는 제 2 메모리 셀과 관련된 액세스 동작에 기초하여 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인을 지속 시간 동안 플로팅할 수 있다. 다른 예들에서, 플로팅 컴포넌트(1340)는 제 1 전압 스윙을 갖는 제 1 제어 신호 및 제 1 전압 스윙과 상이한 제 2 전압 스윙을 갖는 제 2 제어 신호를 제 1 액세스 라인에 대한 드라이버에 인가하는 것에 기초하여 제 1 액세스 라인을 플로팅할 수 있다. The floating component 1340 can float a first access line coupled with a first memory cell of the array of memory cells for a duration based on an access operation associated with the second memory cell. In other examples, the floating component 1340 is based on applying a first control signal having a first voltage swing and a second control signal having a second voltage swing different from the first voltage swing to the driver for the first access line. to float the first access line.

일부 예들에서, 플로팅 컴포넌트(1340)는 지속 시간의 적어도 일부 동안 드라이버의 제 2 노드를 플로팅할 수 있다. 제 2 노드는 드라이버에 포함된 제 4 트랜지스터의 소스 또는 드레인을 포함할 수 있다. 제 1 액세스 라인을 플로팅하는 것은 제 2 노드를 플로팅하는 것에 기초할 수 있다. In some examples, the floating component 1340 can float the second node of the driver for at least a portion of the duration. The second node may include a source or a drain of the fourth transistor included in the driver. Floating the first access line may be based on floating the second node.

애플리케이션 컴포넌트(1345)는 드라이버에 포함된 제 3 트랜지스터에 제 4 제어 신호를 인가할 수 있다. 제 4 제어 신호는 제 3 제어 신호에 대해 반전될 수 있고 다른 전압 스윙을 갖는다. The application component 1345 may apply a fourth control signal to a third transistor included in the driver. The fourth control signal may be inverted relative to the third control signal and has a different voltage swing.

일부 예들에서, 액세스 라인 관리기(1315)의 하나 이상의 컴포넌트들이 결합될 수 있다는 것이 이해되어야 한다(예를 들어, 바이어싱 컴포넌트(1320), 드라이빙 컴포넌트(1330) 및 플로팅 컴포넌트(1340)).It should be understood that, in some examples, one or more components of access line manager 1315 may be coupled (eg, biasing component 1320 , driving component 1330 , and floating component 1340 ).

도 14 는 본 개시의 예에 따른 메모리 셀의 어레이에 대한 액세스 라인 관리를 지원하는 디바이스(1405)를 포함하는 시스템(1400)의 다이어그램을 도시한다. 디바이스(1405)는 예를 들어, 도 1을 참조하여 전술한 바와 같이 메모리 어레이(100)의 컴포넌트의 예이거나이를 포함할 수 있다. 디바이스(1405)는 액세스 라인 관리기 (1415), 메모리 셀 (1420), BIOS (basic input/output system) 컴포넌트 (1425), 프로세서 (1430), I/O 제어기 (1435), 및 주변 컴포넌트 (1440)를 포함하는 통신을 송수신하기 위한 컴포넌트를 포함하는 양방향 음성 및 데이터 통신을 위한 컴포넌트를 포함할 수 있다. 액세스 라인 관리기(1415)는 도 13을 참조하여 설명된 액세스 라인 관리기(1315)의 예일 수 있다. 이러한 컴포넌트는 하나 이상의 버스(예를 들어, 버스 1410)를 통해 전자 통신할 수 있다.14 shows a diagram of a system 1400 including a device 1405 that supports access line management for an array of memory cells in accordance with an example of this disclosure. Device 1405 may be an example or include, for example, a component of memory array 100 as described above with reference to FIG. 1 . The device 1405 includes an access line manager 1415 , a memory cell 1420 , a basic input/output system (BIOS) component 1425 , a processor 1430 , an I/O controller 1435 , and a peripheral component 1440 . It may include a component for two-way voice and data communication, including a component for transmitting and receiving communication comprising a. The access line manager 1415 may be an example of the access line manager 1315 described with reference to FIG. 13 . These components may communicate electronically via one or more buses (eg, bus 1410 ).

메모리 셀(1420)은 본 출원에서 설명된 정보(즉, 로직 상태의 형태로)를 저장할 수 있다.Memory cell 1420 may store the information described herein (ie, in the form of logic states).

BIOS 컴포넌트(1425)는 다양한 하드웨어 컴포넌트를 초기화하고 실행할 수 있는 펌웨어로 동작하는 BIOS를 포함하는 소프트웨어 컴포넌트이다. BIOS 컴포넌트(1425)는 또한 프로세서와 다양한 다른 컴포넌트, 예를 들어, 주변 컴포넌트, 입력/출력 제어 컴포넌트 등 사이의 데이터 흐름을 관리할 수 있다. BIOS 컴포넌트(1425)는 ROM(Read Only Memory), 플래시 메모리 또는 기타 비 휘발성 메모리에 저장된 프로그램 또는 소프트웨어를 포함할 수 있다. The BIOS component 1425 is a software component including a BIOS operating as firmware capable of initializing and executing various hardware components. BIOS component 1425 may also manage data flow between the processor and various other components, eg, peripheral components, input/output control components, and the like. BIOS component 1425 may include programs or software stored in read only memory (ROM), flash memory, or other non-volatile memory.

프로세서(1430)는 지능형 하드웨어 디바이스(예를 들어, 범용 프로세서, DSP, 중앙 처리 디바이스(CPU), 마이크로 제어기, ASIC, FPGA, 프로그램 가능 로직 디바이스, 이산 게이트 또는 트랜지스터 로직 컴포넌트, 이산 하드웨어 컴포넌트 또는 이들의 조합)를 포함할 수 있다. 일부 경우에, 프로세서(1430)는 메모리 제어기를 사용하여 메모리 어레이를 동작시키도록 구성될 수 있다. 다른 경우에, 메모리 제어기는 프로세서(1430)에 통합될 수 있다. 프로세서(1430)는 다양한 기능(예를 들어, 메모리 셀들의 어레이에 대한 액세스 라인 관리를 지원하는 기능 또는 태스크)을 수행하기 위해 메모리에 저장된 컴퓨터 판독 가능 명령을 실행하도록 구성될 수 있다.The processor 1430 may be an intelligent hardware device (eg, a general purpose processor, DSP, central processing device (CPU), microcontroller, ASIC, FPGA, programmable logic device, discrete gate or transistor logic component, discrete hardware component, or their combinations) may be included. In some cases, the processor 1430 may be configured to operate a memory array using a memory controller. In other cases, the memory controller may be integrated into the processor 1430 . The processor 1430 may be configured to execute computer readable instructions stored in memory to perform various functions (eg, functions or tasks that support access line management for an array of memory cells).

I/O 제어기(1435)는 디바이스(1405)에 대한 입력 및 출력 신호를 관리할 수 있다. I/O 제어기(1435)는 또한 디바이스(1405)에 통합되지 않은 주변 디바이스를 관리할 수 있다. 일부 경우에, I/O 제어기(1435)는 외부 주변 디바이스에 대한 물리적 연결 또는 포트를 나타낼 수 있다. 일부 경우에, I/O 제어기(1435)는 iOS®, 안드로이드®, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, LINUX® 또는 다른 알려진 운영 체제와 같은 운영 체제를 사용할 수 있다. 다른 경우에, I/O 제어기(1435)는 모뎀, 키보드, 마우스, 터치 스크린 또는 유사한 디바이스를 나타내거나 이와 상호 작용할 수 있다. 일부 경우에, I/O 제어기(1435)는 프로세서의 일부로서 구현될 수 있다. 일부 경우에, 사용자는 I/O 제어기(1435)를 통해 또는 I/O 제어기(1435)에 의해 제어되는 하드웨어 컴포넌트를 통해 디바이스(1405)와 상호 작용할 수 있다.I/O controller 1435 may manage input and output signals to device 1405 . The I/O controller 1435 may also manage peripheral devices that are not integrated into the device 1405 . In some cases, I/O controller 1435 may represent a physical connection or port to an external peripheral device. In some cases, I/O controller 1435 may use an operating system such as iOS®, Android®, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, LINUX®, or other known operating systems. have. In other cases, I/O controller 1435 may represent or interact with a modem, keyboard, mouse, touch screen, or similar device. In some cases, I/O controller 1435 may be implemented as part of a processor. In some cases, a user may interact with device 1405 through I/O controller 1435 or through hardware components controlled by I/O controller 1435 .

