KR20210051406A - Method for treating waste water containing suspended solids - Google Patents

Method for treating waste water containing suspended solids Download PDF

Info

Publication number
KR20210051406A
KR20210051406A KR1020190136645A KR20190136645A KR20210051406A KR 20210051406 A KR20210051406 A KR 20210051406A KR 1020190136645 A KR1020190136645 A KR 1020190136645A KR 20190136645 A KR20190136645 A KR 20190136645A KR 20210051406 A KR20210051406 A KR 20210051406A
Authority
KR
South Korea
Prior art keywords
wastewater
membrane
cationic polymer
added
waste water
Prior art date
Application number
KR1020190136645A
Other languages
Korean (ko)
Inventor
오준호
심광구
Original Assignee
한수테크니칼서비스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한수테크니칼서비스(주) filed Critical 한수테크니칼서비스(주)
Priority to KR1020190136645A priority Critical patent/KR20210051406A/en
Publication of KR20210051406A publication Critical patent/KR20210051406A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a method for treating wastewater, and more specifically, to a method for treating wastewater, which can effectively precipitate smaller and more solid suspended material in wastewater even with a small amount of heavy metals to achieve process efficiency and economical efficiency in subsequent processes by including the steps of: adding a cationic polymer having an intrinsic viscosity of 0.2 to 6.6 dl/g to wastewater containing suspended material to increase the zeta potential of wastewater to -50 to -0.01 mV; and precipitating suspended material by adding a coagulant containing heavy metals to the wastewater.

Description

부유물질을 포함하는 오폐수의 처리 방법 {METHOD FOR TREATING WASTE WATER CONTAINING SUSPENDED SOLIDS}Wastewater treatment method containing suspended solids {METHOD FOR TREATING WASTE WATER CONTAINING SUSPENDED SOLIDS}

본 발명은 부유물질을 포함하는 오폐수의 처리 방법에 관한 것이다.The present invention relates to a method for treating wastewater containing suspended solids.

우천시 하수관로 등을 통해 방류되는 비점오염원인 합류식 하수도 월류수(CSOs; Combined Sewer Overflows), 가정하수 및 공장폐수를 포함하는 오폐수는 수질오염과 토양오염의 원인이 되고 있다.Combined Sewer Overflows (CSOs), which are non-point sources of pollution discharged through sewage pipes in rainy weather, and wastewater including household sewage and factory wastewater are the causes of water and soil pollution.

종래 오폐수를 정화하는 방법들로는 활성오니법(SBR), 목질발효퇴비법, 액상부식법, 생석회 안정화 반응법, 팬턴 산화법과 산화촉매 반응법 등이 있다.Conventional methods of purifying wastewater include activated sludge method (SBR), wood fermentation compost method, liquid corrosion method, quicklime stabilization reaction method, panton oxidation method and oxidation catalytic reaction method.

활성오니법(SBR), 목질발효퇴비법, 액상부식법, 생석회 안정화 반응법등은 그 처리 비용이 1톤당 10,000원 이상으로 너무 높고 폐수 처리기간이 너무 길어 폐수 보유 면적이 커지기 때문에 시설비용이 매우 높은 단점이 있다. 또한 팬턴 산화법의 경우에는 과산화수소를 사용하기 때문에 수산화기(OH-)의 활성화로 인한 OH- 라디칼이 높아져 각종 오염물질의 농도를 급격히 저하시킬 수는 있으나 처리 비용이 극히 높아지는 단점이 있으며, 산화 촉매 반응법의 경우에는 기질인 폐수와 황산 금속염의 이온교환에 따른 폐수 정화공 정으로서 역시 폐수처리 원가가 높고 폐수 성분에 따라 오염농도가 달라질 뿐 아니라 최종 처리된 폐수의 오염농도가 1,000ppm 정도이므로 후처리가 필요하기 때문에 이들 방법을 실용화하기에는 많은 문제점이 있다.Activated sludge method (SBR), woody fermented compost method, liquid corrosion method, quicklime stabilization reaction method, etc. are too high and the wastewater treatment period is too long, so the facility cost is very high. There are drawbacks. In addition, if the pontoon oxidation method include a hydroxyl group (OH -) because the use of hydrogen peroxide OH due to the activation of - the higher the radical can dramatically decrease the concentration of the contamination, but has the disadvantage that the processing cost is extremely high, the oxidation catalyst Reaction In the case of, the wastewater purification process is a wastewater purification process based on ion exchange between wastewater and metal sulfate, which is a substrate, and the wastewater treatment cost is high, and the pollution concentration varies depending on the wastewater component. Since it is necessary, there are many problems in putting these methods into practical use.

또한, 오폐수 내 부유물질을 응집시키기 위해 음이온성 폴리머와 중금속을 포함하는 응집제를 처리하는 방법이 있으나, 응집을 위해 중금속을 포함하는 응집제가 다량으로 요구되는 등 공정 효율성 및 경제성에 문제가 있다.In addition, there is a method of treating a coagulant containing an anionic polymer and a heavy metal in order to coagulate suspended substances in wastewater, but there is a problem in process efficiency and economy, such as a large amount of a coagulant containing heavy metals is required for coagulation.

한국등록특허 제0327735호Korean Patent Registration No. 0327735

본 발명은 적은 양의 중금속으로 오폐수에 포함된 부유물질을 침전시킬 수 있는 오폐수 처리 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a wastewater treatment method capable of sedimenting suspended matter contained in wastewater with a small amount of heavy metals.

본 발명은 여과 공정이 단축된 오폐수 처리 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for treating wastewater with a shortened filtration process.

본 발명은 부유물질을 포함하는 오폐수에 고유점도가 0.2 내지 6.6 dl/g인 양이온성 폴리머를 첨가하여 상기 오폐수의 제타 전위를 -50 내지 -0.01 mV에 도달시키는 단계; 및 상기 오폐수에 중금속을 포함하는 응집제를 첨가하여 상기 부유물질을 침전시키는 단계를 포함하는 오폐수의 처리 방법에 관한 것이다.The present invention comprises the steps of adding a cationic polymer having an intrinsic viscosity of 0.2 to 6.6 dl/g to wastewater containing suspended solids to reach the zeta potential of the wastewater to -50 to -0.01 mV; And adding a coagulant containing a heavy metal to the wastewater to precipitate the suspended matter.

본 발명 오폐수의 처리 방법은 침전 이후에, 오폐수를 UF(Ultra Filter) 막에 통과시키는 단계를 더 포함할 수 있다.The method of treating wastewater according to the present invention may further include passing the wastewater through an ultra filter (UF) membrane after sedimentation.

본 발명 오폐수의 처리 방법은 UF 막을 통과한 오폐수를 RO(Reverse Osmosis) 막에 통과시키는 단계를 더 포함할 수 있다.The method of treating wastewater according to the present invention may further include passing the wastewater passing through the UF membrane through a reverse osmosis (RO) membrane.

본 발명에서 부유물질은 음전하를 띠는 것일 수 있다.In the present invention, the suspended material may have a negative charge.

본 발명에서 양이온성 폴리머는 1 내지 7 meq/g의 당량을 갖는 것일 수 있다.In the present invention, the cationic polymer may have an equivalent weight of 1 to 7 meq/g.

본 발명에서 양이온성 폴리머는 15×104 내지 50×104 g/mol의 분자량을 갖는 것일 수 있다.In the present invention, the cationic polymer may have a molecular weight of 15×10 4 to 50×10 4 g/mol.

본 발명에서 양이온성 폴리머는 오폐수에 대하여 1 내지 10 mg/L 첨가되는 것일 수 있다.In the present invention, the cationic polymer may be added to 1 to 10 mg/L of wastewater.

본 발명에서 중금속을 포함하는 응집제는 Fe 계열의 응집제일 수 있다.In the present invention, the coagulant containing heavy metal may be an Fe-based coagulant.

본 발명에서 제타 전위는 -30 내지 -0.05 mV일 수 있다.In the present invention, the zeta potential may be -30 to -0.05 mV.

본 발명에서 중금속은 오폐수에 대하여 400 mg/L 이하로 첨가되는 것일 수 있다.In the present invention, the heavy metal may be added in an amount of 400 mg/L or less with respect to wastewater.

본 발명에서 상기 중금속을 포함하는 응집제가 첨가될 때의 오폐수의 pH는 9 내지 12일 수 있다.In the present invention, when the coagulant containing the heavy metal is added, the pH of the wastewater may be 9 to 12.

본 발명의 오폐수의 처리 방법은 양이온성 폴리머를 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후 응집제를 첨가함으로써, 적은 양의 응집제로도 효과적으로 오폐수 내의 부유물질을 침전시킬 수 있다.In the wastewater treatment method of the present invention, by adding a cationic polymer to reach the zeta potential of the wastewater to about 0 mV and then adding a coagulant, a small amount of a coagulant can effectively precipitate suspended solids in the wastewater.

본 발명의 오폐수의 처리 방법은 고유점도가 낮은 양이온성 폴리머 및 중금속을 이용하여 부유물질을 작고 단단하게 응집시킴으로써 여과 공정을 단축시킬 수 있다.The method of treating wastewater according to the present invention can shorten the filtration process by using a cationic polymer and heavy metal having a low intrinsic viscosity to agglomerate suspended solids small and hard.

도 1은 특정 범위의 물성을 갖는 양이온성 폴리머를 첨가하여 오폐수 내 부유물질을 제거하는 공정을 나타낸 모식도이다.
도 2는 실험예 1 내지 4 및 비교예 3의 MFF 값을 나타낸 그래프이다.
1 is a schematic diagram showing a process of removing suspended substances in wastewater by adding a cationic polymer having a specific range of physical properties.
2 is a graph showing MFF values of Experimental Examples 1 to 4 and Comparative Example 3.

본 발명은 부유물질을 포함하는 오폐수에 고유점도가 0.2 내지 6.6 dl/g인 양이온성 폴리머를 첨가하여 상기 오폐수의 제타 전위를 -50 내지 -0.01 mV에 도달시키는 단계; 및 상기 오폐수에 중금속을 포함하는 응집제를 첨가하여 상기 부유물질을 침전시키는 단계를 포함하는 오폐수의 처리 방법을 제공한다.The present invention comprises the steps of adding a cationic polymer having an intrinsic viscosity of 0.2 to 6.6 dl/g to wastewater containing suspended solids to reach the zeta potential of the wastewater to -50 to -0.01 mV; And adding a coagulant containing a heavy metal to the wastewater to precipitate the suspended matter.

본 발명 오폐수의 처리 방법은 부유물질을 침전시키는 단계 이후에 오폐수를 막(Membrane)에 통과시키는 단계를 더 포함할 수 있다. 막은 역삼투(Reverse Osmosis; RO) 막, 나노여과(Nanofiltration; NF) 막, 한외여과(Ultrafiltration; UF) 막, 정밀여과(Microfiltration; MF) 막 등일 수 있다.The method of treating wastewater according to the present invention may further include passing the wastewater through a membrane after the step of precipitating the suspended solids. The membrane may be a reverse osmosis (RO) membrane, a nanofiltration (NF) membrane, an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, or the like.

본 발명 오폐수의 처리 방법은 부유물질을 침전시키는 단계 이후에 오폐수를 UF(Ultra Filter) 막에 통과시키는 단계를 더 포함할 수 있다.The method of treating wastewater according to the present invention may further include passing the wastewater through an ultra filter (UF) membrane after the step of precipitating suspended solids.

본 발명 오폐수의 처리 방법은 UF 막을 통과한 오폐수를 RO(reverse osmosis) 막에 통과시키는 단계를 더 포함할 수 있다.The method of treating wastewater according to the present invention may further include passing the wastewater passing through the UF membrane through a reverse osmosis (RO) membrane.

부유물질(Suspended Solid; SS)은 오폐수 내에 포함된 고형물이다. 부유물질은 오폐수 내에 부유하는 입경 1 ㎛ 이상인 입자일 수 있으며, 전하를 띠는 입자일 수 있다.Suspended Solid (SS) is a solid contained in wastewater. The suspended material may be particles having a particle diameter of 1 µm or more floating in the wastewater, and may be charged particles.

오폐수는 오수 또는 폐수 중 적어도 하나를 의미하는 것이며, 예를 들어, 생활 하수, 생활 폐수, 농축산 폐수, 유가공 폐수, 음식물 쓰레기, 음폐수, 공장 폐수, 산업 폐수 등을 포함할 수 있다.Sewage water means at least one of sewage or wastewater, and may include, for example, household sewage, household wastewater, agricultural and livestock wastewater, dairy wastewater, food waste, food wastewater, factory wastewater, industrial wastewater, and the like.

본 발명은 오폐수에 양이온성 폴리머를 첨가한다. 종래에는 수처리시 일반적으로 음이온성 폴리머를 이용하였는데, 오폐수 내의 부유물질이 음전하를 띠는 경우 음이온성 폴리머 첨가로 부유물질이 쉽게 응집되지 않는 단점이 있다.The present invention adds a cationic polymer to wastewater. Conventionally, anionic polymers were generally used for water treatment. However, when suspended substances in wastewater have a negative charge, there is a disadvantage that suspended substances are not easily aggregated due to the addition of anionic polymers.

또한, 음이온성 폴리머의 고유점도는 일반적으로 10 dl/g 이상으로, 양이온성 폴리머 보다 고유점도가 훨씬 높다. 고유점도가 높은 음이온성 폴리머를 이용하면 오폐수에 포함된 부유물질이 크고 끈적하게 응집되기 때문에, 응집된 물질을 포함하는 오폐수를 필터 막(예를 들어, UF 막, RO 막)에 통과시키면 필터에 끈적한 잔류물이 남고 필터로부터 잔류물을 제거하는 것이 쉽지 않다는 문제점이 있다.In addition, the intrinsic viscosity of the anionic polymer is generally 10 dl/g or more, and the intrinsic viscosity is much higher than that of the cationic polymer. When anionic polymer with high intrinsic viscosity is used, suspended solids contained in wastewater are large and sticky, so if wastewater containing the agglomerated material passes through a filter membrane (e.g., UF membrane, RO membrane), it passes through the filter. There is a problem that a sticky residue remains and it is not easy to remove the residue from the filter.

본 발명 양이온성 폴리머의 고유점도는 0.2 내지 6.6 dl/g, 0.3 내지 6.0 dl/g, 0.4 내지 5.0 dl/g, 0.5 내지 4.0 dl/g, 0.6 내지 3.0 dl/g 또는 0.7 내지 2.0 dl/g일 수 있다.The intrinsic viscosity of the cationic polymer of the present invention is 0.2 to 6.6 dl/g, 0.3 to 6.0 dl/g, 0.4 to 5.0 dl/g, 0.5 to 4.0 dl/g, 0.6 to 3.0 dl/g, or 0.7 to 2.0 dl/g Can be

고유점도가 낮은 양이온성 폴리머를 사용하면 부유물질을 상대적으로 작고 단단하게 응집시킬 수 있기 때문에 오폐수 처리시 사용되는 필터 막에 부유물질이 붙어 필터가 막히는 것을 억제할 수 있다.If a cationic polymer having a low intrinsic viscosity is used, the suspended matter can be relatively small and hardly agglomerated, so that it is possible to suppress clogging of the filter due to the floating matter sticking to the filter membrane used for wastewater treatment.

양이온성 폴리머의 당량은 1 내지 7 meq/g일 수 있다.The equivalent weight of the cationic polymer may be 1 to 7 meq/g.

양이온성 폴리머의 분자량은 15×104 내지 50×104 g/mol, 20×104 내지 40×104 g/mol 또는 25×104 내지 30×104 g/mol일 수 있다. 양이온성 폴리머의 분자량이 너무 크면 UF 막의 공경이 막힐 수 있는 바 적절한 분자량을 갖는 양이온성 폴리머를 이용하는 것이 바람직하다.The molecular weight of the cationic polymer may be 15×10 4 to 50×10 4 g/mol, 20×10 4 to 40×10 4 g/mol, or 25×10 4 to 30×10 4 g/mol. If the molecular weight of the cationic polymer is too large, the pore diameter of the UF membrane may be clogged, so it is preferable to use a cationic polymer having an appropriate molecular weight.

양이온성 폴리머는 질소를 포함하는 화합물 일 수 있다.The cationic polymer may be a compound containing nitrogen.

양이온성 폴리머는 오폐수에 대하여 0.1 내지 10 mg/L, 0.1 내지 9 mg/L, 0.1 내지 8 mg/L, 0.1 내지 7 mg/L, 0.1 내지 6 mg/L, 0.1 내지 5 mg/L, 0.1 내지 4 mg/L, 0.1 내지 3 mg/L, 0.1 내지 2 mg/L, 0.1 내지 1 mg/L 첨가될 수 있다.Cationic polymer is 0.1 to 10 mg/L, 0.1 to 9 mg/L, 0.1 to 8 mg/L, 0.1 to 7 mg/L, 0.1 to 6 mg/L, 0.1 to 5 mg/L, 0.1 To 4 mg/L, 0.1 to 3 mg/L, 0.1 to 2 mg/L, 0.1 to 1 mg/L may be added.

오폐수에 본 발명 양이온성 폴리머를 첨가하여 오폐수의 제타 전위를 -50 내지 -0.01 mV, -40 내지 -0.02 mV, -30 내지 -0.05 mV, -20 내지 -0.1 mV 또는 -10 내지 -0.5 mV 에 도달시킬 수 있다.By adding the cationic polymer of the present invention to wastewater, the zeta potential of the wastewater is -50 to -0.01 mV, -40 to -0.02 mV, -30 to -0.05 mV, -20 to -0.1 mV, or -10 to -0.5 mV. Can reach.

오폐수에 본 발명 양이온성 폴리머를 첨가하여 오폐수의 제타 전위를 -50 내지 -0.01 mV, -40 내지 -0.01 mV, -30 내지 -0.01 mV, -20 내지 -0.01 mV 또는 -10 내지 -0.01 mV 에 도달시킬 수 있다.By adding the cationic polymer of the present invention to wastewater, the zeta potential of the wastewater is -50 to -0.01 mV, -40 to -0.01 mV, -30 to -0.01 mV, -20 to -0.01 mV, or -10 to -0.01 mV. Can reach.

본 발명 오폐수의 처리 방법은 오폐수에 양이온성 폴리머를 먼저 첨가한 후 중금속을 포함하는 응집제를 첨가한다.In the wastewater treatment method of the present invention, a cationic polymer is first added to the wastewater, and then a coagulant containing a heavy metal is added.

구체적으로, 본 발명 오폐수의 처리 방법은 양이온성 폴리머를 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후에 중금속을 포함하는 응집제를 첨가하는 단계를 포함한다.Specifically, the wastewater treatment method of the present invention includes the step of adding a coagulant containing a heavy metal after reaching the zeta potential of the wastewater to about 0 mV by adding a cationic polymer.

양이온성 폴리머를 먼저 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후 응집제를 첨가하면 소량의 응집제만 첨가하더라도 오폐수 내 부유물질을 효과적으로 침전시킬 수 있는 장점이 있다.If a cationic polymer is first added to reach the zeta potential of wastewater near 0 mV, and then a coagulant is added, there is an advantage that even if only a small amount of the coagulant is added, suspended matter in the wastewater can be effectively precipitated.

구체적으로, 중금속을 포함하는 응집제는 오폐수에 대하여 400 mg/L 이하, 350 mg/L 이하, 300 mg/L 이하, 250 mg/L 이하, 200 mg/L 이하, 150 mg/L 이하, 100 mg/L 이하, 50 mg/L 이하로 첨가될 수 있다.Specifically, the coagulant containing heavy metals is 400 mg/L or less, 350 mg/L or less, 300 mg/L or less, 250 mg/L or less, 200 mg/L or less, 150 mg/L or less, 100 mg for wastewater. /L or less, 50 mg/L or less can be added.

오폐수 처리시 다량의 약품이 사용되면 UF 막을 통한 여과 공정을 활용하기 어려워 공정이 더 복잡해지는 문제가 발생한다. 본 발명 오폐수 처리 방법은 양이온성 폴리머를 소량 사용함으로써 중금속을 포함하는 응집제의 양을 절감시킬 수 있는바 공정의 효율을 높일 수 있다.When a large amount of chemicals are used in wastewater treatment, it is difficult to utilize the filtration process through the UF membrane, resulting in a problem that the process becomes more complicated. The wastewater treatment method of the present invention can reduce the amount of a coagulant containing heavy metals by using a small amount of a cationic polymer, thereby increasing the efficiency of the process.

중금속을 포함하는 응집제는 Fe 계열 응집제일 수 있으나 이에 제한되지 않는다. Fe 계열 응집제는 FeSO47H2O, Fe2(SO4)3, FeCl3등일 수 있다.The coagulant containing a heavy metal may be an Fe-based coagulant, but is not limited thereto. The Fe-based coagulant may be FeSO 4 7H 2 O, Fe 2 (SO4) 3 , FeCl 3 , and the like.

중금속을 포함하는 응집제가 첨가될 때의 오폐수의 pH는 9 내지 12, 9.5 내지 11.5, 10 내지 11, 10 내지 10.5일 수 있다.When a coagulant containing a heavy metal is added, the pH of the wastewater may be 9 to 12, 9.5 to 11.5, 10 to 11, and 10 to 10.5.

실시예Example

도 1은 본 발명에 따른 실시예의 오폐수 내 부유물질을 제거하는 방법을 나타내는 모식도이다. 실시예 1 내지 4의 구체적인 내용은 다음과 같다.1 is a schematic diagram showing a method of removing suspended substances in wastewater according to an embodiment of the present invention. Specific contents of Examples 1 to 4 are as follows.

실시예 1Example 1

최초 오폐수(원수: Raw water)에 CE가 6.0 meq/g, 고유점도가 0.2 dL/g, 분자량이 15×104 g/mol인 양이온성 폴리머 C-701(Kurita Water Industries Ltd.) 1 mg/L를 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후, 원수의 부피를 기준으로 FeCl3 60 mg/L를 주입하였다. FeCl3 과다 주입으로 pH가 10 이하로 내려가는 경우 NaOH나 기타 pH 조절제로 pH를 10 이상으로 유지하였다. 부유물질이 응집된 응집수를 UF 막에 전량 주입하여 최종 처리하였다.In the first wastewater (raw water), a cationic polymer C-701 (Kurita Water Industries Ltd.) with a CE value of 6.0 meq/g, an intrinsic viscosity of 0.2 dL/g, and a molecular weight of 15×10 4 g/mol (Kurita Water Industries Ltd.) 1 mg/ After L was added to reach the zeta potential of wastewater near 0 mV, FeCl 3 60 mg/L was injected based on the volume of raw water. When the pH falls below 10 due to excessive injection of FeCl 3 , the pH was maintained above 10 with NaOH or other pH adjusters. The final treatment was performed by injecting the entire amount of coagulated water in which the suspended matter was agglomerated into the UF membrane.

실시예 2Example 2

실시예 1에서 사용된 오폐수와 동일한 오폐수에 CE가 6.0 meq/g, 고유점도가 0.8 dL/g, 분자량이 20×104 g/mol인 양이온성 폴리머 P-702(Kurita Water Industries Ltd.) 1 mg/L를 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후, 원수의 부피를 기준으로 FeCl3 60 mg/L를 주입하였다. FeCl3 과다 주입으로 pH가 10 이하로 내려가는 경우 NaOH나 기타 pH 조절제로 pH를 10 이상으로 유지하였다. 부유물질이 응집된 응집수를 UF 막에 전량 주입하여 최종 처리하였다.Cationic polymer P-702 (Kurita Water Industries Ltd.) 1 having a CE of 6.0 meq/g, an intrinsic viscosity of 0.8 dL/g, and a molecular weight of 20×10 4 g/mol in the same waste water used in Example 1 After adding mg/L to reach the zeta potential of wastewater near 0 mV, 60 mg/L of FeCl 3 was injected based on the volume of raw water. When the pH falls below 10 due to excessive injection of FeCl 3 , the pH was maintained above 10 with NaOH or other pH adjusters. The final treatment was performed by injecting the entire amount of coagulated water in which the suspended matter was agglomerated into the UF membrane.

실시예 3Example 3

실시예 1에서 사용된 오폐수와 동일한 오폐수에 CE가 4.7 meq/g, 고유점도가 1.6 dL/g, 분자량이 30×104 g/mol 인 양이온성 폴리머 P-707(Kurita Water Industries Ltd.) 1 mg/L를 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후, 원수의 부피를 기준으로 FeCl3 60 mg/L를 주입하였다. FeCl3 과다 주입으로 pH가 10 이하로 내려가는 경우 NaOH나 기타 pH 조절제로 pH를 10 이상으로 유지하였다. 부유물질이 응집된 응집수를 UF 막에 전량 주입하여 최종 처리하였다.Cationic polymer P-707 (Kurita Water Industries Ltd.) 1 having a CE of 4.7 meq/g, an intrinsic viscosity of 1.6 dL/g, and a molecular weight of 30×10 4 g/mol in the same waste water used in Example 1 After adding mg/L to reach the zeta potential of wastewater near 0 mV, 60 mg/L of FeCl 3 was injected based on the volume of raw water. When the pH falls below 10 due to excessive injection of FeCl 3 , the pH was maintained above 10 with NaOH or other pH adjusters. The final treatment was performed by injecting the entire amount of coagulated water in which the suspended matter was agglomerated into the UF membrane.

실시예 4Example 4

실시예 1에서 사용된 오폐수와 동일한 오폐수에 CE가 1 meq/g, 고유점도가 6.6 dL/g, 분자량이 50×104 g/mol 인 양이온성 폴리머 P-709(Kurita Water Industries Ltd.) 1 mg/L를 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달시킨 후, 원수의 부피를 기준으로 FeCl3 60 mg/L를 주입하였다. FeCl3 과다 주입으로 pH가 10 이하로 내려가는 경우 NaOH나 기타 pH 조절제로 pH를 10 이상으로 유지하였다. 부유물질이 응집된 응집수를 UF 막에 전량 주입하여 최종 처리하였다.Cationic polymer P-709 (Kurita Water Industries Ltd.) 1 having a CE of 1 meq/g, an intrinsic viscosity of 6.6 dL/g, and a molecular weight of 50×10 4 g/mol in the same waste water used in Example 1 After adding mg/L to reach the zeta potential of wastewater near 0 mV, 60 mg/L of FeCl 3 was injected based on the volume of raw water. When the pH falls below 10 due to excessive injection of FeCl 3 , the pH was maintained above 10 with NaOH or other pH adjusters. The final treatment was performed by injecting the entire amount of coagulated water in which the suspended matter was agglomerated into the UF membrane.

비교예Comparative example

비교예 1Comparative Example 1

실시예 1에서 사용된 오폐수에 양이온성 폴리머와 FeCl3를 주입하지 않고 UF 막에 전량 주입하였다.The entire amount was injected into the UF membrane without injection of the cationic polymer and FeCl 3 into the wastewater used in Example 1.

비교예 2Comparative Example 2

실시예 1에서 사용된 오폐수와 동일한 오폐수에 FeCl3를 60 mg/L 주입하고 15분 동안 응집 교반한 후, UF 막에 전량 주입하였다. 60 mg/L of FeCl 3 was injected into the same waste water as the waste water used in Example 1, and after coagulation and stirring for 15 minutes, the entire amount was injected into the UF membrane.

비교예 3Comparative Example 3

실시예 1에서 사용된 오폐수와 동일한 오폐수에 FeCl3를 150 mg/L 주입하고 15분 동안 응집 교반한 후, UF 막에 전량 주입하였다. 150 mg/L of FeCl 3 was injected into the same waste water as the waste water used in Example 1, followed by coagulation and stirring for 15 minutes, and then the entire amount was injected into the UF membrane.

비교예 4Comparative Example 4

실시예 1에서 사용된 오폐수와 동일한 오폐수에 FeCl3를 200 mg/L 주입하고 15분 동안 응집 교반한 후, UF 막에 전량 주입하였다. 200 mg/L of FeCl 3 was injected into the same waste water as the waste water used in Example 1, followed by coagulation and stirring for 15 minutes, and then the entire amount was injected into the UF membrane.

비교예 5Comparative Example 5

실시예 1에서 사용된 오폐수와 동일한 오폐수에 FeCl3를 250 mg/L 주입한 후 UF 막에 전량 주입하였다. After 250 mg/L of FeCl 3 was injected into the same waste water as the waste water used in Example 1, the entire amount was injected into the UF membrane.

비교예 6Comparative Example 6

실시예 1에서 사용된 오폐수와 동일한 오폐수에 FeCl3를 300 mg/L 주입한 후, UF 막에 전량 주입하였다. After 300 mg/L of FeCl 3 was injected into the same waste water as the waste water used in Example 1, the entire amount was injected into the UF membrane.

비교예 7Comparative Example 7

실시예 1에서 사용된 오폐수와 동일한 오폐수에 고유점도가 170 dL/g, 분자량이 150×104 g/mol인 음이온성 폴리머(유니케미컬, A-101) 1 mg/L를 첨가한 후, 원수의 부피를 기준으로 FeCl3 60 mg/L를 주입하였다. FeCl3 과다 주입으로 pH가 10 이하로 내려가는 경우 NaOH나 기타 pH 조절제로 pH를 10 이상으로 유지하였다. 부유물질이 응집된 응집수를 UF 막에 전량 주입하여 최종 처리하였다.After adding 1 mg/L of an anionic polymer (Unichemical, A-101) having an intrinsic viscosity of 170 dL/g and a molecular weight of 150×10 4 g/mol to the same waste water used in Example 1, raw water FeCl 3 60 mg/L was injected based on the volume of. When the pH falls below 10 due to excessive injection of FeCl 3 , the pH was maintained above 10 with NaOH or other pH adjusters. The final treatment was performed by injecting the entire amount of coagulated water in which the suspended matter was agglomerated into the UF membrane.

실시예 및 비교예의 부유물질 제거 및 응집 효과Floating matter removal and coagulation effect of Examples and Comparative Examples

실시예 및 비교예를 통해 처리된 오폐수의 부유물질(유기물) 제거 효과를 확인하기 위해 각 실시예 및 비교예의 오폐수의 TOC(Total Organic Carbon)를 측정하였다. 또한 본 발명의 처리 방법 이후에 UF 막을 사용하여 후처리할 수 있는지를 확인하기 위해 각 실시예 및 비교예의 오폐수의 MFF(Membrane Filter Factor)를 측정하였다.In order to confirm the effect of removing suspended matter (organic matter) from the treated wastewater through the Examples and Comparative Examples, TOC (Total Organic Carbon) of the wastewater of each of the Examples and Comparative Examples was measured. In addition, in order to confirm whether post-treatment can be performed using the UF membrane after the treatment method of the present invention, the MFF (Membrane Filter Factor) of the wastewater of each Example and Comparative Example was measured.

측정 방법How to measure

(1) 제타 전위 측정(1) Zeta potential measurement

실시예에서 양이온성 폴리머를 첨가한 후 FeCl3를 첨가하기 전의 제타 전위 값과 비교예에서 FeCl3를 첨가하기 전의 제타 전위 값을 측정하였다. 제타 전위 값은 제타 스트리밍 포텐셜(Zeta streaming Potential)법에 의한 전위차 측정을 통해 얻었고, Zeta Check기기(ParticleMetrix사)를 이용하였다. In the Example, the zeta potential value before the addition of FeCl 3 after the cationic polymer was added and the zeta potential value before the addition of FeCl 3 in the Comparative Example were measured. The zeta potential value was obtained by measuring the potential difference by the zeta streaming potential method, and a Zeta Check device (ParticleMetrix) was used.

(2) TOC 측정(2) TOC measurement

실시예 및 비교예의 UF막에 처리된 오폐수를 산성화 시키고 무기탄소를 완전히 제거한 후 잔존 유기 탄소를 측정하는 비정화성 유기 탄소법(NPOC: Nonpurgeable Organic Carbon)을 이용해 TOC를 측정하였다. TOC 측정을 위해 TOC-L기기(SHIMADZU)를 사용하였다. 아무런 처리가 되지 않은 오폐수(원수)의 TOC 값은 2.8 mg/L로 측정되었으며, 실시예 및 비교예의 UF막에 처리된 오폐수의 TOC 농도가 원수 TOC 농도를 기준으로 30% 이상 감소하면 유기물 제거능이 우수한 것으로 보았다.TOC was measured using the Nonpurgeable Organic Carbon (NPOC) method of measuring residual organic carbon after acidifying the wastewater treated on the UF film of Examples and Comparative Examples and completely removing inorganic carbon. A TOC-L instrument (SHIMADZU) was used for TOC measurement. The TOC value of the untreated wastewater (raw water) was measured to be 2.8 mg/L, and when the TOC concentration of the wastewater treated on the UF membrane of Examples and Comparative Examples decreases by more than 30% based on the raw water TOC concentration, the organic matter removal ability is reduced. I saw it as excellent.

(3) MFF 측정(3) MFF measurement

MFF는 확인 대상 물질이 막을 통과하기에 적합한지 확인하는 기준으로서 확인 대상 물질 110 ml를 0.45 μm의 거름종이에 1차 통과시키고 그 통과 시간(T1)을 측정한 후, 통과된 확인 대상 물질을 0.45 μm의 거름종이에 2차 통과시키고 그 통과 시간(T2)을 측정하여, T1에 대한 T2의 분율(T2/T1)을 계산하여 그 값이 1.1 미만이면 UF막 처리에 적합한 것으로 보았다.MFF is a criterion for confirming whether the substance to be checked is suitable for passing through the membrane. 110 ml of the substance to be checked is first passed through a filter paper of 0.45 μm and the passing time (T1) is measured, and then the substance to be checked is 0.45 After passing through a μm filter paper a second time, the passing time (T2) was measured, and the fraction of T2 to T1 (T2/T1) was calculated. If the value was less than 1.1, it was considered suitable for UF film treatment.

측정 결과Measurement result

표 1은 실시예 및 비교예들의 TOC 및 MFF를 나타낸다. 도 2는 실시예 1 내지 4 및 비교예 5의 MFF 값을 그래프로 나타낸 것이다. 하기 표 1에서 제타 전위는 FeCl3를 첨가하기 전의 오폐수 제타 전위를 나타낸다.Table 1 shows TOC and MFF of Examples and Comparative Examples. 2 is a graph showing MFF values of Examples 1 to 4 and Comparative Example 5. In Table 1 below, the zeta potential represents the zeta potential of wastewater before FeCl 3 is added.

구분division 제타 전위
(mV)
Zeta potential
(mV)
TOC(mg/L)TOC(mg/L) MFFMFF 종합평가Comprehensive evaluation
측정값Measures 유기물
제거능 평가
Organic matter
Evaluating removal ability
value 막처리 평가Membrane treatment evaluation
실시예1Example 1 -0.09-0.09 1.681.68 우수Great 1.041.04 적합fitness 우수Great 실시예2Example 2 -0.11-0.11 1.741.74 우수Great 1.081.08 적합fitness 우수Great 실시예3Example 3 -0.11-0.11 1.861.86 우수Great 1.091.09 적합fitness 우수Great 실시예4Example 4 -0.10-0.10 1.631.63 우수Great 1.041.04 적합fitness 우수Great 비교예1Comparative Example 1 -29-29 2.782.78 불량Bad 측정 불가Not measurable 부적합incongruity 부유물질제거불량Poor removal of suspended substances 비교예2Comparative Example 2 -29-29 2.602.60 불량Bad 측정 불가Not measurable 부적합incongruity 부유물질제거불량Poor removal of suspended substances 비교예3Comparative Example 3 -29-29 2.242.24 불량Bad 1.11.1 부적합incongruity 부유물질제거 및 막처리불량Removal of suspended substances and poor membrane treatment 비교예4Comparative Example 4 -29-29 2.102.10 불량Bad 1.11.1 부적합incongruity 부유물질제거 및 막처리불량Removal of suspended substances and poor membrane treatment 비교예5Comparative Example 5 -29-29 1.731.73 우수Great 1.061.06 적합fitness 과량약품 필요Need for overdose 비교예6Comparative Example 6 -29-29 1.711.71 우수Great 1.071.07 적합fitness 과량약품 필요Need for overdose 비교예7Comparative Example 7 -20-20 2.422.42 불량Bad 측정 불가Not measurable 부적합incongruity 부유물질제거 및 막처리불량Removal of suspended substances and poor membrane treatment

실시예 1 내지 4와 같이 오폐수에 양이온성 폴리머를 첨가하여 제타 전위를 0 mV근처로 도달 시킨 후 FeCl3를 첨가한 경우, 소량의 FeCl3만 첨가하더라도 막 처리에 적합한 MFF 기준에 도달하였고, 오폐수 내 유기물 제거능이 우수하였다. As in Examples 1 to 4, when FeCl 3 was added after adding a cationic polymer to wastewater to reach the zeta potential near 0 mV, even if only a small amount of FeCl 3 was added, the MFF standard suitable for membrane treatment was reached. The ability to remove organic matter was excellent.

한편, 비교예 1과 같이 FeCl3와 양이온성 폴리머가 모두 첨가되지 않은 오폐수, 비교예 2와 같이 FeCl3만 소량 첨가된 오폐수 및 비교예 7과 같이 음이온성 폴리머와 FeCl3가 첨가된 오폐수는 막을 통과하지 못해 MFF 측정이 불가하였고, 오폐수 내 유기물 제거능이 우수하지 않았다. On the other hand, wastewater to which both FeCl 3 and cationic polymer were not added as in Comparative Example 1, wastewater to which only a small amount of FeCl 3 was added as in Comparative Example 2, and wastewater to which anionic polymer and FeCl 3 were added as in Comparative Example 7 formed a membrane. MFF measurement was not possible because it did not pass, and the ability to remove organic matter in wastewater was not excellent.

비교예 3 및 4와 같이 FeCl3를 150 내지 200 mg/L 첨가한 경우에는 막을 통과할 수는 있었으나 측정된 MFF 값이 최적의 값이 아니었고, 오폐수 내 유기물 제거능이 우수하지 않았다. 또한, 비교예 5 및 6의 경우 부유물질 제거를 위해 과량의 약품이 필요하기 때문에 비경제적이며, 오폐수로부터 약품을 제거하기 위한 추가 공정이 더 필요하기 때문에 비효율적이다.As in Comparative Examples 3 and 4, when 150 to 200 mg/L of FeCl 3 was added, it could pass through the membrane, but the measured MFF value was not an optimal value, and the ability to remove organic matter in wastewater was not excellent. In addition, in the case of Comparative Examples 5 and 6, it is uneconomical because an excessive amount of chemicals is required for removing suspended substances, and it is inefficient because an additional process for removing the chemicals from wastewater is further required.

즉, 본 발명 오폐수의 처리 방법은 오폐수에 양이온성 폴리머를 먼저 첨가하여 오폐수의 제타 전위를 0 mV 근처로 도달 시킨 후 응집제인 FeCl3를 첨가함으로써 응집제의 첨가량을 크게 줄일 수 있고 후속 단계로 막 처리가 가능한 바, 보다 효율적이고 경제적으로 오폐수 내의 부유물질 제거가 가능하다는 장점이 있다.That is, in the wastewater treatment method of the present invention, a cationic polymer is first added to the wastewater to reach the zeta potential of the wastewater near 0 mV, and then FeCl 3 as a coagulant is added to greatly reduce the amount of coagulant added, and film treatment as a subsequent step It has the advantage that it is possible to remove suspended substances in wastewater more efficiently and economically.

Claims (11)

부유물질을 포함하는 오폐수에 고유점도가 0.2 내지 6.6 dl/g인 양이온성 폴리머를 첨가하여 상기 오폐수의 제타 전위를 -50 내지 -0.01 mV에 도달시키는 단계; 및 상기 오폐수에 중금속을 포함하는 응집제를 첨가하여 상기 부유물질을 침전시키는 단계를 포함하는 오폐수의 처리 방법.
Adding a cationic polymer having an intrinsic viscosity of 0.2 to 6.6 dl/g to wastewater containing suspended solids to reach a zeta potential of the wastewater to -50 to -0.01 mV; And precipitating the suspended matter by adding a coagulant containing a heavy metal to the wastewater.
청구항 1에 있어서, 상기 침전 이후에, 상기 오폐수를 UF(Ultra Filter) 막에 통과시키는 단계를 더 포함하는 오폐수의 처리 방법.
The method of claim 1, further comprising passing the wastewater through an ultra filter (UF) membrane after the precipitation.
청구항 2에 있어서, 상기 UF 막을 통과한 오폐수를 RO(reverse osmosis) 막에 통과시키는 단계를 더 포함하는 오폐수의 처리 방법.
The method of claim 2, further comprising passing the wastewater that has passed through the UF membrane through a reverse osmosis (RO) membrane.
청구항 1에 있어서, 상기 부유물질은 음전하를 띠는 것인, 오폐수의 처리 방법.
The method of claim 1, wherein the suspended matter has a negative charge.
청구항 1에 있어서, 상기 양이온성 폴리머는 1 내지 7 meq/g의 당량을 갖는 것인, 오폐수의 처리 방법.
The method of claim 1, wherein the cationic polymer has an equivalent weight of 1 to 7 meq/g.
청구항 1에 있어서, 상기 양이온성 폴리머는 15×104 내지 50×104 g/mol의 분자량을 갖는 것인, 오폐수의 처리 방법.
The method of claim 1, wherein the cationic polymer has a molecular weight of 15×10 4 to 50×10 4 g/mol.
청구항 1에 있어서, 상기 양이온성 폴리머는 상기 오폐수에 대하여 0.1 내지 10 mg/L 첨가되는 것인, 오폐수의 처리 방법.
The method of claim 1, wherein the cationic polymer is added 0.1 to 10 mg/L to the waste water.
청구항 1에 있어서, 상기 중금속을 포함하는 응집제는 Fe 계열의 응집제인, 오폐수의 처리 방법.
The method of claim 1, wherein the coagulant containing a heavy metal is an Fe-based coagulant.
청구항 1에 있어서, 상기 제타 전위는 -30 내지 -0.05 mV인, 오폐수의 처리 방법.
The method of claim 1, wherein the zeta potential is -30 to -0.05 mV.
청구항 1에 있어서, 상기 중금속은 상기 오폐수에 대하여 400 mg/L 이하로 첨가되는 것인, 오폐수의 처리 방법.
The method of claim 1, wherein the heavy metal is added in an amount of 400 mg/L or less with respect to the waste water.
청구항 1에 있어서, 상기 중금속을 포함하는 응집제가 첨가될 때의 오폐수의 pH는 9 내지 12인, 오폐수의 처리 방법.The method of claim 1, wherein the wastewater has a pH of 9 to 12 when the coagulant containing the heavy metal is added.
KR1020190136645A 2019-10-30 2019-10-30 Method for treating waste water containing suspended solids KR20210051406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190136645A KR20210051406A (en) 2019-10-30 2019-10-30 Method for treating waste water containing suspended solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190136645A KR20210051406A (en) 2019-10-30 2019-10-30 Method for treating waste water containing suspended solids

Publications (1)

Publication Number Publication Date
KR20210051406A true KR20210051406A (en) 2021-05-10

Family

ID=75917738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190136645A KR20210051406A (en) 2019-10-30 2019-10-30 Method for treating waste water containing suspended solids

Country Status (1)

Country Link
KR (1) KR20210051406A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327735B1 (en) 2000-06-26 2002-03-15 김효근 A Physical Chemical Disposal Method Of Organic Wastewater Having High Concentration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327735B1 (en) 2000-06-26 2002-03-15 김효근 A Physical Chemical Disposal Method Of Organic Wastewater Having High Concentration

Similar Documents

Publication Publication Date Title
Choo et al. Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system
US7438817B2 (en) System and method for treatment of acidic wastewater
CN101723526B (en) Film treatment method for wastewater produced by synthetic rubber
Arabi et al. Impact of calcium on the membrane fouling in membrane bioreactors
US20110062079A1 (en) Process for treating water by a nanofiltration or reverse osmosis membrane system enabling high conversion rates due to the elimination of organic matter
CN102897944A (en) System for deeply processing difficultly degradable organic waste water
TWI387562B (en) Process and treatment device for water containing biological treatment water
JP6287594B2 (en) Aggregation processing method and aggregation processing apparatus
WO2010050325A1 (en) Membrane separation process
CN101215072A (en) Biological activated carbon sea water treatment method for increasing organism degradability
US7686957B2 (en) Method for treating fluids by coagulation on membranes
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
Lee et al. Effect of residual ozone on membrane fouling reduction in ozone resisting microfiltration (MF) membrane system
KR20210051406A (en) Method for treating waste water containing suspended solids
KR20210051405A (en) Method for treating waste water containing calcium ion
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
Li et al. Efficient synergism of K2FeO4 preoxidation/MIEX adsorption in ultrafiltration membrane fouling control and mechanisms
JP6644014B2 (en) Water treatment method
JP2016144778A (en) Water treatment flocculant and water treatment method
JP2016187790A (en) Method and device for treating inorganic carbon-containing water
JP3697938B2 (en) Wastewater treatment equipment
ZA200600753B (en) System and method for treatment of acidic wastewater
Khanzada et al. Hybrid forward/reverse osmosis (HFRO): An approach for optimized operation and sustainable resource recovery
JP2014046235A (en) Fresh water generating method
Johir et al. Hybrid filtration method for pre-treatment of stormwater

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application