KR20210047566A - Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same - Google Patents

Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same Download PDF

Info

Publication number
KR20210047566A
KR20210047566A KR1020190131341A KR20190131341A KR20210047566A KR 20210047566 A KR20210047566 A KR 20210047566A KR 1020190131341 A KR1020190131341 A KR 1020190131341A KR 20190131341 A KR20190131341 A KR 20190131341A KR 20210047566 A KR20210047566 A KR 20210047566A
Authority
KR
South Korea
Prior art keywords
secondary battery
potassium secondary
potassium
electrode material
positive electrode
Prior art date
Application number
KR1020190131341A
Other languages
Korean (ko)
Inventor
명승택
조창흠
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Priority to KR1020190131341A priority Critical patent/KR20210047566A/en
Publication of KR20210047566A publication Critical patent/KR20210047566A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided are a positive electrode material for a potassium secondary battery and a potassium secondary battery having the same, wherein the positive electrode material for the potassium secondary battery is LiCoO_2. According to the present invention, LiCoO_2 applied for a lithium secondary battery is applied to a potassium secondary battery to be used as a hybrid electrode material to realize far superior performance than an existing positive electrode material for a potassium secondary battery.

Description

칼륨 이차전지용 양극소재 및 이를 포함하는 칼륨 이차전지{Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same}Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same}

본 발명은 칼륨 이차전지에 관한 것으로, 더욱 자세하게는 칼륨 이차전지용 양극소재에 관한 것이다.The present invention relates to a potassium secondary battery, and more particularly, to a positive electrode material for a potassium secondary battery.

차세대 리튬이차전지 중의 하나로 연구되고 있는 칼륨이차전지는 리튬 및 나트륨이차전지에 비하여 원자반경이 다소 큰 칼륨이온 및 산화분위기 형성의 용이성으로 인해 개발에 어려움이 있다. 또한, 칼륨이차전지는 성능구현의 한계성으로 인해 차세대 이차전지로써 두각되기가 어려운 상태이며, 연구단계에 머물러 있다.Potassium secondary batteries, which are being studied as one of the next-generation lithium secondary batteries, are difficult to develop due to the ease of formation of an oxidizing atmosphere and potassium ions having a somewhat larger atomic radius than lithium and sodium secondary batteries. In addition, the potassium secondary battery is difficult to stand out as a next-generation secondary battery due to the limitations of performance implementation, and remains in the research stage.

이러한 성능의 한계를 극복하고자 다른 알칼리 이차전지용 전극소재를 적용하여 하이브리드 형태의 전지를 제조한 예로 나트륨이차전지용 양극소재로 적용되었던 NaCrO2를 칼륨 이차전지에 적용하여 기존의 양극소재보다 성능이 향상된 칼륨이차전지용 하이브리드 양극소재를 적용한 사례가 있다.In order to overcome this limitation of performance, a hybrid type battery was manufactured by applying other electrode materials for alkaline secondary batteries. For example, NaCrO 2 , which was applied as a cathode material for sodium secondary batteries, was applied to potassium secondary batteries, resulting in improved performance than conventional cathode materials. There is a case of applying a hybrid cathode material for secondary batteries.

대한민국 등록특허공보 제10-1983608호Korean Patent Publication No. 10-1983608

본 발명이 해결하고자 하는 과제는, 리튬이차전지용으로 적용되는 LiCoO2를 칼륨이차전지에 적용하여 하이브리드 전극소재로써 기존의 칼륨이차전지용 양극소재보다 월등히 우수한 성능을 구현하기 위함이다. The problem to be solved by the present invention is to realize superior performance as a hybrid electrode material as a hybrid electrode material by applying LiCoO 2 applied for a lithium secondary battery to a potassium secondary battery compared to the conventional cathode material for a potassium secondary battery.

상기 과제를 이루기 위하여 본 발명의 일 측면은 칼륨 이차전지용 양극소재 및 이를 포함하는 칼륨 이차전지을 제공한다. 상기 칼륨 이차전지용 양극소재는 LiCoO2이다.In order to achieve the above object, an aspect of the present invention provides a cathode material for a potassium secondary battery and a potassium secondary battery including the same. The cathode material for the potassium secondary battery is LiCoO 2 .

