KR20210059900A - Polyolefin and Process for Preparing the Same - Google Patents

Polyolefin and Process for Preparing the Same Download PDF

Info

Publication number
KR20210059900A
KR20210059900A KR1020190147285A KR20190147285A KR20210059900A KR 20210059900 A KR20210059900 A KR 20210059900A KR 1020190147285 A KR1020190147285 A KR 1020190147285A KR 20190147285 A KR20190147285 A KR 20190147285A KR 20210059900 A KR20210059900 A KR 20210059900A
Authority
KR
South Korea
Prior art keywords
substituted
unsubstituted
formula
olefin
based polymer
Prior art date
Application number
KR1020190147285A
Other languages
Korean (ko)
Other versions
KR102579816B1 (en
Inventor
김라연
김지성
김학민
박제훈
전성해
허은정
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to KR1020190147285A priority Critical patent/KR102579816B1/en
Priority to PCT/KR2020/015718 priority patent/WO2021101153A1/en
Publication of KR20210059900A publication Critical patent/KR20210059900A/en
Application granted granted Critical
Publication of KR102579816B1 publication Critical patent/KR102579816B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/025Metal oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to an olefin-based polymer and to a manufacturing method thereof. The olefin-based polymer according to an embodiment of the present invention contains a large amount of unsaturated groups in the molecule to be easy to modify. The olefin-based polymer is prepared by polymerization of an olefinic monomer in the presence of a catalyst comprising at least one transition metal compound represented by chemical formula 1 and at least one co-catalyst compound, and has a density of 0.85 to 0.95 g/cm^3, and total amount of unsaturated groups of 0.5 mole% or more in the molecule.

Description

올레핀계 중합체 및 그 제조방법 {Polyolefin and Process for Preparing the Same}Olefin polymer and its manufacturing method {Polyolefin and Process for Preparing the Same}

본 발명은 올레핀계 중합체 및 그 제조방법에 관한 것이다. 구체적으로, 본 발명은 분자 내에 불포화 기를 다량 함유하여 개질이 용이한 올레핀계 중합체 및 그 제조방법에 관한 것이다.The present invention relates to an olefin-based polymer and a method for producing the same. Specifically, the present invention relates to an olefin-based polymer that is easily modified by containing a large amount of unsaturated groups in a molecule and a method for producing the same.

올레핀을 중합하는 데 이용되는 촉매의 하나인 메탈로센 촉매는 전이금속 또는 전이금속 할로겐 화합물에 사이클로펜타디에닐(cycolpentadienyl), 인데닐(indenyl), 사이클로헵타디에닐(cycloheptadienyl) 등의 리간드가 배위 결합된 화합물로서 샌드위치 구조를 기본적인 형태로 갖는다.Metallocene catalyst, one of the catalysts used to polymerize olefins, is coordination of ligands such as cyclopentadienyl, indenyl, and cycloheptadienyl to transition metals or transition metal halide compounds. As a bonded compound, it has a sandwich structure in its basic form.

올레핀을 중합하는 데 사용되는 다른 촉매인 지글러-나타(Ziegler-Natta) 촉매가 활성점인 금속 성분이 불활성인 고체 표면에 분산되어 활성점의 성질이 균일하지 않은데 반해, 메탈로센 촉매는 일정한 구조를 갖는 하나의 화합물이기 때문에 모든 활성점이 동일한 중합 특성을 갖는 단일 활성점 촉매(single-site catalyst)로 알려져 있다. 이러한 메탈로센 촉매로 중합된 고분자는 분자량 분포가 좁고 공단량체의 분포가 균일하며, 지글러-나타 촉매에 비해 공중합 활성도가 높다.Ziegler-Natta catalyst, which is another catalyst used to polymerize olefins, is dispersed on a solid surface in which the metal component as the active point is inert, and the properties of the active point are not uniform, whereas the metallocene catalyst has a certain structure. It is known as a single-site catalyst with all active sites having the same polymerization properties because it is a single compound with. Polymers polymerized with such a metallocene catalyst have a narrow molecular weight distribution, uniform distribution of comonomers, and higher copolymerization activity than Ziegler-Natta catalysts.

한편, 올레핀계 중합체를 개질하여 그 물성을 향상시키려는 시도가 이루어져 왔다. 예를 들어, 에틸렌계 중합체에 말레산 무수물(maleic anhydride)과 같은 유기 화합물을 첨가하여 그래프팅(grafting)시킴으로써 올레핀계 중합체의 물성을 향상시키는 방법이 알려져 있다. 이때, 에틸렌계 중합체에 말레산 무수물을 그래프팅시키기 위해 과산화물을 첨가하여 탄화수소 체인을 활성화시켜 알켄과 반응시킨다.On the other hand, attempts have been made to modify the olefin-based polymer to improve its physical properties. For example, a method of improving the physical properties of an olefin-based polymer is known by adding an organic compound such as maleic anhydride to an ethylene-based polymer and grafting it. At this time, in order to grafting maleic anhydride to the ethylene-based polymer, peroxide is added to activate a hydrocarbon chain to react with an alkene.

올레핀계 중합체의 분자 내에 존재하는 불포화 기(unsaturated group)의 함량이 상대적으로 크면, 과산화물을 소량 사용해도 말레산 무수물의 그래프팅이 가능할 수 있다. 또한, 올레핀계 중합체 분자 내의 불포화 기가 다양한 기능 기(functional group)로 치환이 가능하므로, 올레핀계 중합체의 개질을 용이하게 수행할 수 있다.If the content of unsaturated groups present in the molecule of the olefin-based polymer is relatively large, grafting of maleic anhydride may be possible even with a small amount of peroxide. In addition, since unsaturated groups in the olefin-based polymer molecule can be substituted with various functional groups, modification of the olefin-based polymer can be easily performed.

따라서, 분자 내에 불포화 기를 다량 함유하는 올레핀계 중합체 및 그 제조방법이 요구되고 있다.Accordingly, there is a demand for an olefin-based polymer containing a large amount of unsaturated groups in a molecule and a method for producing the same.

본 발명의 목적은 분자 내에 불포화 기를 다량 함유하는 올레핀계 중합체를 제공하는 것이다.An object of the present invention is to provide an olefin-based polymer containing a large amount of unsaturated groups in the molecule.

본 발명의 다른 목적은 분자 내에 불포화 기를 다량 함유하는 올레핀계 중합체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing an olefin-based polymer containing a large amount of unsaturated groups in the molecule.

이러한 목적을 달성하기 위한 본 발명의 일 구체예에 따라서, 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체가 중합되어 제조되며, 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상인 올레핀계 중합체가 제공된다.According to an embodiment of the present invention for achieving this object, an olefin-based monomer is polymerized in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by Formula 1 below. In addition, an olefin-based polymer having a density of 0.85 to 0.95 g/cm 3 and a total amount of unsaturated groups in the molecule of 0.5 mole% or more is provided.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

위 화학식 1에서, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고,In Formula 1 above, M is titanium (Ti), zirconium (Zr) or hafnium (Hf),

X는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이고,Each X is independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,

Q는 탄소(C), 실리콘(Si), 게르마늄(Ge) 또는 주석(Sn)이고,Q is carbon (C), silicon (Si), germanium (Ge) or tin (Sn),

R1 내지 R14는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 치환 또는 비치환된 C1-20 알킬아미도, 치환 또는 비치환된 C6-20 아릴아미도, 치환 또는 비치환된 C1-20 알킬리덴, 또는 치환 또는 비치환된 C1-20 실릴이며,R 1 to R 14 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 6-20 aryl, substituted or unsubstituted C 1-20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 alkyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 3-20 heteroaryl , Substituted or unsubstituted C 1-20 alkylamido, substituted or unsubstituted C 6-20 arylamido, substituted or unsubstituted C 1-20 alkylidene, or substituted or unsubstituted C 1-20 silyl Is,

R1 내지 R12은 각각 독립적으로 인접한 기가 연결되어 치환 또는 비치환된 포화 또는 불포화 C4-20 고리를 형성할 수 있다.R 1 to R 12 may each independently connect adjacent groups to form a substituted or unsubstituted saturated or unsaturated C 4-20 ring.

바람직하게는, 위 화학식 1에서 M이 지르코늄 또는 하프늄이고, X가 각각 독립적으로 할로겐 또는 치환 또는 비치환된 C1-20 알킬이고, Q가 탄소 또는 실리콘이고, R1 내지 R12가 각각 독립적으로 수소 또는 치환 또는 비치환된 C1-20 알킬이며, R13과 R14가 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 또는 치환 또는 비치환된 C6-20 아릴이다.Preferably, in Formula 1 above, M is zirconium or hafnium, X is each independently halogen or substituted or unsubstituted C 1-20 alkyl, Q is carbon or silicon, and R 1 to R 12 are each independently Hydrogen or substituted or unsubstituted C 1-20 alkyl, and R 13 and R 14 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, or substituted or unsubstituted C 6-20 aryl.

한편, 조촉매 화합물은 아래 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물로 구성되는 군으로부터 선택될 수 있다.Meanwhile, the cocatalyst compound may be selected from the group consisting of a compound represented by Formula 2 below, a compound represented by Formula 3, and a compound represented by Formula 4.

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

[화학식 3][Formula 3]

Figure pat00003
Figure pat00003

[화학식 4][Formula 4]

[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]- [LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -

위 화학식 2에서, n은 2 이상의 정수이고, Ra는 할로겐 원자, C1-20 탄화수소기 또는 할로겐으로 치환된 C1-20 탄화수소기이고,In Formula 2 above, n is an integer of 2 or more, and R a is a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with a halogen,

위 화학식 3에서, D는 알루미늄(Al) 또는 보론(B)이고, Rb, Rc 및 Rd는 각각 독립적으로 할로겐 원자, C1-20 탄화수소기, 할로겐으로 치환된 C1-20 탄화수소기 또는 C1-20 알콕시기이며,In Formula 3 above, D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, a C 1-20 hydrocarbon group substituted with a halogen Or a C 1-20 alkoxy group,

위 화학식 4에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H]+ 및 [L]+는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴기이거나 치환 또는 비치환된 C1-20 알킬기이다.In Formula 4 above, L is a neutral or cationic Lewis base, [LH] + and [L] + are Bronsted acid, Z is a Group 13 element, and A is each independently substituted or unsubstituted C 6 It is a -20 aryl group or a substituted or unsubstituted C 1-20 alkyl group.

구체적으로, 화학식 4로 표현되는 초촉매 화합물이 아래 화학식 4-1로 표현되는 화합물일 수 있다.Specifically, the supercatalyst compound represented by Formula 4 may be a compound represented by Formula 4-1 below.

[화학식 4-1][Formula 4-1]

Figure pat00004
Figure pat00004

위 화학식 4-1에서, Re, Rf 및 Rg는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬기, 치환 또는 비치환된 C2-20 알케닐기, 치환 또는 비치환된 C6-20 아릴기, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬일 수 있고,In Formula 4-1 above, R e , R f and R g are each independently hydrogen, a substituted or unsubstituted C 1-20 alkyl group, a substituted or unsubstituted C 2-20 alkenyl group, a substituted or unsubstituted C 6-20 aryl group, substituted or unsubstituted C 1-20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 may be alkyl,

Y는 원소 주기율표의 13족 원소일 수 있고, 예를 들어 보론(B), 알루미늄(Al), 갈륨(Ga) 또는 인듐(In)일 수 있으며,Y may be a group 13 element of the periodic table of the elements, for example, boron (B), aluminum (Al), gallium (Ga), or indium (In),

Rh는 할로겐으로 치환 또는 비치환된 C6-20 아릴기 또는 할로겐으로 치환 또는 비치환된 C1-20 알킬기일 수 있다.R h may be a halogen-substituted or unsubstituted C 6-20 aryl group or a halogen-substituted or unsubstituted C 1-20 alkyl group.

바람직하게는, 화학식 4로 표현되는 초촉매 화합물이 아래 화학식 4-2로 표현되는 화합물일 수 있다.Preferably, the supercatalyst compound represented by Formula 4 may be a compound represented by Formula 4-2 below.

[화학식 4-2][Formula 4-2]

Figure pat00005
Figure pat00005

또한, 촉매가 전이금속 화합물과 조촉매 화합물을 담지하는 담체를 더 포함할 수 있다.In addition, the catalyst may further include a carrier supporting the transition metal compound and the cocatalyst compound.

구체적으로, 담체가 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 바람직하게는, 담체가 실리카일 수 있다.Specifically, the carrier may include at least one selected from the group consisting of silica, alumina, and magnesia. Preferably, the carrier may be silica.

담체가 전이금속 화합물과 조촉매 화합물을 모두 담지할 수 있다. 이때, 담체에 담지되는 전이금속 화합물의 양이 담체 1 g을 기준으로 0.001~1 mmole이고, 담체에 담지되는 조촉매 화합물의 양이 담체 1 g을 기준으로 2~15 mmole일 수 있다.The carrier can support both the transition metal compound and the cocatalyst compound. At this time, the amount of the transition metal compound supported on the carrier may be 0.001 to 1 mmole based on 1 g of the carrier, and the amount of the cocatalyst compound supported on the carrier may be 2 to 15 mmole based on 1 g of the carrier.

본 발명의 다른 구체예에 따라서, 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체를 중합하는 단계를 포함하며, 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상인 올레핀계 중합체의 제조방법이 제공된다.According to another embodiment of the present invention, comprising the step of polymerizing an olefinic monomer in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by Formula 1 below, and the density is There is provided a method for producing an olefin-based polymer in which 0.85 to 0.95 g/cm 3 and the total amount of unsaturated groups in the molecule is 0.5 mole% or more.

[화학식 1][Formula 1]

Figure pat00006
Figure pat00006

위 화학식 1에서, M, X, Q 및 R1 내지 R14는 위에서 정의한 바와 같다.In Formula 1 above, M, X, Q and R 1 to R 14 are as defined above.

구체적으로, 본 발명에 따른 올레핀계 중합체는 올레핀계 단량체와 올레핀계 공단량체가 공중합되어 제조될 수 있다.Specifically, the olefin-based polymer according to the present invention may be prepared by copolymerizing an olefin-based monomer and an olefin-based comonomer.

이때, 올레핀계 단량체가 에틸렌이고, 올레핀계 공단량체가 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 및 1-헥사데센으로 구성되는 군으로부터 선택되는 하나 이상일 수 있다. 바람직하게는, 올레핀계 단량체가 에틸렌이고 올레핀계 공단량체가 1-옥텐이다.At this time, the olefinic monomer is ethylene, and the olefinic comonomer is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1- It may be one or more selected from the group consisting of undecene, 1-dodecene, 1-tetradecene and 1-hexadecene. Preferably, the olefinic monomer is ethylene and the olefinic comonomer is 1-octene.

본 발명의 구체예에 따른 올레핀계 중합체는 분자 내에 불포화 기를 다량 함유하여 개질이 용이하다.The olefin-based polymer according to an embodiment of the present invention contains a large amount of unsaturated groups in the molecule, so that modification is easy.

이하, 본 발명에 관하여 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 구체예에 따른 올레핀계 중합체는 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체가 중합되어 제조되며, 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상이다.The olefin-based polymer according to an embodiment of the present invention is prepared by polymerizing an olefin-based monomer in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by the following formula (1), and has a density Is 0.85 to 0.95 g/cm 3, and the total amount of unsaturated groups in the molecule is 0.5 mole% or more.

또한, 본 발명의 다른 구체예에 따른 올레핀계 중합체의 제조방법은 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체를 중합하는 단계를 포함하며, 올레핀계 중합체는 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상이다.In addition, the method for producing an olefin-based polymer according to another embodiment of the present invention polymerizes an olefin-based monomer in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by the following formula (1). The olefin-based polymer has a density of 0.85 to 0.95 g/cm 3, and the total amount of unsaturated groups in the molecule is 0.5 mole% or more.

올레핀 중합용 촉매Catalyst for olefin polymerization

본 발명의 일 구체예에 따른 올레핀계 중합체를 제조하기 위한 촉매는 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함한다.A catalyst for preparing an olefin-based polymer according to an embodiment of the present invention includes at least one transition metal compound and at least one cocatalyst compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00007
Figure pat00007

위 화학식 1에서, M은 4족 전이금속으로서, 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다. 구체적으로, M은 지르코늄 또는 하프늄일 수 있다.In Formula 1 above, M is a Group 4 transition metal, and may be titanium (Ti), zirconium (Zr), or hafnium (Hf). Specifically, M may be zirconium or hafnium.

X는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이다. 구체적으로, X는 각각 독립적으로 할로겐 또는 치환 또는 비치환된 C1-20 알킬일 수 있다.Each X is independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene. Specifically, each of X may independently be halogen or substituted or unsubstituted C 1-20 alkyl.

Q는 탄소(C), 실리콘(Si), 게르마늄(Ge) 또는 주석(Sn)이다. 구체적으로, Q는 탄소 또는 실리콘일 수 있다.Q is carbon (C), silicon (Si), germanium (Ge) or tin (Sn). Specifically, Q may be carbon or silicon.

R1 내지 R14는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 치환 또는 비치환된 C1-20 알킬아미도, 치환 또는 비치환된 C6-20 아릴아미도, 치환 또는 비치환된 C1-20 알킬리덴, 또는 치환 또는 비치환된 C1-20 실릴이다. 이때, R1 내지 R12은 각각 독립적으로 인접한 기가 연결되어 치환 또는 비치환된 포화 또는 불포화 C4-20 고리를 형성할 수 있다.R 1 to R 14 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 6-20 aryl, substituted or unsubstituted C 1-20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 alkyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 3-20 heteroaryl , Substituted or unsubstituted C 1-20 alkylamido, substituted or unsubstituted C 6-20 arylamido, substituted or unsubstituted C 1-20 alkylidene, or substituted or unsubstituted C 1-20 silyl to be. At this time, R 1 to R 12 may each independently connect adjacent groups to form a substituted or unsubstituted saturated or unsaturated C 4-20 ring.

구체적으로, R1 내지 R12는 각각 독립적으로 수소 또는 치환 또는 비치환된 C1-20 알킬이고, R13과 R14는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 또는 치환 또는 비치환된 C6-20 아릴일 수 있다.Specifically, R 1 to R 12 are each independently hydrogen or substituted or unsubstituted C 1-20 alkyl, and R 13 and R 14 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, or substituted Or it may be unsubstituted C 6-20 aryl.

한편, 조촉매 화합물은 아래 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물 중 하나 이상을 포함할 수 있다.Meanwhile, the cocatalyst compound may include at least one of a compound represented by Formula 2 below, a compound represented by Formula 3, and a compound represented by Formula 4.

[화학식 2][Formula 2]

Figure pat00008
Figure pat00008

위 화학식 2에서, n은 2 이상의 정수이고, Ra는 할로겐 원자, C1-20 탄화수소 또는 할로겐으로 치환된 C1-20 탄화수소일 수 있다. 구체적으로, Ra는 메틸, 에틸, n-부틸 또는 이소부틸일 수 있다.In Formula 2 above, n is an integer of 2 or more, and R a may be a halogen atom, a C 1-20 hydrocarbon, or a C 1-20 hydrocarbon substituted with a halogen. Specifically, R a may be methyl, ethyl, n -butyl or isobutyl.

[화학식 3][Formula 3]

Figure pat00009
Figure pat00009

위 화학식 3에서, D는 알루미늄(Al) 또는 보론(B)이고, Rb, Rc 및 Rd는 각각 독립적으로 할로겐 원자, C1-20 탄화수소기, 할로겐으로 치환된 C1-20 탄화수소기 또는 C1-20 알콕시기이다. 구체적으로, D가 알루미늄(Al)일 때, Rb, Rc 및 Rd는 각각 독립적으로 메틸 또는 이소부틸일 수 있고, D가 보론(B)일 때, Rb, Rc 및 Rd는 각각 펜타플루오로페닐일 수 있다.In Formula 3 above, D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, a C 1-20 hydrocarbon group substituted with a halogen Or a C 1-20 alkoxy group. Specifically, when D is aluminum (Al), R b , R c and R d may each independently be methyl or isobutyl, and when D is boron (B), R b , R c and R d are Each may be pentafluorophenyl.

[화학식 4][Formula 4]

[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]- [LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -

위 화학식 4에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H]+ 및 [L]+는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴기이거나 치환 또는 비치환된 C1-20 알킬기이다. 구체적으로, [L-H]+는 디메틸아닐리늄 양이온일 수 있고, [Z(A)4]-는 [B(C6F5)4]-일 수 있으며, [L]+는 [(C6H5)3C]+일 수 있다.In Formula 4 above, L is a neutral or cationic Lewis base, [LH] + and [L] + are Bronsted acid, Z is a Group 13 element, and A is each independently substituted or unsubstituted C 6 It is a -20 aryl group or a substituted or unsubstituted C 1-20 alkyl group. Specifically, [LH] + may be a dimethylanilinium cation dimethyl, [Z (A) 4] - is [B (C 6 F 5) 4] - may be a, [L] + is [(C 6 H 5 ) 3 C] + can be.

구체적으로, 위 화학식 2로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등을 들 수 있으며, 메틸알루미녹산이 바람직하나, 이들로 제한되는 것은 아니다.Specifically, examples of the compound represented by Formula 2 above include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, and the like, and methylaluminoxane is preferred, but is not limited thereto.

위 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등을 들 수 있으며, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄이 바람직하나, 이들로 제한되는 것은 아니다.Examples of the compound represented by Formula 3 above include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, triisopropyl aluminum, tri- s -butyl aluminum, tricyclopentyl aluminum , Tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri- p -tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl Boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, and trimethyl aluminum, triethyl aluminum and triisobutyl aluminum are preferred, but are not limited thereto.

구체적으로, 화학식 4로 표현되는 초촉매 화합물은 아래 화학식 4-1로 표현되는 화합물일 수 있다.Specifically, the supercatalyst compound represented by Formula 4 may be a compound represented by Formula 4-1 below.

[화학식 4-1][Formula 4-1]

Figure pat00010
Figure pat00010

위 화학식 4-1에서, Re, Rf 및 Rg는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬기, 치환 또는 비치환된 C2-20 알케닐기, 치환 또는 비치환된 C6-20 아릴기, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬일 수 있다.In Formula 4-1 above, R e , R f and R g are each independently hydrogen, a substituted or unsubstituted C 1-20 alkyl group, a substituted or unsubstituted C 2-20 alkenyl group, a substituted or unsubstituted C It may be a 6-20 aryl group, a substituted or unsubstituted C 1-20 alkyl C 6-20 aryl, a substituted or unsubstituted C 6-20 aryl C 1-20 alkyl.

Y는 원소 주기율표의 13족 원소일 수 있고, 예를 들어 보론(B), 알루미늄(Al), 갈륨(Ga) 또는 인듐(In)일 수 있다.Y may be an element of Group 13 of the periodic table of the elements, and may be, for example, boron (B), aluminum (Al), gallium (Ga), or indium (In).

Rh는 할로겐으로 치환 또는 비치환된 C6-20 아릴기 또는 할로겐으로 치환 또는 비치환된 C1-20 알킬기일 수 있다.R h may be a halogen-substituted or unsubstituted C 6-20 aryl group or a halogen-substituted or unsubstituted C 1-20 alkyl group.

위 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있으나, 이들로 제한되는 것은 아니다.Examples of the compound represented by Formula 4 above include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra( p -tolyl) Boron, trimethylammonium tetra ( o , p -dimethylphenyl) boron, tributylammonium tetra ( p -trifluoromethylphenyl) boron, trimethylammonium tetra ( p -trifluoromethylphenyl) boron, tributylammonium tetra Pentafluorophenyl boron, N,N-diethylanilinium tetraphenyl boron, N,N-diethylanilinium tetrapentafluorophenyl boron, diethylammonium tetrapentafluorophenyl boron, triphenylphosphonium Tetraphenyl boron, trimethylphosphonium tetraphenyl boron, triethyl ammonium tetraphenyl aluminum, tributyl ammonium tetraphenyl aluminum, trimethyl ammonium tetraphenyl aluminum, tripropyl ammonium tetraphenyl aluminum, trimethyl ammonium tetra ( p -tolyl ) Aluminum, tripropylammonium tetra ( p -tolyl) aluminum, triethyl ammonium tetra ( o , p -dimethylphenyl) aluminum, tributyl ammonium tetra ( p -trifluoromethylphenyl) aluminum, trimethyl ammonium tetra ( p -trifluoromethylphenyl) aluminum, tributylammonium tetrapentafluorophenylaluminum, N,N-diethylanilinium tetraphenylaluminum, N,N-diethylanilinium tetrapentafluorophenylaluminum, di Ethyl ammonium tetrapenta tetraphenyl aluminum, triphenyl phosphonium tetraphenyl aluminum, trimethyl phosphonium tetraphenyl aluminum, tripropyl ammonium tetra ( p -tolyl) boron, triethyl ammonium tetra ( o , p -dimethylphenyl) boron , Tributylammonium tetra ( p -trifluoromethylphenyl) boron, triphenyl carbonium tetra ( p -trifluoromethylphenyl) boron, and liphenylcarbonium tetrapentafluorophenyl boron, etc., but these Is not limited to.

바람직하게는, 위 화학식 4로 표현되는 초촉매 화합물이 아래 화학식 4-2로 표현되는 화합물일 수 있다.Preferably, the supercatalyst compound represented by Formula 4 above may be a compound represented by Formula 4-2 below.

[화학식 4-2][Formula 4-2]

Figure pat00011
Figure pat00011

본 발명의 바람직한 구체예에 있어서, 올레핀 중합용 촉매가 전이금속 화합물을 담지하는 담체를 더 포함할 수 있다.In a preferred embodiment of the present invention, the catalyst for olefin polymerization may further include a carrier supporting a transition metal compound.

이때, 담체는 표면에 히드록시기를 함유하는 물질을 포함할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 히드록시기와 실록산기를 갖는 물질이 사용될 수 있다. 예컨대, 담체는 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 구체적으로, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 담체로서 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 또한, 이들은 탄소, 제올라이트, 염화 마그네슘 등을 포함할 수도 있다. 다만, 담체가 이들로 제한되는 것은 아니며, 전이금속 화합물과 조촉매 화합물을 담지할 수 있는 것이면 특별히 제한되지 않는다.In this case, the carrier may include a material containing a hydroxy group on the surface, and preferably, a material having a highly reactive hydroxy group and a siloxane group, which is dried to remove moisture from the surface, may be used. For example, the carrier may include at least one selected from the group consisting of silica, alumina, and magnesia. Specifically, silica, silica-alumina, and silica-magnesia dried at high temperature may be used as a carrier, and these are usually oxides such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 , Carbonate, sulfate, and nitrate components. In addition, they may contain carbon, zeolite, magnesium chloride, and the like. However, the carrier is not limited thereto, and is not particularly limited as long as it can support the transition metal compound and the cocatalyst compound.

담체는 평균 입도가 10~250 ㎛일 수 있으며, 바람직하게는 평균 입도가 10~150 ㎛일 수 있고, 보다 바람직하게는 20~100 ㎛일 수 있다.The carrier may have an average particle size of 10 to 250 µm, preferably an average particle size of 10 to 150 µm, and more preferably 20 to 100 µm.

담체의 미세기공 부피는 0.1~10 cc/g일 수 있으며, 바람직하게는 0.5~5 cc/g일 수 있고, 보다 바람직하게는 1.0~3.0 cc/g일 수 있다.The micropore volume of the carrier may be 0.1 to 10 cc/g, preferably 0.5 to 5 cc/g, and more preferably 1.0 to 3.0 cc/g.

담체의 비표면적은 1~1,000 ㎡/g일 수 있으며, 바람직하게는 100~800 ㎡/g일 수 있고, 보다 바람직하게는 200~600 ㎡/g일 수 있다.The specific surface area of the carrier may be 1 to 1,000 m 2 /g, preferably 100 to 800 m 2 /g, more preferably 200 to 600 m 2 /g.

바람직한 일 실시예에서, 담체가 실리카일 경우, 실리카는 건조 온도는 200~900℃일 수 있다. 건조 온도는 바람직하게는 300~800℃, 보다 바람직하게는 400~700℃일 수 있다. 건조 온도가 200℃ 미만일 경우에는 수분이 너무 많아서 표면의 수분과 조촉매 화합물이 반응하게 되고, 900℃를 초과하게 되면 담체의 구조가 붕괴될 수 있다.In a preferred embodiment, when the carrier is silica, the silica may have a drying temperature of 200 to 900°C. The drying temperature may be preferably 300 to 800°C, more preferably 400 to 700°C. When the drying temperature is less than 200°C, there is too much moisture so that the moisture on the surface and the cocatalyst compound react, and when it exceeds 900°C, the structure of the carrier may collapse.

건조된 실리카 내의 히드록시기의 농도는 0.1~5 mmole/g일 수 있으며, 바람직하게는 0.7~4 mmole/g일 수 있고, 보다 바람직하게는 1.0~2 mmole/g일 수 있다. 히드록시기의 농도가 0.1 mmole/g 미만이면 제1 조촉매 화합물의 담지량이 낮아지며, 5 mmole/g을 초과하면 촉매 성분이 불활성화되는 문제점이 발생할 수 있다.The concentration of the hydroxy group in the dried silica may be 0.1 to 5 mmole/g, preferably 0.7 to 4 mmole/g, and more preferably 1.0 to 2 mmole/g. If the concentration of the hydroxy group is less than 0.1 mmole/g, the amount of the first cocatalyst compound is lowered, and if it exceeds 5 mmole/g, the catalyst component may be deactivated.

담체에 담지되는 전이금속 화합물의 양은 담체 1 g을 기준으로 0.001~1 mmole일 수 있다. 전이금속 화합물과 담체의 비가 위 범위를 만족하면, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리하다.The amount of the transition metal compound supported on the carrier may be 0.001 to 1 mmole based on 1 g of the carrier. When the ratio between the transition metal compound and the carrier satisfies the above range, it exhibits an appropriate supported catalytic activity, which is advantageous in terms of maintaining catalyst activity and economic efficiency.

담체에 담지되는 조촉매 화합물의 양은 담체 1 g을 기준으로 2~15 mmole일 수 있다. 조촉매 화합물과 담체의 비가 위 범위를 만족하면, 촉매의 활성 유지 및 경제성 측면에서 유리하다.The amount of the cocatalyst compound supported on the carrier may be 2 to 15 mmole based on 1 g of the carrier. If the ratio of the cocatalyst compound and the carrier satisfies the above range, it is advantageous in terms of maintaining the activity of the catalyst and economical efficiency.

담체는 1종 또는 2종 이상이 사용될 수 있다. 예를 들어, 1종의 담체에 전이금속 화합물과 조촉매 화합물이 모두 담지될 수도 있고, 2종 이상의 담체에 전이금속 화합물과 조촉매 화합물이 각각 담지될 수도 있다. 또한, 전이금속 화합물과 조촉매 화합물 중 하나만이 담체에 담지될 수도 있다.One or two or more carriers may be used. For example, both a transition metal compound and a cocatalyst compound may be supported on one carrier, or a transition metal compound and a cocatalyst compound may be supported on two or more carriers, respectively. In addition, only one of the transition metal compound and the cocatalyst compound may be supported on the carrier.

올레핀 중합용 촉매에 사용될 수 있는 전이금속 화합물 및/또는 조촉매 화합물을 담지하는 방법으로서, 물리적 흡착 방법 또는 화학적 흡착 방법이 사용될 수 있다.As a method of supporting a transition metal compound and/or a cocatalyst compound that can be used in a catalyst for olefin polymerization, a physical adsorption method or a chemical adsorption method may be used.

예를 들어, 물리적 흡착 방법은 전이금속 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법, 전이금속 화합물과 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법, 또는 전이금속 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하여 전이금속 화합물이 담지된 담체를 제조하고, 이와 별개로 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하여 조촉매 화합물이 담지된 담체를 제조한 후, 이들을 혼합하는 방법 등일 수 있다.For example, the physical adsorption method is a method in which a solution in which a transition metal compound is dissolved is in contact with a carrier and then dried, a solution in which a transition metal compound and a cocatalyst compound are dissolved in contact with a carrier and then dried, or a transition metal compound This dissolved solution is brought into contact with a carrier and then dried to prepare a carrier carrying a transition metal compound. Separately, a solution in which the cocatalyst compound is dissolved is brought into contact with the carrier and dried to prepare a carrier carrying the cocatalyst compound. After that, it may be a method of mixing them, or the like.

화학적 흡착 방법은 담체의 표면에 조촉매 화합물을 먼저 담지시킨 후, 조촉매 화합물에 전이금속 화합물을 담지시키는 방법, 또는 담체의 표면의 작용기(예를 들어, 실리카의 경우 실리카 표면의 히드록시기(-OH))와 촉매 화합물을 공유결합시키는 방법 등일 수 있다.In the chemical adsorption method, a cocatalyst compound is first supported on the surface of a carrier, and then a transition metal compound is supported on the cocatalyst compound, or a functional group on the surface of the carrier (e.g., in the case of silica, a hydroxy group (-OH )) and the catalyst compound may be covalently bonded.

올레핀 중합Olefin polymerization

본 발명의 일 구체예에 따른 올레핀계 중합체는 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체를 중합함으로써 제조된다.The olefin-based polymer according to an embodiment of the present invention is prepared by polymerizing an olefin-based monomer in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00012
Figure pat00012

위 화학식 1에서, M, X, Q 및 R1 내지 R14는 위 올레핀 중합용 촉매의 항목에서 정의한 바와 같다.In Formula 1 above, M, X, Q and R 1 to R 14 are as defined in the section of the catalyst for olefin polymerization above.

조촉매 화합물은 위 올레핀 중합용 촉매의 항목에서 설명한 바와 같다.The cocatalyst compound is as described in the section of the catalyst for olefin polymerization above.

본 발명의 바람직한 구체예에 있어서, 올레핀 중합용 촉매가 전이금속 화합물을 담지하는 담체를 더 포함할 수 있다. 여기서, 담체는 위 올레핀 중합용 촉매의 항목에서 설명한 바와 같다.In a preferred embodiment of the present invention, the catalyst for olefin polymerization may further include a carrier supporting a transition metal compound. Here, the carrier is as described in the section of the catalyst for olefin polymerization above.

본 발명에 따른 올레핀계 중합체는 올레핀계 단량체가 단독 중합되거나 올레핀계 단량체와 올레핀계 공단량체의 공중합되어 제조될 수 있다. 본 발명의 바람직한 구체예에 있어서, 올레핀계 중합체는 올레핀계 단량체와 올레핀계 공단량체가 공중합되어 제조될 수 있다.The olefin-based polymer according to the present invention may be prepared by polymerization of an olefin-based monomer alone or copolymerization of an olefin-based monomer and an olefin-based comonomer. In a preferred embodiment of the present invention, the olefin-based polymer may be prepared by copolymerizing an olefin-based monomer and an olefin-based comonomer.

예를 들어, 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 또는 1-헥사데센 등일 수 있고, 올레핀계 중합체는 위에서 예시된 올레핀계 단량체를 1종만 포함하는 단독 중합체이거나 2종 이상 포함하는 공중합체일 수 있다. 본 발명의 바람직한 구체예에 있어서, 올레핀계 단량체가 에틸렌이고, 올레핀계 공단량체가 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 및 1-헥사데센으로 구성되는 군으로부터 선택되는 하나 이상일 수 있다. 바람직하게는, 올레핀계 단량체가 에틸렌이고 올레핀계 공단량체가 1-옥텐일 수 있다.For example, the olefinic monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 -It may be dodecene, 1-tetradecene, 1-hexadecene, and the like, and the olefin-based polymer may be a homopolymer including only one olefinic monomer or a copolymer including two or more olefinic monomers exemplified above. In a preferred embodiment of the present invention, the olefinic monomer is ethylene, and the olefinic comonomer is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene. , 1-decene, 1-undecene, 1-dodecene, 1-tetradecene and 1-hexadecene may be one or more selected from the group consisting of. Preferably, the olefinic monomer may be ethylene and the olefinic comonomer may be 1-octene.

여기서, 에틸렌의 함량은 55~99.9 중량%인 것이 바람직하고, 90~99.9 중량%인 것이 더욱 바람직하다. 알파-올레핀계 공단량체의 함량은 0.1~45 중량%가 바람 직하고, 0.1~10 중량%인 것이 더욱 바람직하다.Here, the content of ethylene is preferably 55 to 99.9% by weight, more preferably 90 to 99.9% by weight. The content of the alpha-olefin comonomer is preferably 0.1 to 45% by weight, more preferably 0.1 to 10% by weight.

본 발명의 구체예에 따른 올레핀계 중합체는, 예를 들어 자유 라디칼(free radical), 양이온(cationic), 배위(coordination), 축합(condensation), 첨가(addition) 등의 중합반응에 의해 중합될 수 있으나, 이들로 제한되는 것은 아니다.The olefin-based polymer according to an embodiment of the present invention may be polymerized by polymerization such as free radical, cationic, coordination, condensation, and addition. However, it is not limited to these.

바람직한 실시예로서, 올레핀계 중합체는 기상 중합법, 용액 중합법, 슬러리 중합법 또는 괴상 중합법 등으로 제조될 수 있다. 이때, 각각의 중합 반응의 조건은 사용되는 올레핀 중합용 촉매의 상태(균일상 또는 불균일상(담지형)), 중합 방법, 목적하는 중합 결과 또는 중합체의 형태 등에 따라 다양하게 변형될 수 있다.As a preferred embodiment, the olefin-based polymer may be prepared by a gas phase polymerization method, a solution polymerization method, a slurry polymerization method, or a bulk polymerization method. At this time, the conditions of each polymerization reaction may be variously modified depending on the state of the catalyst for olefin polymerization used (homogeneous or heterogeneous (supported)), a polymerization method, a desired polymerization result, or a form of a polymer.

예를 들어, 올레핀계 중합체가 용액 중합법 또는 슬러리 중합법으로 제조되는 경우, 사용될 수 있는 용매의 예로서, 펜탄, 헥산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 C5-12 지방족 탄화수소 용매; 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 및 이들의 혼합물 등을 들 수 있으나, 이들로 제한되는 것은 아니다.For example, when the olefin-based polymer is prepared by a solution polymerization method or a slurry polymerization method, as an example of a solvent that can be used, a C 5-12 aliphatic hydrocarbon solvent such as pentane, hexane, heptane, nonane, decane and isomers thereof ; Aromatic hydrocarbon solvents such as toluene and benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; And mixtures thereof, and the like, but are not limited thereto.

본 발명의 구체예에 따른 올레핀계 중합체의 제조방법에 있어서, 올레핀 중합용 촉매의 사용량은 특별히 한정되지 않으나, 예를 들면, 중합 반응계 내에서 전이금속 화합물의 중심 금속(즉, 티타늄, 지르코늄 또는 하프늄)의 농도가 1×10-5 mole/l 내지 9×10-5 mole/l일 수 있다.In the method for producing an olefin-based polymer according to an embodiment of the present invention, the amount of the catalyst for olefin polymerization is not particularly limited, but, for example, the central metal of the transition metal compound (ie, titanium, zirconium or hafnium) in the polymerization reaction system. ) May have a concentration of 1×10 -5 mole/l to 9×10 -5 mole/l.

예를 들어, 올레핀계 단량체의 중합은 배치식, 반연속식 또는 연속식으로 수행될 수 있다. 또한, 올레핀계 단량체의 중합은 상이한 반응 조건을 갖는 둘 이상의 단계로도 수행될 수 있으며, 최종 중합체의 분자량은 중합 온도를 변화시키거나, 반응기 내에 수소를 주입하는 방법으로 조절할 수 있다.For example, the polymerization of the olefin-based monomer may be carried out in a batch, semi-continuous or continuous manner. In addition, the polymerization of the olefinic monomer may be carried out in two or more stages having different reaction conditions, and the molecular weight of the final polymer may be controlled by changing the polymerization temperature or by injecting hydrogen into the reactor.

위에서 설명한 제조방법에 의해 제조되는 본 발명의 구체예에 따른 올레핀계 중합체는 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상이다.The olefin-based polymer according to an embodiment of the present invention prepared by the above-described manufacturing method has a density of 0.85 to 0.95 g/cm 3, and the total amount of unsaturated groups in the molecule is 0.5 mole% or more.

구체적으로, 본 발명의 구체예에 따른 올레핀계 중합체는 밀도가 0.85~0.95 g/㎤이다. 바람직하게는, 올레핀계 중합체의 밀도가 0.85~0.93 g/㎤ 또는 0.85~0.92 g/㎤일 수 있다.Specifically, the olefin-based polymer according to an embodiment of the present invention has a density of 0.85 to 0.95 g/cm 3. Preferably, the density of the olefin-based polymer may be 0.85 to 0.93 g/cm 3 or 0.85 to 0.92 g/cm 3.

본 발명의 구체예에 따른 올레핀계 중합체는 분자 내의 불포화 기의 총량이 0.5 mole% 이상이다. 바람직하게는, 올레핀계 중합체의 분자 내 불포화 기의 총량이 0.5 mole% 내지 1.3 mole%, 0.52 mole% 내지 1.3 mole% 또는 0.55 mole% 내지 1.25 mole%일 수 있다.In the olefin-based polymer according to an embodiment of the present invention, the total amount of unsaturated groups in the molecule is 0.5 mole% or more. Preferably, the total amount of unsaturated groups in the molecule of the olefin-based polymer may be 0.5 mole% to 1.3 mole%, 0.52 mole% to 1.3 mole%, or 0.55 mole% to 1.25 mole%.

실시예Example

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 단, 아래의 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

제조예Manufacturing example

(1) (3,6- di - t - butylfluorenyl ) lithium의 합성 (1) Synthesis of (3,6- di - t - butylfluorenyl) lithium

3,6-디-t-부틸플루오렌(3,6-di-t-butylfluorene; 5 g, 18 mmole)을 에테르(75 ㎖)에 희석한 용액에 n-부틸리튬(7.8 g, 18.3 mmole, 1.6 M 헥산 용액)을 0℃에서 천천히 첨가한 후, 온도를 상온으로 천천히 올린 뒤 12시간 이상 교반하였다. 반응 종결 후 진공하에서 모든 용매를 제거한 후, 노란색의 고체 화합물 5.11 g(100%)을 얻었다.In a solution of 3,6-di- t -butylfluorene (3,6-di- t- butylfluorene; 5 g, 18 mmole) diluted in ether (75 mL), n -butyllithium (7.8 g, 18.3 mmole, 1.6 M hexane solution) was slowly added at 0°C, and the temperature was slowly raised to room temperature, followed by stirring for 12 hours or more. After completion of the reaction, all solvents were removed under vacuum, and 5.11 g (100%) of a yellow solid compound was obtained.

(2) 1-( cyclopentadienyl )-1-(3,6- di - t - butylfluorenyl )-1,1-diphenylmethane의 합성 (2) 1-( cyclopentadienyl )-1-(3,6- di - t - butylfluorenyl )-1,1-diphenylmethane synthesis

(3,6-디-t-부틸플루오레닐) 리튬((3,6-di-t-butylfluorenyl) lithium; 5.11 g, 18 mmole)을 에테르(50 ㎖)에 희석한 용액에 디페닐풀벤(diphenylfulvene; 4.14 g, 18.0 mmole)을 에테르(25 ㎖)에 희석한 용액을 상온에서 천천히 첨가한 후 12시간 동안 교반하였다. 증류수 30 ㎖를 첨가한 후, 생성된 연미색의 고체를 여과하고 진공하에서 건조하여 화합물 7.0 g(76%)을 얻었다.(3,6-di- t -butylfluorenyl) lithium ((3,6-di- t -butylfluorenyl) lithium; 5.11 g, 18 mmole) was diluted in ether (50 ml) to diphenyl fulbene ( A solution obtained by diluting diphenylfulvene; 4.14 g, 18.0 mmole) in ether (25 ml) was slowly added at room temperature, followed by stirring for 12 hours. After adding 30 ml of distilled water, the resulting pale off-white solid was filtered and dried under vacuum to obtain 7.0 g (76%) of a compound.

1H-NMR (CDCl3, 300 MHz): δ 8.40-8.00 (br, 3H), 7.49 (m, 4H), 7.21-6.80 (m, 9H), 6.65-5.82 (br, 3H), 5.47 (s, 1H), 1.30 (s, 18H). 1 H-NMR (CDCl 3 , 300 MHz): δ 8.40-8.00 (br, 3H), 7.49 (m, 4H), 7.21-6.80 (m, 9H), 6.65-5.82 (br, 3H), 5.47 (s , 1H), 1.30 (s, 18H).

(3) Diphenylmethylidene [( cyclopentadienyl )-(3,6- di - t - butylfluorenyl )] dilithium의 합성 (3) Synthesis of Diphenylmethylidene [( cyclopentadienyl )-(3,6- di - t - butylfluorenyl )] dilithium

1-(사이클로펜타디에닐)-1-(3,6-디-t-부틸플루오레닐)-1,1-디페닐메탄(1-(cyclopentadienyl)-1-(3,6-di-t-butylfluorenyl)-1,1-diphenylmethane; 5.08 g, 9.99 mmole)을 에테르(20 ㎖)에 희석한 용액에 n-부틸리튬(9.0 g, 21.1 mmole, 1.6 M 헥산 용액)을 0℃에서 천천히 첨가한 후, 온도를 서서히 상온으로 올려 18시간 동안 교반하였다. 생성된 형광 주황색의 고체를 여과하여 헥산으로 세척한 후 진공하에서 건조하여 화합물 5.17 g(100%)을 얻었다.1- (cyclopentadienyl) -1- (3,6-di - t - butyl-fluorenyl) diphenyl methane-1,1-di (1- (cyclopentadienyl) -1- (3,6-di-t -butylfluorenyl)-1,1-diphenylmethane; 5.08 g, 9.99 mmole) in ether (20 mL) was diluted with n -butyllithium (9.0 g, 21.1 mmole, 1.6 M hexane solution) at 0 ℃ slowly. After that, the temperature was gradually raised to room temperature and stirred for 18 hours. The produced fluorescent orange solid was filtered, washed with hexane, and dried under vacuum to obtain 5.17 g (100%) of a compound.

(4) Diphenylmethylidene [( cyclopentadienyl )-(3,6- di - t - butylfluorenyl )] zirconium dichloride의 합성 (4) Synthesis of Diphenylmethylidene [( cyclopentadienyl )-(3,6- di - t - butylfluorenyl )] zirconium dichloride

디페닐메틸리덴 [(사이클로펜타디에닐)-(3,6-디-t-부틸플루오레닐)] 디리튬(diphenylmethylidene [(cyclopentadienyl)-(3,6-di-t-butylfluorenyl)] dilithium; 1.0 g, 1.93 mmole)을 헥산(30 ㎖)에 희석한 용액에 염화지르코늄(ZrCl4; 450 ㎎, 1.93 mmole)을 헥산(3 ㎖)에 희석한 용액을 -30℃에서 천천히 첨가한 후, 온도를 서서히 상온으로 올려 12시간 동안 교반하였다. 반응 종결 후 톨루엔으로 추출하여 여과하였다. 진공하에서 톨루엔을 제거한 후 펜탄으로 세척하여 빨간색 고체 화합물 1.1 g(85%)을 얻었다.Diphenyl methylidene [(cyclopentadienyl) - (3,6-di-t-butyl-fluorenyl)] dilithium (diphenylmethylidene [(cyclopentadienyl) - ( 3,6-di-t-butylfluorenyl)] dilithium; 1.0 g, 1.93 mmole) was diluted with hexane (30 ml) to a solution of zirconium chloride (ZrCl 4 ; 450 mg, 1.93 mmole) diluted in hexane (3 ml) was slowly added at -30°C. Was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, the mixture was extracted with toluene and filtered. Toluene was removed under vacuum and washed with pentane to obtain 1.1 g (85%) of a red solid compound.

1H-NMR (C6D6, 300 MHz): δ 8.32 (s, 2H), 7.64 (t, 4H), 7.15-6.89 (m, 8H), 6.40 (d, 2H), 6.15 (t, 2H), 5.55 (t, 2H), 1.35 (s, 18H). 1 H-NMR (C 6 D 6 , 300 MHz): δ 8.32 (s, 2H), 7.64 (t, 4H), 7.15-6.89 (m, 8H), 6.40 (d, 2H), 6.15 (t, 2H ), 5.55 (t, 2H), 1.35 (s, 18H).

(5) Diphenylmethylidene [( cyclopentadienyl )-(3,6- di - t - butylfluorenyl )] zirconium dimethyl의 합성 (5) Synthesis of Diphenylmethylidene [( cyclopentadienyl )-(3,6- di - t - butylfluorenyl )] zirconium dimethyl

디페닐메틸리덴 [(사이클로펜타디에닐)-(3,6-디-t-부틸플루오레닐)] 지르코늄 디클로라이드(diphenylmethylidene [(cyclopentadienyl)-(3,6-di-t-butylfluorenyl)] zirconium dichloride; 1.075 g, 1.607 mmole)을 톨루엔(50 ㎖)에 희석한 용액에 MeMgBr(1.386 ㎎, 4.018 mmole, 3.0 M 디에틸에테르 용액)을 톨루엔(10 ㎖)에 희석한 용액을 -30℃에서 천천히 첨가한 후, 70℃에서 환류시키면서 1.5시간 동안 교반하였다. 반응 종결 후 톨루엔으로 추출하여 여과하였다. 진공하에서 톨루엔을 제거한 후 헥산으로 세척하여 노란색 고체 화합물인 디페닐메틸리덴 [(사이클로펜타디에닐)-(3,6-디-t-부틸플루오레닐)] 지르코늄 디메틸 737 ㎎(73 %)을 얻었다.Diphenyl methylidene [(cyclopentadienyl) - (3,6-di-t-butyl-fluorenyl)] zirconium dichloride (diphenylmethylidene [(cyclopentadienyl) - (3,6-di-t-butylfluorenyl) zirconium dichloride; 1.075 g, 1.607 mmole) was diluted in toluene (50 ml) and MeMgBr (1.386 mg, 4.018 mmole, 3.0 M diethyl ether solution) was diluted in toluene (10 ml) slowly at -30°C. After addition, the mixture was stirred for 1.5 hours while refluxing at 70°C. After completion of the reaction, the mixture was extracted with toluene and filtered. After removing the toluene under vacuum, washing with hexane to obtain a yellow solid compound, diphenylmethylidene [(cyclopentadienyl)-(3,6-di- t -butylfluorenyl)] zirconium dimethyl 737 mg (73%) Got it.

1H-NMR (C6D6, 300 MHz): δ 8.37 (s, 2H), 7.80 (d, 2H), 7.68 (d, 2H), 7.11-6.78 (m, 8H), 6.29 (d, 2H), 6.13 (t, 2H), 5.47 (t, 2H), 1.32 (s, 18H), -1.20 (s, 6H). 1 H-NMR (C 6 D 6 , 300 MHz): δ 8.37 (s, 2H), 7.80 (d, 2H), 7.68 (d, 2H), 7.11-6.78 (m, 8H), 6.29 (d, 2H) ), 6.13 (t, 2H), 5.47 (t, 2H), 1.32 (s, 18H), -1.20 (s, 6H).

실시예Example 1~11 1~11

2-리터 오토클레이브 반응기를 이용하여 위 제조예에서 얻어진 전이금속 화합물 촉매를 이용하여 에틸렌/1-옥텐 공중합체를 제조하였다. 먼저, 진공펌프를 사용하여 반응기 안의 수분과 불순물을 제거하였다. 진공 상태는 최소 3.0×10-1 torr 이하가 되도록 유지하였다. 그후, 아르곤(Ar) 가스를 이용하여 30분 이상 반응기를 퍼지(purge)하면서 반응기의 온도를 60℃로 올렸다. 이와 동시에, 글러브 박스(glove box) 내에서 촉매, 조촉매, 스캐빈저 및 1-옥텐을 정량하였다.An ethylene/1-octene copolymer was prepared using the transition metal compound catalyst obtained in Preparation Example above using a 2-liter autoclave reactor. First, moisture and impurities in the reactor were removed using a vacuum pump. The vacuum state was maintained to be at least 3.0 × 10 -1 torr or less. Thereafter, the temperature of the reactor was raised to 60°C while purging the reactor for at least 30 minutes using argon (Ar) gas. At the same time, the catalyst, cocatalyst, scavenger and 1-octene were quantified in a glove box.

정제된 용매(hexane)와 공중합체(1-옥텐)을 반응기에 투입하고, 용매 내부에 잔류하고 있는 산소, 수분, 불순물을 제거하기 위해 스캐빈저로서 1M 트리이소부틸 알루미늄(TiBAL) 0.95 ㎖를 투입하였다. 그후, 반응기의 교반기를 500 rpm으로 설정하고, 반응 온도에 도달하면 교반을 멈추고 촉매(제조예)와 조촉매(위 화학식 4-2의 화합물)를 아르곤 가스를 이용하여 반응기 내로 투입하였다. 이어서, 에틸렌을 약 30 bar의 압력으로 투입하고 교반과 동시에 반응을 시작하였다. 에틸렌 투입 후, 반응기의 압력이 25 bar가 되면 수소를 투입하였다. 에틸렌은 30 bar를 기준으로 연속적으로 투입하여 세미-회분식(semi-batch) 반응으로 진행하였다. 반응 온도는 60~120℃ 범위로 유지하였다.Purified solvent (hexane) and copolymer (1-octene) were added to the reactor, and 0.95 ml of 1M triisobutyl aluminum (TiBAL) was added as a scavenger to remove oxygen, moisture, and impurities remaining in the solvent. Was put in. Thereafter, the stirrer of the reactor was set to 500 rpm, and when the reaction temperature was reached, the stirring was stopped, and a catalyst (Preparation Example) and a cocatalyst (a compound of Formula 4-2 above) were introduced into the reactor using argon gas. Then, ethylene was added at a pressure of about 30 bar, and the reaction was started while stirring. After ethylene was added, when the pressure in the reactor reached 25 bar, hydrogen was added. Ethylene was continuously added based on 30 bar to proceed in a semi-batch reaction. The reaction temperature was maintained in the range of 60 ~ 120 ℃.

반응 시간이 5분이 되면, 에틸렌 투입과 교반을 정지하여 반응을 종결시켰다. 반응기 내의 용융된 중합체는 반응기 배출구를 통해 분리기로 이송하고, 미반응 에틸렌과 1-옥텐을 헥산 용매로부터 분리한 후, 중합체를 80℃의 진공 오븐에서 12시간 이상 건조하여 폴리올레핀을 얻었다.When the reaction time reached 5 minutes, the addition of ethylene and stirring were stopped to terminate the reaction. The molten polymer in the reactor was transferred to a separator through the outlet of the reactor, unreacted ethylene and 1-octene were separated from the hexane solvent, and the polymer was dried in a vacuum oven at 80° C. for 12 hours or longer to obtain a polyolefin.

각 실시예의 구체적인 중합 조건은 아래 표 1에 기재한 바와 같다.Specific polymerization conditions of each Example are as described in Table 1 below.

촉매
(μmole)
catalyst
(μmole)
조촉매
(μmole)
Cocatalyst
(μmole)
옥텐
(M)
Octen
(M)
온도
(℃)
Temperature
(℃)
수소
(g/min)
Hydrogen
(g/min)
중합체
(g)
polymer
(g)
활성
(KgPE/gCat-hr)
activation
(KgPE/gCat-hr)
실시예 1Example 1 44 2424 0.40.4 9090 -- 141.91141.91 677.9677.9 실시예 2Example 2 44 2424 0.80.8 9090 -- 172.00172.00 821.6821.6 실시예 3Example 3 22 1212 1.21.2 6565 0.10.1 219.68219.68 2098.82098.8 실시예 4Example 4 22 1212 1.61.6 9090 0.10.1 309.91309.91 2960.82960.8 실시예 5Example 5 33 1818 1.61.6 6565 0.10.1 227.81227.81 1450.91450.9 실시예 6Example 6 33 1818 1.21.2 6565 0.10.1 219.68219.68 1399.21399.2 실시예 7Example 7 33 1818 1.21.2 6565 0.50.5 239.11239.11 1522.91522.9 실시예 8Example 8 22 1212 1.21.2 9090 0.20.2 236.91236.91 2263.42263.4 실시예 9Example 9 33 1818 1.21.2 9090 0.20.2 227.83227.83 1421.11421.1 실시예 10Example 10 33 1818 1.61.6 9090 0.20.2 237.74237.74 2271.32271.3 실시예 11Example 11 22 1212 1.61.6 9090 0.20.2 234.20234.20 1491.61491.6

비교예Comparative example 1~7 1~7

비교를 위해 시중에서 구입이 가능한 선형 저밀도 폴리에틸렌 수지 7종(LG사의 LC190와 LC170, Dow사의 Engage 8100, Engage 8842, Affinity 1900, Affinity 1950 및 Affinity 1875)을 분석하였다.For comparison, seven commercially available linear low-density polyethylene resins (LC190 and LC170 from LG, Engage 8100, Engage 8842, Affinity 1900, Affinity 1950 and Affinity 1875 from Dow) were analyzed.

시험예Test example

위 실시예에서 얻은 올레핀 중합체와 비교예의 수지의 물성을 아래와 같은 방법 및 기준에 따라서 측정하였다. 그 결과를 아래 표 2에 나타내었다.The physical properties of the olefin polymer obtained in the above example and the resin of the comparative example were measured according to the following methods and standards. The results are shown in Table 2 below.

(1) 밀도(density)(1) density

ASTM D1505에 의거하여 측정하였다.It was measured according to ASTM D1505.

(2) 분자 내 불포화 함량(2) Unsaturated content in the molecule

중합체를 190℃에서 용융시켜 필름 형태의 시편을 제조한 후, 트리클로로에탄-d2(trichloroethane-d2) 용매를 사용하여 고온(120℃에서 1H-NMR(Agilent의 AS400)로 분석하였다. 각 불포화기의 해당 화학적 이동(chemical shift)에서 구간 적분을 통해 함량을 계산하였다.After the polymer to prepare a specimen in a film form by melting at 190 ℃, it was analyzed using ethane -d 2 (trichloroethane-d 2) a solvent trichlorobenzene at a high temperature (120 ℃ by 1 H-NMR (AS400 of Agilent). The content was calculated through section integration at the corresponding chemical shift of each unsaturated group.

밀도
(g/㎤)
density
(g/cm 3)
불포화 기 함량(개수/1000C)Unsaturated group content (number/1000C)
비닐렌Vinylene 3치환 올레핀Trisubstituted olefin 비닐vinyl 비닐리덴Vinylidene 합계Sum 합계
(mole%)
Sum
(mole%)
실시예 1Example 1 0.9160.916 1.06511.0651 1.14171.1417 0.27250.2725 0.22560.2256 2.70492.7049 0.540980.54098 실시예 2Example 2 0.8940.894 1.33961.3396 2.24802.2480 0.34320.3432 0.16160.1616 4.09244.0924 0.818480.81848 실시예 3Example 3 0.8710.871 0.74630.7463 2.09522.0952 0.16740.1674 0.42350.4235 3.43253.4325 0.686500.68650 실시예 4Example 4 0.8650.865 1.27741.2774 2.80732.8073 0.29850.2985 0.87780.8778 5.26105.2610 1.052201.05220 실시예 5Example 5 0.8580.858 0.89350.8935 2.00522.0052 0.19810.1981 0.50030.5003 3.59703.5970 0.719400.71940 실시예 6Example 6 0.8580.858 1.25231.2523 1.89061.8906 0.27340.2734 0.67520.6752 4.09154.0915 0.818300.81830 실시예 7Example 7 0.8650.865 0.74630.7463 0.77860.7786 3.06923.0692 0.43530.4353 5.17325.1732 1.034641.03464 실시예 8Example 8 0.8780.878 0.76430.7643 0.87910.8791 2.56992.5699 0.57760.5776 4.75404.7540 0.950800.95080 실시예 9Example 9 0.8800.880 1.27741.2774 0.96880.9688 2.85642.8564 0.72270.7227 5.60675.6067 1.121341.12134 실시예 10Example 10 0.8650.865 0.89350.8935 0.80020.8002 3.84673.8467 0.48270.4827 6.05656.0565 1.211301.21130 실시예 11Example 11 0.8740.874 1.25231.2523 0.89350.8935 3.78123.7812 0.56920.5692 6.06346.0634 1.212681.21268 비교예 1Comparative Example 1 0.8900.890 0.25120.2512 0.18820.1882 0.02510.0251 0.12280.1228 0.58730.5873 0.117460.11746 비교예 2Comparative Example 2 0.8700.870 0.28350.2835 -- 0.02790.0279 0.10130.1013 0.41270.4127 0.082540.08254 비교예 3Comparative Example 3 0.8700.870 -- -- -- 0.15040.1504 0.15040.1504 0.030080.03008 비교예 4Comparative Example 4 0.8570.857 -- 0.15550.1555 0.02790.0279 0.04600.0460 0.22940.2294 0.045880.04588 비교예 5Comparative Example 5 0.8700.870 0.11840.1184 0.45010.4501 0.02790.0279 0.16270.1627 0.75910.7591 0.151820.15182 비교예 6Comparative Example 6 0.8740.874 0.28710.2871 0.46650.4665 0.22880.2288 0.43280.4328 1.41511.4151 0.283020.28302 비교예 7Comparative Example 7 0.8700.870 0.16150.1615 0.16370.1637 0.04740.0474 0.16270.1627 0.53530.5353 0.107060.10706

본 발명의 구체예에 따른 올레핀계 중합체는 분자 내에 불포화 기를 다량 함유하여 개질이 용이하다.The olefin-based polymer according to an embodiment of the present invention contains a large amount of unsaturated groups in the molecule, so that modification is easy.

Claims (14)

아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체가 중합되어 제조되며, 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상인, 올레핀계 중합체:
[화학식 1]
Figure pat00013

위 화학식 1에서, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고,
X는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이고,
Q는 탄소(C), 실리콘(Si), 게르마늄(Ge) 또는 주석(Sn)이고,
R1 내지 R14는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 치환 또는 비치환된 C1-20 알킬아미도, 치환 또는 비치환된 C6-20 아릴아미도, 치환 또는 비치환된 C1-20 알킬리덴, 또는 치환 또는 비치환된 C1-20 실릴이며,
R1 내지 R12은 각각 독립적으로 인접한 기가 연결되어 치환 또는 비치환된 포화 또는 불포화 C4-20 고리를 형성할 수 있다.
It is prepared by polymerization of an olefinic monomer in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by the following formula (1), and has a density of 0.85 to 0.95 g/cm 3 and is unsaturated in the molecule. Olefin-based polymer, having a total amount of at least 0.5 mole %:
[Formula 1]
Figure pat00013

In Formula 1 above, M is titanium (Ti), zirconium (Zr) or hafnium (Hf),
Each X is independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,
Q is carbon (C), silicon (Si), germanium (Ge) or tin (Sn),
R 1 to R 14 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 6-20 aryl, substituted or unsubstituted C 1-20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 alkyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 3-20 heteroaryl , Substituted or unsubstituted C 1-20 alkylamido, substituted or unsubstituted C 6-20 arylamido, substituted or unsubstituted C 1-20 alkylidene, or substituted or unsubstituted C 1-20 silyl Is,
R 1 to R 12 may each independently connect adjacent groups to form a substituted or unsubstituted saturated or unsaturated C 4-20 ring.
제1항에 있어서, 위 화학식 1에서 M이 지르코늄 또는 하프늄이고, X가 각각 독립적으로 할로겐 또는 치환 또는 비치환된 C1-20 알킬이고, Q가 탄소 또는 실리콘이고, R1 내지 R12가 각각 독립적으로 수소 또는 치환 또는 비치환된 C1-20 알킬이며, R13과 R14가 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 또는 치환 또는 비치환된 C6-20 아릴인, 올레핀계 중합체.The method of claim 1, wherein in Formula 1 above, M is zirconium or hafnium, X is each independently halogen or substituted or unsubstituted C 1-20 alkyl, Q is carbon or silicon, and R 1 to R 12 are each Independently hydrogen or substituted or unsubstituted C 1-20 alkyl, and R 13 and R 14 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, or substituted or unsubstituted C 6-20 aryl , Olefin-based polymer. 제1항에 있어서, 조촉매 화합물이 아래 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물로 구성되는 군으로부터 선택되는 하나 이상인, 올레핀계 중합체:
[화학식 2]
Figure pat00014

[화학식 3]
Figure pat00015

[화학식 4]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
위 화학식 2에서, n은 2 이상의 정수이고, Ra는 할로겐 원자, C1-20 탄화수소기 또는 할로겐으로 치환된 C1-20 탄화수소기이고,
위 화학식 3에서, D는 알루미늄(Al) 또는 보론(B)이고, Rb, Rc 및 Rd는 각각 독립적으로 할로겐 원자, C1-20 탄화수소기, 할로겐으로 치환된 C1-20 탄화수소기 또는 C1-20 알콕시기이며,
위 화학식 4에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H]+ 및 [L]+는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴기이거나 치환 또는 비치환된 C1-20 알킬기이다.
The olefin-based polymer of claim 1, wherein the cocatalyst compound is at least one selected from the group consisting of a compound represented by Formula 2 below, a compound represented by Formula 3, and a compound represented by Formula 4:
[Formula 2]
Figure pat00014

[Formula 3]
Figure pat00015

[Formula 4]
[LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -
In Formula 2 above, n is an integer of 2 or more, and R a is a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with a halogen,
In Formula 3 above, D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, a C 1-20 hydrocarbon group substituted with a halogen Or a C 1-20 alkoxy group,
In Formula 4 above, L is a neutral or cationic Lewis base, [LH] + and [L] + are Bronsted acid, Z is a Group 13 element, and A is each independently substituted or unsubstituted C 6 It is a -20 aryl group or a substituted or unsubstituted C 1-20 alkyl group.
제3항에 있어서, 화학식 4로 표현되는 초촉매 화합물이 아래 화학식 4-1로 표현되는 화합물인, 올레핀계 중합체:
[화학식 4-1]
Figure pat00016

위 화학식 4-1에서, Re, Rf 및 Rg는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬기, 치환 또는 비치환된 C2-20 알케닐기, 치환 또는 비치환된 C6-20 아릴기, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬이고,
Y는 보론(B), 알루미늄(Al), 갈륨(Ga) 또는 인듐(In)이며,
Rh는 할로겐으로 치환 또는 비치환된 C6-20 아릴기 또는 할로겐으로 치환 또는 비치환된 C1-20 알킬기이다.
The olefin-based polymer according to claim 3, wherein the supercatalyst compound represented by Formula 4 is a compound represented by Formula 4-1 below:
[Formula 4-1]
Figure pat00016

In Formula 4-1 above, R e , R f and R g are each independently hydrogen, a substituted or unsubstituted C 1-20 alkyl group, a substituted or unsubstituted C 2-20 alkenyl group, a substituted or unsubstituted C 6-20 aryl group, substituted or unsubstituted C 1-20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 alkyl,
Y is boron (B), aluminum (Al), gallium (Ga) or indium (In),
R h is a halogen-substituted or unsubstituted C 6-20 aryl group or a halogen-substituted or unsubstituted C 1-20 alkyl group.
제4항에 있어서, 화학식 4로 표현되는 초촉매 화합물이 아래 화학식 4-2로 표현되는 화합물인, 올레핀계 중합체:
[화학식 4-2]
Figure pat00017
.
The olefin-based polymer of claim 4, wherein the supercatalyst compound represented by Formula 4 is a compound represented by Formula 4-2 below:
[Formula 4-2]
Figure pat00017
.
제1항에 있어서, 촉매가 전이금속 화합물과 조촉매 화합물을 담지하는 담체를 더 포함하는, 올레핀계 중합체.The olefin-based polymer according to claim 1, wherein the catalyst further comprises a carrier supporting a transition metal compound and a cocatalyst compound. 제6항에 있어서, 담체가 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함하는, 올레핀계 중합체.The olefin-based polymer according to claim 6, wherein the carrier comprises at least one selected from the group consisting of silica, alumina, and magnesia. 제7항에 있어서, 담체가 실리카인, 올레핀계 중합체.The olefin-based polymer according to claim 7, wherein the carrier is silica. 제6항에 있어서, 담체가 전이금속 화합물과 조촉매 화합물을 모두 담지하는, 올레핀계 중합체.The olefin-based polymer according to claim 6, wherein the carrier supports both the transition metal compound and the cocatalyst compound. 제6항에 있어서, 담체에 담지되는 전이금속 화합물의 양이 담체 1 g을 기준으로 0.001~1 mmole이고, 담체에 담지되는 조촉매 화합물의 양이 담체 1 g을 기준으로 2~15 mmole인, 올레핀계 중합체.The method of claim 6, wherein the amount of the transition metal compound supported on the carrier is 0.001 to 1 mmole based on 1 g of the carrier, and the amount of the cocatalyst compound supported on the carrier is 2-15 mmole based on 1 g of the carrier Olefin-based polymer. 아래 화학식 1로 표시되는 적어도 1종의 전이금속 화합물과 적어도 1종의 조촉매 화합물을 포함하는 촉매의 존재하에 올레핀계 단량체를 중합하는 단계를 포함하며, 밀도가 0.85~0.95 g/㎤이고, 분자 내의 불포화 기의 총량이 0.5 mole% 이상인, 올레핀계 중합체의 제조방법:
[화학식 1]
Figure pat00018

위 화학식 1에서, M, X, Q 및 R1 내지 R14는 제1항에서 정의한 바와 같다.
Polymerizing an olefinic monomer in the presence of a catalyst including at least one transition metal compound and at least one cocatalyst compound represented by Formula 1 below, and the density is 0.85 to 0.95 g/cm 3, and the molecule A method for producing an olefin-based polymer, wherein the total amount of unsaturated groups in is 0.5 mole% or more:
[Formula 1]
Figure pat00018

In Formula 1 above, M, X, Q and R 1 to R 14 are as defined in claim 1.
제11항에 있어서, 올레핀계 중합체가 올레핀계 단량체와 올레핀계 공단량체가 공중합되어 제조되는, 올레핀계 중합체의 제조방법.The method for producing an olefin-based polymer according to claim 11, wherein the olefin-based polymer is produced by copolymerizing an olefin-based monomer and an olefin-based comonomer. 제12항에 있어서, 올레핀계 단량체가 에틸렌이고, 올레핀계 공단량체가 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 및 1-헥사데센으로 구성되는 군으로부터 선택되는 하나 이상인, 올레핀계 중합체의 제조방법.The method of claim 12, wherein the olefinic monomer is ethylene, and the olefinic comonomer is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1- Decene, 1-undecene, 1-dodecene, 1-tetradecene, and one or more selected from the group consisting of 1-hexadecene, a method for producing an olefin-based polymer. 제13항에 있어서, 올레핀계 단량체가 에틸렌이고 올레핀계 공단량체가 1-옥텐인, 올레핀계 중합체의 제조방법.The method for producing an olefin-based polymer according to claim 13, wherein the olefin-based monomer is ethylene and the olefin-based comonomer is 1-octene.
KR1020190147285A 2019-11-18 2019-11-18 Polyolefin and Process for Preparing the Same KR102579816B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190147285A KR102579816B1 (en) 2019-11-18 2019-11-18 Polyolefin and Process for Preparing the Same
PCT/KR2020/015718 WO2021101153A1 (en) 2019-11-18 2020-11-11 Olefinic polymer and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190147285A KR102579816B1 (en) 2019-11-18 2019-11-18 Polyolefin and Process for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20210059900A true KR20210059900A (en) 2021-05-26
KR102579816B1 KR102579816B1 (en) 2023-09-19

Family

ID=75980863

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190147285A KR102579816B1 (en) 2019-11-18 2019-11-18 Polyolefin and Process for Preparing the Same

Country Status (2)

Country Link
KR (1) KR102579816B1 (en)
WO (1) WO2021101153A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010086089A (en) * 1999-10-08 2001-09-07 나까니시 히로유끼 Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
JP2004168744A (en) * 2002-11-22 2004-06-17 Mitsui Chemicals Inc Bridged metallocene compound for olefin polymerization and method for polymerizing olefin by using the same
JP2015137352A (en) * 2014-01-24 2015-07-30 三井化学株式会社 Method of producing olefin polymer
KR20190091543A (en) * 2016-12-15 2019-08-06 보레알리스 아게 New Catalytic System for the Preparation of Polyethylene Copolymers by Hot Solution Polymerization Process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943711B2 (en) * 2007-05-14 2011-05-17 Exxonmobil Chemical Patents Inc. Ethylene elastomer compositions
WO2014120478A1 (en) * 2013-01-30 2014-08-07 Exxonmobil Chemical Patents Inc. Polyethylene copolymers with vinyl terminated macromonomers as comonomers
WO2018182860A1 (en) * 2017-03-27 2018-10-04 Exxonmobil Chemical Patents Inc. Solution process to make ethylene copolymers
KR102455607B1 (en) * 2017-11-10 2022-10-14 한화솔루션 주식회사 Transition metal compound used to prepare catalyst for polymerizing olefin, catalyst for polymerizing olefin comprising the same and polyolefin polymerized by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010086089A (en) * 1999-10-08 2001-09-07 나까니시 히로유끼 Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
JP2004168744A (en) * 2002-11-22 2004-06-17 Mitsui Chemicals Inc Bridged metallocene compound for olefin polymerization and method for polymerizing olefin by using the same
JP2015137352A (en) * 2014-01-24 2015-07-30 三井化学株式会社 Method of producing olefin polymer
KR20190091543A (en) * 2016-12-15 2019-08-06 보레알리스 아게 New Catalytic System for the Preparation of Polyethylene Copolymers by Hot Solution Polymerization Process

Also Published As

Publication number Publication date
WO2021101153A1 (en) 2021-05-27
KR102579816B1 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
KR100621299B1 (en) Olefin copolymerization process with bridged hafnocenes
KR102372974B1 (en) Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same
KR102219407B1 (en) Transition metal compound for a catalyst for polymerizing an olefin and catalyst for polymerizing an olefin comprising the same
MXPA02003940A (en) High activity carbenium activated polymerization catalysts.
KR102611686B1 (en) Polyolefin and Process for Preparing the Same
KR102272245B1 (en) Catalyst for polymerizing an olefin and polyolefin prepared using the same
KR102547229B1 (en) Process for Preparing a Hybrid Catalyst for Polymerizing an Olefin, Hybrid Catalyst for Polymerizing an Olefin, and Polyolefin
KR102668044B1 (en) Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same
KR102652274B1 (en) Polyolefin and Processes for Preparing the Same
KR20230142275A (en) Transition Metal Compound for a Catalyst for Olefin Polymerization, Catalyst for Olefin Polymerization Comprising the Same, and Polyolefin Polymerized Using the Same
KR102547238B1 (en) Processes for Preparing Mixed Catalytic Composition and Catalyst Comprising the Same
KR102579816B1 (en) Polyolefin and Process for Preparing the Same
CN112424241B (en) Catalyst
KR102287064B1 (en) Process for preparing a catalyst for polymerizing an olefin
KR20220097897A (en) Titanium Biphenylphenol Polymerization Catalyst
KR20220098363A (en) Biphenylphenol polymerization catalyst
KR20210014277A (en) Transition Metal Compound for a Catalyst for Polymerizing an Olefin, Catalyst for Polymerizing an Olefin Comprising the Same, and Polyolefin Polymerized Using the Same
KR102486137B1 (en) Processes for Preparing Polyolefin and Film
KR102619077B1 (en) Process for Preparing a Polyolefin
KR102608612B1 (en) Polyolefin and Process for Preparing the Same
KR102547232B1 (en) Process for Preparing a Catalyst for Polymerizing an Olefin
KR102611764B1 (en) Polyolefin and Process for Preparing the Same
KR102565859B1 (en) Transition Metal Compound for a Catalyst for Polymerizing an Olefin, Catalyst for Polymerizing an Olefin Comprising the Same, and Polyolefin Polymerized Using the Same
KR100486991B1 (en) Mixed transition metal catalyst systems for olefin polymerization
KR101496383B1 (en) Catalyst compositon for preparing alpha-olefin copolymer and preparation method of alpha-olefin copolymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant