KR20210056847A - Method of depositing niobium nitride thin films - Google Patents

Method of depositing niobium nitride thin films Download PDF

Info

Publication number
KR20210056847A
KR20210056847A KR1020190143800A KR20190143800A KR20210056847A KR 20210056847 A KR20210056847 A KR 20210056847A KR 1020190143800 A KR1020190143800 A KR 1020190143800A KR 20190143800 A KR20190143800 A KR 20190143800A KR 20210056847 A KR20210056847 A KR 20210056847A
Authority
KR
South Korea
Prior art keywords
niobium
thin film
niobium nitride
nitride thin
forming
Prior art date
Application number
KR1020190143800A
Other languages
Korean (ko)
Inventor
이근수
홍종태
나종화
Original Assignee
주식회사 이지티엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이지티엠 filed Critical 주식회사 이지티엠
Priority to KR1020190143800A priority Critical patent/KR20210056847A/en
Publication of KR20210056847A publication Critical patent/KR20210056847A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

According to one embodiment of the present invention, a formation method of a niobium nitride thin film comprises: an adsorption step of supplying a niobium halogen compound to a substrate and selectively adsorbing thereof on a surface of the substrate; and a nitrification step of supplying a nitrogen source to the substrate to react with the niobium halogen compound to form niobium nitride, wherein the niobium halogen compound comprises NbX_nA_m (3 <= n <= 5, 1 <= m <= 2) wherein X is one of group 17 including F and Cl, and A is at least one or more of an ether compound and a sulfide compound.

Description

니오븀 질화물 박막의 형성 방법{METHOD OF DEPOSITING NIOBIUM NITRIDE THIN FILMS}Method of forming niobium nitride thin film {METHOD OF DEPOSITING NIOBIUM NITRIDE THIN FILMS}

본 발명은 니오븀 질화물 박막의 형성 방법에 관한 것으로, 더욱 상세하게는 니오븀 할로젠 전구체를 이용한 니오븀 질화물 박막의 형성 방법에 관한 것이다.The present invention relates to a method of forming a niobium nitride thin film, and more particularly, to a method of forming a niobium nitride thin film using a niobium halogen precursor.

니오븀 나이트라이드(NbNx, 식 중 x 는 약 1 임) 와 같은 금속 나이트라이드 필름이 각종 기술 분야에서 광범위하게 이용되어 왔다. 전통적으로 이들 나이트라이드는 하드 코팅 및 장식 코팅으로서 적용되었으나, 지난 수십년간 이들은 마이크로전자 소자에서 점차적으로 확산 장벽(diffusion barrier) 및 접착/글루층(glue layer)으로서 이용되어 왔다 [AppliedSurface Science 120 (1997) 199-212].Metal nitride films such as niobium nitride (NbN x , where x is about 1) have been widely used in various technical fields. Traditionally, these nitrides have been applied as hard coatings and decorative coatings, but over the past decades they have been gradually used as diffusion barriers and adhesive/glue layers in microelectronic devices [AppliedSurface Science 120 (1997). ) 199-212].

예를 들어, NbCl5는 NbN의 원자층 액피택시얼 성장의 니오븀 근원으로서 조사된 바 있으나, 이 방법은 환원제로서 Zn 을 요구했다 [Applied Surface Science 82/83 (1994) 468-474]. NbNx 필름은 또한 NbCl5 및 NH3를 이용하여 원자층 침적에 의해 침적되었다 [Thin Solid Films 491(2005) 235-241]. 500℃에서 침적된 필름이 거의 염소가 부재인 것처럼 염소 함량은 강한 온도 의존성을 보였지만, 침적 온도가 250℃만큼 낮은 경우 염소 함량은 8%였다(상기 문헌). NbCl5 의 고 용융점은 또한 상기 전구체를 증착 공정에서 사용하기 힘들다. For example, NbCl 5 has been investigated as a niobium source for atomic layer axial growth of NbN, but this method required Zn as a reducing agent [Applied Surface Science 82/83 (1994) 468-474]. The NbN x film was also deposited by atomic layer deposition using NbCl 5 and NH 3 [Thin Solid Films 491(2005) 235-241]. The chlorine content showed a strong temperature dependence as if the film deposited at 500° C. almost had no chlorine, but the chlorine content was 8% when the deposition temperature was as low as 250° C. The high melting point of NbCl 5 also makes it difficult to use the precursor in the deposition process.

Gust et al. 은 피라졸라토 리간드 보유 니오븀 및 탄탈 이미도 착물의 합성, 구조 및 특징, 및 이들의 CVD 에 의한 탄탈 나이트라이드 필름의 성장을 위한 잠재적 용도를 개시하고 있다. Elorriaga et al. 은 아민의 촉매적 구아닐화에서 중간체로서의 비대칭 니오븀 구아니디네이트를 개시하고 있다(Dalton Transactions, 2013, Vol. 42, Issue 23 pp. 8223-8230).Gust et al. Discloses the synthesis, structure and characteristics of pyrazolato ligand bearing niobium and tantalum imido complexes, and their potential use for growth of tantalum nitride films by CVD. Elorriaga et al. Discloses an asymmetric niobium guanidineate as an intermediate in the catalytic guanylation of amines (Dalton Transactions, 2013, Vol. 42, Issue 23 pp. 8223-8230).

Tomson et al. 은 양이온성 Nb 및 Ta 모노메틸 착물 [(BDI)MeM(NtBu)][X] (BDI=2,6-iPr2C6H3-N-C(Me)CH-C(Me)-N(2,6-iPr2C6H3); X=MeB(C6F5)3 또는 B(C6F5)4) 의 합성 및 반응성을 개시하고 있다 (Dalton Transactions 2011 Vol. 40, Issue 30, pp. 7718-7729).Tomson et al. Silver cationic Nb and Ta monomethyl complexes [(BDI)MeM(NtBu)][X] (BDI=2,6-iPr2C6H3-NC(Me)CH-C(Me)-N(2,6-iPr2C6H3); The synthesis and reactivity of X=MeB(C6F5)3 or B(C6F5)4) are disclosed (Dalton Transactions 2011 Vol. 40, Issue 30, pp. 7718-7729).

DE102006037955 (Starck) 는 식 R4R5R6M(R1NNR2R3)2 (여기서 M 은 Ta 또는 Nb 이고; R1-R3= C1-12 알킬, C5-12 시클로알킬, C6-10 아릴, 알케닐, C1-4 트리오르가노실릴이고; R4-R6= 할로, (시클로)알콕시, 아릴옥시, 실록시, BH4, 알릴, 인데닐, 벤질, 시클로펜타디에닐, CH2SiMe3, 실릴아미도, 아미도 또는 이미노임) 을 갖는 탄탈- 및 니오븀-화합물을 개시하고 있다.DE102006037955 (Starck) has the formula R4R5R6M(R1NNR2R3)2 where M is Ta or Nb; R1-R3= C1-12 alkyl, C5-12 cycloalkyl, C6-10 aryl, alkenyl, C1-4 triorganosilyl And R4-R6=halo, (cyclo)alkoxy, aryloxy, siloxy, BH4, allyl, indenyl, benzyl, cyclopentadienyl, CH2SiMe3, silylamido, amido, or imino. Niobium-compounds are disclosed.

Maestre et al. 은 NbCp(NH(CH2)2-NH2)Cl3 및 NbCpCl2(N-(CH2)2-N) 이 형성되도록 하는 시클로펜타디에닐-실릴-아미도 티탄 화합물과 5 족 금속 모노시클로펜타디에닐 착물의 반응을 개시하고 있다. Maestre et al. Silver NbCp(NH(CH2)2-NH2)Cl3 and NbCpCl2(N-(CH2)2-N) are formed of a cyclopentadienyl-silyl-amido titanium compound and a Group 5 metal monocyclopentadienyl complex. The reaction is starting.

고온에서 두께 및 조성 제어와 함께 기상 필름 침착에 적합한, 신규의 액체 또는 저 용융점 (표준 압력에서 <50℃), 고열 안정성의 V 족-함유 전구체 분자 개발이 여전히 요구되고 있다. 또한 미세한 금속 배선 등을 형성하기 위해서 스퍼터링(sputtering)과 같은 물리적 증착법이 이용되었으나, 이와 같은 물리적 증착법의 경우에는 단차 피복성(step coverage)이 불량하다.There is still a need to develop novel liquid or low melting point (<50° C. at standard pressure), high thermal stability group V-containing precursor molecules suitable for vapor phase film deposition with thickness and composition control at high temperatures. In addition, a physical vapor deposition method such as sputtering has been used to form fine metal wires, but in the case of such a physical vapor deposition method, step coverage is poor.

최근 반도체 소자의 초집적화, 초 박막화 추세에 따라 균일한 증착 특성과 단차 피복성을 갖는 박막 증착 기술로 화학 기상 증착법(Chemical vapor deposition, CVD)이 개발되었다. 그러나, 화학 기상 증착법의 경우 박막 형성에 필요한 모든 물질이 동시에 공정챔버 내에 공급되어 원하는 조성비의 물성을 갖는 막을 형성하기가 어렵고 고온에서 공정이 진행되기 때문에 소자의 전기적 특성을 열화시키거나 축전 용량의 저하를 초래할 수 있다. 이러한 문제점을 해결하기 위해 공정가스를 연속적으로 공급하지 않고 독립적으로 공급하는 원자층 증착법 (atomic layer deposition, ALD)이 개발되었다. In recent years, in accordance with the trend of ultra-integration and ultra-thinning of semiconductor devices, chemical vapor deposition (CVD) has been developed as a thin film deposition technology having uniform deposition properties and step coverage. However, in the case of chemical vapor deposition, all materials required for thin film formation are supplied into the process chamber at the same time, making it difficult to form a film having the properties of the desired composition ratio. Can lead to. In order to solve this problem, an atomic layer deposition (ALD) method has been developed in which a process gas is not continuously supplied but independently supplied.

한국공개특허공보 2006-0021096호(2006.03.07.)Korean Patent Application Publication No. 2006-0021096 (2006.03.07.)

본 발명의 목적은 열안정성이 높은 니오븀 할로젠 화합물을 이용하여 니오븀 질화물 박막을 효과적으로 형성할 수 있는 방법을 제공하는 데 있다.An object of the present invention is to provide a method capable of effectively forming a niobium nitride thin film using a niobium halogen compound having high thermal stability.

본 발명의 다른 목적들은 다음의 상세한 설명으로부터 보다 명확해질 것이다.Other objects of the present invention will become more apparent from the following detailed description.

본 발명의 일 실시예에 의하면, 니오븀 질화물 박막의 형성 방법은, 기판에 니오븀 할로젠 화합물을 공급하여 상기 기판의 표면에 선택적으로 흡착시키는 흡착 단계; 그리고 상기 기판에 질소 소스를 공급하여 상기 니오븀 할로젠 화합물과 반응시키고 니오븀 질화물을 형성하는 질화 단계를 포함하되, 상기 니오븀 할로젠 화합물은 NbXnAm(3 ≤ n ≤ 5, 1 ≤ m ≤ 2)이며, X는 F, Cl를 포함하는 17족 중 하나이고, A는 에테르 화합물 및 설파이드 화합물 중 하나 이상을 포함한다.According to an embodiment of the present invention, a method of forming a niobium nitride thin film includes an adsorption step of selectively adsorbing a niobium halogen compound to a substrate and selectively adsorbing it to a surface of the substrate; And a nitriding step of supplying a nitrogen source to the substrate to react with the niobium halogen compound to form a niobium nitride, wherein the niobium halogen compound is NbX n A m (3 ≤ n ≤ 5, 1 ≤ m ≤ 2 ), X is one of Group 17 including F and Cl, and A includes at least one of an ether compound and a sulfide compound.

상기 니오븀 질화물은 NbaNb(1 ≤ a ≤ 5, 1 ≤ b ≤ 5)일 수 있다.The niobium nitride may be Nb a N b (1 ≤ a ≤ 5, 1 ≤ b ≤ 5).

상기 에테르 화합물은 다이메틸에테르 및 다이에틸에테르 중 하나 이상이며, 상기 설파이드 화합물은 다이메틸설파이드 및 다이에틸설파이드 중 하나 이상일 수 있다.The ether compound may be at least one of dimethyl ether and diethyl ether, and the sulfide compound may be at least one of dimethyl sulfide and diethyl sulfide.

상기 니오븀 할로젠 화합물은 캐리어 가스와 함께 공급되며, 상기 캐리어 가스는 질소(N2), 아르곤(Ar), 헬륨(He)을 포함하는 비활성 기체 중 하나 이상일 수 있다.The niobium halogen compound is supplied together with a carrier gas, and the carrier gas may be at least one of an inert gas including nitrogen (N2), argon (Ar), and helium (He).

상기 질소 소스는 NH3, N2, 히드라진(Hydrazine, H4N2) 중 하나 이상일 수 있다.The nitrogen source may be one or more of NH 3 , N 2 , and hydrazine (Hydrazine, H4N2).

상기 질화 단계는, 상기 기판에 NR3(R은 C1~C5의 선형, 가지형, 방향족 알킬기 중 하나 이상)를 공급하여, 생성되는 HX를 포집하여 제거할 수 있다.In the nitriding step, by supplying NR 3 (R is one or more of C 1 ~ C 5 linear, branched, and aromatic alkyl groups) to the substrate, HX generated may be collected and removed.

상기 흡착 단계, 상기 질화 단계는 250 내지 600℃에서 각각 진행될 수 있다.The adsorption step and the nitriding step may be performed at 250 to 600°C, respectively.

상기 흡착 단계 및 상기 질화 단계는 하나의 사이클을 형성하며, 상기 사이클을 반복할 수 있다.The adsorption step and the nitriding step form one cycle, and the cycle may be repeated.

본 발명의 일 실시예에 의하면, 니오븀 전구체들은 니오븀 질화물(niobium nitride)을 증착하는데 적합함을 확인할 수 있으며, 니오븀 전구체들이 지속적인 가온에도 특성이 열화되지 않는 높은 열적 안정성과 함께 높은 증기압(vapor pressure)을 가짐으로써 유기 금속 화학 증착(Metal Organic Chemical Vapor Deposition, MOCVD) 및 원자층 증착법(Atomic Layer Deposition, ALD)를 이용한 니오븀 질화물 박막을 증착하는 반도체 제조공정에 유용하게 적용될 수 있음을 알 수 있다.According to an embodiment of the present invention, it can be seen that the niobium precursors are suitable for depositing niobium nitride, and the niobium precursors have high thermal stability and high vapor pressure that their properties do not deteriorate even with continuous heating. It can be seen that it can be usefully applied to a semiconductor manufacturing process of depositing a niobium nitride thin film using metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD).

또한 니오븀 전구체들을 이용한 니오븀 질화물 박막의 형성 방법은 탄소 및 할로젠 불순물이 없는 금속 질화물 박막 형성에 유리하게 적용될 수 있음을 알 수 있다.In addition, it can be seen that the method of forming a niobium nitride thin film using niobium precursors can be advantageously applied to forming a metal nitride thin film free of carbon and halogen impurities.

도 1은 본 발명의 일 실시예에 따른 니오븀 질화물 박막의 형성 방법을 개략적으로 나타내는 흐름도이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 니오븀 질화물 박막의 형성 과정을 개략적으로 나타내는 도면이다.
1 is a flowchart schematically showing a method of forming a niobium nitride thin film according to an embodiment of the present invention.
2 and 3 are views schematically showing a process of forming a niobium nitride thin film according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 3을 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to FIGS. 1 to 3. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The present embodiments are provided to explain the present invention in more detail to those of ordinary skill in the art to which the present invention pertains. Therefore, the shape of each element shown in the drawings may be exaggerated to emphasize a more clear description.

먼저, 기존 사용되는 전구체 NbCl5는 높은 열안정성을 가진 대표적인 전구체이지만, 고체이기 때문에 증착장비 내 배관 막힘과 기체로 승화시켜 증착챔버로의 일정한 양의 이송 시 어려움이 있다. 또한, 다른 유기 금속 전구체는 탄소 함유량이 많아서 불순물이 막질에 영향을 주는 문제점을 갖고 있다.First, the existing precursor NbCl 5 is a representative precursor with high thermal stability, but since it is a solid, there is a difficulty in transferring a certain amount to the deposition chamber by clogging the pipe in the deposition equipment and sublimating into a gas. In addition, other organometallic precursors have a problem in that impurities affect the film quality due to the high carbon content.

이하에서 설명하는 니오븀 질화물 박막의 형성 방법은 원자층 증착(ALD) (또는 유기 금속 화학 증착법)을 통해 기판의 표면상에 박막을 형성하는 방법이며, 하기의 일반식들은 액체 전구체를 사용해도 기존의 고체 전구체 사용했을 때와 비교하여 탄소 및 할로젠의 불순물이 없는 박막을 형성하는 반응식을 나타낸다.The method of forming a niobium nitride thin film described below is a method of forming a thin film on the surface of a substrate through atomic layer deposition (ALD) (or organic metal chemical vapor deposition). The reaction equation for forming a thin film without impurities of carbon and halogen is shown compared to when a solid precursor is used.

"원자층 증착(ALD)"은 증착 사이클, 바람직하게는 복수의 연속적인 증착 사이클이 공정 챔버에서 수행되는 기상 증착 공정을 지칭할 수 있다. 일반적으로, 각 사이클 동안 전구체는 증착 표면(예컨대, 기판 표면 또는 이전 ALD 사이클로부터 수득된 재료와 같은 앞서 증착된 하층 표면)에 화학 흡착되어 추가적인 전구체와 쉽게 반응하지 않는 단층 또는 하위단층을 형성한다(즉, 자기 제한적 반응). 그 후, 필요하면, 반응물(예컨대, 다른 전구체 또는 반응 가스)은 화학 흡착된 전구체를 증착 표면 상에서 원하는 재료로 변환하는 데 사용하기 위한 공정 챔버로 이후 유입될 수 있다. 일반적으로, 이 반응물은 전구체와 더 반응할 수 있다. 또한, 각 사이클 동안 공정 챔버로부터 잉여 전구체를 제거하고(제거하거나) 화학 흡착된 전구체의 변환 후 공정 챔버로부터 잉여 반응물 및/또는 반응 부산물을 제거하기(제거하거나) 위해 정화(purging) 단계들이 사용될 수도 있다.“Atomic layer deposition (ALD)” may refer to a vapor deposition process in which a deposition cycle, preferably a plurality of successive deposition cycles, is performed in a process chamber. Typically, during each cycle, the precursor is chemically adsorbed to the deposition surface (e.g., the substrate surface or a previously deposited underlayer surface, such as material obtained from a previous ALD cycle) to form a monolayer or submonolayer that does not readily react with the additional precursor ( I.e. self-limiting reaction). Thereafter, if necessary, a reactant (eg, another precursor or a reactant gas) can then be introduced into a process chamber for use in converting the chemisorpted precursor to the desired material on the deposition surface. In general, this reactant can further react with the precursor. In addition, purging steps may be used to remove (remove) excess precursor from the process chamber during each cycle and to remove (remove) excess reactants and/or reaction by-products from the process chamber after conversion of the chemisorbed precursor. have.

또한, "기판"은, 사용될 수 있는, 또는 그 위에 소자, 회로, 또는 막이 형성될 수 있는, 임의의 하부 재료 또는 재료들을 지칭할 수 있다.Further, “substrate” may refer to any underlying material or materials that may be used or upon which an element, circuit, or film may be formed.

도 1은 본 발명의 일 실시예에 따른 금속 질화물 박막의 형성 방법을 개략적으로 나타내는 흐름도이며, 도 2 및 도 3은 본 발명의 일 실시예에 따른 금속 질화물 박막의 형성 과정을 개략적으로 나타내는 도면이다.1 is a flowchart schematically illustrating a method of forming a metal nitride thin film according to an embodiment of the present invention, and FIGS. 2 and 3 are diagrams schematically showing a process of forming a metal nitride thin film according to an embodiment of the present invention. .

< 일반식 1 ><General Formula 1>

Figure pat00001
Figure pat00001

X는 F, Cl를 포함하는 17족 중 하나이고,X is one of 17 groups including F and Cl,

A는 에테르 화합물(고리에테르 포함) 및 설파이드 화합물(고리설파이드 포함) 중 하나 이상을 포함하며, 에테르 화합물은 다이메틸에테르 및 다이에틸에테르 중 하나 이상이고, 상기 설파이드 화합물은 다이메틸설파이드 및 다이에틸설파이드 중 하나 이상이며,A includes at least one of an ether compound (including cyclic ether) and a sulfide compound (including cyclic sulfide), and the ether compound is at least one of dimethyl ether and diethyl ether, and the sulfide compound is dimethyl sulfide and diethyl sulfide Is one or more of,

3 ≤ n ≤ 5,3 ≤ n ≤ 5,

1 ≤ m ≤ 2,1 ≤ m ≤ 2,

1 ≤ a ≤ 5,1 ≤ a ≤ 5,

1 ≤ b ≤ 5,1 ≤ b ≤ 5,

R은 C1~C5의 선형, 가지형, 고리형 알킬기 중 하나 이상이다.R is one or more of C 1 to C 5 linear, branched, and cyclic alkyl groups.

상기 NbXnAm은 니오븀 질화물 박막을 형성하기 위한 니오븀 할로젠 전구체이다. 도 1 내지 도 3에 도시한 바와 같이, 기판은 챔버 내에 공급되며('기판공급 단계'), 니오븀 할로젠 전구체가 챔버 내의 기판에 공급되어 기판의 표면에 선택적으로 화학적 흡착된다('흡착 단계'). 니오븀 할로젠 전구체는 액상공급장치(Liquid Delivery System)를 통해 챔버 내에 공급될 수 있으며, 이때 적절한 온도에서 기화되어 균일한 기체 형태로 전달될 수 있다.The NbX n A m is a niobium halogen precursor for forming a niobium nitride thin film. 1 to 3, the substrate is supplied into the chamber ('substrate supply step'), and the niobium halogen precursor is supplied to the substrate in the chamber and is selectively chemically adsorbed on the surface of the substrate ('adsorption step'). ). The niobium halogen precursor may be supplied into the chamber through a liquid delivery system, and at this time, it may be vaporized at an appropriate temperature and delivered in a uniform gas form.

이밖에, 버블링 방식, 기체상(vapor phase) 엠에프씨(MFC:mass flow controller), 직접 액체 주입(DLI:Direct Liquid Injection)이나 전구체 화합물을 유기 용매에 녹여 이송하는 액체 이송방법을 포함하여 다양한 공급방식이 적용될 수 있다. 니오븀 할로젠 전구체를 공급하기 위한 캐리어 가스로 질소(N2) 또는 아르곤(Ar), 헬륨(He) 또는 수소(H2) 중에서 하나 또는 그 이상의 혼합물이 사용될 수 있다.In addition, various methods including bubbling method, vapor phase mass flow controller (MFC), direct liquid injection (DLI), or liquid transport method in which a precursor compound is dissolved in an organic solvent and transferred. The supply method can be applied. One or more mixtures of nitrogen (N2) or argon (Ar), helium (He), or hydrogen (H2) may be used as a carrier gas for supplying the niobium halogen precursor.

이후, 기판에 질소 소스를 공급하여 반응 부산물 및 미반응된 물질을 제거함과 동시에, 니오븀 할로젠 이온 화합물과 반응시켜 니오븀 질화물을 형성한다('질화 단계'). 질소 소스는 NH3, N2, 히드라진(Hydrazine, H4N2) 중 하나 이상이 사용될 수 있으며, 불순물인 HX(X는 F, Cl를 포함하는 17족 중 하나)는 NR3를 이용하여 (R3N)-HX 염으로 제거될 수 있다(R은 C1~C5의 선형, 가지형, 방향족 알킬기 중 하나 이상).Thereafter, a nitrogen source is supplied to the substrate to remove reaction by-products and unreacted substances, and react with a niobium halogen ion compound to form niobium nitride ('nitride step'). As the nitrogen source , one or more of NH 3 , N 2 , and hydrazine (Hydrazine, H4N2) may be used, and the impurity HX (X is one of Group 17 including F and Cl) is NR 3 (R 3 N )-HX salt (R is one or more of C 1 ~ C 5 linear, branched, aromatic alkyl groups).

한편, 상기 흡착 단계 및 상기 질화 단계는 250 내지 600℃에서 각각 진행될 수 있다. 또한, 상기 흡착 단계 및 상기 질화 단계는 하나의 사이클을 형성하며, 상기 사이클은 수회 반복될 수 있다.Meanwhile, the adsorption step and the nitriding step may be performed at 250 to 600°C, respectively. In addition, the adsorption step and the nitriding step form one cycle, and the cycle may be repeated several times.

실시예 1 : NbF5(EtOEt)의 합성Example 1: Synthesis of NbF 5 (EtOEt)

500 mL의 디에틸에테르가 들어있는 불꽃 건조된 2L 슐렝크 플라스크를 0℃로 냉각시킨 후 NbF5 10g을 교반시키면서 5분간 첨가하였다. 이 혼합 반응용액을 상온으로 천천히 승온한 후 감압상태에서 용매를 완전히 제거하여 반응을 종결시켰다. 생성된 액체를 감압하에서 증류하여 투명한 붉은색 액체의 화합물을 수득하였다. After cooling a flame-dried 2L Schlenk flask containing 500 mL of diethyl ether to 0°C, 10 g of NbF5 was added for 5 minutes while stirring. After the mixed reaction solution was slowly heated to room temperature, the solvent was completely removed under reduced pressure to terminate the reaction. The resulting liquid was distilled under reduced pressure to obtain a clear red liquid compound.

실시예 2 : NbF5(EtSEt)의 합성Example 2: Synthesis of NbF 5 (EtSEt)

500 mL의 디에틸설파이드가 들어있는 불꽃 건조된 2L 슐렝크 플라스크를 0℃로 냉각시킨 후 NbF5 10g을 교반시키면서 5분간 첨가하였다. 이 혼합 반응용액을 상온으로 천천히 승온한 후 감압상태에서 용매를 완전히 제거하여 반응을 종결시켰다. 생성된 액체를 감압하에서 증류하여 투명한 노란색 액체의 화합물을 수득하였다. A flame-dried 2L Schlenk flask containing 500 mL of diethylsulfide was cooled to 0°C, and 10 g of NbF5 was added for 5 minutes while stirring. After the mixed reaction solution was slowly heated to room temperature, the solvent was completely removed under reduced pressure to terminate the reaction. The resulting liquid was distilled under reduced pressure to obtain a clear yellow liquid compound.

참고로, NbXn(1 ≤ n ≤ 5, X는 F, Cl를 포함하는 17족 중 하나)의 경우 분자 간에 X기들의 상호 작용으로 고체 상태를 유지하는데, 에테르화합물(고리에테르 포함) 및 설파이드화합물(고리설파이드포함) 중 하나 이상을 adduct 함으로써 분자간 X기의 상호작용을 끊어 melting point를 낮출 수 있다(아래 표 1 참고). 이와 같은 특성을 이용하여, 기존의 NbCl5의 특성은 유지하면서 액체 상태의 니오븀 전구체를 이용할 수 있다.For reference, NbX n (1 ≤ n ≤ 5, X is one of Group 17 including F and Cl) maintains a solid state due to the interaction of X groups between molecules, including ether compounds (including cyclic ethers) and sulfides. By adducting one or more of the compounds (including cyclic sulfide), the melting point can be lowered by breaking the interaction of the X group between molecules (see Table 1 below). Using these characteristics, it is possible to use a niobium precursor in a liquid state while maintaining the characteristics of the existing NbCl 5.

금속metal adduct 물질adduct substance Melting pointMelting point NbF5 NbF 5 DiethylsulfideDiethylsulfide 8.5℃8.5℃ NbF5 NbF 5 DiethyletherDiethylether -7.8℃-7.8℃

실시예 3 : NbF5(EtOEt)의 증착Example 3: Deposition of NbF 5 (EtOEt)

NbF5(EtOEt)을 용기에 저장하였다. 용기를 90℃에서 가열하고, N2를 유속 50 sccm 하에 캐리어 기체로 사용하였다. 용기의 압력은 50 Torr에서 제어되었다. NH3를 질소 공급원으로서 사용하였다. TEA(Triethylamine)는 불순물인 HX를 포집하는데 사용하였다. 기판을 350℃에서 가열하였다. 제1 단계 동안, NbF5(EtOEt)를 2초 동안 반응 챔버에 도입하였다. 그 후, 5초의 N2 퍼징을 제2단계로서 수행하였다. 그 후 제3 단계로서 NH3와 TEA를 2초 동안 반응 챔버에 도입한 다음, 2초 동안 N2 퍼징을 제4 단계로서 수행하였다. 모두 4개의 단계를 100회 반복하여 NbN 필름을 수득하였다.NbF5 (EtOEt) was stored in a container. The vessel was heated at 90° C. and N2 was used as a carrier gas under a flow rate of 50 sccm. The pressure in the vessel was controlled at 50 Torr. NH3 was used as the nitrogen source. Triethylamine (TEA) was used to capture HX, an impurity. The substrate was heated at 350°C. During the first step, NbF5 (EtOEt) was introduced into the reaction chamber for 2 seconds. Thereafter, 5 seconds of N2 purging was performed as a second step. Then, as a third step, NH3 and TEA were introduced into the reaction chamber for 2 seconds, and then N2 purging was performed as a fourth step for 2 seconds. All four steps were repeated 100 times to obtain an NbN film.

이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.In the above, the present invention has been described in detail through examples, but other types of embodiments are also possible. Therefore, the technical spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (8)

기판에 니오븀 할로젠 화합물을 공급하여 상기 기판의 표면에 선택적으로 흡착시키는 흡착 단계; 및
상기 기판에 질소 소스를 공급하여 상기 니오븀 할로젠 화합물과 반응시키고 니오븀 질화물을 형성하는 질화 단계를 포함하되,
상기 니오븀 할로젠 화합물은 NbXnAm(3 ≤ n ≤ 5, 1 ≤ m ≤ 2)이며,
X는 F, Cl를 포함하는 17족 중 하나이고,
A는 에테르 화합물 및 설파이드 화합물 중 하나 이상을 포함하는, 니오븀 질화물 박막의 형성 방법.
An adsorption step of selectively adsorbing a niobium halogen compound to a surface of the substrate by supplying a niobium halogen compound to the substrate; And
And a nitriding step of supplying a nitrogen source to the substrate to react with the niobium halogen compound to form niobium nitride,
The niobium halogen compound is NbX n A m (3 ≤ n ≤ 5, 1 ≤ m ≤ 2),
X is one of 17 groups including F and Cl,
A is a method of forming a niobium nitride thin film comprising at least one of an ether compound and a sulfide compound.
제1항에 있어서,
상기 니오븀 질화물은 NbaNb(1 ≤ a ≤ 5, 1 ≤ b ≤ 5)인, 니오븀 질화물 박막의 형성 방법.
The method of claim 1,
The niobium nitride is Nb a N b (1 ≤ a ≤ 5, 1 ≤ b ≤ 5), a method of forming a niobium nitride thin film.
제1항에 있어서,
상기 에테르 화합물은 다이메틸에테르 및 다이에틸에테르 중 하나 이상이며,
상기 설파이드 화합물은 다이메틸설파이드 및 다이에틸설파이드 중 하나 이상인, 니오븀 질화물 박막의 형성 방법.
The method of claim 1,
The ether compound is at least one of dimethyl ether and diethyl ether,
The sulfide compound is at least one of dimethyl sulfide and diethyl sulfide, a method of forming a niobium nitride thin film.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 니오븀 할로젠 화합물은 캐리어 가스와 함께 공급되며,
상기 캐리어 가스는 질소(N2), 아르곤(Ar), 헬륨(He)을 포함하는 비활성 기체 중 하나 이상인, 니오븀 질화물 박막의 형성 방법.
The method according to any one of claims 1 to 3,
The niobium halogen compound is supplied together with a carrier gas,
The carrier gas is at least one of an inert gas including nitrogen (N2), argon (Ar), and helium (He).
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 질소 소스는 NH3, N2, 히드라진(Hydrazine, H4N2) 중 하나 이상인, 니오븀 질화물 박막의 형성 방법.
The method according to any one of claims 1 to 3,
The nitrogen source is NH 3 , N 2 , at least one of hydrazine (Hydrazine, H4N2), a method of forming a niobium nitride thin film.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 질화 단계는,
상기 기판에 NR3(R은 C1~C5의 선형, 가지형, 방향족 알킬기 중 하나 이상)를 공급하여, 생성되는 HX를 포집하여 제거하는, 니오븀 질화물 박막의 형성 방법.
The method according to any one of claims 1 to 3,
The nitriding step,
A method of forming a niobium nitride thin film by supplying NR 3 (R is one or more of C 1 to C 5 linear, branched, and aromatic alkyl groups) to the substrate to collect and remove HX.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 흡착 단계, 상기 질화 단계는 250 내지 600℃에서 각각 진행되는, 니오븀 질화물 박막의 형성 방법.
The method according to any one of claims 1 to 3,
The adsorption step and the nitriding step are respectively performed at 250 to 600° C., a method of forming a niobium nitride thin film.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 흡착 단계 및 상기 질화 단계는 하나의 사이클을 형성하며,
상기 사이클을 반복하는, 니오븀 질화물 박막의 형성 방법.
The method according to any one of claims 1 to 3,
The adsorption step and the nitriding step form one cycle,
A method for forming a niobium nitride thin film by repeating the above cycle.
KR1020190143800A 2019-11-11 2019-11-11 Method of depositing niobium nitride thin films KR20210056847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190143800A KR20210056847A (en) 2019-11-11 2019-11-11 Method of depositing niobium nitride thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190143800A KR20210056847A (en) 2019-11-11 2019-11-11 Method of depositing niobium nitride thin films

Publications (1)

Publication Number Publication Date
KR20210056847A true KR20210056847A (en) 2021-05-20

Family

ID=76143099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190143800A KR20210056847A (en) 2019-11-11 2019-11-11 Method of depositing niobium nitride thin films

Country Status (1)

Country Link
KR (1) KR20210056847A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060021096A1 (en) 2002-06-26 2006-01-26 Pioneer Hi-Bred International, Inc. Genes encoding proteins with pesticidal activity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060021096A1 (en) 2002-06-26 2006-01-26 Pioneer Hi-Bred International, Inc. Genes encoding proteins with pesticidal activity

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
KR101560755B1 (en) Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors
EP2609102B1 (en) Molybdenum (iv) amide precursors and use thereof in atomic layer deposition
WO2004108985A2 (en) Methods for forming aluminum containing films utilizing amino aluminum precursors
US9090641B2 (en) Precursors and methods for the selective deposition of cobalt and manganese on metal surfaces
KR101841444B1 (en) Group 5 metal compounds, preparing methods thereof, precursor compositions including the same for film deposition, and depositing methods of film using the same
US9085823B2 (en) Method of forming a tantalum-containing layer on a substrate
KR20210156444A (en) Molybdenum precursors, thin films using the same and deposition method of the same
US8734902B2 (en) Precursors and methods for the atomic layer deposition of manganese
KR102343186B1 (en) Method of depositing niobium nitride thin films
KR20210056847A (en) Method of depositing niobium nitride thin films
KR20210056848A (en) Method of depositing niobium nitride thin films
US20220333243A1 (en) Method for forming metal nitride thin film
KR102211654B1 (en) A tungsten precursor compound and tungsten containing thin film prepared by using the same
JP7271850B2 (en) organometallic precursor compounds
KR102621779B1 (en) Niobium precursor compound for thin film deposition and method of forming thin film containing niobium using the same
KR102682682B1 (en) Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same
KR102557282B1 (en) Novel compounds, precursor composition including the same, and preparing method of thin film using the same
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application