본 발명에 따르면, 리튬이차전지용으로 적용되는 LiCoO2를 칼륨이차전지에 적용하여 하이브리드 전극소재로써 기존의 칼륨이차전지용 양극소재보다 월등히 우수한 성능을 구현한다. According to the present invention, LiCoO 2 applied for a lithium secondary battery is applied to a potassium secondary battery to realize superior performance as a hybrid electrode material compared to a conventional cathode material for a potassium secondary battery.

본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical effects of the present invention are not limited to those mentioned above, and other technical effects that are not mentioned will be clearly understood by those skilled in the art from the following description.

도 1은 LiCoO2 양극소재에 대한 알칼리원소 종류(Li, Na 및 K)에 따른 충방전 곡선을 나타낸 그래프이다.
도 2는 본 발명의 이차전지에 대한 충방전 평가결과 그래프이다.
도 3은 본 발명의 양극 구조에 대한 ex-situ XRD 구조분석 그래프이다.
도 4는 XANES 분석결과 그래프이다.
도 5는 본 발명의 양극 구조 변화에 대한 이미지이다.
1 is a graph showing charge and discharge curves according to the types of alkali elements (Li, Na, and K) for a LiCoO 2 positive electrode material.
2 is a graph showing the results of charge/discharge evaluation for the secondary battery of the present invention.
3 is an ex-situ XRD structure analysis graph for the anode structure of the present invention.
4 is a graph of XANES analysis results.
5 is an image of a change in the structure of an anode of the present invention.

이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다. While the present invention allows various modifications and variations, specific embodiments thereof are illustrated and shown in the drawings, and will be described in detail below. However, it is not intended to limit the present invention to the particular form disclosed, but rather the present invention includes all modifications, equivalents, and substitutions consistent with the spirit of the present invention as defined by the claims.

층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다. When an element such as a layer, region or substrate is referred to as being “on” another component, it will be understood that it may exist directly on the other element or there may be intermediate elements between them. .

비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.Although terms such as first, second, etc. may be used to describe various elements, components, regions, layers and/or regions, these elements, components, regions, layers and/or regions It will be understood that it should not be limited by these terms.

본 발명에서는, 리튬이차전지용으로 적용되는 LiCoO2를 칼륨이차전지에 적용하여 하이브리드 전극소재로써 기존의 칼륨이차전지용 양극소재보다 월등히 우수한 성능을 구현하고자 한다. In the present invention, LiCoO 2 applied for a lithium secondary battery is applied to a potassium secondary battery to realize superior performance as a hybrid electrode material compared to a conventional cathode material for a potassium secondary battery.

이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실험예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, in order to describe the present invention in more detail, a preferred experimental example according to the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.

실시예 1 <실험준비>Example 1 <Experiment preparation>

(1) LiCoO2 분말 준비(1) LiCoO2 powder preparation

LiCoO2 분말을 구매하여 준비했다.It was prepared by purchasing LiCoO2 powder.

실시예 2 <실험내용>Example 2 <Experimental content>

(1) 전지평가(1) Battery evaluation

칼륨이차전지용 하이브리드 양극소재의 성능을 평가하고자, 전극형태로 제조한 후에 전지를 제작하였다. 전극제조는 LCO(LiCoO2) 양극소재 80% : super p carbon 10% : PVdF(Polyvinylidene fluoride) 바인더 10%를 NMP(N-Methyl-2-Pyrrolidinone)에 혼합하여 알루미늄 호일에 캐스팅하여 80℃에서 건조하여 제작하였다. 로딩양은 8-10 mg/cm3 로 설정했다..In order to evaluate the performance of the hybrid positive electrode material for potassium secondary batteries, a battery was manufactured after manufacturing in the form of an electrode. Electrode manufacturing is LCO (LiCoO 2 ) cathode material 80%: super p carbon 10%: PVdF (Polyvinylidene fluoride) binder 10% is mixed with NMP (N-Methyl-2-Pyrrolidinone), cast on aluminum foil, and dried at 80℃ Was produced. The loading amount was set to 8-10 mg/cm 3.

전지는 R2032 형태의 코인셀로 제작하였다. 평가조건은 1C = 200 mAh g-1을 기준으로 3-4.5V의 전압범위에서 평가를 진행하였다. 사용된 전해질은 KPF6 in EC/DEC 1:1 (부피비) 이었다.. The battery was manufactured with an R2032 type coin cell. The evaluation conditions were evaluated in a voltage range of 3-4.5V based on 1C = 200 mAh g -1. The electrolyte used was KPF 6 in EC/DEC 1:1 (volume ratio).

1) 알칼리원소 종류에 따른 충방전 곡선 비교 1) Comparison of charge/discharge curves according to the type of alkaline element

도 1은 LiCoO2 양극소재에 Li과 Na, K에 대한 평가결과이다. 1 is an evaluation result of Li, Na, and K in a LiCoO 2 positive electrode material.

도 1을 참고하면 각각 APF6 (A: Li, Na, K) 염이 포함된 전해질을 적용하여 평가하였다. 각 염에 대해 같은 평가조건에서 동일하게 평가하였으며, 칼륨이차전지에서는 용량이 거의 유사하게 구현되었지만, 방전곡선의 형태가 다소 달랐다.Referring to Figure 1, each APF 6 (A: Li, Na, K) was evaluated by applying an electrolyte containing a salt. Each salt was evaluated in the same manner under the same evaluation conditions, and the capacity was almost similar in the potassium secondary battery, but the shape of the discharge curve was slightly different.

2) 충방전 평가결과2) Charge/discharge evaluation result

도 2는 본 발명의 이차전지에 대한 충방전 평가결과 그래프이다.2 is a graph showing the results of charge/discharge evaluation for the secondary battery of the present invention.

도 2를 참조하면 0.1C의 전류밀도에서 10사이클을 평가하였다. 용량유지율이 리튬이차전지용 LCO와 비교하여 다소 떨어지지만, 유사한 용량 수준에서 지속적으로 구동되었다. Referring to FIG. 2, 10 cycles were evaluated at a current density of 0.1C. Although the capacity retention rate was slightly lower than that for the lithium secondary battery LCO, it was continuously driven at a similar capacity level.

(2) 구조분석 (2) structural analysis

충방전 중에 전극의 구조를 확인하고자 충방전 말단에서 셀을 분해하여 전극을 취득한 후, 전극의 구조를 분석하였다. In order to confirm the structure of the electrode during charging and discharging, the cell was disassembled at the charging/discharging end to obtain an electrode, and the structure of the electrode was analyzed.

도 3은 본 발명의 양극 구조에 대한 ex-situ XRD 구조분석 그래프이다. 3 is an ex-situ XRD structure analysis graph for the anode structure of the present invention.

도 3을 참조하면 칼륨이 어떻게 얼마나 저장되는지 확인하기 위해, 충전말단에서 리튬이 모두 빠져나간 후, 방전말단의 전극 구조는 칼륨을 저장하고 있는 K0.61CoO2 상이 35 % 존재하는 것이 확인되었다. Referring to FIG. 3, in order to check how much potassium is stored, it was confirmed that 35% of the K 0.61 CoO 2 phase, which stores potassium, exists in the electrode structure at the discharge end after all of the lithium is drained from the charging end.

(3) 산화수분석 (3) Oxidation number analysis

충방전 말단에서 취득한 전극으로 XANES 분석을 진행하였다. 해당전극의 전이금속에 대한 산화수를 파악할 수 있는 방법이며, 이를 통해 칼륨이온이 어떻게 얼마나 저장될 수 있는지 예측할 수 있었다.XANES analysis was performed with the electrodes obtained at the charging and discharging ends. It is a method to determine the oxidation number of the transition metal of the electrode, and through this, it was possible to predict how and how much potassium ions can be stored.

도 4는 도 4는 XANES 분석결과 그래프이다. 4 is a graph of the XANES analysis result.

도 4를 참조하면 K0.61CoO2 의 존재를 검증하고자 XANES를 통한 산화수 비교를 하였다. 리튬이차전지용 LCO의 경우, 충전 후 방전전극의 산화수가 OCV상태로 거의 회복된 반면, 칼륨이차전지용 LCO의 경우, 충전 후 방전전극의 산화수가 OCV상태에 훨씬 못 미쳤다. 이는 칼륨을 덜 포함하고 있는 K0.61CoO2 의 존재에 의한 것임을 예측할 수 있었다.Referring to FIG. 4, the oxidation number was compared through XANES to verify the presence of K 0.61 CoO 2. In the case of the LCO for lithium secondary batteries, the oxidation number of the discharge electrode after charging was almost restored to the OCV state, whereas in the case of the LCO for the potassium secondary battery, the oxidation number of the discharge electrode after charging was much less than that of the OCV state. This could be predicted to be due to the presence of K 0.61 CoO 2 containing less potassium.

도 5는 본 발명의 양극 구조 변화에 대한 이미지이다. 도 5는 상기 구조분석과 산화수 분석을 통해 확인된 전극구조의 변화를 이미지로 나타내었다.5 is an image of a change in the structure of an anode of the present invention. 5 shows the change of the electrode structure confirmed through the structural analysis and oxidation number analysis as an image.

<결론><Conclusion>

칼륨이 LiCoO2에 저장될 수 있음이 확인되었다.It was confirmed that potassium can be stored in LiCoO2.

한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are only presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is apparent to those of ordinary skill in the art that other modified examples based on the technical idea of the present invention may be implemented.

Claims (2)

LiCoO2를 포함하는 칼륨 이차전지용 양극.
Containing LiCoO 2 Anode for potassium secondary batteries.
제1항에 있어서, 상기 양극을 포함하는 칼륨이차전지.The potassium secondary battery according to claim 1, comprising the positive electrode.
KR1020190131341A 2019-10-22 2019-10-22 Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same KR20210047566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190131341A KR20210047566A (en) 2019-10-22 2019-10-22 Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190131341A KR20210047566A (en) 2019-10-22 2019-10-22 Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same

Publications (1)

Publication Number Publication Date
KR20210047566A true KR20210047566A (en) 2021-04-30

Family

ID=75740609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190131341A KR20210047566A (en) 2019-10-22 2019-10-22 Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same

Country Status (1)

Country Link
KR (1) KR20210047566A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983608B1 (en) 2017-12-28 2019-05-29 세종대학교 산학협력단 Positive active material for potassium secondary batteries and potassium secondary batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983608B1 (en) 2017-12-28 2019-05-29 세종대학교 산학협력단 Positive active material for potassium secondary batteries and potassium secondary batteries

Similar Documents

Publication Publication Date Title
Choudhury et al. Lithium fluoride additives for stable cycling of lithium batteries at high current densities
Chen et al. MnPO4‐coated Li (Ni0. 4Co0. 2Mn0. 4) O2 for lithium (‐ion) batteries with outstanding cycling stability and enhanced lithiation kinetics
Peled et al. The effect of binders on the performance and degradation of the lithium/sulfur battery assembled in the discharged state
Solchenbach et al. Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells
US9666862B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
KR102446271B1 (en) Lithium secondary battery
JP6844782B2 (en) Lithium-ion mixed conductor membrane improves the performance of lithium-sulfur batteries and other energy storage devices
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP2009064714A (en) Electrode and lithium secondary battery using the same
Watanabe et al. An improved pre-lithiation of graphite anodes using through-holed cathode and anode electrodes in a laminated lithium ion battery
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP2004146348A (en) Negative electrode for lithium secondary battery, and the lithium secondary battery containing same
JP2018531497A6 (en) Method for manufacturing sodium ion battery
GB2543831A (en) Method of passive voltage control in a sodium-ion battery
CN107437609B (en) Rechargeable electrochemical lithium ion battery cell
KR101890031B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
Lee et al. Effect of back-side-coated electrodes on electrochemical performances of lithium-ion batteries
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2005158623A (en) Nonaqueous electrolyte secondary battery
KR20210047566A (en) Positive Electrode Material for Potassium Secondary Batteries and Potassium Secondary Battery Having the Same
KR102340100B1 (en) Electrode for secondary battery and secondary battery comprising the same
JP2004103554A (en) Nonaqueous electrolyte liquid secondary battery
US10673069B2 (en) Hybrid anodes for energy storage devices
Qu Developing and Investigating a Fast and Controllable Prelithiation Method for Lithium-Ion Batteries