주변 컴포넌트(1440)는 임의의 입력 또는 출력 디바이스, 또는 그러한 디바이스를 위한 인터페이스를 포함할 수 있다. 예는 디스크 제어기, 사운드 제어기, 그래픽 제어기, 이더넷 제어기, 모뎀, USB (Universal Serial Bus) 제어기, 직렬 또는 병렬 포트 또는 PCI(peripheral component interconnect) 또는 AGP(accelerated graphics port) 슬롯과 같은 주변 카드 슬롯을 포함할 수 있다.Peripheral component 1440 may include any input or output device, or an interface for such a device. Examples include disk controllers, sound controllers, graphics controllers, Ethernet controllers, modems, Universal Serial Bus (USB) controllers, serial or parallel ports, or peripheral card slots such as peripheral component interconnect (PCI) or accelerated graphics port (AGP) slots. can do.

입력(1445)은 디바이스(1405) 또는 그 컴포넌트에 입력을 제공하는 디바이스(1405) 외부의 디바이스 또는 신호를 나타낼 수 있다. 이것은 사용자 인터페이스 또는 다른 디바이스와의 또는 다른 디바이스 간의 인터페이스를 포함할 수 있다. 일부 경우에, 입력(1445)은 I/O 제어기(1435)에 의해 관리될 수 있고 주변 컴포넌트(1440)를 통해 디바이스(1405)와 상호 작용할 수 있다.Input 1445 may represent a device or signal external to device 1405 that provides an input to device 1405 or a component thereof. This may include a user interface or an interface with or between other devices. In some cases, input 1445 may be managed by I/O controller 1435 and may interact with device 1405 via peripheral component 1440 .

출력(1450)은 또한 디바이스(1405) 또는 그 컴포넌트 중 임의의 것으로부터 출력을 수신하도록 구성된 디바이스(1405) 외부의 디바이스 또는 신호를 나타낼 수 있다. 출력(1450)의 예는 디스플레이, 오디오 스피커, 인쇄 디바이스, 다른 프로세서 또는 인쇄 회로 기판 등을 포함할 수 있다. 일부 경우에, 출력(1450)은 주변 컴포넌트(들)(1440)을 통해 디바이스(1405)와 인터페이스하는 주변 엘리먼트일 수 있다. 일부 경우에, 출력 (1450)은 I/O 제어기 (1435)에 의해 관리될 수 있다.Output 1450 may also represent a device or signal external to device 1405 configured to receive output from device 1405 or any of its components. Examples of output 1450 may include displays, audio speakers, printed devices, other processors or printed circuit boards, and the like. In some cases, output 1450 can be a peripheral element that interfaces with device 1405 via peripheral component(s) 1440 . In some cases, output 1450 may be managed by I/O controller 1435 .

디바이스(1405)의 컴포넌트는 그 기능을 수행하도록 디자인된 회로를 포함할 수 있다. 이것은 본 출원에서 설명된 기능을 수행하도록 구성된 다양한 회로 소자, 예를 들어, 전도성 라인, 트랜지스터, 커패시터, 인덕터, 저항기, 증폭기, 또는 기타 활성 또는 비활성 엘리먼트를 포함할 수 있다. 디바이스(1405)는 컴퓨터, 서버, 랩톱 컴퓨터, 노트북 컴퓨터, 태블릿 컴퓨터, 휴대폰, 웨어러블 전자 디바이스, 개인용 전자 디바이스 등일 수 있다. 또는 디바이스(1405)는 그러한 디바이스의 일부 또는 양태일 수 있다.Components of device 1405 may include circuitry designed to perform its functions. It may include various circuit elements configured to perform the functions described herein, such as conductive lines, transistors, capacitors, inductors, resistors, amplifiers, or other active or non-active elements. Device 1405 may be a computer, server, laptop computer, notebook computer, tablet computer, mobile phone, wearable electronic device, personal electronic device, or the like. Alternatively, device 1405 may be part or an aspect of such a device.

도 15 는 본 개시의 예들에 따라 메모리 셀들의 어레이에 대한 액세스 라인 관리를 위한 방법(1500)을 예시하는 흐름도를 도시한다. 방법(1500)의 동작은 본 출원에 설명된 메모리 제어기 또는 그 컴포넌트에 의해 구현될 수 있다. 예를 들어, 방법(1500)의 동작은 도 6을 참조하여 설명된 액세스 라인 관리기에 의해 수행될 수 있다. 15 shows a flow diagram illustrating a method 1500 for access line management for an array of memory cells in accordance with examples of this disclosure. The operations of method 1500 may be implemented by a memory controller or a component thereof described herein. For example, the operations of method 1500 may be performed by the access line manager described with reference to FIG. 6 .

(1505)에서, 메모리 셀들의 어레이의 적어도 제 1 메모리 셀과 결합된 플레이트는 제 1 전압으로 드라이빙될 수 있다. (1505)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1505)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 1505 , a plate coupled with at least a first memory cell of the array of memory cells may be driven to a first voltage. The operation of 1505 may be performed according to the method described herein. In certain examples, aspects of the operations of 1505 may be performed by the driving component described with reference to FIG. 6 .

(1510)에서 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작이 식별될 수 있다. (1510)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1510)의 동작들의 양태들은 도 6을 참조하여 설명된 식별 컴포넌트에 의해 수행될 수 있다.At 1510 an access operation associated with a second memory cell of the array of memory cells can be identified. The operation of 1510 may be performed according to the method described in this application. In certain examples, aspects of the operations of 1510 may be performed by the identification component described with reference to FIG. 6 .

(1515)에서, 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 제 1 액세스 라인은 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 지속 시간 동안 플로팅될 수 있다. 일부 예들에서, 플로팅은 제 1 전압 스윙을 갖는 제 1 제어 신호 및 제 1 전압 스윙과 상이한 제 2 전압 스윙을 갖는 제 2 제어 신호를 제 1 액세스 라인에 대한 드라이버에 인가하는 것에 기초할 수 있다. (1515)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1515)의 동작들의 양태들은 도 2를 참조하여 설명된 플로팅 컴포넌트에 의해 수행될 수 있다.At 1515 , a first access line coupled with a first memory cell of the array of memory cells may be floated for a duration based at least in part on an access operation associated with the second memory cell. In some examples, the floating can be based on applying a first control signal having a first voltage swing and a second control signal having a second voltage swing different from the first voltage swing to the driver for the first access line. The operation of 1515 may be performed according to the method described in this application. In certain examples, aspects of the operations of 1515 can be performed by the floating component described with reference to FIG. 2 .

(1520)에서, 플레이트는 지속 시간 동안, 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 전압으로부터 제 2 전압으로 드라이빙될 수 있다. (1520)의 동작은 본 출원에서 설명된 방법에 따라 수행될 수 있다. 특정 예들에서, (1520)의 동작들의 양태들은 도 6을 참조하여 설명된 드라이빙 컴포넌트에 의해 수행될 수 있다.At 1520 , the plate can be driven from the first voltage to the second voltage based, at least in part, on an access operation associated with the second memory cell, for a duration. The operation of 1520 may be performed according to the method described in this application. In certain examples, aspects of the operations of 1520 may be performed by the driving component described with reference to FIG. 6 .

일부 예에서, 방법은 지속 시간의 적어도 일부 동안 워드 라인 드라이버의 제 1 노드를 플로팅하는 단계를 포함할 수 있다. 워드 라인 드라이버의 제 1 노드는 제 3 제어 신호를 수신하도록 구성될 수 있고, 제 1 액세스 라인을 플로팅하는 것은 제 1 노드를 플로팅하는 것에 기초할 수 있다. 일부 예들에서, 제 1 제어 신호는 드라이버에 포함된 트랜지스터의 게이트에 인가될 수 있고, 제 1 노드는 트랜지스터의 소스 또는 드레인을 포함할 수 있다. 일부 예에서, 트랜지스터는 드라이버에 포함된 제 2 트랜지스터를 갖는 캐스 코드 구성일 수 있다. In some examples, the method can include floating the first node of the word line driver for at least a portion of the duration. A first node of the word line driver may be configured to receive a third control signal, and floating the first access line may be based on floating the first node. In some examples, the first control signal may be applied to a gate of a transistor included in the driver, and the first node may include a source or drain of the transistor. In some examples, the transistor may be in a cas code configuration with a second transistor included in the driver.

일부 예들에서, 제 4 제어 신호는 드라이버에 포함된 제 3 트랜지스터에 인가될 수 있다. 제 4 제어 신호는 제 3 제어 신호에 대해 반전될 수 있고 다른 전압 스윙을 갖는다. In some examples, the fourth control signal may be applied to a third transistor included in the driver. The fourth control signal may be inverted relative to the third control signal and has a different voltage swing.

일부 예들에서, 방법은 지속 시간의 적어도 일부 동안 드라이버의 제 2 노드를 플로팅하는 단계를 포함할 수 있다. 제 2 노드는 드라이버에 포함된 제 4 트랜지스터의 소스 또는 드레인을 포함할 수 있다. 일부 예들에서, 제 1 액세스 라인을 플로팅하는 것은 제 2 노드를 플로팅하는 것에 기초할 수 있다. 일부 예에서, 제 2 제어 신호는 제 4 트랜지스터의 게이트에 인가될 수 있다. In some examples, the method can include floating the second node of the driver for at least a portion of the duration. The second node may include a source or a drain of the fourth transistor included in the driver. In some examples, floating the first access line can be based on floating the second node. In some examples, the second control signal may be applied to the gate of the fourth transistor.

장치가 설명된다. 일부 예들에서, 장치는 액세스 라인과 결합된 메모리 셀, 액세스 라인과 결합된 드라이버, 및 드라이버와 결합되고 드라이버를 위한 제 1 제어 신호 및 드라이버를 위한 제 2 제어 신호를 생성하도록 동작 가능한 제어 회로를 포함할 수 있다. 일부 예들에서, 제 2 제어 신호는 제 1 제어 신호와 다른 전압 스윙(voltage swing)을 가질 수 있다. The device is described. In some examples, an apparatus includes a memory cell coupled with the access line, a driver coupled with the access line, and a control circuit coupled with the driver and operable to generate a first control signal for the driver and a second control signal for the driver can do. In some examples, the second control signal may have a different voltage swing than the first control signal.

장치는 드라이버와 결합된 제 2 제어 회로를 포함할 수 있고 드라이버의 제 1 노드를 플로팅하도록 동작할 수 있다. 일부 예들에서, 드라이버는 플로팅되는 제 1 노드에 기초하여 액세스 라인을 플로팅하도록 동작할 수 있다. 장치는 드라이버와 결합되고 드라이버의 제 2 노드를 플로팅하도록 동작 가능한 제 3 제어 회로를 포함할 수 있다. 일부 예들에서, 드라이버는 플로팅되는 제 2 노드에 기초하여 액세스 라인을 플로팅하도록 동작할 수 있다.The apparatus may include a second control circuit coupled with the driver and operable to float the first node of the driver. In some examples, the driver may be operative to float the access line based on the first node being floated. The apparatus may include a third control circuit coupled to the driver and operable to float a second node of the driver. In some examples, the driver may be operative to float the access line based on the second node being floated.

일부 예들에서, 드라이버는 드라이버 세트의 서브 세트 중 하나이고, 세트의 각각의 드라이버는 메모리 셀을 포함하는 메모리 어레이에 대한 개개의 액세스 라인과 결합될 수 있다. 일부 예들에서, 제어 회로는 서브 세트의 각각의 드라이버와 결합될 수 있고, 제 1 제어 신호 및 제 2 제어 신호는 서브 세트의 드라이버들에 공통일 수 있다. 일부 예에서, 장치는 드라이버 세트의 제 2 서브 세트와 결합된 제 3 제어 회로를 포함할 수 있다. 제 3 제어 회로는 제 2 서브 세트의 드라이버에 공통인 제 3 제어 신호를 생성하도록 동작할 수 있다.In some examples, the driver is one of a subset of a set of drivers, and each driver in the set may be associated with a respective access line to a memory array comprising a memory cell. In some examples, a control circuit may be coupled with each driver of the subset, and the first control signal and the second control signal may be common to the drivers of the subset. In some examples, the apparatus can include a third control circuit coupled with the second subset of the driver set. The third control circuit is operable to generate a third control signal common to the second subset of drivers.

일부 예들에서, 제 3 제어 회로는 제 2 서브 세트의 드라이버들에 공통인 제 4 제어 신호를 생성하도록 추가로 동작할 수 있다. 제 4 제어 신호는 제 3 제어 신호에 대해 반전되고 다른 전압 스윙을 가질 수 있다. In some examples, the third control circuit may be further operable to generate a fourth control signal common to the drivers of the second subset. The fourth control signal may be inverted relative to the third control signal and have a different voltage swing.

장치는 제어 회로, 제 2 제어 회로 및 제 3 제어 회로와 결합된 제어기를 포함할 수 있다. 제어기는 메모리 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하고, 제 2 제어 회로가 드라이버를 포함하지 않는 제 2 서브 세트에 기초하여 제 2 메모리 셀과 관련된 액세스 동작의 일부 동안 드라이버의 제 1 노드를 플로팅하게 하도록 동작할 수 있다. 일부 예들에서, 제 2 메모리 셀은 세트의 제 2 드라이버와 결합된 제 2 액세스 라인과 결합될 수 있다. 제 2 서브 세트는 제 2 드라이버를 포함하지 않을 수 있다. 일부 예들에서, 드라이버는 플로팅되는 제 1 노드에 적어도 부분적으로 기초하여 액세스 라인을 플로팅하도록 동작할 수 있다.The apparatus may include a controller coupled with a control circuit, a second control circuit, and a third control circuit. The controller identifies an access operation associated with a second memory cell of the memory array, the first node of the driver during a portion of the access operation associated with the second memory cell based on the second subset that the second control circuit does not include the driver It can operate to make it float. In some examples, the second memory cell can be coupled with a second access line coupled with a second driver of the set. The second subset may not include the second driver. In some examples, the driver may be operable to float the access line based at least in part on the first node being floated.

제어기는 메모리 어레이의 제 3 메모리 셀과 관련된 제 2 액세스 동작을 식별하고 제 2 제어 회로와 결합된 제 2 드라이버에 기초하여 제 3 메모리 셀과 관련된 액세스 동작 동안 제 2 제어 회로가 제 1 전압으로 드라이버의 노드를 드라이빙하게 하도록 동작할 수 있다. 제 3 메모리 셀은 세트의 제 3 드라이버와 결합되는 제 3 액세스 라인과 결합될 수 있다. 일부 예들에서, 제 3 드라이버는 제 2 제어 회로와 결합될 수 있다. The controller identifies a second access operation associated with a third memory cell of the memory array and causes the second control circuit to drive the driver to the first voltage during an access operation associated with the third memory cell based on the second driver coupled with the second control circuit. It can operate to drive a node of A third memory cell may be coupled with a third access line coupled with a third driver of the set. In some examples, the third driver may be coupled with the second control circuit.

장치는 제어 회로, 제 2 제어 회로 및 제 3 제어 회로와 결합된 제어기를 포함할 수 있다. 제어기는 메모리 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하고, 제어 회로와 결합되는 제 2 드라이버에 기초하여 제 2 메모리 셀과 관련된 액세스 동작의 적어도 일부 동안 제 3 제어 회로가 드라이버의 제 2 노드를 플로팅하게 하도록 동작할 수 있다. 일부 예들에서, 제 2 드라이버는 제어 회로와 결합될 수 있다. 드라이버는 플로팅되는 제 2 노드에 기초하여 액세스 라인을 플로팅하도록 동작할 수 있다.The apparatus may include a controller coupled with a control circuit, a second control circuit, and a third control circuit. The controller is configured to identify an access operation associated with a second memory cell of the memory array, wherein the third control circuitry is configured to cause the third control circuitry to operate at the second node of the driver during at least a portion of the access operation associated with the second memory cell based on the second driver coupled with the control circuitry. It can operate to make it float. In some examples, the second driver may be coupled with the control circuit. The driver is operable to float the access line based on the second node being floated.

일부 예들에서, 제어기는 메모리 어레이의 제 3 메모리 셀과 관련된 제 2 액세스 동작을 식별하고, 제 3 드라이버를 포함하지 않는 서브 세트에 기초한 제 3 메모리 셀과 관련된 액세스 동작 동안 제 3 제어 회로가 드라이버의 제 2 노드를 제 1 전압 또는 제 2 전압으로 드라이빙하게 하도록 추가로 동작할 수 있다. 일부 예들에서, 서브 세트는 제 3 드라이버를 포함하지 않을 수 있다.In some examples, the controller identifies a second access operation associated with a third memory cell of the memory array, wherein during an access operation associated with the third memory cell based on the subset not including the third driver, the third control circuit and further operable to drive the second node to the first voltage or the second voltage. In some examples, the subset may not include the third driver.

장치가 설명된다. 일부 예에서, 장치는 액세스 라인과 결합된 메모리 셀, 액세스 라인과 결합된 드라이버, 드라이버는 제 2 트랜지스터를 갖는 캐스 코드 구성의 제 1 트랜지스터를 포함하고, 및 드라이버와 결합되고 제 1 제어 신호를 제 1 트랜지스터로 출력하고 제 2 제어 신호를 드라이버의 제 3 트랜지스터로 출력하도록 동작 가능한 제어 회로를 포함할 수 있다.The device is described. In some examples, a device includes a first transistor in a cascode configuration having a memory cell coupled with the access line, a driver coupled with the access line, the driver having a second transistor, and coupled with the driver and providing a first control signal. and a control circuit operable to output to the first transistor and output a second control signal to a third transistor of the driver.

일부 예에서, 장치는 제 2 메모리 셀을 포함할 수 있다. 제 1 트랜지스터의 소스 및 제 3 트랜지스터의 소스는 제 2 메모리 셀에 대한 액세스 동작과 동시에 플로팅되도록 동작할 수 있다. 일부 예에서, 드라이버는 플로팅되는 제 1 트랜지스터의 소스 또는 제 3 트랜지스터의 소스 중 하나 이상에 기초하여 액세스 라인을 플로팅하도록 동작할 수 있다. In some examples, the device can include a second memory cell. The source of the first transistor and the source of the third transistor are operable to float concurrently with an access operation to the second memory cell. In some examples, the driver is operable to float the access line based on one or more of the source of the first transistor being floated or the source of the third transistor being floated.

장치가 설명된다. 일부 예에서, 장치는 메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 플레이트를 제 1 전압으로 드라이빙하기 위한 수단, 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하기 위한 수단, 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 메모리 셀과 결합된 제 1 액세스 라인을 지속 시간 동안 플로팅하기 위한 수단, 여기서, 플로팅은 제 1 전압 스윙을 갖는 제 1 제어 신호 및 제 1 전압 스윙과 상이한 제 2 전압 스윙을 갖는 제 2 제어 신호를 제 1 액세스 라인을 위한 드라이버에 인가하는 것에 적어도 부분적으로 기초하고, 지속 시간 동안, 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 제 1 전압으로부터 제 2 전압으로 플레이트를 드라이빙하기 위한 수단을 포함할 수 있다.The device is described. In some examples, the apparatus includes means for driving a plate coupled with a first memory cell of an array of memory cells to a first voltage, means for identifying an access operation associated with a second memory cell of the array of memory cells, a second Means for floating for a duration a first access line coupled with a first memory cell based at least in part on an access operation associated with the memory cell, wherein the floating includes a first control signal having a first voltage swing and a first voltage based at least in part on applying a second control signal having a second voltage swing different from the swing to the driver for the first access line and based at least in part on an access operation associated with the second memory cell for a duration of time. means for driving the plate from the first voltage to the second voltage.

일부 예에서, 장치는 지속 시간의 적어도 일부 동안, 워드 라인 드라이버의 제 1 노드를 플로팅하기 위한 수단을 포함할 수 있으며, 워드 라인 드라이버의 제 1 노드는 제 3 제어 신호를 수신하도록 구성되고, 여기서 제 1 액세스 라인을 플로팅하는 것은 적어도 부분적으로 제 1 노드를 플로팅하는 것에 기초한다. 이러한 예에서, 장치는 드라이버에 포함된 제 3 트랜지스터에 제 4 제어 신호를 인가하기 위한 수단을 포함할 수 있으며, 여기서 제 4 제어 신호는 제 3 제어 신호에 대해 반전되고 다른 전압 스윙을 갖는다. 일부 예들에서, 장치는 지속 시간의 적어도 일부 동안, 드라이버의 제 2 노드를 플로팅하기 위한 수단을 포함할 수 있으며, 여기서 제 2 노드는 드라이버에 포함된 제 4 트랜지스터의 소스 또는 드레인을 포함하고, 여기서, 제 1 액세스 라인을 플로팅 하는 것은 제 2 노드를 플로팅하는 것에 적어도 부분적으로 기초한다.In some examples, the apparatus may include means for floating a first node of the word line driver for at least a portion of a duration, the first node of the word line driver being configured to receive a third control signal, wherein Floating the first access line is based, at least in part, on floating the first node. In this example, the apparatus may include means for applying a fourth control signal to a third transistor included in the driver, wherein the fourth control signal is inverted with respect to the third control signal and has a different voltage swing. In some examples, the apparatus can include means for floating a second node of the driver for at least a portion of a duration, wherein the second node includes a source or drain of a fourth transistor included in the driver, wherein , floating the first access line is based, at least in part, on floating the second node.

상기에 설명된 방법은 가능한 구현을 설명하고, 동작 및 단계는 재배열되거나 그렇지 않으면 수정될 수 있으며 다른 구현이 가능하다는 점에 유의해야 한다. 더욱이, 2 이상의 방법으로부터의 예가 결합될 수 있다.It should be noted that the method described above describes possible implementations, and that the actions and steps may be rearranged or otherwise modified and that other implementations are possible. Moreover, examples from two or more methods may be combined.

본 출원에서 설명된 정보 및 신호는 다양한 다른 기술 및 기술 중 임의의 것을 사용하여 표현될 수 있다. 예를 들어, 상기 설명 전반에 걸쳐 참조될 수 있는 데이터, 지시, 명령, 정보, 신호, 비트, 심볼 및 칩은 전압, 전류, 전자파, 자기장 또는 입자, 광 필드 또는 입자, 또는 이들의 임의의 조합으로 나타낼 수 있다. 일부 도면은 신호를 단일 신호로 예시할 수 있다; 그러나, 신호는 신호들의 버스를 나타낼 수 있음을 당업자는 이해할 것이며, 여기서 버스는 다양한 비트 폭을 가질 수 있다.The information and signals described herein may be represented using any of a variety of different technologies and technologies. For example, data, instructions, instructions, information, signals, bits, symbols, and chips that may be referenced throughout the above description include voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. can be expressed as Some figures may illustrate a signal as a single signal; However, it will be understood by those skilled in the art that a signal may represent a bus of signals, wherein the bus may have various bit widths.

용어 "전자 통신" 및 "결합된"은 컴포넌트 간의 전자 흐름을 지원하는 컴포넌트 간의 관계를 지칭한다. 이것은 컴포넌트 간의 직접 연결이 포함되거나 중간 컴포넌트가 포함될 수 있다. 전자 통신 또는 서로 결합된 컴포넌트는 전자 또는 신호를 능동적으로 교환하거나 (예를 들어, 전원이 공급된 회로에서) 전자 또는 신호를 능동적으로 교환하지 않을 수 있지만 (예를 들어, 전원이 차단된 회로에서) 그러나 회로에 전원이 공급되면 전자 또는 신호를 교환하도록 구성 및 작동할 수 있다. 예를 들어, 스위치 (예를 들어, 트랜지스터)를 통해 물리적으로 연결된 2 컴포넌트는 전자 통신을 하거나 스위치의 상태 (즉, 개방 또는 폐쇄)에 관계없이 결합될 수 있다.The terms “electronic communication” and “coupled” refer to a relationship between components that support electronic flow between the components. This may involve direct connections between components, or intermediate components may be involved. Electronic communications or components coupled to each other may or may not be actively exchanging electrons or signals (eg, in a powered circuit) or not actively exchanging electrons or signals (eg, in a de-energized circuit). ), however, can be configured and operated to exchange electrons or signals when the circuit is energized. For example, two components physically connected via a switch (eg, a transistor) may be in electronic communication or coupled regardless of the state of the switch (ie, open or closed).

본 출원에서 사용되는 용어 "실질적으로(substantially)"는 변형된 특성 (예를 들어, 실질적으로 용어에 의해 변형된 동사 또는 형용사)이 절대적일 필요는 없지만 특성의 장점을 달성하기에 충분히 가까워야 함을 의미한다. As used herein, the term "substantially" means that the transformed property (e.g., a verb or adjective that is substantially modified by the term) need not be absolute, but must be close enough to achieve the advantage of the trait. means

용어 "절연된(isolated)"는 신호가 컴포넌트들 사이에서 현재는 흐르게 할 수 없는 컴포넌트 사이의 관계를 지칭한다; 컴포넌트는 그것들 사이에서 개방 회로가 있는 경우 서로 절연된다. 예를 들어, 스위치로 물리적으로 연결된 2 컴포넌트는 스위치가 개방되어 있을 때 서로 절연될 수 있다.The term “isolated” refers to a relationship between a component through which a signal cannot currently flow between the components; Components are isolated from each other if there is an open circuit between them. For example, two components physically connected by a switch can be isolated from each other when the switch is open.

메모리 어레이(100)를 포함하여, 본 출원에 논의된 디바이스들은 실리콘, 게르마늄, 실리콘-게르마늄 합금, 갈륨 아세나이드, 갈륨 나이트 라이드 등과 같은 반도체 기판 상에 형성될 수 있다. 일부 경우에, 기판은 반도체 웨이퍼이다. 다른 경우에, 기판은 실리콘-온-글라스(SOG) 또는 실리콘-온-사파이어(SOP)와 같은 SOI(silicon-on-insulator) 기판 또는 다른 기판상의 반도체 재료의 에피택셜 층일 수 있다. 기판, 또는 기판의 서브-영역의 전도성은 인, 붕소 또는 비소를 포함하지만 이에 한정되지 않는 다양한 화학 종을 사용하여 도핑을 통해 제어될 수 있다. 도핑은 기판의 초기 형성 또는 성장 동안, 이온 주입에 의해 또는 임의의 다른 도핑 수단에 의해 수행될 수 있다. The devices discussed herein, including the memory array 100 , may be formed on a semiconductor substrate such as silicon, germanium, silicon-germanium alloy, gallium arsenide, gallium nitride, or the like. In some cases, the substrate is a semiconductor wafer. In other cases, the substrate may be an epitaxial layer of semiconductor material on a silicon-on-insulator (SOI) substrate, such as silicon-on-glass (SOG) or silicon-on-sapphire (SOP), or other substrate. The conductivity of the substrate, or sub-regions of the substrate, can be controlled through doping using various chemical species including but not limited to phosphorus, boron or arsenic. Doping may be performed during initial formation or growth of the substrate, by ion implantation, or by any other doping means.

본 출원에서 논의된 트랜지스터 또는 트랜지스터들은 전계 효과 트랜지스터(FET)를 대표할 수 있고, 소스, 드레인 및 게이트를 포함하는 3 단자 디바이스를 포함할 수 있다. 단자는 금속과 같은 전도성 재료를 통해 다른 전자 엘리먼트에 연결될 수 있다. 소스 및 드레인은 전도성일 수 있고, 고농도로 도핑된, 예를 들어, 축퇴된(degenerate) 반도체 영역을 포함할 수 있다. 소스 및 드레인은 저농도로(lightly) 도핑된 반도체 영역 또는 채널에 의해 분리될 수 있다. 채널이 n 형인 경우(즉, 다수의 캐리어가 전자인 경우), FET는 n 형 FET라고 지칭될 수 있다. 채널이 p 형인 경우(즉, 다수의 캐리어가 홀인 경우), FET는 p 형 FET라고 지칭될 수 있다. 채널은 절연 게이트 산화물에 의해 캡핑(cap)될 수 있다. 채널 전도성은 게이트에 전압을 인가함으로써 제어될 수 있다. 예를 들어, n 형 FET 또는 p 형 FET에 각각 양의 전압 또는 음의 전압을 인가하면 채널이 전도성이 될 수 있다. 트랜지스터의 문턱 전압보다 크거나 같은 전압이 트랜지스터 게이트에 인가될 때 트랜지스터는 "온" 또는 "활성화"될 수 있다. 트랜지스터의 문턱 전압보다 낮은 전압이 트랜지스터 게이트에 인가될 때 트랜지스터는 "오프" 또는 "비활성화"될 수 있다.The transistor or transistors discussed in this application may be representative of a field effect transistor (FET) and may include a three terminal device including a source, a drain, and a gate. The terminals may be connected to other electronic elements through conductive materials such as metals. The source and drain may be conductive and may include heavily doped, eg, degenerate semiconductor regions. The source and drain may be separated by a lightly doped semiconductor region or channel. When the channel is n-type (ie, the majority of carriers are electrons), the FET may be referred to as an n-type FET. When the channel is p-type (ie, the majority of carriers are holes), the FET may be referred to as a p-type FET. The channel may be capped by an insulating gate oxide. The channel conductivity can be controlled by applying a voltage to the gate. For example, a channel can become conductive by applying a positive or negative voltage to an n-type FET or a p-type FET, respectively. A transistor may be "on" or "activated" when a voltage greater than or equal to the transistor's threshold voltage is applied to the transistor gate. A transistor may be “off” or “deactivated” when a voltage lower than the threshold voltage of the transistor is applied to the transistor gate.

첨부된 도면과 관련하여 본 출원에서 설명된 설명은 예시적인 구성을 설명하고 청구 범위의 범위 내에 있거나 구현될 수 있는 모든 예들을 나타내지는 않는다. 본 출원에서 사용될 수 있는 용어 "예시적인” 및 "예시"는 "예, 실례 또는 예시로서 제공되는" 을 의미하며, "바람직한” 또는 "다른 예보다 유리한"것은 아니다. 상세한 설명은 설명된 기술의 이해를 제공하는 구체적인 세부 사항을 포함한다. 그러나 이러한 기술은 이러한 특정 세부 사항없이 실행될 수 있다. 일부 예에서, 주지의 구조 및 장치는 설명된 예의 개념을 모호하게 하는 것을 피하기 위해 블록 다이어그램 형식으로 도시된다.The description set forth in this application in connection with the appended drawings describes exemplary configurations and does not represent all examples that may be implemented or are within the scope of the claims. As used herein, the terms “exemplary” and “exemplary” mean “serving as an example, instance, or illustration,” and are not “preferred” or “advantageous over other examples.” The detailed description includes specific details that provide an understanding of the described technology. However, these techniques may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.

첨부된 도면에서 유사한 컴포넌트 또는 피처는 동일한 참조 레이블을 가질 수 있다. 또한, 유사한 컴포넌트를 구별하는 참조 라벨 뒤에 대시 (dash)와 제 2 라벨에 의해 동일한 유형의 다양한 컴포넌트가 구별될 수 있다. 사양에서 제 1 참조 라벨만 사용되는 경우, 제 2 참조 라벨에 관계없이 동일한 제 1 참조 라벨을 가진 유사한 컴포넌트 중 하나에 설명이 적용가능하다.Similar components or features in the accompanying drawings may have the same reference label. In addition, various components of the same type may be distinguished by a dash and a second label after a reference label that distinguishes similar components. If only the first reference label is used in the specification, the description is applicable to one of the similar components having the same first reference label irrespective of the second reference label.

본 출원에 설명된 정보 및 신호는 다양한 상이한 기술 및 기술들 중 임의의 것을 사용하여 표현될 수 있다. 예를 들어, 상기 설명 전반에 걸쳐 참조될 수 있는 데이터, 지시, 명령, 정보, 신호, 비트, 심볼 및 칩은 전압, 전류, 전자파, 자기장 또는 입자, 광 필드 또는 입자, 또는 이들의 임의의 조합으로 나타낼 수 있다.The information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, instructions, information, signals, bits, symbols, and chips that may be referenced throughout the above description include voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. can be expressed as

본 출원의 개시와 관련하여 설명된 다양한 예시적인 블록 및 모듈은 범용 프로세서, DSP, ASIC, FPGA 또는 다른 프로그램 가능한 로직 디바이스, 이산 게이트 또는 트랜지스터 로직, 개별 하드웨어 컴포넌트, 또는 본 출원에 설명된 기능을 수행하도록 디자인된 이들의 조합으로 구현 또는 수행될 수 있다. 범용 프로세서는 마이크로 프로세서일 수 있지만, 대안으로 프로세서는 임의의 통상의 프로세서, 제어기, 마이크로 컨트롤러 또는 상태 기계일 수 있다. 프로세서는 또한 컴퓨팅 디바이스(예를 들어, 디지털 신호 프로세서 (DSP)와 마이크로 프로세서의 조합, 다수의 마이크로 프로세서, DSP 코어와 결합한 하나 이상의 마이크로 프로세서, 또는 기타 이러한 구성)의 조합으로 구현될 수 있다.The various illustrative blocks and modules described in connection with the disclosure of this application may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or perform the functions described herein. It may be implemented or performed in a combination of these designed to A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (eg, a combination of a digital signal processor (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or other such configuration).

본 출원에 설명된 기능들은 하드웨어, 프로세서에 의해 실행되는 소프트웨어, 펌웨어 또는 이들의 임의의 조합으로 구현될 수 있다. 만약 프로세서에 의해 실행되는 소프트웨어로 구현되는 경우, 기능들은 컴퓨터 판독 가능 매체 상에 하나 이상의 명령 또는 코드로서 저장되거나 송신될 수 있다. 다른 예 및 구현은 개시 및 첨부된 청구항의 범위 내에 있다. 예를 들어, 소프트웨어의 성질로 인해, 전술한 기능은 프로세서, 하드웨어, 펌웨어, 하드와이어링 또는 이들의 임의의 조합에 의해 실행되는 소프트웨어를 사용하여 구현될 수 있다. 기능들을 구현하는 피처들은 또한 기능들의 부분들이 상이한 물리적 위치들에서 구현되도록 분포되는 것을 포함하여 다양한 위치에 물리적으로 위치될 수 있다. 또한, 청구항들에서를 포함한, 본 출원에서 사용되는, 아이템들의 리스트(예를 들면, "중 적어도 하나" 또는 "중 하나 이상"과 같은 어구에 의해 시작된 아이템들의 리스트)에서 사용되는 "또는"은 예를 들면, A, B, 또는 C 중 적어도 하나의 리스트가 A 또는 B 또는 C 또는 AB 또는 AC 또는 BC 또는 ABC(즉, A 및 B 및 C)를 의미하도록 포괄적 리스트를 나타낸다. 또한, 본 출원에 사용되는, 어구 "에 기초한(based on)"는 폐쇄된 조건 세트에 대한 참조로 해석되어서는 안 된다. 예를 들어, "조건 A에 기초한" 것으로 설명된 예시적인 단계는 본 개시의 범위를 벗어나지 않고 조건 A 및 조건 B 둘 모두에 기초할 수 있다. 다시 말해서, 본 출원에 사용되는, 어구 "에 기초한"는 "적어도 부분적으로 기초를 두어"라는 어구와 동일한 방식으로 해석되어야 한다.The functions described in this application may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, the functions described above may be implemented using software executed by a processor, hardware, firmware, hardwiring, or any combination thereof. Features implementing functions may also be physically located at various locations, including distributed such that portions of functions are implemented at different physical locations. Also, as used in this application, including in the claims, "or" as used in a list of items (eg, a list of items initiated by a phrase such as "at least one of" or "one or more of") means "or" For example, a generic list is represented such that the list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (ie, A and B and C). Also, as used herein, the phrase “based on” should not be construed as a reference to a closed set of conditions. For example, exemplary steps described as “based on condition A” may be based on both condition A and condition B without departing from the scope of this disclosure. In other words, as used in this application, the phrase “based on” should be interpreted in the same way as the phrase “based at least in part.”

컴퓨터 판독 가능 매체는 비 일시적 컴퓨터 저장 매체 및 한 장소에서 다른 장소로 컴퓨터 프로그램의 송신을 가능하게 하는 임의의 매체를 포함하는 통신 매체를 포함한다. 비 일시적 저장 매체는 범용 또는 특수 목적 컴퓨터에서 액세스할 수 있는 모든 사용 가능한 매체일 수 있다. 제한이 아닌 예로서, 비 일시적 컴퓨터 판독 가능 매체는 RAM, ROM, EEPROM (전기적으로 소거 가능한 프로그래밍 가능 판독 전용 메모리), CD (컴팩트 디스크) ROM 또는 다른 광 디스크 스토리지, 자기 디스크 스토리지 또는 기타 자기 스토리지 디바이스, 범용 또는 특수 목적 컴퓨터 또는 범용 또는 특수 목적의 프로세서에서 액세스 할 수 있고 명령 또는 데이터 구조의 형태로 원하는 프로그램 코드 수단을 운반하거나 저장하는 데 사용할 수 있는 기타 비 일시적 매체를 포함할 수 있다. 또한, 임의의 연결은 컴퓨터 판독 가능 매체라고 적절하게 칭해진다. 예를 들어, 소프트웨어가 동축 케이블, 광섬유 케이블, 이중와선, 디지털 가입자 회선 (DSL) 또는 적외선, 라디오 및 마이크로파와 같은 무선 기술을 사용하여 웹 사이트, 서버 또는 기타 원격 소스에서 송신되는 경우, 동축 케이블, 광섬유 케이블, 이중와선, DSL (디지털 가입자 회선) 또는 적외선, 라디오 및 마이크로파와 같은 무선 기술은 매체 정의에 포함된다. 본 출원에 사용된 디스크(Disk) 및 디스크(disc)에는 CD, 레이저 디스크, 광 디스크, DVD (Digital Versatile Disc), 플로피 디스크 및 블루 레이(Blu-ray) 디스크가 포함하고, 디스크는 일반적으로 데이터를 자기적으로 재생하는 반면 디스크는 레이저를 사용하여 데이터를 광학적으로 재생한다. 상기의 조합도 컴퓨터 판독 가능 매체의 범위에 포함된다.Computer-readable media includes non-transitory computer storage media and communication media including any medium that enables transmission of a computer program from one place to another. Non-transitory storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer readable media may include RAM, ROM, EEPROM (Electrically Erasable Programmable Read Only Memory), CD (Compact Disk) ROM or other optical disk storage, magnetic disk storage or other magnetic storage device. , a general or special purpose computer or other non-transitory medium accessible by a general or special purpose processor and usable for carrying or storing the desired program code means in the form of instructions or data structures. Also, any connection is properly termed a computer-readable medium. For example, if the Software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) or wireless technology such as infrared, radio and microwave, coaxial cable; Fiber optic cables, duplex, DSL (Digital Subscriber Line) or wireless technologies such as infrared, radio and microwave are included in the media definition. Disc and disc used in the present application include CD, laser disc, optical disc, DVD (Digital Versatile Disc), floppy disc, and Blu-ray disc, and the disc is generally data Discs use lasers to reproduce data optically, while discs reproduce data magnetically. Combinations of the above are also included within the scope of computer-readable media.

본 출원에서의 설명은 당업자가 본 개시를 실시하거나 이용할 수 있도록 제공된다. 당해 기술 분야의 당업자는 본 개시에 대한 다양한 수정을 용이하게 알 수 있을 것이며, 본 출원에 정의된 포괄적인 원리는 본 개시의 범위를 벗어나지 않고 다른 변형예에 적용될 수 있다. 따라서, 본 개시는 본 출원에 설명된 예제 및 디자인으로 한정되지 않고, 본 출원에 개시된 원리 및 신규한 특징과 일치하는 가장 넓은 범위에 따라야 한다.The description herein is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined in this application may be applied to other modifications without departing from the scope of the disclosure. Accordingly, the present disclosure is not to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (20)

방법에 있어서,
메모리 셀들의 어레이의 제 1 메모리 셀과 결합된 플레이트(plate)를 제 1 전압으로 드라이빙하는 단계(driving);
상기 메모리 셀들의 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하는 단계;
상기 제 2 메모리 셀과 관련된 상기 액세스 동작에 적어도 부분적으로 기초하여 상기 제 1 메모리 셀과 결합된 제 1 액세스 라인을 지속 시간(duration) 동안 플로팅하는 단계(floating)로서, 상기 플로팅은 제 1 전압 스윙을 갖는 제 1 제어 신호 및 상기 제 1 전압 스윙과 상이한 제 2 전압 스윙을 갖는 제 2 제어 신호를 상기 제 1 액세스 라인을 위한 드라이버에 인가하는 것에 적어도 부분적으로 기초하는, 상기 플로팅하는 단계; 및
상기 제 2 메모리 셀과 관련된 액세스 동작에 적어도 부분적으로 기초하여 상기 지속 시간 동안 상기 제 1 전압으로부터 제 2 전압으로 상기 플레이트를 드라이빙하는 단계를 포함하는, 방법.
In the method,
driving a plate coupled with a first memory cell of the array of memory cells to a first voltage;
identifying an access operation associated with a second memory cell of the array of memory cells;
floating a first access line coupled with the first memory cell for a duration based at least in part on the access operation associated with the second memory cell, wherein the floating is a first voltage swing wherein the floating is based, at least in part, on applying a first control signal to a driver for the first access line to a driver for the first access line and a second control signal having a second voltage swing different from the first voltage swing; and
and driving the plate from the first voltage to a second voltage for the duration based at least in part on an access operation associated with the second memory cell.
제 1 항에 있어서,
상기 지속 시간의 적어도 일부 동안, 상기 드라이버의 제 1 노드를 플로팅하는 단계를 더 포함하고, 상기 드라이버의 상기 제 1 노드는 제 3 제어 신호를 수신하도록 구성되고, 상기 제 1 액세스 라인을 플로팅하는 단계는 적어도 부분적으로 상기 제 1 노드를 플로팅 하는 것에 기초하는, 방법.
The method of claim 1,
for at least a portion of the duration, further comprising floating a first node of the driver, the first node of the driver configured to receive a third control signal, and floating the first access line is based, at least in part, on floating the first node.
제 2 항에 있어서,
상기 제 1 제어 신호는 상기 드라이버에 포함된 트랜지스터의 게이트에 인가되고; 및
상기 제 1 노드는 상기 트랜지스터의 소스 또는 드레인을 포함하는, 방법.
3. The method of claim 2,
the first control signal is applied to a gate of a transistor included in the driver; and
and the first node comprises a source or drain of the transistor.
제 3 항에 있어서, 상기 트랜지스터는 상기 드라이버에 포함된 제 2 트랜지스터를 갖는 캐스 코드 구성(cascode configuration)에 있는, 방법.4. The method of claim 3, wherein the transistor is in a cascode configuration with a second transistor included in the driver. 제 2 항에 있어서,
상기 드라이버에 포함된 제 3 트랜지스터에 제 4 제어 신호를 인가하는 단계를 더 포함하고, 상기 제 4 제어 신호는 상기 제 3 제어 신호에 대해 반전되고 다른 전압 스윙을 갖는, 방법.
3. The method of claim 2,
and applying a fourth control signal to a third transistor included in the driver, wherein the fourth control signal is inverted with respect to the third control signal and has a different voltage swing.
제 1 항에 있어서,
상기 지속 시간의 적어도 일부 동안, 상기 드라이버의 제 2 노드를 플로팅하는 단계를 더 포함하고, 상기 제 2 노드는 상기 드라이버에 포함된 제 4 트랜지스터의 소스 또는 드레인을 포함하고, 상기 제 1 액세스 라인을 플로팅 하는 단계는 상기 제 2 노드를 플로팅하는 것에 적어도 부분적으로 기초하는, 방법.
The method of claim 1,
for at least a portion of the duration, floating a second node of the driver, the second node comprising the source or drain of a fourth transistor included in the driver, and connecting the first access line wherein the floating is based at least in part on floating the second node.
제 6 항에 있어서, 상기 제 2 제어 신호는 상기 제 4 트랜지스터의 게이트에 인가되는, 방법. 7. The method of claim 6, wherein the second control signal is applied to the gate of the fourth transistor. 장치에 있어서,
액세스 라인과 결합된 메모리 셀;
상기 액세스 라인과 결합된 드라이버; 및
상기 드라이버와 결합되고 상기 드라이버를 위한 제 1 제어 신호 및 상기 드라이버를 위한 제 2 제어 신호를 생성하도록 동작 가능한 제어 회로로서, 상기 제 2 제어 신호는 상기 제 1 제어 신호와 상이한 전압 스윙을 갖는, 상기 제어 회로를 포함하는, 장치.
In the device,
a memory cell coupled with an access line;
a driver coupled to the access line; and
a control circuit coupled to the driver and operable to generate a first control signal for the driver and a second control signal for the driver, the second control signal having a different voltage swing than the first control signal A device comprising a control circuit.
제 8 항에 있어서,
상기 드라이버와 결합되고 상기 드라이버의 제 1 노드를 플로팅하도록 동작 가능한 제 2 제어 회로를 더 포함하되, 상기 드라이버는 플로팅되는 상기 제 1 노드에 적어도 부분적으로 기초하여 상기 액세스 라인을 플로팅하도록 동작 가능한, 장치.
9. The method of claim 8,
and a second control circuit coupled with the driver and operable to float a first node of the driver, wherein the driver is operable to float the access line based at least in part on the first node being floated. .
제 9 항에 있어서,
상기 드라이버와 결합되고 상기 드라이버의 제 2 노드를 플로팅하도록 동작 가능한 제 3 제어 회로를 더 포함하되, 상기 드라이버는 플로팅되는 상기 제 2 노드에 적어도 부분적으로 기초하여 상기 액세스 라인을 플로팅하도록 동작 가능한, 장치.
10. The method of claim 9,
and a third control circuit coupled with the driver and operable to float a second node of the driver, wherein the driver is operable to float the access line based at least in part on the second node being floated. .
제 8 항에 있어서,
상기 드라이버는 드라이버들의 세트의 서브 세트 중 하나이고, 상기 세트의 각각의 드라이버는 상기 메모리 셀을 포함하는 메모리 어레이에 대한 개개의 액세스 라인과 결합되고;
상기 제어 회로는 상기 서브 세트의 각각의 드라이버와 결합되고; 및
상기 제 1 제어 신호 및 상기 제 2 제어 신호는 상기 서브 세트의 드라이버들에 공통인, 장치.
9. The method of claim 8,
the driver is one of a subset of a set of drivers, each driver of the set coupled to a respective access line to a memory array comprising the memory cell;
the control circuit is coupled to each driver of the subset; and
and the first control signal and the second control signal are common to the subset of drivers.
제 11 항에 있어서,
상기 드라이버 세트의 제 2 서브 세트와 결합된 제 2 제어 회로를 더 포함하되, 상기 드라이버는 상기 제 2 서브 세트 중 하나이고, 상기 제 2 서브 세트는 상기 서브 세트보다 더 많은 드라이버들을 포함하는, 장치.
12. The method of claim 11,
and a second control circuit coupled with a second subset of the set of drivers, wherein the drivers are one of the second subsets, the second subset comprising more drivers than the subset. .
제 12 항에 있어서,
상기 드라이버들의 세트의 제 2 서브 세트와 결합된 제 3 제어 회로를 더 포함하되, 상기 제 3 제어 회로는 상기 제 2 서브 세트의 드라이버들에 공통인 제 3 제어 신호를 생성하도록 동작 가능한, 장치.
13. The method of claim 12,
and a third control circuit coupled with a second subset of the set of drivers, wherein the third control circuit is operable to generate a third control signal common to the drivers of the second subset.
제 13 항에 있어서, 상기 제 3 제어 회로는 상기 제 2 서브 세트의 드라이버들에 공통인 제 4 제어 신호를 생성하도록 추가로 동작 가능하고, 상기 제 4 제어 신호는 상기 제 3 제어 신호에 대해 반전되고 다른 전압 스윙을 갖는, 장치.14. The method of claim 13, wherein the third control circuit is further operable to generate a fourth control signal common to the drivers of the second subset, the fourth control signal being inverted with respect to the third control signal and having a different voltage swing, the device. 제 13 항에 있어서,
상기 제어 회로, 상기 제 2 제어 회로, 및 상기 제 3 제어 회로와 결합된 제어기를 더 포함하되, 상기 제어기는,
상기 메모리 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하고, 상기 제 2 메모리 셀은 상기 세트의 제 2 드라이버와 결합된 제 2 액세스 라인과 결합되며, 상기 제 2 서브 세트는 상기 제 2 드라이버를 포함하지 않고; 및
상기 제 2 드라이버를 포함하지 않는 상기 제 2 서브 세트에 적어도 부분적으로 기초하여 상기 제 2 메모리 셀과 관련된 액세스 동작의 적어도 일부 동안 상기 제 2 제어 회로가 상기 드라이버의 제 1 노드를 플로팅하게 하도록 동작 가능하며, 상기 드라이버는 플로팅되는 상기 제 1 노드에 적어도 부분적으로 기초하여 상기 액세스 라인을 플로팅하도록 동작 가능한, 장치.
14. The method of claim 13,
a controller coupled with the control circuitry, the second control circuitry, and the third control circuitry, the controller comprising:
identify an access operation associated with a second memory cell of the memory array, the second memory cell being coupled with a second access line coupled with a second driver of the set, the second subset using the second driver not including; and
operable to cause the second control circuit to float a first node of the driver during at least a portion of an access operation associated with the second memory cell based at least in part on the second subset not including the second driver and the driver is operable to float the access line based at least in part on the first node being floated.
제 15 항에 있어서, 상기 제어기는,
상기 메모리 어레이의 제 3 메모리 셀과 관련된 제 2 액세스 동작을 식별하고, 상기 제 3 메모리 셀은 상기 세트의 제 3 드라이버와 결합된 제 3 액세스 라인과 결합되고, 상기 제 3 드라이버는 상기 제 2 제어 회로와 결합되고; 및
상기 제 2 제어 회로와 결합된 상기 제 2 드라이버에 적어도 부분적으로 기초하여 상기 제 3 메모리 셀과 관련된 액세스 동작 동안 제 2 제어 회로가 상기 드라이버의 상기 제 1 노드를 제 1 전압으로 드라이빙하게 하도록 추가로 동작 가능한, 장치.
16. The method of claim 15, wherein the controller,
identify a second access operation associated with a third memory cell of the memory array, the third memory cell coupled with a third access line coupled with a third driver of the set, the third driver causing the second control coupled with the circuit; and
further cause a second control circuit to drive the first node of the driver to a first voltage during an access operation associated with the third memory cell based at least in part on the second driver coupled with the second control circuit operable device.
제 13 항에 있어서,
상기 제어 회로, 상기 제 2 제어 회로, 및 상기 제 3 제어 회로와 결합된 제어기를 더 포함하되, 상기 제어기는,
상기 메모리 어레이의 제 2 메모리 셀과 관련된 액세스 동작을 식별하고, 상기 제 2 메모리 셀은 상기 세트의 제 2 드라이버와 결합된 제 2 액세스 라인과 결합되고, 상기 제 2 드라이버는 상기 제어 회로와 결합되고; 및
상기 제 2 메모리 셀과 관련된 액세스 동작의 적어도 일부 동안 상기 제어 회로와 결합된 상기 제 2 드라이버에 적어도 부분적으로 기초하여 상기 제 3 제어 회로가 상기 드라이버의 제 2 노드를 플로팅하게 하도록 동작 가능하고, 상기 드라이버는 플로팅되는 상기 제 2 노드에 적어도 부분적으로 기초하여 상기 액세스 라인을 플로팅하도록 동작 가능한, 장치.
14. The method of claim 13,
a controller coupled with the control circuitry, the second control circuitry, and the third control circuitry, the controller comprising:
identify an access operation associated with a second memory cell of the memory array, the second memory cell coupled with a second access line coupled with a second driver of the set, the second driver coupled with the control circuitry; ; and
operable to cause the third control circuit to float a second node of the driver based at least in part on the second driver coupled with the control circuit during at least a portion of an access operation associated with the second memory cell; and a driver operable to float the access line based at least in part on the second node being floated.
제 17 항에 있어서, 상기 제어기는,
상기 메모리 어레이의 제 3 메모리 셀과 관련된 제 2 액세스 동작을 식별하고, 상기 제 3 메모리 셀은 상기 세트의 제 3 드라이버와 결합된 제 3 액세스 라인과 결합되고, 상기 서브 세트는 상기 제 3 드라이버를 포함하지 않고; 및
상기 제 3 드라이버를 포함하지 않는 상기 서브 세트에 적어도 부분적으로 기초하여 상기 제 3 메모리 셀과 관련된 액세스 동작 동안 상기 제 3 제어 회로가 상기 드라이버의 제 2 노드를 제 1 전압 또는 제 2 전압으로 드라이빙하게 하도록 추가로 동작 가능한, 장치.
The method of claim 17, wherein the controller comprises:
identify a second access operation associated with a third memory cell of the memory array, wherein the third memory cell is coupled with a third access line coupled with a third driver of the set, wherein the subset uses the third driver not including; and
cause the third control circuit to drive a second node of the driver to a first voltage or a second voltage during an access operation associated with the third memory cell based at least in part on the subset not including the third driver. a device further operable to do so.
장치에 있어서,
액세스 라인과 결합된 메모리 셀;
상기 액세스 라인과 결합된 드라이버로서, 상기 드라이버는 제 2 트랜지스터와 캐스 코드 구성의 제 1 트랜지스터를 포함하는, 상기 드라이버; 및
상기 드라이버와 결합되고 제 1 제어 신호를 제 1 트랜지스터로 출력하고 제 2 제어 신호를 상기 드라이버의 제 3 트랜지스터로 출력하도록 동작 가능한 제어 회로를 포함하는, 장치.
In the device,
a memory cell coupled with an access line;
a driver coupled to the access line, the driver comprising a second transistor and a first transistor in a cascode configuration; and
a control circuit coupled to the driver and operable to output a first control signal to a first transistor and output a second control signal to a third transistor of the driver.
제 19 항에 있어서,
제 2 메모리 셀을 더 포함하되, 상기 제 1 트랜지스터의 소스 및 상기 제 3 트랜지스터의 소스는 상기 제 2 메모리 셀에 대한 액세스 동작과 동시에 플로팅되도록 동작 가능하며, 상기 드라이버는 플로팅되는 제 1 트랜지스터의 소스 또는 상기 제 3 트랜지스터의 소스 중 하나 이상에 적어도 부분적으로 기초하여 상기 액세스 라인을 플로팅하도록 동작 가능한, 장치.
20. The method of claim 19,
A second memory cell, further comprising a second memory cell, wherein the source of the first transistor and the source of the third transistor are operable to float concurrently with an access operation to the second memory cell, and wherein the driver is the source of the floating first transistor. or float the access line based at least in part on one or more of the sources of the third transistor.
KR1020200159770A 2019-11-26 2020-11-25 Access line management for an array of memory cells KR102400518B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/695,848 2019-11-26
US16/695,848 US10896713B2 (en) 2018-05-04 2019-11-26 Access line management for an array of memory cells

Publications (2)

Publication Number Publication Date
KR20210065870A true KR20210065870A (en) 2021-06-04
KR102400518B1 KR102400518B1 (en) 2022-05-20

Family

ID=76234642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200159770A KR102400518B1 (en) 2019-11-26 2020-11-25 Access line management for an array of memory cells

Country Status (2)

Country Link
KR (1) KR102400518B1 (en)
CN (1) CN112951292A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110299355A1 (en) * 2010-06-02 2011-12-08 Stmicroelectronics Pvt. Ltd. Word line driver for memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110299355A1 (en) * 2010-06-02 2011-12-08 Stmicroelectronics Pvt. Ltd. Word line driver for memory

Also Published As

Publication number Publication date
KR102400518B1 (en) 2022-05-20
CN112951292A (en) 2021-06-11

Similar Documents

Publication Publication Date Title
JP6946534B2 (en) Peripheral filling and localization capacity
JP7075421B2 (en) Dual mode ferroelectric memory cell operation
JP6812061B2 (en) Offset cancellation for latching within the memory device
US10896713B2 (en) Access line management for an array of memory cells
US11881252B2 (en) Techniques for accessing an array of memory cells to reduce parasitic coupling
JP7101299B2 (en) Memory plate segmentation to reduce operating power
TWI737226B (en) Memory array with multiplexed digit lines
KR102400517B1 (en) Access Line Management for an Array of Memory Cells
KR102400518B1 (en) Access line management for an array of memory cells

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant