KR20210046061A - 광자 카운팅 광검출기들을 이용하여 수명을 검출하기 위한 시스템 및 방법들 - Google Patents

광자 카운팅 광검출기들을 이용하여 수명을 검출하기 위한 시스템 및 방법들 Download PDF

Info

Publication number
KR20210046061A
KR20210046061A KR1020217008826A KR20217008826A KR20210046061A KR 20210046061 A KR20210046061 A KR 20210046061A KR 1020217008826 A KR1020217008826 A KR 1020217008826A KR 20217008826 A KR20217008826 A KR 20217008826A KR 20210046061 A KR20210046061 A KR 20210046061A
Authority
KR
South Korea
Prior art keywords
array
photodetectors
sample wells
light
sample
Prior art date
Application number
KR1020217008826A
Other languages
English (en)
Inventor
벤자민 시프리아니
Original Assignee
퀀텀-에스아이 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀀텀-에스아이 인코포레이티드 filed Critical 퀀텀-에스아이 인코포레이티드
Publication of KR20210046061A publication Critical patent/KR20210046061A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • G01N2021/641Phosphorimetry, gated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Biotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)

Abstract

광자 카운팅을 수행하도록 구성된 광검출기들을 이용하여 발광 분자의 수명을 검출하기 위한 시스템들 및 방법들이 설명된다. 시스템들 및 방법들은, 발광 분자들을 포함할 수 있는, 샘플로부터 방출된 광자들을 검출하기 위한 광검출기들의 어레이, 및 광검출기들의 어레이와 연관된 검출 회로를 수반할 수 있다. 검출 회로는, 적어도 제1 시간 기간 및 제2 시간 기간 동안, 광검출기들의 어레이에서의 광검출기에서 입사 광자들의 양을 카운팅하도록 구성될 수 있다.

Description

광자 카운팅 광검출기들을 이용하여 수명을 검출하기 위한 시스템 및 방법들
관련 출원들에 대한 상호 참조
본 출원은 "SYSTEM AND METHODS FOR DETECTING LIFETIME USING PHOTON COUNTING PHOTODETECTORS"라는 명칭으로 2018년 8월 29일에 출원된 미국 가특허 출원 제62/724,167호의 35 U.S.C.§119(e) 하의 우선권을 주장하며, 그 전체가 본 명세서에 참고로 포함된다.
분야
본 출원은 생물학적 및 화학적 샘플들의 병렬 분석을 수행함으로써 이들 샘플들에서의 분자들을 검출하기 위한 시스템들, 방법들 및 기술들에 관한 것이다.
생물학적 및 화학적 샘플들의 검출 및 분석은 발광 표지들(luminescent labels)을 여기시키는 광으로 샘플들을 조명하는 것에 응답하여 특성 파장을 갖는 광을 방출하는 발광 표지들로 샘플들을 표지함으로써 수행될 수 있다. 방출된 광을 검출하도록 배치된 광검출기들(photodetectors)은 샘플을 분석하는데 이용될 수 있는 신호들을 생성할 수 있다.
일부 실시예들은 광검출기들의 어레이 및 광검출기들의 어레이와 연관된 검출 회로를 포함하는 시스템에 관한 것이다. 검출 회로는, 여기 광(excitation light)을 이용한 발광 분자의 조명에 후속하는 제1 시간 기간 및 제2 시간 기간 동안, 광검출기들의 어레이의 광검출기에서 발광 분자로부터 수신된 입사 광자들(incident photons)의 양(quantity)을 카운팅하도록 구성된다.
일부 실시예들에서, 검출 회로는 제1 시간 기간 및 제2 시간 기간 동안 광검출기들의 어레이에 입사하는 단일 광자들을 카운팅하도록 구성된다. 일부 실시예들에서, 검출 회로는 발광 분자를 식별하는 신호들을 생성하도록 추가로 구성된다.
일부 실시예들에서, 검출 회로는 제1 타입의 발광 분자를 식별하는 제1 신호 및 제2 타입의 발광 분자를 식별하는 제2 신호를 포함하는 상이한 타입들의 발광 분자들을 구별하는 신호들을 생성하도록 추가로 구성된다. 일부 실시예들에서, 상이한 타입들의 발광 분자들은 상이한 뉴클레오티드들(nucleotides)과 연관되고, 검출 회로는 일련의 뉴클레오티드들을 식별하는 신호들의 세트를 생성하도록 구성된다. 일부 실시예들에서, 일련의 뉴클레오티드들을 식별하는 신호들의 세트는 주형 핵산 분자(template nucleic acid molecule)를 서열분석한다. 일부 실시예들에서, 신호들의 세트에 의해 식별된 일련의 뉴클레오티드들은 주형 핵산 분자에 상보적인 핵산 분자의 일련의 뉴클레오티드들이다. 일부 실시예들에서, 일련의 뉴클레오티드들에서의 상이한 타입들의 뉴클레오티드들은 상이한 타입들의 발광 분자들에 의해 표지된다.
일부 실시예들에서, 검출 회로는 발광 분자의 수명을 나타내는 신호들을 생성하도록 추가로 구성된다.
일부 실시예들에서, 검출 회로는 어레이에서의 광검출기와 연관된 적어도 2개의 광자 카운팅 회로들을 갖고, 광검출기에 의해 수신된 입사 광자들의 양을 카운팅하도록 구성된다. 일부 실시예들에서, 검출 회로는 제1 시간 기간 및 제2 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 양을 나타내는 신호들을 생성하도록 추가로 구성된다. 일부 실시예들에서, 검출 회로에 의해 생성된 신호들은 제1 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호 및 제2 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함한다. 일부 실시예들에서, 적어도 2개의 광자 카운팅 회로들은 제1 광자 카운팅 회로 및 제2 광자 카운팅 회로를 포함하고, 제1 광자 카운팅 회로는 제1 신호를 생성하도록 구성되고, 제2 광자 카운팅 회로는 제2 신호를 생성하도록 구성된다. 일부 실시예들에서, 검출 회로는 제1 신호 및 제2 신호를 포함하는 판독 신호를 생성하도록 구성된다. 일부 실시예들에서, 제1 시간 기간 및 제2 시간 기간은 비중첩 시간 기간들이다.
일부 실시예들에서, 검출 회로는 기준 시간(reference time)을 나타내는 제어 신호를 수신하고, 제어 신호를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성된다. 일부 실시예들에서, 검출 회로는 여기 광의 펄스를 방출하도록 구성된 광원으로부터 제어 신호를 수신하고, 제어 신호를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성된다.
일부 실시예들에서, 시스템은, 여기 광을 방출하도록 구성된 적어도 하나의 광원; 및 여기 광의 펄스들을 방출하기 위해 적어도 하나의 광원을 제어하고, 방출된 펄스들에 대응하는 제어 신호들을 생성하도록 구성된 회로―어레이에서의 광검출기와 연관된 검출 회로는 회로로부터 제어 신호들 중 적어도 하나를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성됨―를 추가로 포함한다.
일부 실시예들에서, 시스템은 샘플 웰들(sample wells)의 어레이를 추가로 포함하고, 샘플 웰들의 어레이에서의 개별 샘플 웰들은 샘플을 수용하도록 구성된다. 일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 정렬 위치는 광검출기 어레이에서의 광검출기들의 적어도 일부와 광학적으로 정렬하도록 배치된 샘플 웰들의 제1 서브세트 및 광검출기들의 어레이에서의 광검출기들과 광학적으로 정렬하지 않도록 배치된 샘플 웰들의 제2 서브세트를 포함한다. 일부 실시예들에서, 샘플 웰들의 제1 서브세트는 정렬 위치에 있을 때 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 광학적으로 정렬하는 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 포함한다. 일부 실시예들에서, 샘플 웰들의 제1 서브세트는 샘플 웰들의 어레이에서의 샘플 웰들의 제1 행 및 제2 행을 포함하고, 제1 행 및 제2 행은 샘플 웰들의 제2 서브세트에서의 샘플 웰들의 적어도 하나의 행에 의해 분리된다.
일부 실시예들에서, 시스템은 샘플 웰들의 어레이로부터 방출된 광자들을 광검출기들의 어레이 쪽으로 지향시키도록 배치된 적어도 하나의 광학계(optic)를 추가로 포함한다. 일부 실시예들에서, 적어도 하나의 광학계는 샘플 웰들의 어레이의 하나의 샘플 웰로부터 방출된 광자들을 광검출기들의 어레이에서의 하나의 광검출기로 지향시키도록 배치된다. 일부 실시예들에서, 적어도 하나의 광학계는 샘플 웰들의 어레이의 하나의 샘플 웰로부터 방출된 광자들을 광검출기들의 어레이에서의 하나의 광검출기의 검출 영역과 중첩하도록 정렬시키도록 구성된다. 일부 실시예들에서, 적어도 하나의 광학계는 적어도 하나의 광원에 의해 방출된 광을 샘플 웰들의 어레이 쪽으로 지향시키고, 발광 분자에 의해 방출된 광을 광검출기들의 어레이에 송신하도록 배치된 이색성 미러(dichroic mirror)를 포함한다.
일부 실시예들에서, 시스템은 적어도 하나의 도파관을 추가로 포함하고, 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부는 적어도 하나의 도파관으로부터의 광을 수신하도록 배치된다. 일부 실시예들에서, 샘플 웰들의 어레이 및 적어도 하나의 도파관은 샘플 칩 상에 통합되고, 샘플 웰들의 어레이는 샘플 칩의 표면 상에 배열된다. 일부 실시예들에서, 샘플 칩은 외부 광원으로부터 광을 수신하고, 적어도 하나의 도파관 내로 광을 광학적으로 결합하도록 구성된 격자 커플러(grating coupler)를 추가로 포함한다. 일부 실시예들에서, 적어도 하나의 광학계는 릴레이 렌즈 구성(relay lens configuration)으로 배열된 복수의 렌즈들을 포함한다.
일부 실시예들에서, 광검출기들의 어레이는 단일 광자 애벌란시 포토다이오드들(single-photon avalanche photodiodes)의 어레이를 포함한다.
일부 실시예들은 광검출기들의 어레이를 포함하는 검출 회로를 포함하는 장치에 관한 것이다. 검출 회로는 핵산 분자 내로 통합되는 상이한 뉴클레오티드들과 연관된 발광 분자들을 구별하기 위해, 발광 분자들로부터 광검출기들의 어레이에 의해 수신된 입사 광자들을 카운팅하도록 구성된다.
일부 실시예들에서, 검출 회로는 개별 뉴클레오티드들이 핵산 분자 내로 통합됨에 따라 일련의 뉴클레오티드들을 식별하는 신호들을 생성하도록 추가로 구성된다. 일부 실시예들에서, 발광 분자들은 상이한 타입들의 뉴클레오티드들을 표지한다.
일부 실시예들에서, 장치는 주형 핵산 분자를 수용하도록 구성된 복수의 샘플 웰들을 추가로 포함하고, 어레이에서의 하나의 광검출기는 복수의 샘플 웰들 중 하나로부터 광을 수신하도록 배치된다. 일부 실시예들에서, 핵산 분자는 주형 핵산 분자에 상보적이다.
일부 실시예들은 광검출기들의 어레이에서의 광검출기에 의해, 발광 분자로부터 광자들을 수신하는 단계, 및 검출 회로를 이용하여, 제1 시간 기간 및 제2 시간 기간 동안 광검출기에 입사된 광자들의 양을 카운팅하는 단계를 포함하는 광검출 방법에 관한 것이다.
일부 실시예들에서, 광검출 방법은 발광 분자를 식별하는 신호들을 생성하는 단계를 추가로 포함하고, 신호들은 제1 시간 기간 동안 광검출기에 의해 수신된 광자들의 제1 양 및 제2 시간 기간 동안 광검출기에 의해 수신된 광자들의 제2 양을 나타낸다. 일부 실시예들에서, 광검출 방법은 여기 광의 펄스로 샘플을 조명하는 단계를 추가로 포함하고, 광자들의 양을 카운팅하는 단계는 여기 광의 펄스로 샘플을 조명하는 것에 응답하여 발생한다.
일부 실시예들은 프로세서 실행가능 명령어들을 저장하는 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체에 관한 것으로서, 프로세서 실행가능 명령어들은 적어도 하나의 하드웨어 프로세서에 의해 실행될 때, 적어도 하나의 하드웨어 프로세서로 하여금, 적어도 하나의 광원을 제어하도록 구성된 회로로부터, 적어도 하나의 광원에 의해 방출된 광의 펄스에 대응하는 제어 신호를 수신하는 단계; 및 제어 신호를 수신하는 것에 응답하여, 광검출기들의 어레이에서의 광검출기에 입사된 광자들의 카운팅을 수행하도록 구성된 검출 회로를 제어하는 단계―카운팅은 제1 시간 기간 및 제2 시간 기간 동안 검출기에 의해 수신된 입사 광자들의 양을 카운팅하는 것을 포함함―를 포함하는 광자 검출 방법을 수행하게 한다.
일부 실시예들에서, 검출 회로는 제1 시간 기간 및 제2 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 양을 나타내는 신호들을 생성하도록 추가로 구성된다. 일부 실시예들에서, 검출 회로에 의해 생성된 신호들은 제1 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호 및 제2 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함한다.
일부 실시예들은 샘플 웰들의 어레이를 광검출기들의 어레이에 정렬시키기 위한 방법에 관한 것으로서, 방법은, 광검출기들의 어레이를 이용하여, 광검출기들의 어레이에 입사된 샘플 웰들의 어레이로부터의 광을 검출하는 단계; 및 검출된 광에 기초해서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하여, 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 광검출기들의 어레이에서의 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계를 포함한다.
일부 실시예들에서, 광검출기들의 어레이에서의 개별 광검출기들에 의해 검출된 광의 양은 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 정렬의 정도를 나타낸다. 일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것은 샘플 웰들의 어레이를 제1 위치로부터 제2 위치로 이동하는 것을 포함하고, 광검출기들의 어레이에서의 광검출기들의 제1 서브세트는 샘플 웰들의 어레이가 제1 위치에서보다 제2 위치에 있을 때 더 많은 양의 광자들을 검출한다. 일부 실시예들에서, 광검출기들의 어레이에서의 광검출기들의 제2 서브세트는 샘플 웰들의 어레이가 제1 위치에서보다 제2 위치에 있을 때 더 적은 양의 광자들을 검출한다.
일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것은 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 광학적으로 정렬하도록 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 배치하는 것을 포함한다. 일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것은 샘플 웰들의 어레이 및/또는 광검출기들의 어레이를 병진 방향(translational direction)으로 이동하는 것을 포함한다. 일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것은 샘플 웰들의 어레이 및/또는 광검출기들의 어레이를 비스듬히 회전하는 것을 포함한다. 일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것은 검출된 광의 패턴을 정렬 패턴과 비교하는 것을 포함하고, 정렬 패턴은 임계값 미만의 광의 양을 검출하는 것으로서의 광검출기들 중 적어도 하나를 갖는다.
일부 실시예들은 명령어들을 저장하는 컴퓨터 판독가능 저장 매체에 관한 것으로서, 명령어들은 프로세서에 의해 실행될 때, 적어도 하나의 광원을 제어하도록 구성된 회로로부터, 적어도 하나의 광원에 의해 방출된 광의 펄스에 대응하는 제어 신호를 수신하는 단계, 및 제어 신호를 수신하는 것에 응답하여, 광검출기들의 어레이에서의 광검출기에 입사된 광자들의 카운팅을 수행하도록 구성된 검출 회로를 제어하는 단계를 포함하는 광검출 방법을 수행한다. 광자들을 카운팅하는 것은 제1 시간 기간 및 제2 시간 기간 동안 검출기에 의해 수신된 입사 광자들의 양을 카운팅하는 것을 포함한다.
일부 실시예들은 샘플 웰들의 어레이를 광검출기들의 어레이에 정렬시키기 위한 방법에 관한 것이다. 방법은 광검출기들의 어레이를 이용하여, 광검출기들의 어레이에 입사된 샘플 웰들의 어레이로부터의 광을 검출하는 단계, 및 검출된 광에 기초해서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하여, 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 광검출기들의 어레이에서의 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계를 포함한다.
일부 실시예들은 스테이지, 광을 검출하도록 구성된 광검출기들의 어레이, 광검출기들의 어레이와 연관되고 광검출기들의 어레이에 입사된 광자들을 나타내는 신호들을 생성하도록 구성되는 검출 회로, 및 회로를 포함하는 시스템에 관한 것이다. 회로는 검출 회로로부터 신호들을 수신하는 단계, 및 수신된 신호들에 기초해서, 광검출기들의 어레이에 대한 스테이지의 배치를 조정하여, 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 광검출기들의 어레이에서의 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계를 포함하는 방법을 수행하도록 구성된다.
일부 실시예들에서, 회로는 적어도 하나의 프로세서; 및 실행될 때 방법을 수행하는 컴퓨터 실행가능 명령어들로 인코딩된 적어도 하나의 컴퓨터 판독가능 저장 매체를 포함한다.
일부 실시예들에서, 수신된 신호들은 광검출기들의 어레이에서의 개별 광검출기들에 의해 검출된 광의 양을 나타내고, 광의 양은 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 정렬의 정도를 나타낸다. 일부 실시예들에서, 광검출기들의 어레이에 대한 스테이지의 배치를 조정하는 것은 스테이지의 위치를 제1 위치로부터 제2 위치로 조정하는 것을 추가로 포함하고, 광검출기들의 어레이에서의 광검출기들의 제1 서브세트는 스테이지가 제1 위치에서보다 제2 위치에 있을 때 더 많은 양의 광자들을 검출한다. 일부 실시예들에서, 광검출기들의 어레이에서의 광검출기들의 제2 서브세트는 샘플 웰들의 어레이가 제1 위치에서보다 제2 위치에 있을 때 더 적은 양의 광자들을 검출한다. 일부 실시예들에서, 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것은 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 정렬하도록 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 배치하는 것을 포함한다.
본 출원의 다양한 양태들 및 실시예들이 다음의 도면들을 참조하여 설명될 것이다. 도면들은 반드시 축척비율대로 도시된 것은 아니라는 점을 이해해야 한다. 여러 도면들에 출현하는 항목들은 그것들이 출현하는 모든 도면들에서 동일한 참조 번호에 의해 표시된다.
도 1은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 검출 시스템을 도시하는 블록도이다.
도 2는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 검출 시스템에 포함될 수 있는 예시적인 광학 컴포넌트들을 도시하는 개략도이다.
도 3은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 시간에 따른 전기 게이트들의 동작을 도시하는 도면이다.
도 4a는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 검출 회로에 포함될 수 있는 예시적인 타입들의 회로들의 개략도이다.
도 4b는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 광자 카운트들을 획득하기 위한 예시적인 프로세스의 흐름도이다.
도 5는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 단일 광자 애벌란시 포토다이오드들의 어레이에 대한 스펙트럼 광자 검출 효율의 도면이다.
도 6은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 단일 광자 애벌란시 포토다이오드에 대한 스펙트럼 광자 검출 효율의 도면이다.
도 7은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 상이한 방출 감쇠 특성들을 갖는 2개의 상이한 발광 분자들에 대한 방출 확률 곡선들의 도면이다.
도 8은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 방출 광자들의 광자 카운팅의 도면이다.
도 9는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 일련의 광학 펄스들의 도면이다.
도 10은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 샘플 웰 내에서 발생할 수 있는 예시적인 생물학적 반응의 개략도이다.
도 11은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 샘플 웰들의 행을 갖는 예시적인 샘플 칩의 단면도의 개략도이다.
도 12a는 본 명세서에 설명된 기술의 일부 실시예에 따른, 광검출기 어레이에 대한 샘플 웰 어레이의 광학적 정렬을 도시하는 평면도이다.
도 12b는 본 명세서에 설명된 기술의 일부 실시예에 따른, 샘플 웰 어레이와 광검출기 어레이 사이의 병진 오정렬을 도시하는 평면도이다.
도 12c는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 샘플 웰 어레이와 광검출기 어레이 사이의 회전 오정렬을 도시하는 평면도이다.
도 13은 본 명세서에 설명된 기술의 일부 실시예들에 따른, 샘플 웰 어레이를 광검출기 어레이에 정렬시키기 위한 예시적인 프로세스의 흐름도이다.
도 14는 본원에서 설명된 기술의 일부 실시예들을 구현 시에 이용될 수 있는 예시적인 컴퓨팅 디바이스의 블록도이다.
본 출원의 양태들은 샘플 내의 단일 분자들의 식별 및 핵산들의 서열분석(sequencing)을 포함한, 샘플들을 병렬로 분석하기 위한 시스템 및 관련 방법들에 관한 것이다. 샘플의 분석은 샘플에서의 분자들을 하나 이상의 발광 표지들(예를 들어, 형광 분자들(fluorescent molecules))로 표지하는 것을 포함할 수 있고, 이는 샘플을 검출하고/하거나 샘플의 단일 분자들을 식별(예를 들어, 핵산 서열분석의 일부로서 개별 뉴클레오티드들을 식별)하는데 이용될 수 있다. 발광 분자, 예컨대, 형광 분자로 표지된 분자 또는 달리 광을 방출할 수 있는 분자는 발광 분자를 여기 광(예를 들어, 발광 분자를 여기 상태로 여기시킬 수 있는 특성 파장을 갖는 광)으로 조명하는 것에 반응하여 여기될 수 있고, 발광 분자가 여기되는 경우, 방출 광(예를 들어, 여기 상태로부터 기저 상태(ground state)로 복귀함으로써 발광 분자에 의해 방출된 특성 파장을 갖는 광)을 방출할 수 있다. 방출 광의 검출은 그것이 방출하는 광의 시간적 특성(예를 들어, 그것의 방출 감쇠 기간, 또는 "수명들"), 특성 방출 파장, 및 특성 흡수 파장을 포함하는, 광의 하나 이상의 특성을 이용하여 발광 분자의 식별을 허용할 수 있다. 광의 시간적 특성은 여기 광으로 발광 분자를 조명하고, 조명에 후속하여 광검출기에 의해 발광 분자로부터 광자들이 수신되는 때와 연관된 시간들을 결정함으로써 식별될 수 있다. 광의 전형적인 시간적 특성들은 피코초 내지 수백 나노초의 범위일 수 있다.
광의 시간적 특성들을 식별하는 것에 있어서의 제한들은, 여기된 상태에 도달 시에 광자들이 발광 분자로부터 방출되는 짧은 시간 스케일로부터 발생할 수 있고, 일부 광검출기들은 이들 시간 스케일들에서 광자들의 검출을 허용하는 방식으로 동작할 수 없을 수 있다. 이들 제한들은 발광 분자들의 식별이 단일 분자를 표지하기 위해 단일 발광 분자 또는 적은 수의 발광 분자를 이용함으로써 제한될 수 있는 단일 분자 검출 및 여기되는 것에 응답하여 발광 분자들이 광을 방출할 확률의 맥락에서 더 중요해질 수 있다. 어느 정도까지, 이러한 제한들은 샘플의 반복된 조명 및 방출된 광자들의 검출을 수행함으로써 극복될 수 있으며, 상이한 조명 이벤트들에 후속하는 동일한 시간 기간 동안 검출된 광자들은 특정 샘플로부터의 방출된 광을 특징짓는 시간 프로파일을 식별하기 위해 축적될 수 있다. 그러나, 그러한 반복된 조명 및 광자 검출과 연관된 타이밍은 일부 측면들에서 이용되는 광검출기들에 의해 제한되게 된다. 예를 들어, 일부 광검출기들은 샘플의 조명에 후속하는 하나의 시간 기간 내에 수신된 광자들만을 검출할 수 있는데, 그 이유는 광검출기가, 피코초 내지 수백 나노초의 범위일 수 있는, 광의 시간적 특성들을 검출하는데 필요한 짧은 시간 프레임 내의 다수의 검출 시간 기간들 동안 자신을 구성하는 능력이 부족할 수 있기 때문이다. 이러한 타입들의 제한들은 방출된 광의 불완전한 또는 부정확한 시간 프로파일들을 초래할 수 있고, 이는 분자들이 샘플에 존재하는 것으로서 부정확하게 식별하게 하거나 특정 분자가 샘플에 존재하지 않는다는 표시를 초래할 수 있다. 식별되는 발광 분자가 상보적 핵산 가닥(complementary nucleic acid strand) 내에 통합되는 뉴클레오티드 또는 뉴클레오티드 유사체(nucleotide analog)를 표지하는데 이용되는 실시간 핵산 서열분석의 맥락에서, 10ms 내지 1000ms의 범위일 수 있는 통합 이벤트의 타이밍으로부터 추가의 제한들이 발생할 수 있다. 일부 종래의 광검출기들은 이러한 시간 스케일 내에서 반복된 조명에 시간 동기화된, 반복된 광자 검출을 수행하는 능력이 부족할 수 있고, 따라서, 원하는 레벨의 정확도로 개별 통합 이벤트들의 속성들(예를 들어, 형광 수명)을 검출하는 능력이 부족할 수 있다.
본 발명자들은 샘플의 조명에 후속하는 다수의 기간들 동안 수신된 광자들을 식별하는 것이 샘플에 존재하는 발광 분자의 시간적 특성의 검출을 개선할 수 있다는 것을 인식하고 알았다. 본 출원의 양태들은 샘플을 조명하는 여기 광의 펄스와 연관된 시간일 수 있는, 기준 시간에 후속하는 다수의 시간 기간들 내에 광검출기에 의해 수신된 광자들의 양을 검출하도록 구성된 광검출기들 및 연관된 검출 회로에 관한 것이다. 일부 실시예들에서, 검출 회로는 여기 광으로 발광 분자를 조명한 이후의 제1 시간 기간 및 제2 시간 기간 동안 광검출기에서 발광 분자로부터 수신된 입사 광자들의 양을 카운팅할 수 있다. 검출 회로는 광검출기와 연관된 적어도 제1 광자 카운팅 회로 및 제2 광자 카운팅 회로를 포함할 수 있고, 각각 제1 시간 기간 및 제2 시간 기간 동안 수신된 입사 광자들의 양을 나타내는 신호들을 생성할 수 있다. 검출 회로에 의해 생성된 판독 신호는 제1 신호 및 제2 신호를 포함할 수 있다. 이러한 방식으로, 검출 회로로부터의 결과적인 판독 신호는 발광 분자에 의해 방출된 광의 시간적 특성(예를 들어, 수명)의 표시를 제공할 수 있다. 일부 실시예들에서, 광검출기는 단일 광자 애벌란시 포토다이오드이고, 검출 회로는 입사 광자들을 수신하는 것에 응답하여 단일 광자 애벌란시 포토다이오드에 의해 생성된 전기 신호들에 기초하여 광자 카운팅을 수행할 수 있다.
본 발명자들은, 본원에 설명된 바와 같이 다수의 시간 기간들 동안 광자 카운팅을 수행하도록 구성된 광검출기들 및 연관된 검출 회로를 구현하는 것이 발광 분자들의 시간적 특성들의 검출을 개선하는 다양한 이점들을 제공할 수 있다는 것을 인식하고 알았다. 이러한 이점들은 샘플을 조명하는 단일 사례에 후속하는 다수의 기간들 동안 수신된 광자들의 양을 검출하는 능력을 포함한다. 이는 발광 분자들의 시간적 특성들을 특징짓는 시간 프로파일의 개선된 식별을 가능하게 할 수 있으며, 이는 샘플에 존재하는 발광 분자들의 보다 정확한 검출을 초래할 수 있다. 본 명세서에 설명된 바와 같은 그러한 광검출기들 및 검출 회로는, 실시간 핵산 서열분석을 수행하는데 필요한 것과 같이, 짧은 시간 스케일들 내에서 발광 분자들을 검출하는 것을 수반하는 응용들에 특히 유익할 수 있다. 특히, 개별 통합 이벤트들과 연관된 시간 제약들은 성장하는 핵산 가닥 내로 통합되고 있는 뉴클레오티드들 또는 뉴클레오티드 유사체들을 표지하는데 이용된 발광 분자들에 의해 방출된 광자들을 검출하기 위해 허용되는 시간의 지속기간을 제한할 수 있다. 다수의 시간 기간들 동안 광자 카운팅 및 축적을 수행하도록 구성된 광검출기들 및 검출 회로를 구현함으로써, 조명에 후속하는 단일 시간 기간 내에 광자들만을 검출할 수 있는 종래의 광검출기들을 이용할 때보다 발광 분자에 대해 동일하거나 유사한 시간 프로파일을 달성하기 위해, 광자 검출이 후속하는 더 적은 조명 반복들이 필요할 수 있다. 추가적으로, 판독 프레임이 다수의 조명 반복들에 걸친 광자 카운트들의 축적과 연관된 신호들을 포함하는 모드에서 광검출기들 및 검출 회로를 동작하는 것은 신호 대 잡음비를 개선할 수 있고, 이는 또한 원하는 신호 대 잡음비를 달성하는데 필요한 조명 강도를 감소시킬 수 있다.
본 출원의 일부 실시예들은 본 명세서에 설명된 바와 같이 다수의 시간 기간들 동안 광자 카운팅을 수행하도록 구성된 광검출기들 및 검출 회로를 포함하는 발광 분자들을 검출하기 위한 검출 시스템에 관한 것이다. 검출 시스템은 샘플 웰 어레이를 포함할 수 있고, 어레이에서의 개별 샘플 웰들은 샘플(예를 들어, 주형 핵산 분자)을 수용하도록 구성된다. 검출 시스템은 샘플에 존재하는 발광 분자들을 여기시킬 수 있는 광을 방출하도록 구성된 하나 이상의 광원, 및 광을 샘플 웰 어레이 족으로 지향시키도록 구성된 하나 이상의 광학 컴포넌트를 포함할 수 있다. 일부 실시예들에 따르면, 하나 이상의 광원은 광의 펄스들을 방출하도록 구성될 수 있고, 검출 회로에 의해 수행된 광자 카운팅의 타이밍은 광의 펄스들의 타이밍에 의존할 수 있다. 특히, 하나 이상의 광원과 연관된 제어 회로는 광의 개별 펄스들이 방출되는 때에 대응하는 제어 신호들을 생성할 수 있고, 검출 회로는 제어 신호들을 수신하는 것에 응답하여 광자 카운팅을 수행하기 시작할 수 있다. 이러한 방식으로, 광원에 의해 방출된 광의 펄스들은 검출 회로가 광자 카운팅을 수행하기 시작하기 위한 외부 트리거로서 작용할 수 있다.
샘플 웰 어레이는 스테이지와 같은, 검출 시스템의 다른 컴포넌트와 인터페이스할 수 있는 샘플 칩의 일부로서 통합될 수 있다. 스테이지는 광검출기들에 대해 샘플 웰 어레이를 배치하는데 이용될 수 있다. 샘플 칩은 컴포넌트에 제거 가능하게 부착될 수 있으며, 이는 개별 샘플 칩들이 동작 중에 상이한 샘플들에 이용될 수 있게 할 수 있다. 따라서, 본 출원의 양태들은 상이한 샘플 웰들로부터 방출된 광자들이 어느 광검출기가 방출된 광자들을 검출하는데 이용되는지에 기초하여 서로 구별될 수 있게 하는 방식으로 샘플 웰 어레이를 광검출기 어레이에 정렬하기 위한 기술들에 관한 것이다. 광검출기 어레이에 대한 샘플 웰 어레이의 정렬은 샘플 웰들의 일부 또는 전부가 광검출기들 중 적어도 일부와 광학적으로 정렬하도록 2개의 어레이들을 서로에 대해 배치하는 것(예를 들어, 광검출기 어레이에 대한 스테이지 및/또는 샘플 웰 어레이에 대한 스테이지의 배치를 조정하는 것)을 수반할 수 있다. 일부 실시예들에서, 광검출기 어레이에 대한 샘플 웰 어레이의 정렬은 개별 샘플 웰들과 개별 광검출기들 사이에 일대일 대응관계가 존재하도록 2개의 어레이들을 서로에 대해 배치하는 것을 수반할 수 있다.
본 발명자들은 모든 광검출기들이 샘플 웰들에 광학적으로 정렬되지는 않도록 샘플 웰 어레이 및 광검출기 어레이를 구성하는 것이 정렬 프로세스 동안 특정 이점들을 제공할 수 있다는 것을 추가로 인식하고 알았다. 특히, 광검출기 어레이에서의 광검출기들의 배열 및 샘플 웰 어레이에서의 샘플 웰들의 배열은, 일부 샘플 웰들이 광검출기들과 광학 정렬될 때, 일부 광검출기들이 샘플 웰들과 광학적으로 정렬되지 않도록 할 수 있다. 그러한 경우들에서, 샘플 웰 어레이를 광검출기 어레이에 정렬하기 위한 기술들은 광검출기들의 하나의 서브세트가 후속 위치에서 더 많은 양의 광자들을 검출하는 반면, 광검출기들의 다른 서브세트가 후속 위치에서 더 적은 양의 광자들을 검출하도록, 광검출기들에 의해 검출되는 광의 양을 나타내는 신호들에 기초하여 2개의 어레이들의 상대적 배치를 조정하는 것을 수반할 수 있다. 이러한 방식으로, 일부 광검출기들은 "밝은(bright)" 광검출기들이라고 지칭될 수 있는 광을 수신하도록 배치된 광검출기들로서 지정될 수 있는 반면, 다른 광검출기들은 "어두운(dark)" 광검출기들이라고 지칭될 수 있는 광을 수신하지 않도록 배치된 광검출기들로서 지정될 수 있는데, 그 이유는 이들이 정렬시에 광자들을 검출하지 않거나 적은 양의 광자들을 검출하기 때문이다. 예를 들어, 샘플 웰 어레이에서의 샘플 웰들의 행들 및/또는 열들의 배치 및 광검출기 어레이에서의 광검출기들의 행들 및/또는 열들의 배치는, 광검출기들의 일부 행들 또는 열들이 샘플 웰들과 광학적으로 정렬될 때, 그렇지 않은 광검출기들의 다른 행들 또는 열들이 존재하도록 할 수 있다. 그러한 경우들에서, 샘플 웰 어레이를 광검출기 어레이에 정렬하기 위한 프로세스는 광검출기들의 일부 행들 또는 열들이 더 많은 양의 광자들을 검출하는 반면 광검출기들의 다른 행들 또는 열들은 더 적은 양의 광자들을 검출하도록 광검출기들의 어레이에 대한 샘플 웰들의 어레이의 배치를 조정하는 것을 수반할 수 있다. 이러한 정렬 기술들은 샘플 웰 어레이를 광검출기 어레이에 광학적으로 정렬하는데 있어서의 특정한 어려움들을 극복할 수 있다. 예를 들어, 일부 광검출기들을 "어두운"으로 지정하는 것은 더 미세한 조정들을 용이하게 할 수 있는데, 그 이유는 광학 신호의 부족 또는 더 적은 광학 신호를 검출하는 것이 광학 신호가 증가할 때 검출하는 것보다 더 용이할 수 있기 때문이다. 이러한 광학 정렬 기술들은 샘플 웰들의 수가 클 때, 예컨대, 샘플 웰들의 수가 100 내지 100,000의 범위에 있을 때 특히 적합할 수 있다.
전술한 양태들 및 실시예들은 물론, 추가의 양태들 및 실시예들이 이하에서 더 설명된다. 이러한 양태들 및/또는 실시예들은 개별적으로, 모두 함께, 또는 둘 이상의 임의의 조합으로 이용될 수 있으며, 이는 본 출원이 이와 관련하여 제한되지 않기 때문이다.
도 1은 일부 실시예들에 따른, 샘플에 존재하는 발광 분자들을 검출할 수 있는 분자 검출 시스템(100)을 도시하는 블록도이다. 검출 시스템(100)은 샘플의 분자들(예를 들어, 주형 핵산) 및 발광 분자들(106)(예를 들어, 형광 표지된 뉴클레오티드들)을 포함하는 분자들을 수용하도록 구성된 샘플 웰들을 갖는 샘플 웰 어레이(104)를 포함할 수 있다. 검출 시스템(100)은 발광 분자(들)(106)를 여기시킬 수 있는 광(122)을 방출하는 여기 광원(들)(108)을 포함할 수 있다. 발광 분자가 어레이(104)의 샘플 웰 내에 배치되고 광(122)을 수신하는 경우, 발광 분자는 그에 응답하여 방출 광(124)을 방출할 수 있다. 검출 시스템(100)은 발광 분자(들)(106)에 의해 방출된 광(124)을 포함하여, 샘플 웰 어레이(104)로부터의 광(124)을 검출하도록 구성된 광검출기 어레이(114)를 포함할 수 있다. 어레이(114)에서의 개별 광검출기들은 특정 광검출기에 의해 검출된 광이 특정 샘플 웰로부터 발생되는 것으로 식별되도록 어레이(104)에서의 샘플 웰에 대응할 수 있다. 검출 시스템(100)은, 광검출기 어레이(114)에서의 광검출기들에 의해 생성된 신호들을 검출할 수 있는 검출 회로(116)를 포함할 수 있고, 여기서 신호들은 광검출기들에 의해 검출된 입사 광자들을 나타낸다. 일부 실시예들에서, 광검출기는 광검출기에 의해 수신된 입사 광자에 대응하는 전류를 생성할 수 있고, 검출 회로(116)는 전류를 검출할 수 있다. 이러한 방식으로, 광검출기 어레이(114) 및 검출 회로(116)는 단일 광자들의 검출 및 개별 광자들의 카운팅을 허용할 수 있다. 일부 실시예들에서, 광검출기 어레이(114)는 단일 광자 애벌란시 다이오드(single-photon avalanche diode)(SPAD)들을 포함한다. 그러한 실시예들에서, SPAD는 입사 광자를 수신하는 것에 응답하여 전하 캐리어를 생성할 수 있고, 이는 시간의 지속기간을 갖는 애벌란시 전류를 트리거할 수 있다. 검출 회로(116)는 애벌란시 전류를 검출하고, SPAD가 입사 광자를 수신했다는 것을 나타내는 신호를 생성할 수 있다.
일부 실시예들에서, 광검출기 어레이(114)에서의 광검출기들의 배열은, 광검출기들이 50㎛ 내지 600㎛의 범위, 또는 그 범위에서의 임의의 값 또는 값들의 범위에 있을 수 있는 특정한 거리만큼 서로 이격되도록, 광검출기들의 배치를 포함할 수 있다. 일부 실시예들에서, 어레이(114)에서의 광검출기들의 배열은, 광검출기들이 적어도 500㎛의 거리만큼 서로 이격되도록 할 수 있다. 이러한 타입들의 광검출기 배열들은, 개별 광검출기들이 특정한 영역 또는 위치로부터 방출된 광을 수신하도록 배치될 수 있기 때문에, 단일 분자들을 검출하는 검출 시스템의 능력을 개선할 수 있다. 그러한 경우들에서, 광검출기 어레이는 10% 미만의 검출기 영역 대 이미징 영역 백분율(detector area to imaging area percentage)을 가질 수 있다. 일부 실시예들에서, 검출기 영역 대 이미징 영역 백분율은 1% 내지 5%의 범위에 있을 수 있다. 어레이(114)에서의 개별 광검출기들은 10㎛ 내지 50㎛의 범위에서의 활성 직경(active diameter), 또는 그 범위에서의 임의의 값 또는 값들의 범위를 가질 수 있다. 단일 분자 분석을 위해 본 명세서에 설명된 집적 디바이스를 이용하는 맥락에서, 이러한 광검출기 배열들은 어레이(114)에서의 개별 광검출기들에 의해 단일 샘플 웰로부터 방출된 광의 검출을 개선할 수 있다.
이러한 타입들의 광검출기 배열들은 특정 영역으로부터의 광의 검출을 수반하는 다른 광 검출 및 이미징 기술들에 적합할 수 있다는 것을 알아야 한다. 이미징 기술들의 맥락에서, 낮은 충전율(fill factor)을 갖는 것으로 또한 지칭될 수 있는 적절하게 낮은 검출기 영역 대 이미징 영역을 갖는 광검출기들의 배열을 갖는 것은, 개별 광검출기들이 샘플 내의 특정 영역들로부터 발생하는 광을 검출할 수 있는 애퍼쳐(aperture)들의 어레이로서 작용하는 것을 허용할 수 있다. 특히, 그러한 광검출기 배열들은 특정 영역에서 샘플로부터 발생하는 광을 검출하기 위한 광검출기들의 배치 때문에, 이미징되는 샘플의 개선된 광학 해상도를 달성하도록 구현될 수 있다. 예를 들어, 그러한 광검출기 배열들은 공초점 현미경(confocal microscopy)과 같은, 샘플의 영역들을 스캐닝하는 것을 수반하는 특정 타입들의 이미징 기술들에 대한 이점들을 제공할 수 있다. 종래의 공초점 현미경에서, 이미징되는 샘플의 광학 해상도는 한 번에 샘플에서의 하나의 섹션을 조명하기 위해 점 조명을 이용하고, 샘플의 특정 영역에 걸쳐 점 조명을 스캐닝하여 샘플의 영역의 이미지를 획득함으로써 달성될 수 있으며, 이는 래스터 스캔(raster scan)이라고 지칭될 수 있다. 대조적으로, 낮은 충전율을 갖는 광검출기들의 배열은 종래의 공초점 현미경에서와 같이 완전한 스캔을 수행할 필요 없이 샘플의 이미지에서 원하는 광학 해상도를 제공하도록 구현될 수 있는데, 그 이유는 개별 광검출기들이 이미징되는 샘플의 특정한 식별가능한 섹션들에 대응하기 때문이다. 이미지를 형성하기 위해 샘플의 전체 영역을 스캐닝하는 대신에, 샘플 평면 또는 광검출기 어레이가, 개별 광검출기들이 이용되어 샘플의 영역 내의 특정 섹션들을 스캐닝하여 영역의 완전한 이미지를 형성하도록, 이동될 수 있다. 그러한 기술들은, 샘플의 더 작은 섹션들이 효과적으로 스캐닝되도록 서로에 대한 광검출기 어레이 및 샘플의 각각의 재배치 동안 광검출기들의 일부 또는 전부에 의해 이미지 데이터가 획득되기 때문에, 공초점 이미지와 유사한 광학 해상도를 갖는 이미지가 획득되는 속도를 개선할 수 있다. 그 후, 스캐닝된 더 작은 섹션들이 결합되어 샘플에서의 관심 영역의 완전한 이미지를 형성할 수 있다. 이러한 이미징 기술들은 내부 전반사 형광(total internal reflection fluorescence)(TIRF) 조명, 비간섭성 넓은 필드 조명(incoherent wide field illumination), 레이저 스폿 어레이(laser spot array)에 의한 조명, 또는 임의의 다른 구조화된 샘플 조명 기술들을 포함하는 상이한 타입들의 샘플 조명에 적용될 수 있다는 것을 이해해야 한다.
어레이(104)에서의 샘플 웰들의 일부 또는 전부가 광을 수신하도록 여기 광원(들)(108)에 의해 방출된 광을 샘플 웰 어레이(104)에 결합하도록 임의의 적절한 광학 결합 기술들이 구현될 수 있다. 일부 실시예들에서, 여기 광원(들)(108)에 의해 방출된 광의 빔은 어레이(104)에서의 샘플 웰들의 일부 또는 전부를 조명할 수 있다. 광의 빔이 어레이(104)의 측면 쪽으로 지향되는 실시예들에서, 샘플 웰 어레이(104)에 대한 여기 광원(들)(108)의 그러한 배치는 배면(backside) 조명으로서 간주될 수 있다. 일부 경우들에서, 여기 광원(들)(108) 및 샘플 웰 어레이(104)에 대해 배치된 하나 이상의 광학 컴포넌트는 어레이에서의 다수의 샘플 웰들이 광(122)을 수신하는 것을 허용하는 방식으로 여기 광원(들)(108)에 의해 방출된 광의 빔의 직경을 확산시키도록 작용할 수 있다. 다른 실시예들에서, 샘플 웰 어레이(104)는 "샘플 칩"이라고 지칭될 수 있는 광자 디바이스의 일부로서 통합된다. 샘플 칩은 광을 샘플 웰들로 전파하도록 구성된 하나 이상의 도파관을 포함할 수 있다. 하나 이상의 도파관은 패싯(facet) 광학 커플러 및 격자 광학 커플러를 포함하는 임의의 적절한 결합 컴포넌트를 통해 여기 광원(들)(108)에 광학적으로 결합될 수 있다.
검출 시스템(100)은 샘플 웰 어레이(104)로부터 방출된 광을 광검출기 어레이(114) 쪽으로 지향시키기 위한 임의의 적절한 광학계를 포함할 수 있는 광학 컴포넌트(들)(112)를 포함할 수 있다. 일부 실시예들에서, 광학 컴포넌트(들)(112)는 샘플 웰 어레이(104)에서의 하나의 샘플 웰로부터 방출된 광자들을 광검출기 어레이(114)에서의 하나의 광검출기로 지향시키도록 배치될 수 있다. 예로서, 광학 컴포넌트(들)(112)는 샘플 웰로부터 방출된 광이 그의 대응하는 광검출기에 의해서만 검출되도록 개별 샘플 웰들로부터의 광을 그들의 대응하는 광검출기들로 지향시킬 수 있다. 그러한 경우들에서, 검출 시스템(100)에 배치된 광학 컴포넌트(들)(112)는 방출된 광자들의 일부 또는 전부가 검출 영역에 입사하도록, 샘플 웰 어레이(104)의 하나의 샘플 웰로부터 방출된 광자들을 광검출기 어레이(114)에서의 광검출기의 검출 영역과 광학적으로 중첩하도록 정렬시킬 수 있다.
광학 컴포넌트(들)(112)는 여기 광원(들)(108)에 의해 방출된 여기 광(122)을 샘플 웰 어레이(104) 쪽으로 향하게 하여, 여기 광이 샘플 웰 어레이(104)와 광학적으로 결합하도록 하기 위한 하나 이상의 광학계를 포함할 수 있다. 광학 컴포넌트(들)(112)의 일부 조합(예를 들어, 렌즈, 미러, 광학 필터, 감쇠기, 빔 스티어링 컴포넌트(beam-steering component), 빔 성형 컴포넌트(beam shaping component) 각각 중 어느 것도 포함하지 않거나, 이들 중 하나 이상을 포함할 수 있음)은 여기 광원으로부터의 광을 샘플 웰 어레이(104)에 동작 및/또는 전달하도록 구성된다. 광학 컴포넌트(들)(112)는, 분석될 샘플을 포함할 수 있는 적어도 하나의 샘플 웰에 광을 지향시키고, 적어도 하나의 샘플 웰로부터의 광학 신호들(예를 들어, 형광, 후방산란 방사)를 광검출기 어레이(114) 쪽으로 지향시키도록 배열될 수 있고, 여기서, 검출 회로(116)는 수신된 광학 신호들을 나타내는 하나 이상의 전기 신호를 생성할 수 있다. 일부 실시예들에서, 광학 컴포넌트(들)(112)는 여기 광원(들)에 의해 방출된 광을 샘플 웰 어레이(104) 쪽으로 지향시키도록 배치된 이색성 미러를 포함할 수 있다. 이색성 미러는 광검출기 어레이(114)를 향한 여기 광의 송신을 감소시키면서 발광 분자(들)(106)에 의해 방출된 광이 이색성 미러를 통해 광검출기 어레이(114)에 송신하는 것을 허용할 수 있다. 일부 실시예들에서, 광학 컴포넌트(들)(112)는 릴레이 렌즈 구성으로 배열된 다수의 렌즈들을 포함할 수 있다. 릴레이 렌즈 구성은 어레이(104)에서의 개별 샘플 웰들과 광검출기 어레이(114)에서의 개별 광검출기들 사이의 일대일 대응관계를 허용할 수 있다.
검출 시스템(100)은 샘플 웰 어레이(104) 및 광검출기 어레이(114)를 서로에 대해 배치하기 위한 연관된 스테이지 제어 회로를 갖는 스테이지(들)를 포함할 수 있다. 스테이지(들)는 샘플 웰 어레이(104) 및/또는 광검출기 어레이(114)를 이동시킬 때 병진 및/또는 회전 자유도를 제공하도록 구성될 수 있다. 예를 들어, 샘플 웰 어레이(104)는 스테이지(102) 상에 장착될 수 있고, 광검출기 어레이(114)는 스테이지(126) 상에 장착될 수 있다. 도 1에 도시된 바와 같이, 검출 시스템(100)은 샘플 웰 어레이(104)를 배치하기 위한 스테이지(122) 및 광검출기 어레이(114)를 배치하기 위한 스테이지(126)를 포함할 수 있다. 스테이지(122)에 결합된 스테이지 제어 회로(110)는 스테이지(122)를 제어하기 위한 제어 신호들을 제공할 수 있는 반면, 스테이지(126)에 결합된 스테이지 제어 회로(128)는 스테이지(126)를 제어하기 위한 제어 신호들을 제공할 수 있다. 스테이지들(102) 및/또는 스테이지(126)는 샘플 웰 어레이(104) 및/또는 광검출기 어레이(114)에 대해 병진 및/또는 회전 이동을 제공하도록 구성될 수 있다. 예를 들어, 스테이지(102)는 샘플 웰 어레이(104)에 대해 병진 이동을 제공하도록 구성될 수 있는 반면, 스테이지(126)는 광검출기 어레이(114)에 대해 회전 이동을 제공하도록 구성될 수 있다. 또 다른 예에서, 스테이지(102)는 샘플 웰 어레이(104)에 대한 회전 이동을 제공하도록 구성될 수 있는 반면, 스테이지(126)는 광검출기 어레이(114)에 대한 병진 이동을 제공하도록 구성될 수 있다. 또 다른 실시예들에서, 스테이지(102) 및 스테이지(126) 둘다는 회전 및 병진 이동 둘다를 제공하도록 구성될 수 있다.
스테이지들(102 및 126) 및 연관된 제어 회로(110 및 128)가 도 1에 도시되어 있지만, 본 명세서에 설명된 검출 시스템의 일부 실시예들은 샘플 웰 어레이(104)를 이동하기 위한 스테이지 또는 광검출기 어레이(114)를 이동하기 위한 스테이지와 같은 하나의 스테이지만을 이용하는 것을 포함할 수 있다는 것을 알아야 한다. 그러한 실시예들에서, 스테이지는 광검출기 어레이(114)에 대하여 샘플 웰 어레이(104)를 배치하기 위한 회전 및 병진 이동 양쪽 둘다를 제공하도록 구성될 수 있다. 예를 들어, 본 명세서에 설명된 검출 시스템의 일부 실시예들에서, 스테이지(102)는 샘플 웰 어레이(104)에 대해 병진 및 회전 이동 둘다를 제공하도록 구성될 수 있다. 다른 예로서, 스테이지(126)는 광검출기 어레이(114)에 대해 병진 및 회전 이동 둘다를 제공하도록 구성될 수 있다.
일부 실시예들에서, 광학 컴포넌트(들)(112)의 일부 또는 전부는 도 1에 도시된 바와 같이 스테이지(102) 상 또는 스테이지(126) 상과 같은, 검출 시스템의 하나 이상의 스테이지에 장착될 수 있다. 일부 실시예들에서, 여기 광원(들)(108)은 스테이지(102) 상에서와 같이, 검출 시스템의 스테이지들 중 하나에 장착될 수 있다. 스테이지 상에 광학 컴포넌트(들)(112) 및/또는 여기 광원(들)(108)의 일부 또는 전부를 장착하는 것은, 광검출기 어레이(114)에 대한 샘플 웰 어레이(104)의 배치 동안 여기 광을 샘플 웰 어레이(104)에 재정렬할 필요성을 감소시킬 수 있고, 이는 여기 광원(들)에 대한 샘플 웰 어레이(104)의 개선된 광학 정렬을 허용할 수 있다.
도 2는 일부 실시예들에 따른, 샘플 웰 어레이(104)의 샘플 웰들(204)로부터의 방출 광을 광검출기 어레이(114)에서의 광검출기들(214)로 지향시키기 위해 검출 시스템(100)에서 이용될 수 있는 예시적인 광학 컴포넌트들(220, 222, 224, 226 및 228)의 개략도이다. 도 2에 도시된 바와 같이, 광학 컴포넌트들은 렌즈(220), 필터(222), 렌즈(224), 렌즈(226) 및 렌즈(228)를 포함한다. 일부 실시예들에서, 렌즈(220)는 60x 대물 렌즈(objective)이다. 일부 실시예들에서, 렌즈(224)는 1x 튜브 렌즈(tube lens)이다. 일부 실시예들에서, 렌즈(226)는 100 mm의 초점 길이를 갖는 릴레이 렌즈이다. 일부 실시예들에서, 렌즈(228)는 200㎜의 초점 길이를 갖는 릴레이 렌즈이다. 필터(222)는 여기 광의 송신을 감소시키거나 차단하도록 구성될 수 있으며, 이는 여기 광이 광검출기 어레이(114)에서의 광검출기들(214)에 도달하는 것을 감소시킬 수 있다.
광검출기 어레이(114)와 연관된 검출 회로(116)는 개별 광검출기들에 입사하는 광자들의 광자 카운팅을 수행하도록 구성된다. 일부 실시예들에서, 검출 회로(116)는 광검출기들로부터의 전기 신호들을 처리하도록 구성된 신호 처리 전자기기(signal-processing electronics)(예를 들어, 하나 이상의 마이크로제어기, 하나 이상의 필드 프로그래머블 게이트 어레이, 하나 이상의 마이크로프로세서, 하나 이상의 디지털 신호 프로세서, 로직 게이트들 등)를 포함할 수 있다. 광검출기 어레이(114)가 발광 분자(들)(106)로부터 방출된 광자들을 수신하도록 배치될 때의 동작 동안, 검출 회로(116)는 개별 발광 분자들을 식별하는 신호들을 생성할 수 있다. 검출 회로(116)에 의해 생성된 신호들은 상이한 타입들의 발광 분자들을 구별하게 할 수 있다. 검출 회로(116)는 제1 타입의 발광 분자를 식별하는 제1 신호 및 제2 타입의 발광 분자를 식별하는 제2 신호를 생성할 수 있다.
일부 실시예들에서, 검출 회로(116)는 기준 시간 이후의 상이한 시간 기간들 동안 광검출기 어레이(114)에서의 광검출기에 입사하는 광자들의 양을 카운팅할 수 있다. 기준 시간은 검출 회로(116)가 어레이(114)에서의 광검출기에 입사하는 광자들을 카운팅하기 시작하기 위한 트리거로서 작용할 수 있다. 검출 회로(116)는 외부 디바이스로부터 기준 시간을 나타내는 제어 신호들을 수신할 수 있고, 제어 신호들을 수신하는 것에 응답하여, 검출 회로(116)는 어레이(114)에서의 광검출기들에 입사하는 광자들의 광자 카운팅을 수행하기 시작할 수 있다. 일부 실시예들에서, 검출 회로(116)는 기준 시간에 후속하는 제1 시간 기간 및 제2 시간 기간 동안 광검출기에 입사된 광자들의 양을 카운팅하도록 구성된다. 제1 시간 기간 및 제2 시간 기간은 비중첩 시간 기간들일 수 있다. 일부 실시예들에서, 입사 광자들이 검출 회로(116)에 의해 카운트되지 않는 시간의 기간은 제1 시간 기간 및 제2 시간 기간을 분리할 수 있다. "지연 시간"으로 간주될 수 있는 그러한 시간 기간은 제1 시간 기간과 제2 시간 기간 사이의 검출 회로의 재정비(rearming)를 허용할 수 있고, 검출 회로에 의한 광자 카운팅의 정확도를 개선할 수 있다.
일부 실시예들에서, 검출 회로(116)는 광검출기 어레이(114)에서의 광검출기들에 입사하는 광자들을 카운팅하기 위한 다수의 광자 카운팅 회로들을 포함할 수 있다. 그러한 실시예들에서, 검출 회로(116)는 광검출기 어레이(114)에서의 개별 광검출기들과 연관된 하나 이상의 광자 카운팅 회로를 포함할 수 있고, 여기서 광자 카운팅 회로(들) 각각은 시간 기간 동안 그의 대응하는 광검출기에 의해 수신된 입사 광자들의 양을 카운팅하도록 구성된다. 다수의 광자 카운팅 회로들이 광검출기 어레이에서의 광검출기와 연관될 때, 광자 카운팅 회로들 각각은 광검출기에 입사하는 광자들이 카운트되는 상이한 시간 기간에 대응할 수 있다. 일부 실시예들에서, 2개 이상의 광자 카운팅 회로들이 광검출기 어레이(114)에서의 개별 광검출기들과 연관되고, 2개 이상의 기간들 동안 광검출기에 의해 수신된 입사 광자들의 양을 나타내는 신호들을 생성하도록 구성된다. 예로서, 광검출기 어레이(114)에서의 개별 광검출기들은, 기준 시간 이후의 제1 시간 기간 및 제2 시간 기간 동안 광검출기에 입사하는 광자들의 양을 나타내는 신호들을 생성하도록 구성되는 2개의 광자 카운팅 회로들을 가질 수 있다. 광자 카운팅 회로들에 의해 생성된 신호들은 제1 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호, 및 제2 시간 기간 동안 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함할 수 있다. 제1 광자 카운팅 회로가 제1 시간 기간 동안 광자 카운팅을 수행하고 제1 신호를 생성하고, 제2 광자 카운팅 회로가 제2 시간 기간 동안 광자 카운팅을 수행하고 제2 신호를 생성하도록, 2개의 광자 카운팅 회로들은 제1 및 제2 신호 중 하나를 개별적으로 생성한다. 그러한 실시예들에서, 검출 회로(116)는 제1 신호 및 제2 신호를 포함하는 판독 신호를 생성할 수 있다.
검출 회로(116)가 광자 카운팅을 수행하기 시작할 때 트리거하는 기준 시간은 여기 광으로 샘플 웰 어레이(104)를 조명하는 것과 연관된 시간에 대응할 수 있다. 그러한 기준 시간은 검출 회로(116)가 여기 광으로 조명됨으로써 여기된 발광 분자(들)(106)에 의해 방출된 광자들을 카운팅하기 시작하는 것을 허용할 수 있다. 검출 회로(116)에 의해 생성된 신호들은 발광 분자(들)의 방출 수명의 표시를 제공할 수 있다. 검출 회로(116)는 다수의 기준 시간들을 나타내는 주기적인 제어 신호들을 수신할 수 있고, 검출 회로(116)는 개별 기준 시간들 각각에 이어 광자 카운팅을 수행할 수 있다. 이러한 방식으로, 검출 회로(116)는 발광 분자(들)의 조명 이후에 반복된 광자 카운팅을 수행할 수 있으며, 이는 시스템(100)에 의한 발광 분자(들)의 검출을 개선할 수 있다. 일부 실시예들에서, 여기 광원(들)(108)은 광의 펄스들을 방출하고, 기준 시간은 광의 펄스를 방출하는 여기 광원(들)(108)과 연관된 시간에 대응한다. 그러한 실시예들에서, 여기 광원(들)(108)과 연관된 회로는 방출된 광 펄스들에 대응하는 제어 신호들을 생성할 수 있다. 제어 신호들은 검출 회로(116)에 송신되고, 검출 회로(116)가 광자 카운팅을 수행할 때 트리거하기 위해 일련의 기준 시간들로서 이용될 수 있다.
일부 실시예들에 따르면, 검출 회로(116)는 광검출기들에 의해 검출된 개별 광자들이 검출 회로(116)에 의해 카운트되는지를 제어하기 위해 광자 카운팅 시간 기간들과 연관된 시간들에 전기 신호들을 생성함으로써 광자 카운팅을 수행할 수 있다. 이러한 전기 신호들은 전기 게이트가 오프(OFF) 상태에 있을 때 검출 회로가 광자 카운팅을 수행하고, 전기 게이트가 온(ON) 상태에 있을 때 검출 회로가 광자 카운팅을 수행하지 않도록 전기 게이트로서 작용할 수 있다. 광검출기들이 입사 광자들을 수신하는 것에 응답하여 전류를 생성하는 단일 광자 애벌란시 포토다이오드들인 실시예들에서, 검출 회로(116)에 의해 생성된 전기 신호들은 검출 회로(116)가 단일 광자 애벌란시 포토다이오드들에 의해 생성된 전류를 수신할지 여부를 제어할 수 있다. 다수의 시간 기간들에 걸쳐 광자 카운팅을 수행함에 있어서, 검출 회로(116)는 전기 게이트가 개별 시간 기간들과 연관된 시간들 동안 오프이고, 시간 기간들 밖의 시간들 동안 온이 되도록 전기 게이트를 동작시킬 수 있다. 이러한 방식으로, 검출 회로(116)는 광자 카운팅이 발생하는 타이밍을 제어할 수 있다. 일부 실시예들에서, 검출 회로(116)는 다수의 전기 게이트들을 동작시키도록 구성될 수 있다. 그러한 경우들에서, 검출 회로(116)는 광검출기와 연관된 각각의 광자 카운팅 회로에 대응하는 전기 게이트를 가질 수 있고, 여기서 특정의 광자 카운팅 회로에 대한 전기 게이트는 광자 카운팅 회로가 광자 카운팅을 수행할 때와 연관된 타이밍을 제어하도록 구성된다.
전기 게이트는 검출 회로의 외부에 있을 수 있는 기준 신호의 타이밍에 의존할 수 있으며, 따라서 검출 회로(116)가 기준 신호를 수신하는 것에 응답하여 전기 게이트의 온 및 오프 상태들의 타이밍이 시작될 수 있다. 전기 게이트의 타이밍은 여기 광원(들)(108)에 의해 방출된 광의 펄스들과 연관된 시간들에 의존할 수 있다. 본 명세서에서 논의된 바와 같이, 여기 광원(들)(108)은 방출된 광의 펄스들의 시간들에 대응하는 제어 신호들을 생성할 수 있고, 검출 회로(116)는 제어 신호들을 수신하는 것에 응답하여 광자 카운팅을 수행하도록 전기 게이트를 동작시킬 수 있다.
도 3은 검출 회로(116)가 시간에 따라 전기 게이트(301) 및 전기 게이트(302)를 어떻게 동작시킬 수 있는지를 도시하는 예시적인 도면이다. 도 3에 도시된 바와 같이, 전기 게이트들(301, 302)은 검출 회로(116)가 광자 카운팅을 수행하는 것을 방지하기 위해 전기 게이트들이 온 상태에 있을 때 특정 전압 VON으로 유지되는 전압 신호들이다. 전기 게이트들(301 및 302)이 다른 전압 VOFF로 설정될 때, 전기 게이트들은 오프 상태에 있고, 검출 회로(116)는 광자 카운팅을 수행할 수 있다. 전기 게이트들이 오프 상태로 설정되는 타이밍은, 일부 실시예들에서 여기 광원(들)(108)에 의해 방출된 광의 펄스와 연관된 시간일 수 있는 기준 시간 T0 이후에 발생한다. 도 3에 도시된 바와 같이, 전기 게이트(301)는 T0 다음의 시간 기간 T1 동안 전압 VOFF로 낮아진다. 추가적으로, 전기 게이트(302)는 시간 기간 T1 이후의 시간 기간 T2 동안 전압 VOFF로 낮아진다. 광자 카운팅은 2개의 시간 기간들 T1 및 T2 동안 검출 회로에 의해 수행될 수 있다. 예를 들어, 전기 게이트(301)는 시간 기간 T1 동안 광자 카운팅을 수행할 수 있는 제1 광자 카운팅 회로를 위한 전기 게이트에 대응할 수 있고, 전기 게이트(302)는 시간 기간 T2 동안 광자 카운팅을 수행할 수 있는 제2 광자 카운팅 회로를 위한 전기 게이트에 대응할 수 있다. 도 3에서 시간 기간 T1이 시간 기간 T2보다 짧은 것으로 도시되어 있지만, 일부 실시예들은 시간 기간 T1이 시간 기간 T2보다 길거나 동일한 것을 포함할 수 있다는 것을 이해해야 한다. 도 3에 도시된 바와 같이, 시간 기간 T1과 시간 기간 T2 사이에 지연 시간 Td가 있을 수 있다. 지연 시간 Td는 광검출기가 재정비하는 것을 허용하는 것과 연관된 시간일 수 있으며, 이는 시간 기간 T2 동안 광자들의 검출을 개선할 수 있다. 시간 기간 T1 및 시간 기간 T2는 1.5ns 내지 20ns의 범위, 또는 그 범위에서의 임의의 값 또는 값들의 범위에 있을 수 있다. 지연 시간 Td는 0.5ns 내지 10ns의 범위, 또는 그 범위에서의 임의의 값 또는 값들의 범위에 있을 수 있다. 도 3에는 2개의 시간 기간들이 도시되어 있지만, 검출 회로는 광자 카운팅을 수행하는데 이용되는 시간 기간들의 수에 따라 2개보다 많은 전기 게이트들을 동작시킬 수 있음을 이해해야 한다.
도 4a는 일부 실시예들에 따른, 검출 회로(116)에 포함될 수 있는 회로들의 타입들의 예시적인 개략도이다. 도 4a에 도시된 바와 같이, 검출 회로는 클록 복구 회로(clock recovery circuit)(410), 위상 동기 루프 회로(phase-lock loop circuit)(420), 클록 1(430), 클록 2(440), 게이트 회로(450), 카운터 1(460), 카운터 2(470) 및 리셋 회로(480)를 포함할 수 있다. 클록 복구 회로(410)는 여기 광원(예를 들어, 모드 동기 레이저(mode-locked laser))과 같은 외부 디바이스로부터 제어 신호를 수신할 수 있고, 광자 카운팅이 수행되는 시간 기간을 설정할 수 있는 신호를 위상 동기 루프 회로(420)에 송신할 수 있다. 위상 동기 루프 회로(420)는 클록 1(430) 및 클록 2(440)에 제어 신호들을 송신할 수 있다. 위상 동기 루프(420)가 클록 1(430) 및 클록 2(440) 모두에 공통인 실시예들에서, 클록 1(430) 및 클록 2(440)는 클록 1(430)과 클록 2(440) 사이의 사용자-프로그래밍된 위상 지연(user-programmed phase delay)을 가질 수 있다. 클록 1(430) 및 클록 2(440)는 전기 게이트를 동작시에 게이트 회로(450)의 타이밍을 제어할 수 있다. 특히, 게이트 회로(450)는 게이트 회로(450)에 의해 제어된 게이트 동작의 타이밍을 설정하는 클록 1(430) 및 클록 2(440)의 타이밍을 갖는 게이트 모드에서 동작하도록 광검출기 어레이(114)를 제어할 수 있다. 광검출기 어레이(114)는 광검출기 어레이(114)에 의한 광자들의 검출을 나타내는 신호들을 카운터 1(460) 및 카운터 2(470)에 송신할 수 있고, 이는 광자 카운팅을 수행할 수 있다. 클록 1(430) 및 클록 2(440)에 의해 설정된 타이밍은 카운터 1(460) 및 카운터 2(470)가 광자 카운팅을 수행하는 시간 기간들을 제어할 수 있다. 광자 카운트들을 나타내는 판독 신호들은 카운터 1(460) 및 카운터 2(470)로부터 획득될 수 있다. 리셋 회로(480)는 카운터 1(460) 및 카운터 2(470)가 광자 카운팅을 수행하기 위한 상태에 있도록 카운터 1(460) 및 카운터 2(470)를 리셋하도록 작용할 수 있다.
카운터 1(460) 및 카운터 2(470)에 의해 수행된 광자 카운팅의 타이밍은 제어 신호들을 카운터 1(460) 및 카운터 2(470)에 송신하는 게이트 회로(450)에 의해 설정될 수 있고, 여기서 게이트 회로(450)에 의해 송신된 제어 신호들의 타이밍은 클록 1(430) 및 클록 2(440)의 타이밍에 의해 결정된다. 예를 들어, 클록 1(430)은 제1 시간 기간을 설정할 수 있고, 게이트 회로(450)는 제1 시간 기간 동안 광자 카운팅을 수행하도록 카운터 1(460)을 제어할 수 있으며, 클록 2(440)는 제2 시간 기간을 설정할 수 있고, 게이트 회로(450)는 제2 시간 기간 동안 광자 카운팅을 수행하도록 카운터 2(470)를 제어할 수 있다. 2개 초과의 시간 기간들 동안 광자 카운팅을 수행하기 위해 추가적인 클록 및 카운터 회로가 포함될 수 있다는 것을 이해해야 한다.
도 4b는 본 명세서에 설명된 기술의 일부 실시예들에 따른, 광자 카운트들을 획득하기 위한 예시적인 프로세스(490)의 흐름도를 도시한다. 프로세스(490)는 검출 회로(116)에 의해 적어도 부분적으로 수행될 수 있다.
프로세스(490)는, 광자 카운팅이 트리거 이벤트에 의해 개시될 수 있는 동작(491)에서 시작한다. 트리거 이벤트는 광자 카운팅을 수행하기 위한 시간 기준으로서 역할하는 이벤트일 수 있다. 트리거 이벤트는 여기 광원(들)(108)에 의해 생성된 광학 펄스와 같은 광학 펄스와 같은 광학 펄스, 또는 광학 펄스 이후의 시간에 생성된 전기 펄스와 같은 전기 펄스일 수 있다. 트리거 이벤트는 단일 이벤트이거나, 또는 반복적인 주기적 이벤트일 수 있다. 형광 수명 측정들의 맥락에서, 트리거 이벤트는 하나 이상의 형광단(fluorophores)을 여기시키는 광 여기 펄스의 생성일 수 있다. 광검출기 어레이(114)에 도달하는 광자들은 전하 캐리어들을 생성할 수 있고, 검출 회로(116)는 광생성된(photogenerated) 전하 캐리어들의 광자 카운팅을 수행할 수 있다.
프로세스(490)는, 도 4a에 도시된 바와 같이 클록 1이 게이트 회로(450)를 제어하는 것과 같이, 클록 1(430)이 게이트의 동작을 제어하는 동작(492)으로 진행한다. 클록 1은, 광검출기 어레이(114)에서의 광검출기들 중 일부 또는 전부가 제1 시간 기간 동안 광자들을 수신하는 것에 응답하여 신호를 생성할 수 있도록, 게이트가 오프 상태에 있는 제1 시간 기간을 설정할 수 있다. 다음, 프로세스(490)는, 제1 시간 기간 동안 어레이(114)에서의 광검출기에 의해 검출된 광자들이 카운터 1에 의해 카운트되도록, 카운터 1이 제1 시간 기간 동안 광자 카운팅을 수행하는 동작(493)으로 진행한다. 일부 실시예들은 상이한 광검출기들에 의해 검출된 광자들이 제1 시간 기간 동안 상이한 카운터들에 의해 개별적으로 카운트되도록, 어레이(114)에서의 개별 광검출기들에 대한 카운터 1을 포함할 수 있다. 일부 실시예들에서, 게이트는, 예를 들어, 클록 1이 제1 시간 기간의 끝에서 게이트 회로(450)에 신호를 송신하여 전기 신호를 온 상태로 설정하는 것에 의해, 제1 시간 기간이 지난 후에 온 상태에 도달할 수 있다.
프로세스(490)는, 도 4a에 도시된 바와 같이 클록 2(440)가 게이트 회로(450)를 제어하는 것과 같이, 클록 2가 게이트의 동작을 제어하는 동작(494)으로 진행한다. 클록 2는, 광검출기 어레이(114)에서의 광검출기들 중 일부 또는 전부가 제2 시간 기간 동안 광자들을 수신하는 것에 응답하여 신호를 생성할 수 있도록, 게이트가 오프 상태에 있는 제2 시간 기간을 설정할 수 있다. 다음, 프로세스(490)는, 제2 시간 기간 동안 어레이(114)에서의 광검출기에 의해 검출된 광자들이 카운터 2에 의해 카운트되도록, 카운터 2가 제2 시간 기간 동안 광자 카운팅을 수행하는 동작(495)으로 진행한다. 카운터 1과 관련하여 앞서 논의된 바와 같이, 일부 실시예들은 상이한 광검출기들에 의해 검출된 광자들이 제2 시간 기간 동안 상이한 카운터들에 의해 개별적으로 카운트되도록, 어레이(114)에서의 개별 광검출기들에 대한 카운터 2를 포함할 수 있다. 일부 실시예들에서, 게이트는, 예를 들어, 클록 2가 제2 시간 기간의 끝에서 게이트 회로(450)에 신호를 송신하는 것에 의해, 제2 시간 기간이 지난 후에 온 상태에 도달할 수 있다.
일부 실시예들은 트리거 이벤트 후에 광자들이 도달하는 시간 기간들에 관한 통계 정보를 획득하기 위해 이 프로세스를 다수 회 반복하는 것을 수반할 수 있다. 카운터 1 및 카운터 2에 의해 획득된 광자 카운트들은 다수의 트리거 이벤트들에 걸쳐 누계(aggregate)되어, 다수의 트리거 이벤트들에 걸쳐 제1 시간 기간 및 제2 시간 기간 동안 검출된 광자들의 총 수를 나타내는 광자 카운트 신호들을 생성할 수 있다. 측정을 반복하는 것은 광자 카운트들을 집계하여 통계적으로 의미 있는 결과들을 제공하는 것을 가능하게 할 수 있다. 예를 들어, 형광 수명 측정의 맥락에서, 형광단으로부터 수신된 광자에 응답하여 광자 검출 이벤트가, 약 1,000 여기 이벤트들에서 1회와 같이 비교적 드물게 발생할 것으로 예상될 수 있다.
트리거 이벤트들의 반복들의 수가 수행되면, 프로세스(490)는 카운터 1 및 카운터 2로부터 광자 카운트들을 판독하는 동작(496)으로 진행할 수 있다. 개별 광검출기들에 대한 개별 카운터들이 존재하는 실시예들에서, 광자 카운트들을 판독하는 것은 카운터 1과 연관된 제1 광자 카운트 및 카운터 2와 연관된 제2 광자 카운트가 개별 광검출기들에 대해 획득되도록, 상이한 광검출기들과 연관된 카운터 1 및 카운터 2 둘다에 대한 광자 카운트들을 판독하는 것을 포함할 수 있다.
일부 실시예들에서, 광자 카운트들이 판독되면, 프로세스(490)는 동작(497)으로 진행할 수 있으며, 여기서, 카운터 1 및 카운터 2는, 예컨대 후속 트리거 이벤트에 후속하여, 후속 광자 카운팅이 카운터 1 및 카운터 2에 의해 수행될 수 있게 하는 상태로 리셋될 수 있다. 동작(497)은 일부 실시예들에 따라 도 4a에 도시된 리셋 회로(480)에 의해 수행될 수 있다. 일부 실시예들은 제1 시간 기간 및 제2 시간 기간 둘다에 대한 광자 카운트들이 개별 트리거 이벤트들에 대해 획득되도록, 각각의 트리거 이벤트 이후에 카운터들 1 및 2의 리셋을 수행하는 것을 수반할 수 있다.
본 명세서에서 논의된 바와 같이, 광검출기 어레이(114)에서의 광검출기들은 단일 광자 애벌란시 포토다이오드(single-photon avalanche photodiode)(SPAD)들을 포함할 수 있다. SPAD들은 발광 분자(들)(106)에 의해 방출된 광에 대응할 수 있는 550nm와 650nm 사이의 스펙트럼 범위 내에서 원하는 광자 검출 효율을 가질 수 있다. 일부 실시예들에서, SPAD들은 550nm와 650nm 사이의 파장들에 대해 15% 내지 50%의 범위, 또는 그 범위에서의 임의의 백분율 또는 백분율들의 범위에서의 광자 검출 효율을 가질 수 있다. 도 5는 일부 실시예들에 따른, 광검출기 어레이(114)에서의 광검출기들로서 이용될 수 있는 SPAD들의 어레이에 대한 스펙트럼 광자 검출 효율의 도면이다. 도 5에 도시된 바와 같이, SPAD들의 어레이는 550nm와 650nm 사이의 파장들의 범위 내에서 16% 내지 26%의 범위에서의 광자 검출 효율을 갖는다. 도 6은 일부 실시예들에 따른, 광검출기 어레이(114)에서의 광검출기로서 이용될 수 있는 SPAD에 대한 스펙트럼 광자 검출 효율의 도면이다. 도 6에 도시된 바와 같이, SPAD는 550nm와 650nm 사이의 파장들의 범위 내에서 37% 내지 48%의 범위에서의 광자 검출 효율을 갖는다.
본 기술의 양태들이 SPAD들과 관련하여 설명되지만, 광검출기 어레이(114)는 개별 광자들의 검출을 허용하는 신호 대 잡음비를 가지면서 원하는 타이밍으로 게이팅하도록 구성된 다른 타입들의 광검출기들을 포함할 수 있다는 것을 이해해야 한다. 예로서, 낮은 암전류(dark current) 및 낮은 판독 잡음 동작을 가지면서, 높은 광자 감도를 나타내는 광검출기들이 본 명세서에 설명된 기술에서 구현될 수 있다. 광검출기 어레이에서 구현될 수 있는 적절한 광검출기들의 예들은, CMOS(complementary metal-oxide semiconductor) 이미지 센서(CIS)의 일부로서의 CMOS 광검출기들, 애벌란시 포토다이오드(APD)들, 및 예를 들어 더 높은 감도를 갖는 CMOS 광검출기를 달성하기 위해 이득 증폭 특징들을 구현함으로써 CMOS 광검출기들과 APD들의 양태들을 조합하는 광검출기들을 포함할 수 있다. CMOS 광검출기들의 하나의 이점은 CMOS 프로세싱이 고밀도의 광검출기들을 갖는 광검출기 어레이의 제조를 가능하게 할 수 있다는 것이다. 일부 실시예들은 후방 조명된(back-illuminated) 광검출기들을 갖는 광검출기 어레이(114)를 포함할 수 있고, 이는 광검출기들의 유효 양자 효율을 개선할 수 있다.
일부 실시예에 따르면, 방출 특성들에 기초하여 샘플을 분석하도록 구성된 검출 시스템, 예컨대, 검출 시스템(100)은 상이한 발광 분자들 사이의 수명들 및/또는 강도들에서의 차이들을 검출할 수 있다. 설명으로서, 도 7은 2개의 상이한 발광 분자들로부터의 방출을 나타낼 수 있는, 2개의 상이한 방출 확률 곡선들(A 및 B)을 도시한다. 곡선 A(파선으로서 도시됨)를 참조하면, 짧은(short) 또는 극초단(ultrashort) 광학 펄스에 의해 여기된 후에, 제1 분자로부터의 방출 확률
Figure pct00001
은, 도시된 바와 같이, 시간에 따라 감쇠될 수 있다. 일부 경우들에서, 시간에 따라 방출되는 광자의 확률에서의 감소는 지수 감쇠 함수(exponential decay function)
Figure pct00002
에 의해 표현될 수 있고, 여기서,
Figure pct00003
는 초기 방출 확률이고,
Figure pct00004
는 방출 감쇠 확률을 특징짓는 제1 분자와 연관된 시간적 파라미터이다.
Figure pct00005
는 제1 발광 분자의 "방출 수명" 또는 "수명"이라고 지칭될 수 있다. 다른 발광 분자들은 곡선 A에 도시된 것과 상이한 방출 특성들을 가질 수 있다. 예를 들어, 다른 발광 분자는 단일 지수 감쇠(single exponential decay)와 상이한 감쇠 프로파일을 가질 수 있고, 그의 수명은 반감기 값(half-life value) 또는 어떤 다른 메트릭에 의해 특징지워질 수 있다.
제2 발광 분자는 지수적이지만 어느 정도(measurably) 상이한 수명을 갖는 감쇠 프로파일을 가질 수 있다. 도 7에서, 곡선 B의 방출 확률을 갖는 발광 분자는 지수 감쇠 함수
Figure pct00006
를 가질 수 있고, 여기서
Figure pct00007
는 초기 방출 확률이고,
Figure pct00008
는 방출 감쇠 확률을 특징짓는 제2 발광 분자와 연관된 시간적 파라미터이다. 도시된 예에서, 곡선 B의 제2 발광 분자에 대한 수명은 곡선 A의 제1 발광 분자에 대한 수명보다 더 짧고, 방출 확률은 곡선 A로 나타낸 제1 발광 분자에 대한 것보다 곡선 B로 나타낸 제2 발광 분자의 여기 이후에 곧 더 높다. 상이한 발광 분자들은, 일부 실시예들에서, 약 0.1ns 내지 약 20ns의 범위에 있는 수명들 또는 반감기 값들을 가질 수 있다.
(예를 들어, 방출 파장이 아닌) 수명에 기초하여 발광 분자들을 식별하는 것은 검출 시스템의 양태들을 단순화할 수 있다. 예로서, 수명에 기초하여 발광 분자들을 식별할 때, (파장 필터들, 각각의 파장에 대한 전용 검출기들, 상이한 파장들에서의 전용 펄스 광학 소스들, 및/또는 회절 광학계와 같은) 파장 판별 광학계(wavelength-discriminating optics)의 수가 감소되거나 제거될 수 있다. 일부 경우들에서, 광학 스펙트럼의 동일한 파장 영역 내에서 방출하지만 어느 정도 상이한 수명들을 갖는 상이한 발광 분자들을 여기시키기 위해, 단일 특성 파장에서 동작하는 단일 펄스 광학 소스가 이용될 수 있다. 동일한 파장 영역에서 방출하는 상이한 발광 분자들을 여기시키고 분간하기 위해, 상이한 파장들에서 동작하는 다수의 광학 소스들이 아니라 단일 펄스 광학 소스를 이용하는 검출 시스템은 동작 및 유지하기에 덜 복잡하고, 보다 컴팩트하며, 보다 낮은 비용으로 제조될 수 있다.
수명 분석에 기초한 검출 시스템들이 특정한 이점들을 가질 수 있지만, 부가의 검출 기술들을 허용함으로써, 검출 시스템에 의해 획득된 정보의 양 및/또는 검출 정확도가 증가될 수 있다. 예를 들어, 일부 검출 시스템들은 방출 파장 및/또는 방출 강도에 기초하여 샘플의 하나 이상의 속성을 분간하도록 추가적으로 구성될 수 있다.
도 7을 다시 참조하면, 일부 실시예들에 따르면, 발광 분자의 여기 이후에 광검출기에 입사하는 광자들의 광자 카운팅을 수행하도록 구성되는 연관된 검출 회로 및 광검출기에 의해 상이한 방출 수명들이 구별될 수 있다. 광자 카운팅은 검출 회로가 다수의 시간 기간들 동안 수신된 광자들의 양을 카운팅하는 판독 이벤트들 사이의 단일 간격 동안 발생할 수 있다. 광자 카운팅에 의해 방출 수명을 결정하는 개념은 도 8에 그래픽으로 소개되어 있다. t1 직전의 시간 te에서, 발광 분자는 짧은 또는 극초단 광학 펄스에 의해 여기된다. 발광 분자에 의해 방출된 광자들을 검출하는 광검출기와 연관된 검출 회로는, 발광 분자(들)의 여기 시간에 대해 시간적으로 분해되는(temporally resolved), 도 8에 나타낸 t1과 t2 사이의 시간 기간 1 및 t3과 t4 사이의 시간 기간 2와 같은 다수의 시간 기간들 동안 광자들을 카운팅할 수 있다. 다수의 여기 이벤트들에 걸쳐 합산함으로써, 각각의 시간 기간에서의 광자들의 양은 도 8에 도시된 감쇠하는 강도 곡선과 비슷할 수 있으며, 상이한 발광 분자들을 구별하는데 이용될 수 있다.
일부 실시예들에 따르면, 검출 시스템(100)에서의 여기 광원(들)(108)은 여기 광의 펄스들을 생성하도록 구성된 하나 이상의 모드 동기 레이저 모듈을 포함할 수 있다. 도 9는 예시적인 모드 동기 레이저 모듈로부터의 출력 펄스들의 시간적 강도 프로파일들을 도시한다. 일부 실시예들에서, 방출된 펄스들의 피크 강도 값들은 대략 동일할 수 있고, 프로파일들은 가우시안 시간 프로파일을 가질 수 있지만, sech2 프로파일과 같은 다른 프로파일들이 가능할 수 있다. 일부 경우들에서, 펄스들은 대칭적 시간 프로파일들을 갖지 않을 수 있고, 다른 시간적 형상들을 가질 수 있다. 각각의 펄스의 지속기간은 도 9에 도시된 바와 같이 FWHM(full-width-half-maximum) 값에 의해 특징화될 수 있다. 모드 동기 레이저의 일부 실시예들에 따르면, 극초단 광학 펄스들은 100ps 미만의 FWHM 값들을 가질 수 있다. 일부 경우들에서, FWHM 값들은 대략 5ps와 대략 30ps 사이일 수 있다.
일부 실시예들에서, 여기 광원(들)(108)은 여기 광의 펄스들을 생성하도록 구성된 하나 이상의 이득 스위칭 레이저 모듈을 포함할 수 있다. 적절한 이득 스위칭 레이저 모듈들의 예들은, 2018년 7월 24일자로 출원된 "HAND-HELD, MASSIVELY-PARALLEL, BIO-OPTOELECTRONIC INSTRUMENT"라는 명칭의 미국 특허 출원 제16/043,651호에 기술되어 있으며, 이러한 미국 특허 출원은 그 전체가 참조로 포함된다.
출력 펄스들은 규칙적인 간격들 T만큼 분리될 수 있다. 예를 들어, T는 레이저 모듈의 공동 단부 미러(cavity end mirror)와 출력 커플러 사이의 왕복 이동 시간(round-trip travel time)에 의해 결정될 수 있다. 일부 실시예들에 따르면, 펄스 분리 간격 T는 대략 1ns 내지 대략 30ns의 범위, 또는 그 범위 내의 임의의 값 또는 값들의 범위에 있을 수 있다. 일부 경우들에서, 펄스 분리 간격 T는 약 0.7 미터와 약 3 미터 사이의 레이저 공동 길이(laser-cavity length)(레이저 모듈의 레이저 공동 내의 광학 축의 대략적인 길이)에 대응하는 대략 5ns 내지 대략 20ns의 범위에 있을 수 있다.
일부 실시예들에 따르면, 원하는 펄스 분리 간격 T 및 레이저 공동 길이는 샘플 웰들의 수, 방출 특성들, 및 검출 회로(116)로부터 데이터를 판독하기 위한 데이터 처리 회로의 속도의 조합에 의해 결정될 수 있다. 본 발명자들은 상이한 발광 분자들이 그들의 상이한 방출 감쇠율들 또는 특성 수명들에 의해 구별될 수 있다는 것을 인식하고 알았다. 따라서, 그들의 상이한 감쇠율들을 구별하기 위해 선택된 발광 분자들에 대한 적절한 통계를 수집하기에 충분한 펄스 분리 간격 T가 필요하다. 추가적으로, 펄스 분리 간격 T가 너무 짧으면, 데이터 처리 회로는 많은 수의 샘플 웰들에 의해 수집되는 많은 양의 데이터를 따를 수 없다.
일부 구현들에 따르면, 빔 스티어링 모듈은 모드 동기 레이저 모듈로부터 출력 펄스들을 수신하고, 광학 펄스들의 적어도 위치 및 입사 각들을 샘플 어레이를 갖는 샘플 칩의 광학 커플러(예를 들어, 격자 커플러) 상으로 조정하도록 구성될 수 있다. 일부 경우들에서, 모드 동기 레이저 모듈로부터의 출력 펄스들은 광학 커플러에서 빔 성형 및/또는 빔 회전을 추가로 또는 대안적으로 변경하기 위해 빔 스티어링 모듈에 의해 동작될 수 있다. 일부 구현들에서, 빔 스티어링 모듈은 출력 펄스들의 빔의 포커싱 및/또는 편광 조정들을 광학 커플러 상으로 추가로 제공할 수 있다. 빔 스티어링 모듈의 일례는 2016년 5월 20일자로 출원된 "PULSED LASER AND BIOANALYTIC SYSTEM"이라는 명칭의 미국 특허 출원 제15/161,088호에 기술되어 있으며, 이러한 미국 특허 출원은 본 명세서에 참조로 포함된다. 빔 스티어링 모듈의 다른 예는 2017년 12월 14일자로 출원된 "COMPACT BEAM SHAPING AND STEERING ASSEMBLY"라는 명칭의 다른 미국 특허 출원 제15/843,720호에 기술되어 있으며, 이러한 미국 특허 출원은 본 명세서에 참조로 포함된다.
핵산 서열분석을 위해 검출 시스템(100)을 이용하는 것을 수반하는 실시예들에서, 발광 분자(들)(106)는, 예컨대, 상이한 타입들의 뉴클레오티드들 또는 뉴클레오티드 유사체들을 표지하기 위해 상이한 타입들의 발광 분자들을 이용하는 것에 의해, 상이한 타입들의 뉴클레오티드들 또는 뉴클레오티드 유사체들과 연관된 상이한 타입들의 발광 분자들을 포함할 수 있다. 샘플 웰 어레이(104)에서의 개별 샘플 웰들은 주형 핵산 분자 및 표지된 뉴클레오티드들 및/또는 뉴클레오티드 유사체들을 수용하도록 구성될 수 있다. 샘플 웰에서 발생하는 서열분석 반응의 비제한적 예가 도 10에 도시되어 있다. 이 예에서, 표적 핵산에 상보적인 성장 가닥 내로의 뉴클레오티드들 및/또는 뉴클레오티드 유사체들의 순차적 통합이 샘플 웰에서 발생되고 있다. 일련의 핵산들(예를 들어, DNA, RNA)을 서열분석하기 위해 순차적 통합이 검출될 수 있다. 일부 실시예들에 따르면, 폴리머라제(polymerase)(1020)가 샘플 웰 내에 위치될 수 있다(예를 들어, 샘플 웰의 베이스에 부착된다). 폴리머라제는 표적 핵산(예를 들어, DNA로부터 유래된 핵산의 일부분)을 받아들이고, DNA의 성장 가닥을 생성하기 위해 상보적 핵산의 성장 가닥을 서열분석할 수 있다. 상이한 발광 분자들로 표지된 뉴클레오티드들 및/또는 뉴클레오티드 유사체들은 샘플 웰의 위 및 그 내의 용액에 분산될 수 있다.
도 10에 도시된 바와 같이, 표지된 뉴클레오티드 및/또는 뉴클레오티드 유사체(1010)가 상보적 핵산의 성장 가닥 내로 통합되면, 하나 이상의 부착된 발광 분자(1030)가 샘플 웰 내로 결합된 광학 에너지의 펄스에 의해 반복적으로 여기될 수 있다. 일부 실시예들에서, 발광 분자(들)(1030)는 임의의 적합한 링커(linker)(1040)를 이용하여 하나 이상의 뉴클레오티드 및/또는 뉴클레오티드 유사체(1010)에 부착될 수 있다. 통합 이벤트는 약 100ms까지의 시간 기간 동안 지속될 수 있다. 이 시간 동안, 모드 동기 레이저와 같은, 여기 소스로부터의 펄스들에 의한 발광 분자(들)의 여기로부터 발생되는 방출 광의 펄스들은 광자 카운팅 광검출기에 의해 검출될 수 있다. 상이한 방출 특성들(예를 들어, 방출 감쇠율들, 강도)을 갖는 발광 분자(들)를 상이한 뉴클레오티드들(A, C, G, T) 또는 뉴클레오티드 유사체들에 부착시키는 것에 의해, DNA의 가닥이 핵산을 통합하는 동안 상이한 방출 특성들을 검출 및 구별하는 것은 DNA의 성장 가닥의 뉴클레오티드 서열의 결정을 가능하게 한다.
검출 회로(116)는 핵산 분자 내로 통합되는 상이한 뉴클레오티드들 또는 뉴클레오티드 유사체들과 연관된 발광 분자들 사이를 구별하기 위해 샘플 웰 어레이(104)로부터 광검출기 어레이(114)에 의해 수신된 입사 광자들을 카운팅하도록 구성될 수 있다. 검출 회로(116)는 상이한 타입들의 발광 분자들에 대응하는 신호들을 생성할 수 있고, 신호들의 세트는 상이한 타입들의 발광 분자들로 표지된 일련의 뉴클레오티드들을 식별할 수 있고, 주형 핵산 분자를 서열분석하는데 이용될 수 있다. 특히, 검출 회로(116)에 의해 생성된 신호들 세트에 의해 식별된 일련의 뉴클레오티드들은 주형 핵산 가닥에 상보적인 핵산 분자의 일련의 뉴클레오티드들에 대응할 수 있다. 예로서, 4개의 상이한 뉴클레오티드들(예를 들어, 염기들 아데닌(adenine) "A", 구아닌(guanine) "G", 시토신(cytosine) "C", 및 티민(thymine) "T"를 갖는 뉴클레오티드들)을 표지하기 위해 4개의 상이한 형광단이 이용될 수 있고, 검출 회로(116)는 4개의 상이한 타입들의 신호들을 생성할 수 있고, 이는 4개의 형광단을 구별하고 4개의 뉴클레오티드들 중 어느 것이 서열분석되는 주형 핵산 분자에 상보적인 핵산 분자 내로 통합되는지를 식별하기 위해 이용된다. 특히, 4개의 상이한 형광단은, 검출 회로(116)에 의해 생성된 신호들이 4개의 형광단을 그들의 형광 수명 및/또는 강도 프로파일에 기초하여 구별할 수 있도록, 형광 수명 및/또는 강도 프로파일에 있어서 변할 수 있다. 검출 회로(116)에 의해 생성된 예시적인 신호들의 세트는 일련의 뉴클레오티드들을 ATTACAGG로서 식별할 수 있고, 이는 상보적인 일련의 뉴클레오티드들을 주형 핵산 분자에 존재하는 것으로서의 TAATGACC로서 식별하는데 이용될 수 있다.
본 명세서에 설명된 바와 같은 검출 시스템을 이용하여 샘플의 분석을 수행하기 전에, 샘플 웰 어레이와 광검출기 어레이의 정렬은, 샘플 웰들 중 적어도 일부가 각각의 샘플 웰로부터 방출된 광을 수신하기 위해 광검출기들 중 적어도 일부에 대해 광검출기 어레이에 대해 광학적으로 배치되도록 달성될 필요가 있을 수 있다. 따라서, 본 출원의 일부 실시예들은 광검출기 어레이에 대해 샘플 웰 어레이를 광학적으로 정렬하기 위한 기술들에 관한 것이다.
도 1을 다시 참조하면, 일부 실시예들에서, 검출 회로(116)에 의해 생성된 신호들은 광검출기 어레이(114)에 대해 샘플 웰 어레이(104)를 정렬하는데 이용될 수 있다. 그러한 실시예들에서, 프로세서(118)는 샘플 웰 어레이(104)를 재배치하기 위한 스테이지 제어 신호들을 생성하고, 스테이지 제어 신호들을 스테이지 제어 회로(110)에 송신하기 위해 검출 회로(116)에 의해 생성된 신호들을 처리할 수 있다. 스테이지 제어 회로(110)는 스테이지 제어 신호들을 수신하는 것에 응답하여 스테이지(102)를 이동시키도록 작용할 수 있고, 스테이지(102) 상의 샘플 웰 어레이(104)는 광검출기 어레이(114)에 대한 위치들을 변경할 수 있다. 추가적으로 또는 대안적으로, 프로세서(118)는 광검출기 어레이(114)를 재배치하기 위한 스테이지 제어 신호들을 생성하고, 스테이지 제어 신호들을 스테이지 제어 회로(128)에 송신할 수 있다. 스테이지 제어 회로(128)는 스테이지 제어 신호들을 수신하는 것에 응답하여 스테이지(126)를 이동시키도록 작용할 수 있고, 광검출기 어레이(114)는 샘플 웰 어레이(104)에 대한 위치들을 변경할 수 있다. 스테이지(102) 및/또는 스테이지(126)는 병진 및 회전 축들을 포함하는 임의의 적절한 수의 축들에서 이동하도록 구성될 수 있다. 일부 실시예들에서, 스테이지(102)는 3개의 상이한 축들을 따른 이동의 범위를 갖도록 구성된 압전(piezo) 스테이지일 수 있다. 일부 실시예들에서, 스테이지(126)는, 스테이지(126)가 특정 각도들로 기울어지는 것을 허용할 수 있는, 고니오미터(goniometer) 상에 장착된 스테이지일 수 있다.
스테이지들(102 및 126) 및 연관된 제어 회로(110 및 128)가 도 1에 도시되어 있지만, 일부 실시예들은 샘플 웰 어레이(104)를 이동시키기 위한 스테이지 또는 광검출기 어레이(114)를 이동시키기 위한 스테이지 중 어느 하나와 같은 하나의 스테이지만을 이용하는 것을 포함할 수 있고, 스테이지의 배치를 제어하기 위한 스테이지 제어 회로만을 포함할 수 있다는 것을 이해해야 한다. 추가적으로 또는 대안적으로, 일부 실시예들은 샘플 웰 어레이(104) 및/또는 광검출기 어레이(114)를 배치하기 위한 스테이지들(102 및 126) 중 하나 또는 둘다의 수동 제어(예를 들어, 사용자에 의한 기계적 배치를 위한 회전가능 노브들(rotatable knobs))를 수반할 수 있다.
검출 회로(116)에 의해 생성된 신호들은 신호들을 이용하여 분석을 수행할 수 있는 프로세서(118)에 제공될 수 있다. 프로세서(118)는 하나 이상의 데이터 통신 링크를 통해 외부 디바이스들로 및 그로부터 데이터를 송신 및 수신하도록 구성된 데이터 송신 하드웨어를 포함할 수 있다. 일부 실시예들에서, 프로세서(118)는 신호들을 이용하여 이미지 데이터를 생성하고, 이미지 데이터를 디스플레이 디바이스(120)에 송신할 수 있고, 디스플레이 디바이스(120)는 이미지 데이터를 이용하여 이미지를 디스플레이할 수 있다. 디스플레이 디바이스(120) 상에 디스플레이된 이미지는, 샘플 웰 어레이(104)가 광검출기 어레이(114)에 적절하게 정렬되는지의 여부를 사용자가 보는 것을 허용할 수 있다.
일부 실시예들에서, 샘플 웰 어레이(104)는 샘플 칩의 일부로서 통합되고, 여기서 샘플 웰 어레이(104)는 샘플 칩의 표면 상에 배열된다. 샘플 칩은 여기 광(122)을 샘플 웰 어레이(104)의 개별 샘플 웰들에 전달하기 위한 하나 이상의 광학 컴포넌트를 포함할 수 있다. 샘플 칩은 어레이에서의 샘플 웰들의 일부 또는 전부가 하나 이상의 도파관으로부터 광을 수신하도록 배치되도록 샘플 웰들에 대해 배치된 하나 이상의 도파관을 포함할 수 있다. 일부 실시예들에서, 샘플 칩은 광을 수신하고 광을 하나 이상의 도파관 내로 광학적으로 결합하도록 구성된 하나 이상의 격자 커플러를 포함할 수 있다. 그러한 실시예들에서, 입사 여기 광의 빔은 샘플 웰들을 갖는 영역으로부터 분리되는 샘플 칩의 영역으로 지향될 수 있다. 광학 컴포넌트(들)(112)는 여기 광의 빔(122)을 샘플 칩 상의 하나 이상의 격자 커플러 쪽으로 지향시키도록 구성될 수 있으며, 이는 여기 광의 하나 이상의 도파관으로의 결합을 허용할 수 있다.
도 11은 일부 실시예들에 따른, 예시적인 샘플 칩(1100)의 단면도이다. 샘플 칩(1100)은 샘플 칩(1100)의 표면 상에 배열된 다수의 샘플 웰들(204)을 포함한다. 도 11에 도시된 샘플 웰들(204)의 행은 도파관(1108)과의 광학 결합을 허용하기 위해 도파관(1108)으로부터 거리 D에 배치된다. 거리 D는, 50nm 내지 500nm의 범위에 있을 수 있으며, 그 범위에서의 임의의 값 또는 값들의 범위를 포함한다. 일부 실시예들에서, 거리 D는 100nm와 200nm 사이이며, 그 범위에서의 임의의 값 또는 값들의 범위를 포함한다. 5개의 샘플 웰들이 도시되어 있지만, 샘플 칩(1100)은 샘플 칩(1100)의 단면도에서 임의의 적절한 수의 샘플 웰들을 포함할 수 있다는 것을 이해해야 한다. 일부 실시예들에서, 샘플 웰들(204)은 광이 도파관(1108)을 따라 전파됨에 따라 소멸성 광학 필드가 광학 에너지를 개별 샘플 웰들(204)에 결합하는 것을 허용하도록 도파관(1108)에 대해 배치된다. 샘플 칩(1100)은 여기 광(122)(도 11에서 파선 화살표로 도시됨)을 도파관(1108)에 결합할 수 있는 격자 커플러(1106)를 포함할 수 있다. 동작 동안, 여기 광(122)의 빔은, 예를 들어, 도 1에 도시된 바와 같은 광학 컴포넌트(들)(112)에 의해, 격자 커플러(1106)와 결합하도록 배치될 수 있고, 광은 도파관(1108)을 따라 전파되고, 도파관(1108)을 따라 배치된 샘플 웰들(204) 중 일부 또는 전부에 결합될 수 있다. 특정한 샘플 웰(204) 내에 배치된 발광 분자는 도파관(1108)으로부터 여기 광을 수신할 수 있고, 그에 응답하여 광(124)을 방출할 수 있고, 이는 광검출기 어레이(114)에서의 광검출기(214)에 의해 검출될 수 있다.
도 12a는 광검출기(214)에 대한 샘플 웰(204)의 광학적 정렬을 도시하는 개략적인 평면도이다. 샘플 웰들(204)은 원들로 도시되고, 광검출기들(214)은 정사각형들로 도시된다. 그러나, 샘플 웰들 및 광검출기들은 임의의 적절한 단면 형상을 가질 수 있고, 본 출원의 양태들은 도 12a에 도시된 샘플 웰들(204) 및 광검출기들(214)의 형상들에 제한되지 않는다는 것을 이해해야 한다. 광학 컴포넌트(들)(112)는 샘플 웰들의 적어도 일부가 광검출기들 중 적어도 일부와 광학적으로 중첩하도록, 샘플 웰 어레이의 광학 평면과 광검출기 어레이의 광학 평면 사이의 상대 배율을 조정하도록 구성될 수 있다. 광검출기들과 광검출기들의 행들 사이의 거리들을 포함하는, 어레이에서의 광검출기들의 배열 뿐만 아니라, 행을 따른 샘플 웰들 사이 및 샘플 웰들의 행들 사이의 거리들을 포함하는, 어레이에서의 샘플 웰들의 배열은, 샘플 웰들의 일부 또는 전부의 광학 정렬이 개별 광검출기들과 광학적으로 정렬할 수 있게 하는 구성을 가질 수 있다. 도 12a에 도시된 바와 같이, 개별 샘플 웰들(204)과 개별 광검출기들(214) 사이의 상대적 간격은 샘플 웰 어레이에서의 샘플 웰들의 행들 중 적어도 일부가 광검출기들의 행들 중 일부와 광학적으로 정렬하는 것을 허용할 수 있다. 일부 실시예들에서, 광학 정렬은 행에서의 샘플 웰들 사이의 거리를 행에서의 광검출기들 사이의 거리와 동일하거나 유사한 것으로 갖는 것을 수반할 수 있다.
광학 정렬은 샘플 웰들을 포함하는 광학 평면에서 및/또는 광검출기들을 포함하는 광학 평면에서 고려될 수 있다. 일부 실시예들에서, 샘플 웰들의 광학 평면은 행을 따른 개별 샘플 웰들 사이 및 행을 따른 개별 광검출기들 사이의 거리 Dw를 대략 5 마이크로미터로 가질 수 있다. 일부 실시예들에서, 광검출기들의 광학 평면은 행을 따른 개별 샘플 웰들 사이 및 행을 따른 개별 광검출기들 사이의 거리 Dw를 대략 150 마이크로미터로 가질 수 있다. 개별 광검출기들은 광학 정렬시에 샘플 웰이 광학적으로 중첩하는 치수 w를 가질 수 있다. 일부 실시예들에서, 치수 w는 샘플 웰들을 포함하는 광학 평면에서 대략 1 마이크로미터일 수 있다. 일부 실시예들에서, 치수 w는 광검출기들을 포함하는 광학 평면에서 대략 30 마이크로미터일 수 있다. 샘플 웰들의 행들 사이의 거리 Ds 및 광검출기들의 행들 사이의 거리 Dp는 광학 정렬을 허용할 수 있다. 일부 실시예들에서, 거리 Ds는 샘플 웰들의 광학 평면에서, 대략 7.5 마이크로미터 내지 대략 225 마이크로미터의 범위, 또는 그 범위에서의 임의의 값 또는 값들의 범위에 있을 수 있다. 일부 실시예들에서, 거리 Dp는 샘플 웰들의 광학 평면에서, 대략 5 마이크로미터 내지 대략 150 마이크로미터의 범위, 또는 그 범위에서의 임의의 값 또는 값들의 범위에 있을 수 있다. 일부 실시예들에서, 거리 Dp는 샘플 웰들의 광학 평면에서 대략 150 마이크로미터일 수 있다.
일부 실시예들은 도파관을 따라 배치된 샘플 웰들을 광검출기들의 행에 대해 광학적으로 정렬시키는 것을 수반할 수 있다. 도 12a에 도시된 바와 같이, 샘플 웰(204a)을 포함하는 샘플 웰들은 도파관(1108a)을 따라 배치되고, 광검출기(214a)를 포함하는 광검출기들의 행과 광학적으로 정렬된다. 샘플 웰(204b)을 포함하는, 도파관(1108b)을 따라 배치된 샘플 웰들의 행과 같은, 샘플 웰들의 다른 행은 광검출기(214b 및 214c)를 포함하는 광검출기들의 행들과 같은, 개별 광검출기들과 광학적으로 정렬되지 않는다. 이러한 타입의 구성은, 광검출기들 중 일부가 샘플 웰들이 정렬될 때를 검출하는데 이용되는 반면 다른 광검출기들은 샘플 웰들이 정렬되지 않을 때를 검출하는데 이용되기 때문에, 광검출기들에 대한 샘플 웰들의 정렬의 용이성을 개선할 수 있다. 광검출기 어레이에 대한 샘플 웰 어레이의 상대적 배치를 조정하는 것은, 광검출기들의 제1 서브세트가 더 많은 양의 광자들을 검출하는 반면 광검출기들의 제2 서브세트가 더 적은 양의 광자들을 검출하는 위치로 어레이들 중 하나 또는 모두를 이동시키는 것을 포함할 수 있다.
도 12b는 광검출기들(214)에 대한 샘플 웰들(204)의 광학적 오정렬을 도시하는 평면도이다. 특히, 도 12b는 x-방향을 따라 광검출기들(214)로부터 오프셋된 샘플 웰(204)과의 병진 오정렬을 도시한다. 그러한 병진 오정렬을 보정하는 것은 도 12a에 도시된 정렬을 달성하기 위해 광검출기들의 행이 최대량의 광자 또는 임계값을 초과하는 광자의 양과 같은 특정량의 광자를 검출할 때까지 x-방향을 따라 샘플 웰 어레이를 증분적으로 이동시키는 것을 수반할 수 있다.
일부 경우들에서, 샘플 웰 어레이와 광검출기 어레이의 광학 오정렬은 회전 오정렬을 포함할 수 있다. 도 12c는 샘플 웰들(204)이 각도 θ만큼 광검출기들(214)과 오정렬되는, 광검출기들(214)에 대한 샘플 웰들(204)의 회전 오정렬을 도시하는 평면도이다. 그러한 회전 오정렬 위치에서, 개별 도파관들을 따른 샘플 웰들은 광검출기 어레이의 행에서의 광검출기들 중 일부와만 중첩할 수 있고, 오정렬은 샘플 웰 어레이를 광검출기 어레이에 대해 회전시킴으로써 또는 행에서의 더 많은 광검출기들이 광을 검출하도록 광검출기 어레이를 샘플 웰 어레이에 대해 회전시킴으로써, 보정 또는 감소될 수 있다. 예를 들어, 도 12c에 도시된 바와 같이, 도파관(1108a)을 따른 샘플 웰들 중 일부만이 광검출기(214a)를 포함하는 행에서의 광검출기들과 광학적으로 중첩하여, 샘플 웰들과 광학적으로 중첩하는 그 광검출기들만이 광자들을 수신하도록 배치된다. 그러한 회전 오정렬을 보정하는 것은 광을 검출하기 위해 배치된 더 많은 광검출기가 존재하도록 광검출기 어레이에 대해 샘플 웰 어레이를 증분적으로 회전시키는 것을 수반할 수 있다.
추가적으로, 앞서 논의된 바와 같이, 샘플 웰 어레이 및 광검출기 어레이는 샘플 웰들의 행들 모두가 광검출기들과 정렬되지는 않도록 설계될 수 있으며, 여기서 그러한 광검출기들은 "어두운" 광검출기들로서 간주될 수 있다. 그러한 실시예들에서, 회전 오정렬을 보정하는 것은 샘플 웰들의 행들 중 일부가 광검출기들과 중첩하지 않도록 광검출기 어레이에 대해 샘플 웰 어레이를 배치하는 것을 수반할 수 있다. 예를 들어, 회전 오정렬은 샘플 웰들의 단일 행이 광검출기들의 다수의 행들과 중첩하도록 배치되는 상황을 수반할 수 있다. 도 12c에 도시된 바와 같이, 광검출기들(214b 및 214d)은 광검출기 어레이에서 별개의 행들에 있고, 도파관(1108b)을 따라 배치되는 샘플 웰들(204b 및 204d)은 광검출기들(214b 및 214d)과 각각 중첩한다. 이러한 타입의 회전 오정렬을 보정하는 것은 도파관(1108b)을 따르는 샘플 웰들의 행이 광검출기들의 행과 정렬되거나 임의의 광검출기들과 정렬되지 않도록 광검출기 어레이에 대해 샘플 웰 어레이를 회전시키는 것을 수반할 수 있다. 이러한 타입의 오정렬은 광을 검출하는 적어도 하나의 광검출기를 갖는 광검출기들의 이웃 행들에 의해 관찰되기 때문에, 보정은 샘플 웰 어레이로부터 광을 수신하도록 배치되는 광검출기들의 행들이 샘플 웰 어레이로부터의 광을 수신하지 않도록 배치되는 광검출기들의 하나 이상의 행에 의해 분리될 때까지 샘플 웰 어레이 및 광검출기 어레이를 재배치하는 것을 수반할 수 있다. 그러한 예들에서, 정렬 프로세스는 정렬 프로세스의 임의의 특정 스테이지에서 광을 검출하고 있는 광검출기 어레이에서의 광검출기들의 패턴을, 광검출기 어레이에 의해 검출되는 원하는 광의 패턴과 비교하여, 원하는 패턴을 달성하기 위해 추가적인 정렬 단계들이 필요한지를 결정하는 것을 수반할 수 있다. 예로서, 도 12a, 도 12b, 및 도 12c와 관련하여 광을 검출하는 광검출기들의 원하는 패턴은 광을 검출하는 광검출기들 또는 "밝은(light)" 광검출기들의 행과 광을 검출하지 않는 광검출기들 또는 "어두운" 광검출기들의 행 사이에서 교번하는 것으로 기술될 수 있다. 그 다음, 이 패턴은 샘플 웰 어레이 및 광검출기 어레이가 적절하게 정렬되었는지를 결정하기 위해 정렬 프로세스 동안 광 검출의 패턴들과 비교될 수 있다. 일부 실시예들에서, 어두운 광검출기 패턴은 샘플 웰 어레이의 특정 배향을 식별하고, 정렬을 조정하는데 이용될 수 있다. 예를 들어, 어두운 광검출기들의 L자형 패턴과 같은 회전 비대칭 패턴이, 샘플 웰 어레이 및 광검출기 어레이가 회전적으로 정렬되지 않는 것을 결정하는데 이용될 수 있다.
도 13은 본 명세서에 설명된 기술의 일부 실시예에 따른, 샘플 웰 어레이를 광검출기 어레이에 광학적으로 정렬하기 위한 예시적인 프로세스(1300)의 흐름도이다. 프로세스(1300)는 동작(1310)에서 시작하고, 여기서 샘플 웰 어레이(104)와 같은 샘플 웰 어레이에서의 샘플 웰들로부터 방출된 광이 광검출기 어레이(114)와 같은 광검출기 어레이를 이용하여 검출된다. 개별 광검출기들에 의해 검출된 광의 양은 광검출기 어레이에 대한 샘플 웰 어레이의 정렬의 정도의 표시를 제공할 수 있다. 광검출기 어레이를 이용하여 광을 검출하는 것은 검출 회로(116)와 같은 검출 회로가 개별 광검출기들에서 수신된 입사 광자들의 광자 카운팅을 수행하는 것을 수반할 수 있다. 일부 실시예들에서, 정렬은 여기 광을 샘플 웰 어레이에서의 샘플 웰들 쪽으로 지향시키는 것(예를 들어, 광을 샘플 칩에서의 도파관들을 따라 전파시키는 것) 및 광검출기 어레이를 이용하여 샘플 웰들로부터 방출된 광을 검출하는 것을 수반할 수 있다.
다음, 프로세스(1300)는 동작(1320)으로 진행하고, 여기서 샘플 웰 어레이 및/또는 광검출기 어레이의 배치는 샘플 웰들의 적어도 일부가 광검출기들 중 적어도 일부와 광학적으로 정렬되도록 검출된 광에 기초하여 조정된다. 샘플 웰 어레이 및/또는 광검출기 어레이의 배치를 조정하는 것은 샘플 웰 어레이와 광검출기 어레이 사이의 회전 및/또는 병진 오정렬을 고려하도록 조정하는 것을 수반할 수 있다. 샘플 웰 어레이의 배치를 조정하는 것은 샘플 웰 어레이를 제1 위치로부터 제2 위치로 이동시키는 것을 포함할 수 있으며, 이는 스테이지(102)와 같은 스테이지를 이용하는 것을 포함할 수 있다. 광검출기 어레이의 배치를 조정하는 것은 광검출기 어레이를 제1 위치로부터 제2 위치로 이동시키는 것을 포함할 수 있으며, 이는 스테이지(126)와 같은 스테이지를 이용하는 것을 포함할 수 있다. 제1 세트의 광검출기들은 제1 위치에서보다 제2 위치에 있을 때 더 많은 양의 광자들을 검출할 수 있다. 제2 세트의 광검출기들은 제1 위치에서보다 제2 위치에 있을 때 더 적은 양의 광자들을 검출할 수 있다. 일부 실시예들에서, 광검출기 어레이에 대한 샘플 웰 어레이의 배치를 조정하는 것은 샘플 웰들의 하나 이상의 행이 광검출기들의 하나 이상의 행과 광학적으로 정렬되도록 그들의 상대 위치들을 조정하는 것을 수반할 수 있다. 샘플 웰 어레이, 광검출기 어레이 또는 둘다는 동작(1320) 동안 재배치될 수 있다는 것을 이해해야 한다.
다음, 프로세스(1300)는 동작(1330)으로 진행할 수 있고, 여기서 검출기 어레이에 대한 샘플 웰 어레이의 초점이 조정된다. 이 프로세스는, 샘플 웰 어레이의 이미지 평면을 광검출기들의 검출 영역들의 평면과 정렬되게 하기 위해, 광학 컴포넌트(들)(112)와 같은, 시스템에서의 하나 이상의 광학계를 조정하는 것을 수반할 수 있다.
다음, 프로세스(1300)는 동작(1340)으로 진행할 수 있고, 여기서 광검출기 어레이에 의해 검출된 광 패턴이 원하는 광 패턴과 비교된다. 특히, 동작(1340)은 "어두운" 광검출기들로서 지정된 광검출기 어레이에 광검출기들의 세트가 존재할 때 정렬 프로세스에 포함될 수 있다. 광검출기 어레이에 의해 검출된 주어진 광 패턴을 원하는 패턴에 비교하는 것은 광검출기 어레이에서의 개별 광검출기들에 의해 검출된 광을 원하는 광 검출 패턴 내의 그의 대응하는 위치와 일대일 비교하는 것 및/또는 주어진 광 패턴과 원하는 패턴 전체를 비교하여 정렬의 정도를 획득하는 것을 수반할 수 있다.
일부 실시예들은 샘플 웰 어레이와 광검출기 어레이 사이의 원하는 양의 광학 정렬을 달성하기 위해 단계들(1310, 1320, 1330, 및/또는 1340)을 반복하는 것을 수반할 수 있다. 일부 실시예들에서, 동작(1320)에서 샘플 웰 어레이, 광검출기 어레이 또는 둘다의 위치를 조정하는 것은 위치의 증분적 변화일 수 있고, 이는 후속하여 재배치가 광검출기 어레이를 이용하여 샘플 웰 어레이로부터의 광을 검출함으로써 정렬을 개선하는지에 관해 평가될 수 있다. 새로운 위치가 광학 정렬을 개선하는 경우, 새로운 위치가 유지될 수 있다. 새로운 위치가 광학 정렬을 개선하지 않는 경우, 시스템은 이전 위치로 되돌아갈 수 있다. 이러한 방식으로, 광검출기 어레이에 대한 샘플 웰 어레이의 정렬은 증분적으로 진행될 수 있다.
일부 실시예들에서, 프로세스(1300)의 일부 또는 전부는 임의의 적절한 컴퓨팅 디바이스(들)(예를 들어, 단일 컴퓨팅 디바이스, 단일 물리적 위치에 함께 위치하거나 서로로부터 멀리 떨어진 다수의 물리적 위치들에 위치하는 다수의 컴퓨팅 디바이스들 등)에 의해 수행될 수 있는데, 본 명세서에 설명된 기술의 양태들은 이와 관련하여 제한되지 않는다. 일부 실시예들에서, 프로세스(1300)의 일부 또는 전부는 검출 시스템(100)과 같은 검출 시스템의 하나 이상의 컴포넌트를 동작하는 사용자에 의해 수행될 수 있다. 예를 들어, 스테이지(102), 스테이지(126) 또는 둘다가, 제어 신호들을 발생하여 스테이지들에 송신할 수 있는 하나 이상의 컴퓨팅 디바이스에 의해 제어될 수 있다.
광검출기 어레이를 샘플 웰 어레이에 정렬하기 위한 본 명세서에 설명된 기술들은 모놀리식 디바이스를 형성할 시에 구현될 수 있고, 여기서 모놀리식 디바이스를 형성하는 것은 2개의 별개의 기판들―하나의 기판은 광검출기 어레이를 갖고, 다른 기판은 샘플 웰 어레이, 또는 특정 위치들로부터의 광을 방출하도록 구성된 다른 어레이를 가짐―을 함께 본딩하는 것을 수반한다는 것을 이해해야 한다. 이러한 맥락에서, 모놀리식 디바이스를 형성하는 것은 제1 기판 상의 광검출기들의 일부 또는 전부가, 2개의 기판들을 본딩하기 전에, 제2 기판 상의 샘플 웰들 또는 다른 관심 지점들과 광학적으로 정렬되도록 2개의 기판들을 서로에 대해 배치하는 것을 수반할 수 있다. 이 단계에서, 본 명세서에 설명된 정렬 기술들이 결과적인 모놀리식 디바이스에서 원하는 정도의 기능을 달성하도록 구현될 수 있는 모놀리식 디바이스를 형성한다. 일부 실시예들에서, 2개의 기판들은 물리적으로 접촉하게 될 수 있고, 광검출기 어레이에 의해 검출된 광은 광검출기 어레이의 샘플 웰 어레이와의 정렬을 조정하는데 이용될 수 있다. 일부 실시예들에서, 이러한 정렬 기술들은 마이크로렌즈 어레이들 및 섬유 어레이들과 같은 광학 컴포넌트들을 광원 어레이들(예를 들어, 수직-공동 표면-방출 레이저(vertical-cavity surface-emitting laser)(VCSEL)들)에 정렬하는데 이용될 수 있다.
추가적인 양태들
일부 실시예들에서, 본 명세서에 설명된 기술들은 하나 이상의 컴퓨팅 디바이스를 이용하여 수행될 수 있다. 실시예들은 임의의 특정 타입의 컴퓨팅 디바이스들로 동작하는 것으로 제한되지 않는다.
도 14는 광검출기 어레이, 검출 회로, 하나 이상의 광원, 샘플 웰 어레이를 배치하기 위한 스테이지를 제어하기 위한, 또는 광검출기 어레이로부터의 데이터의 분석을 수행하기 위한 제어 회로를 구현하는데 이용될 수 있는 예시적인 컴퓨팅 시스템(1400)의 블록도이다. 컴퓨팅 시스템(1400)은 프로세서(들)(1410), 및 비일시적 컴퓨터 판독가능 저장 매체(예를 들어, 메모리(1420) 및 하나 이상의 비휘발성 저장 매체(1430))를 포함하는 하나 이상의 제조물을 포함한다. 프로세서(들)(1410)는 메모리(1420) 및 비휘발성 저장장치(1430)에 데이터를 기입하고 그로부터 데이터를 판독하는 것을 임의의 적절한 방식으로 제어할 수 있는데, 이는 본 명세서에서 설명된 기술의 양태들이 이와 관련하여 제한되지 않기 때문이다. 본 명세서에서 설명된 임의의 기능을 수행하기 위해, 프로세서(들)(1410)는 프로세서(1410)에 의한 실행을 위한 프로세서 실행가능 명령어들을 저장하는 비일시적 컴퓨터 판독가능 저장 매체로서 기능할 수 있는 하나 이상의 비일시적 컴퓨터 판독가능 저장 매체(예를 들어, 메모리(1420))에 저장된 하나 이상의 프로세서 실행가능 명령어들을 실행할 수 있다.
컴퓨팅 시스템(1400)은 또한 네트워크 입력/출력(I/O) 인터페이스(들)(1440)를 포함할 수 있고, 이를 통해 컴퓨팅 시스템(1400)은 (예를 들어, 네트워크를 통해) 다른 컴퓨팅 디바이스들과 통신할 수 있다. 컴퓨팅 시스템(1400)은 사용자 입력/출력(I/O) 인터페이스(들)(1460)를 포함할 수 있으며, 이를 통해 컴퓨팅 시스템(1400)은 사용자에게 출력을 제공하고 사용자로부터 입력을 수신할 수 있다. 사용자 I/O 인터페이스(들)(1460)는 키보드, 마우스, 마이크로폰, 디스플레이 디바이스(예를 들어, 모니터 또는 터치 스크린), 스피커들, 카메라, 및/또는 다양한 다른 타입들의 I/O 디바이스들과 같은 디바이스들을 포함할 수 있다.
전술한 실시예들은 다양한 방식들 중 임의의 방식으로 구현될 수 있다. 예를 들어, 실시예들은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 구현될 수 있다. 소프트웨어로 구현될 때, 소프트웨어 코드는, 단일의 컴퓨팅 디바이스에 제공되든지 또는 다수의 컴퓨팅 디바이스들 사이에 분산되든지 간에, 임의의 적절한 프로세서(예를 들어, 마이크로프로세서) 또는 프로세스들의 집합 상에서 실행될 수 있다. 전술한 기능들을 수행하는 임의의 컴포넌트 또는 컴포넌트들의 집합은 앞서 논의된 기능들을 제어하는 하나 이상의 제어기로서 총칭적으로 간주될 수 있다는 것을 이해해야 한다. 하나 이상의 제어기는 다양한 방식들로, 예를 들어, 전용 하드웨어에 의해, 또는 위에서 언급된 기능들을 수행하는 마이크로코드 또는 소프트웨어를 이용하여 프로그래밍되는 범용 하드웨어(예를 들어, 하나 이상의 프로세서)를 이용하여 구현될 수 있다.
이와 관련하여, 본 명세서에 설명된 실시예들의 하나의 구현은, 하나 이상의 프로세서 상에서 실행될 때, 하나 이상의 실시예의 전술한 기능들을 수행하는 컴퓨터 프로그램(예를 들어, 복수의 실행가능한 명령어들)으로 인코딩된 적어도 하나의 컴퓨터 판독가능 저장 매체(예를 들어, RAM, ROM, EEPROM, 플래시 메모리 또는 다른 메모리 기술, CD-ROM, DVD(digital versatile disks) 또는 다른 광 디스크 저장장치, 자기 카세트들, 자기 테이프, 자기 디스크 저장장치 또는 다른 자기 저장 디바이스들, 또는 다른 유형의 비일시적 컴퓨터 판독가능 저장 매체)를 포함한다는 것을 이해해야 한다. 컴퓨터 판독가능 매체는, 그러한 매체에 저장된 프로그램이 임의의 컴퓨팅 디바이스 상에 로딩되어, 본 명세서에 설명된 기술들의 양태들을 구현할 수 있도록, 이송가능할(transportable) 수 있다. 부가적으로, 실행될 때, 위에서 논의된 기능들 중 임의의 것을 수행하는 컴퓨터 프로그램에 대한 참조는 호스트 컴퓨터 상에서 실행되는 애플리케이션 프로그램으로 제한되지 않는다는 것을 이해해야 한다. 오히려, 컴퓨터 프로그램 및 소프트웨어라는 용어들은, 본 명세서에서 논의된 기술들의 양태들을 구현하기 위해 하나 이상의 프로세서를 프로그래밍하도록 이용될 수 있는 임의의 타입의 컴퓨터 코드(예를 들어, 애플리케이션 소프트웨어, 펌웨어, 마이크로코드, 또는 임의의 다른 형태의 컴퓨터 명령어)를 참조하기 위해 본 명세서에서 이용된다.
설명된 실시예들은 다양한 조합들로 구현될 수 있다. 예시적인 구성들은 아래의 구성들 (1)-(36), (40)-(42), 및 (51)-(56), 및 방법들 (37)-(39) 및 (43)-(50)을 포함한다.
(1) 시스템으로서, 광검출기들의 어레이; 및 상기 광검출기들의 어레이와 연관된 검출 회로를 포함하고, 상기 검출 회로는, 여기 광을 이용한 발광 분자의 조명에 후속하는 제1 시간 기간 및 제2 시간 기간 동안, 상기 광검출기들의 어레이의 광검출기에서 상기 발광 분자로부터 수신된 입사 광자들의 양을 카운팅하도록 구성되는, 시스템.
(2) 구성 (1)의 시스템으로서, 상기 검출 회로는 상기 제1 시간 기간 및 상기 제2 시간 기간 동안 상기 광검출기들의 어레이에 입사하는 단일 광자들을 카운팅하도록 구성되는, 시스템.
(3) 구성 (1) 또는 (2)의 시스템으로서, 상기 검출 회로는 상기 발광 분자를 식별하는 신호들을 생성하도록 추가로 구성되는, 시스템.
(4) 구성들 (1) 내지 (3) 중 어느 하나의 시스템으로서, 상기 검출 회로는 제1 타입의 발광 분자를 식별하는 제1 신호 및 제2 타입의 발광 분자를 식별하는 제2 신호를 포함하는 상이한 타입들의 발광 분자들을 구별하는 신호들을 생성하도록 추가로 구성되는, 시스템.
(5) 구성 (4)의 시스템으로서, 상기 상이한 타입들의 발광 분자들은 상이한 뉴클레오티드들과 연관되고, 상기 검출 회로는 일련의 뉴클레오티드들을 식별하는 신호들의 세트를 생성하도록 구성되는, 시스템.
(6) 구성 (5)의 시스템으로서, 상기 일련의 뉴클레오티드들을 식별하는 상기 신호들의 세트는 주형 핵산 분자를 서열분석하는, 시스템.
(7) 구성 (6)의 시스템으로서, 상기 신호들의 세트에 의해 식별된 상기 일련의 뉴클레오티드들은 상기 주형 핵산 분자에 상보적인 핵산 분자의 일련의 뉴클레오티드들인, 시스템.
(8) 구성 (7)의 시스템으로서, 상기 일련의 뉴클레오티드들에서의 상이한 타입들의 뉴클레오티드들은 상기 상이한 타입들의 발광 분자들에 의해 표지되는, 시스템.
(9) 구성 (1) 내지 (8) 중 어느 하나의 시스템으로서, 상기 검출 회로는 상기 발광 분자의 수명을 나타내는 신호들을 생성하도록 추가로 구성되는, 시스템.
(10) 구성들 (1) 내지 (9) 중 어느 하나의 시스템으로서, 상기 검출 회로는 상기 어레이에서의 광검출기와 연관된 적어도 2개의 광자 카운팅 회로들을 갖고, 상기 광검출기에 의해 수신된 상기 입사 광자들의 양을 카운팅하도록 구성되는, 시스템.
(11) 구성 (10)의 시스템으로서, 상기 검출 회로는 상기 제1 시간 기간 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 상기 입사 광자들의 양을 나타내는 신호들을 생성하도록 추가로 구성되는, 시스템.
(12) 구성 (11)의 시스템으로서, 상기 검출 회로에 의해 생성된 상기 신호들은 상기 제1 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함하는, 시스템.
(13) 구성 (12)의 시스템으로서, 상기 적어도 2개의 광자 카운팅 회로들은 제1 광자 카운팅 회로 및 제2 광자 카운팅 회로를 포함하고, 상기 제1 광자 카운팅 회로는 상기 제1 신호를 생성하도록 구성되고, 상기 제2 광자 카운팅 회로는 상기 제2 신호를 생성하도록 구성되는, 시스템.
(14) 구성 (12) 또는 (13)의 시스템으로서, 상기 검출 회로는 상기 제1 신호 및 상기 제2 신호를 포함하는 판독 신호를 생성하도록 구성되는, 시스템.
(15) 구성들 (12) 내지 (14) 중 어느 하나의 시스템으로서, 상기 제1 시간 기간 및 상기 제2 시간 기간은 비중첩 시간 기간들인, 시스템.
(16) 구성들 (1) 내지 (15) 중 어느 하나의 시스템으로서, 상기 검출 회로는 기준 시간을 나타내는 제어 신호를 수신하고, 상기 제어 신호를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성되는, 시스템.
(17) 구성들 (1) 내지 (16) 중 어느 하나의 시스템으로서, 상기 검출 회로는 상기 여기 광의 펄스를 방출하도록 구성된 광원으로부터 제어 신호를 수신하고, 상기 제어 신호를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성되는, 시스템.
(18) 구성들 (1) 내지 (17) 중 어느 하나의 시스템으로서, 상기 시스템은, 상기 여기 광을 방출하도록 구성된 적어도 하나의 광원; 및 상기 여기 광의 펄스들을 방출하기 위해 상기 적어도 하나의 광원을 제어하고, 상기 방출된 펄스들에 대응하는 제어 신호들을 생성하도록 구성된 회로―상기 어레이에서의 광검출기와 연관된 상기 검출 회로는 상기 회로로부터 상기 제어 신호들 중 적어도 하나를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성됨―를 추가로 포함하는, 시스템.
(19) 구성들 (1) 내지 (18) 중 어느 하나의 시스템으로서, 상기 시스템은 샘플 웰들의 어레이를 추가로 포함하고, 상기 샘플 웰들의 어레이에서의 개별 샘플 웰들은 샘플을 수용하도록 구성되는, 시스템.
(20) 구성 (19)의 시스템으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 정렬 위치는 상기 광검출기 어레이에서의 상기 광검출기들의 적어도 일부와 광학적으로 정렬하도록 배치된 샘플 웰들의 제1 서브세트 및 상기 광검출기들의 어레이에서의 광검출기들과 광학적으로 정렬하지 않도록 배치된 샘플 웰들의 제2 서브세트를 포함하는, 시스템.
(21) 구성 (20)의 시스템으로서, 상기 샘플 웰들의 제1 서브세트는 상기 정렬 위치에 있을 때 상기 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 광학적으로 정렬하는 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 포함하는, 시스템.
(22) 구성 (20) 또는 (21)의 시스템으로서, 상기 샘플 웰들의 제1 서브세트는 상기 샘플 웰들의 어레이에서의 샘플 웰들의 제1 행 및 제2 행을 포함하고, 상기 제1 행 및 상기 제2 행은 상기 샘플 웰들의 제2 서브세트에서의 샘플 웰들의 적어도 하나의 행에 의해 분리되는, 시스템.
(23) 구성들 (19) 내지 (22) 중 어느 하나의 시스템으로서, 상기 시스템은 상기 샘플 웰들의 어레이로부터 방출된 광자들을 상기 광검출기들의 어레이 쪽으로 지향시키도록 배치된 적어도 하나의 광학계를 추가로 포함하는, 시스템.
(24) 구성 (23)의 시스템으로서, 상기 적어도 하나의 광학계는 상기 샘플 웰들의 어레이의 하나의 샘플 웰로부터 방출된 광자들을 상기 광검출기들의 어레이에서의 하나의 광검출기로 지향시키도록 배치되는, 시스템.
(25) 구성 (23) 또는 (24)의 시스템으로서, 상기 적어도 하나의 광학계는 상기 샘플 웰들의 어레이의 하나의 샘플 웰로부터 방출된 광자들을 상기 광검출기들의 어레이에서의 하나의 광검출기의 검출 영역과 중첩하도록 정렬시키도록 구성되는, 시스템.
(26) 구성들 (23) 내지 (25) 중 어느 하나의 시스템으로서, 상기 적어도 하나의 광학계는 적어도 하나의 광원에 의해 방출된 광을 상기 샘플 웰들의 어레이 쪽으로 지향시키고, 상기 발광 분자에 의해 방출된 광을 상기 광검출기들의 어레이에 송신하도록 배치된 이색성 미러를 포함하는, 시스템.
(27) 구성들 (23) 내지 (26) 중 어느 하나의 시스템으로서, 상기 적어도 하나의 광학계는 릴레이 렌즈 구성으로 배열된 복수의 렌즈들을 포함하는, 시스템.
(28) 구성들 (19) 내지 (27) 중 어느 하나의 시스템으로서, 상기 시스템은 적어도 하나의 도파관을 추가로 포함하고, 상기 샘플 웰들의 어레이에서의 상기 샘플 웰들의 적어도 일부는 상기 적어도 하나의 도파관으로부터의 광을 수신하도록 배치되는, 시스템.
(29) 구성 (28)의 시스템으로서, 상기 샘플 웰들의 어레이 및 상기 적어도 하나의 도파관은 샘플 칩 상에 통합되고, 상기 샘플 웰들의 어레이는 상기 샘플 칩의 표면 상에 배열되는, 시스템.
(30) 구성 (29)의 시스템으로서, 상기 샘플 칩은 외부 광원으로부터 광을 수신하고, 상기 적어도 하나의 도파관 내로 광을 광학적으로 결합하도록 구성된 격자 커플러를 추가로 포함하는, 시스템.
(31) 구성들 (1) 내지 (30) 중 어느 하나의 시스템으로서, 상기 광검출기들의 어레이는 단일 광자 애벌란시 포토다이오드들의 어레이를 포함하는, 시스템.
(32) 장치로서, 광검출기들의 어레이를 포함하는 검출 회로를 포함하고, 상기 검출 회로는 핵산 분자 내로 통합되는 상이한 뉴클레오티드들과 연관된 발광 분자들을 구별하기 위해, 상기 발광 분자들로부터 상기 광검출기들의 어레이에 의해 수신된 입사 광자들을 카운팅하도록 구성되는, 장치.
(33) 구성 (32)의 장치로서, 상기 검출 회로는 개별 뉴클레오티드들이 상기 핵산 분자 내로 통합됨에 따라 일련의 뉴클레오티드들을 식별하는 신호들을 생성하도록 추가로 구성되는, 장치.
(34) 구성 (32) 또는 (33)의 장치로서, 상기 발광 분자들은 상이한 타입들의 뉴클레오티드들을 표지하는, 장치.
(35) 구성들 (32) 내지 (34) 중 어느 하나의 장치로서, 상기 장치는 주형 핵산 분자를 수용하도록 구성된 복수의 샘플 웰들을 추가로 포함하고, 상기 어레이에서의 하나의 광검출기는 상기 복수의 샘플 웰들 중 하나로부터 광을 수신하도록 배치되는, 장치.
(36) 구성 (35)의 장치로서, 상기 핵산 분자는 상기 주형 핵산 분자에 상보적인, 장치.
(37) 광검출 방법으로서, 광검출기들의 어레이에서의 광검출기에 의해, 발광 분자로부터 광자들을 수신하는 단계; 및 검출 회로를 이용하여, 제1 시간 기간 및 제2 시간 기간 동안 상기 광검출기에 입사된 광자들의 양을 카운팅하는 단계를 포함하는, 광검출 방법.
(38) (37)의 광검출 방법으로서, 상기 발광 분자를 식별하는 신호들을 생성하는 단계를 추가로 포함하고, 상기 신호들은 상기 제1 시간 기간 동안 상기 광검출기에 의해 수신된 광자들의 제1 양 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 광자들의 제2 양을 나타내는, 광검출 방법.
(39) (37) 또는 (38)의 광검출 방법으로서, 여기 광의 펄스로 상기 샘플을 조명하는 단계를 추가로 포함하고, 상기 광자들의 양을 카운팅하는 단계는 여기 광의 펄스로 상기 샘플을 조명하는 것에 응답하여 발생하는, 광검출 방법.
(40) 프로세서 실행가능 명령어들을 저장하는 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체로서, 상기 프로세서 실행가능 명령어들은 적어도 하나의 하드웨어 프로세서에 의해 실행될 때, 상기 적어도 하나의 하드웨어 프로세서로 하여금, 적어도 하나의 광원을 제어하도록 구성된 회로로부터, 상기 적어도 하나의 광원에 의해 방출된 광의 펄스에 대응하는 제어 신호를 수신하는 단계; 및 상기 제어 신호를 수신하는 것에 응답하여, 광검출기들의 어레이에서의 광검출기에 입사된 광자들의 카운팅을 수행하도록 구성된 검출 회로를 제어하는 단계―상기 카운팅은 제1 시간 기간 및 제2 시간 기간 동안 상기 검출기에 의해 수신된 입사 광자들의 양을 카운팅하는 것을 포함함―를 포함하는 광검출 방법을 수행하게 하는, 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체.
(41) (40)의 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체로서, 상기 검출 회로는 상기 제1 시간 기간 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 상기 입사 광자들의 양을 나타내는 신호들을 생성하도록 추가로 구성되는, 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체.
(42) (40) 또는 (41)의 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체로서, 상기 검출 회로에 의해 생성된 상기 신호들은 상기 제1 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함하는, 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체.
(43) 샘플 웰들의 어레이를 광검출기들의 어레이에 정렬시키기 위한 방법으로서, 상기 방법은, 상기 광검출기들의 어레이를 이용하여, 상기 광검출기들의 어레이에 입사된 상기 샘플 웰들의 어레이로부터의 광을 검출하는 단계; 및 상기 검출된 광에 기초해서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하여, 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 상기 광검출기들의 어레이에서의 상기 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계를 포함하는, 방법.
(44) (43)의 방법으로서, 상기 광검출기들의 어레이에서의 개별 광검출기들에 의해 검출된 광의 양은 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 정렬의 정도를 나타내는, 방법.
(45) (43) 또는 (44)의 방법으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 샘플 웰들의 어레이를 제1 위치로부터 제2 위치로 이동하는 것을 포함하고, 상기 광검출기들의 어레이에서의 상기 광검출기들의 제1 서브세트는 상기 샘플 웰들의 어레이가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 많은 양의 광자들을 검출하는, 방법.
(46) (45)의 방법으로서, 상기 광검출기들의 어레이에서의 상기 광검출기들의 제2 서브세트는 상기 샘플 웰들의 어레이가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 적은 양의 광자들을 검출하는, 방법.
(47) (43) 내지 (46) 중 어느 하나의 방법으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 광학적으로 정렬하도록 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 배치하는 것을 포함하는, 방법.
(48) (43) 내지 (47) 중 어느 하나의 방법으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 샘플 웰들의 어레이 및/또는 상기 광검출기들의 어레이를 병진 방향으로 이동하는 것을 포함하는, 방법.
(49) (43) 내지 (48) 중 어느 하나의 방법으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 샘플 웰들의 어레이 및/또는 상기 광검출기들의 어레이를 비스듬히 회전하는 것을 포함하는, 방법.
(50) (43) 내지 (49) 중 어느 하나의 방법으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 검출된 광의 패턴을 정렬 패턴과 비교하는 것을 포함하고, 상기 정렬 패턴은 임계값 미만의 광의 양을 검출하는 것으로서의 상기 광검출기들 중 적어도 하나를 갖는, 방법.
(51) 시스템으로서, 스테이지; 광을 검출하도록 구성된 광검출기들의 어레이; 상기 광검출기들의 어레이와 연관되고 상기 광검출기들의 어레이에 입사된 광자들을 나타내는 신호들을 생성하도록 구성되는 검출 회로; 및 회로를 포함하고, 상기 회로는 상기 검출 회로로부터 신호들을 수신하는 단계; 및 상기 수신된 신호들에 기초해서, 상기 광검출기들의 어레이에 대한 상기 스테이지의 배치를 조정하여, 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 상기 광검출기들의 어레이에서의 상기 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계를 포함하는 방법을 수행하도록 구성되는, 시스템.
(52) 구성 (51)의 시스템으로서, 상기 회로는 적어도 하나의 프로세서; 및 실행될 때 상기 방법을 수행하는 컴퓨터 실행가능 명령어들로 인코딩된 적어도 하나의 컴퓨터 판독가능 저장 매체를 포함하는, 시스템.
(53) 구성 (51) 또는 (52)의 시스템으로서, 상기 수신된 신호들은 상기 광검출기들의 어레이에서의 개별 광검출기들에 의해 검출된 광의 양을 나타내고, 상기 광의 양은 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 정렬의 정도를 나타내는, 시스템.
(54) 구성들 (51) 내지 (53) 중 어느 하나의 시스템으로서, 상기 광검출기들의 어레이에 대한 상기 스테이지의 배치를 조정하는 것은 상기 스테이지의 위치를 제1 위치로부터 제2 위치로 조정하는 것을 추가로 포함하고, 상기 광검출기들의 어레이에서의 상기 광검출기들의 제1 서브세트는 상기 스테이지가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 많은 양의 광자들을 검출하는, 시스템.
(55) 구성 (54)의 시스템으로서, 상기 광검출기들의 어레이에서의 상기 광검출기들의 제2 서브세트는 상기 샘플 웰들의 어레이가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 적은 양의 광자들을 검출하는, 시스템.
(56) 구성 (55)의 시스템으로서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 정렬하도록 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 배치하는 것을 포함하는, 시스템.
이와 같이, 본 출원의 기술의 몇몇 양태들 및 실시예들을 설명하였지만, 본 기술분야의 통상의 기술자에게는 다양한 변경들, 수정들 및 개선들이 쉽게 떠오를 것임을 알아야 한다. 그러한 변경들, 수정들 및 개선들은 본 출원에 설명된 기술의 사상 및 범위 내에 있는 것으로 의도된다. 따라서, 상기의 실시예들은 단지 예로서 제시된 것일 뿐이며, 첨부된 청구항들 및 그 균등물의 범위 내에서, 본 발명의 실시예들은 구체적으로 설명된 것과는 다른 방식으로 실시될 수 있다는 것을 이해해야 한다. 또한, 본 명세서에 설명된 2개 이상의 특징들, 시스템들, 물품들, 재료들, 키트들(kits) 및/또는 방법들의 임의의 조합은, 그러한 특징들, 시스템들, 물품들, 재료들, 키트들 및/또는 방법들이 서로 불일치하지 않는다면, 본 개시내용의 범위 내에 포함된다.
또한, 설명된 바와 같이, 일부 양태들은 하나 이상의 방법으로서 구현될 수 있다. 방법의 일부로서 수행되는 동작들은 임의의 적절한 방식으로 순서가 정해질 수 있다. 따라서, 예시적 실시예들에서는 순차적인 동작들로서 도시되어 있더라도, 소정의 동작들을 동시에 수행하는 것을 포함한, 예시된 것과는 상이한 순서로 동작들이 수행되는 실시예들이 구성될 수 있다.
본 명세서에 정의되고 이용된 모든 정의들은, 사전적 정의들, 참조에 의해 포함된 문서들에서의 정의, 및/또는 정의된 용어들의 통상의 의미들을 통제하는 것으로 이해되어야 한다.
명세서 및 청구항들에서 이용된 단수 표현은, 명확히 반대로 지시되지 않으면, "적어도 하나"를 의미하는 것으로 이해되어야 한다.
본 명세서에 이용된 어구 "및/또는"은 명세서 및 청구항들에서, 결합된 요소의 "각각 또는 둘다"를, 즉, 일부 경우들에서는 함께 존재하고 다른 경우들에서는 따로 존재하는 요소들을 의미하는 것으로 이해되어야 한다.
여기 본 명세서와 청구항들에서 이용된 바와 같이, 하나 이상의 요소의 리스트를 참조한 구문 "적어도 하나"는, 요소들의 리스트에서의 요소들 중 임의의 하나 이상으로부터 선택된 적어도 하나의 요소를 의미하지만, 요소들의 리스트 내에서 구체적으로 열거된 각각의 및 모든 요소 중 적어도 하나를 반드시 포함할 필요는 없고, 요소들의 리스트에서의 요소들의 임의의 조합들을 배제하지 않는 것으로 이해되어야 한다. 이러한 정의는 또한, 구문 "적어도 하나"가 참조하는 요소들의 리스트 내에서 구체적으로 식별된 요소들 이외의 요소들이, 구체적으로 식별된 그 요소들과 관련되든 관련되지 않든지 간에, 선택사항적으로 존재할 수 있는 것을 허용한다.
청구항 요소를 수식하기 위한 청구항들에서의 "제1", "제2", "제3" 등과 같은 서수 용어들의 이용은 그것만으로는 방법의 동작들이 수행되는 시간 순서 또는 하나의 청구항 요소의 다른 청구항 요소에 대한 임의의 우선순위, 선행(precedence), 또는 순서를 내포하는 것이 아니라, 청구항 요소들을 구별하기 위해, 특정 명칭을 갖는 하나의 청구항 요소를, (서수 용어를 이용한 것을 제외하고는) 동일한 명칭을 갖는 다른 요소로부터 구별하기 위한 라벨들로서 단지 이용된다.
상기의 명세서 뿐만 아니라 청구항들에서, "포함하는(comprising)", "포함하는(including)", "운반하는(carrying)", "갖는(having)", "포함하는(containing)", "유지하는(holding)", "구성된(composed of)" 등과 같은 모든 연결구(transitional phrase)들은 개방형(open-ended)인 것으로, 즉, 포함하지만 그에 제한되지 않는 것을 의미하는 것으로 이해된다. "이루어지는(consisting of)" 및 "본질적으로 이루어지는(consisting essentially of)"이라는 연결구들은 각각 폐쇄 또는 준-폐쇄(semi-closed) 연결구들일 것이다.

Claims (56)

  1. 시스템으로서,
    광검출기들의 어레이; 및
    상기 광검출기들의 어레이와 연관된 검출 회로를 포함하고,
    상기 검출 회로는, 여기 광을 이용한 발광 분자의 조명에 후속하는 제1 시간 기간 및 제2 시간 기간 동안, 상기 광검출기들의 어레이의 광검출기에서 상기 발광 분자로부터 수신된 입사 광자들의 양을 카운팅하도록 구성되는, 시스템.
  2. 제1항에 있어서,
    상기 검출 회로는 상기 제1 시간 기간 및 상기 제2 시간 기간 동안 상기 광검출기들의 어레이에 입사하는 단일 광자들을 카운팅하도록 구성되는, 시스템.
  3. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 상기 발광 분자를 식별하는 신호들을 생성하도록 추가로 구성되는, 시스템.
  4. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 제1 타입의 발광 분자를 식별하는 제1 신호 및 제2 타입의 발광 분자를 식별하는 제2 신호를 포함하는 상이한 타입들의 발광 분자들을 구별하는 신호들을 생성하도록 추가로 구성되는, 시스템.
  5. 제4항 또는 임의의 다른 선행하는 항에 있어서,
    상기 상이한 타입들의 발광 분자들은 상이한 뉴클레오티드들과 연관되고, 상기 검출 회로는 일련의 뉴클레오티드들을 식별하는 신호들의 세트를 생성하도록 구성되는, 시스템.
  6. 제5항 또는 임의의 다른 선행하는 항에 있어서,
    상기 일련의 뉴클레오티드들을 식별하는 상기 신호들의 세트는 주형 핵산 분자를 서열분석하는, 시스템.
  7. 제6항 또는 임의의 다른 선행하는 항에 있어서,
    상기 신호들의 세트에 의해 식별된 상기 일련의 뉴클레오티드들은 상기 주형 핵산 분자에 상보적인 핵산 분자의 일련의 뉴클레오티드들인, 시스템.
  8. 제7항 또는 임의의 다른 선행하는 항에 있어서,
    상기 일련의 뉴클레오티드들에서의 상이한 타입들의 뉴클레오티드들은 상기 상이한 타입들의 발광 분자들에 의해 표지되는, 시스템.
  9. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 상기 발광 분자의 수명을 나타내는 신호들을 생성하도록 추가로 구성되는, 시스템.
  10. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 상기 어레이에서의 광검출기와 연관된 적어도 2개의 광자 카운팅 회로들을 갖고, 상기 광검출기에 의해 수신된 상기 입사 광자들의 양을 카운팅하도록 구성되는, 시스템.
  11. 제10항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 상기 제1 시간 기간 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 상기 입사 광자들의 양을 나타내는 신호들을 생성하도록 추가로 구성되는, 시스템.
  12. 제11항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로에 의해 생성된 상기 신호들은 상기 제1 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함하는, 시스템.
  13. 제12항 또는 임의의 다른 선행하는 항에 있어서,
    상기 적어도 2개의 광자 카운팅 회로들은 제1 광자 카운팅 회로 및 제2 광자 카운팅 회로를 포함하고, 상기 제1 광자 카운팅 회로는 상기 제1 신호를 생성하도록 구성되고, 상기 제2 광자 카운팅 회로는 상기 제2 신호를 생성하도록 구성되는, 시스템.
  14. 제12항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 상기 제1 신호 및 상기 제2 신호를 포함하는 판독 신호를 생성하도록 구성되는, 시스템.
  15. 제12항 또는 임의의 다른 선행하는 항에 있어서,
    상기 제1 시간 기간 및 상기 제2 시간 기간은 비중첩 시간 기간들인, 시스템.
  16. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 기준 시간을 나타내는 제어 신호를 수신하고, 상기 제어 신호를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성되는, 시스템.
  17. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로는 상기 여기 광의 펄스를 방출하도록 구성된 광원으로부터 제어 신호를 수신하고, 상기 제어 신호를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성되는, 시스템.
  18. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 여기 광을 방출하도록 구성된 적어도 하나의 광원; 및
    상기 여기 광의 펄스들을 방출하기 위해 상기 적어도 하나의 광원을 제어하고, 상기 방출된 펄스들에 대응하는 제어 신호들을 생성하도록 구성된 회로―상기 어레이에서의 광검출기와 연관된 상기 검출 회로는 상기 회로로부터 상기 제어 신호들 중 적어도 하나를 수신하는 것에 응답하여 광자 카운팅을 수행하도록 구성됨―를 추가로 포함하는, 시스템.
  19. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    샘플 웰들의 어레이를 추가로 포함하고, 상기 샘플 웰들의 어레이에서의 개별 샘플 웰들은 샘플을 수용하도록 구성되는, 시스템.
  20. 제19항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 정렬 위치는 상기 광검출기 어레이에서의 상기 광검출기들의 적어도 일부와 광학적으로 정렬하도록 배치된 샘플 웰들의 제1 서브세트 및 상기 광검출기들의 어레이에서의 광검출기들과 광학적으로 정렬하지 않도록 배치된 샘플 웰들의 제2 서브세트를 포함하는, 시스템.
  21. 제20항 또는 임의의 다른 선행하는 항에 있어서,
    상기 샘플 웰들의 제1 서브세트는 상기 정렬 위치에 있을 때 상기 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 광학적으로 정렬하는 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 포함하는, 시스템.
  22. 제20항 또는 임의의 다른 선행하는 항에 있어서,
    상기 샘플 웰들의 제1 서브세트는 상기 샘플 웰들의 어레이에서의 샘플 웰들의 제1 행 및 제2 행을 포함하고, 상기 제1 행 및 상기 제2 행은 상기 샘플 웰들의 제2 서브세트에서의 샘플 웰들의 적어도 하나의 행에 의해 분리되는, 시스템.
  23. 제19항 또는 임의의 다른 선행하는 항에 있어서,
    상기 샘플 웰들의 어레이로부터 방출된 광자들을 상기 광검출기들의 어레이 쪽으로 지향시키도록 배치된 적어도 하나의 광학계를 추가로 포함하는, 시스템.
  24. 제23항 또는 임의의 다른 선행하는 항에 있어서,
    상기 적어도 하나의 광학계는 상기 샘플 웰들의 어레이의 하나의 샘플 웰로부터 방출된 광자들을 상기 광검출기들의 어레이에서의 하나의 광검출기로 지향시키도록 배치되는, 시스템.
  25. 제23항 또는 임의의 다른 선행하는 항에 있어서,
    상기 적어도 하나의 광학계는 상기 샘플 웰들의 어레이의 하나의 샘플 웰로부터 방출된 광자들을 상기 광검출기들의 어레이에서의 하나의 광검출기의 검출 영역과 중첩하도록 정렬시키도록 구성되는, 시스템.
  26. 제23항 또는 임의의 다른 선행하는 항에 있어서,
    상기 적어도 하나의 광학계는 적어도 하나의 광원에 의해 방출된 광을 상기 샘플 웰들의 어레이 쪽으로 지향시키고, 상기 발광 분자에 의해 방출된 광을 상기 광검출기들의 어레이에 송신하도록 배치된 이색성 미러를 포함하는, 시스템.
  27. 제23항 또는 임의의 다른 선행하는 항에 있어서,
    상기 적어도 하나의 광학계는 릴레이 렌즈 구성으로 배열된 복수의 렌즈들을 포함하는, 시스템.
  28. 제19항 또는 임의의 다른 선행하는 항에 있어서,
    적어도 하나의 도파관을 추가로 포함하고, 상기 샘플 웰들의 어레이에서의 상기 샘플 웰들의 적어도 일부는 상기 적어도 하나의 도파관으로부터의 광을 수신하도록 배치되는, 시스템.
  29. 제28항 또는 임의의 다른 선행하는 항에 있어서,
    상기 샘플 웰들의 어레이 및 상기 적어도 하나의 도파관은 샘플 칩 상에 통합되고, 상기 샘플 웰들의 어레이는 상기 샘플 칩의 표면 상에 배열되는, 시스템.
  30. 제29항 또는 임의의 다른 선행하는 항에 있어서,
    상기 샘플 칩은 외부 광원으로부터 광을 수신하고, 상기 적어도 하나의 도파관 내로 광을 광학적으로 결합하도록 구성된 격자 커플러를 추가로 포함하는, 시스템.
  31. 제1항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이는 단일 광자 애벌란시 포토다이오드들의 어레이를 포함하는, 시스템.
  32. 장치로서,
    광검출기들의 어레이를 포함하는 검출 회로를 포함하고, 상기 검출 회로는 핵산 분자 내로 통합되는 상이한 뉴클레오티드들과 연관된 발광 분자들을 구별하기 위해, 상기 발광 분자들로부터 상기 광검출기들의 어레이에 의해 수신된 입사 광자들을 카운팅하도록 구성되는, 장치.
  33. 제32항에 있어서,
    상기 검출 회로는 개별 뉴클레오티드들이 상기 핵산 분자 내로 통합됨에 따라 일련의 뉴클레오티드들을 식별하는 신호들을 생성하도록 추가로 구성되는, 장치.
  34. 제32항 또는 임의의 다른 선행하는 항에 있어서,
    상기 발광 분자들은 상이한 타입들의 뉴클레오티드들을 표지하는, 장치.
  35. 제32항 또는 임의의 다른 선행하는 항에 있어서,
    주형 핵산 분자를 수용하도록 구성된 복수의 샘플 웰들을 추가로 포함하고, 상기 어레이에서의 하나의 광검출기는 상기 복수의 샘플 웰들 중 하나로부터 광을 수신하도록 배치되는, 장치.
  36. 제35항 또는 임의의 다른 선행하는 항에 있어서,
    상기 핵산 분자는 상기 주형 핵산 분자에 상보적인, 장치.
  37. 광검출 방법으로서,
    광검출기들의 어레이에서의 광검출기에 의해, 발광 분자로부터 광자들을 수신하는 단계; 및
    검출 회로를 이용하여, 제1 시간 기간 및 제2 시간 기간 동안 상기 광검출기에 입사된 광자들의 양을 카운팅하는 단계를 포함하는, 광검출 방법.
  38. 제37항에 있어서,
    상기 발광 분자를 식별하는 신호들을 생성하는 단계를 추가로 포함하고, 상기 신호들은 상기 제1 시간 기간 동안 상기 광검출기에 의해 수신된 광자들의 제1 양 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 광자들의 제2 양을 나타내는, 광검출 방법.
  39. 제37항 또는 임의의 다른 선행하는 항에 있어서,
    여기 광의 펄스로 샘플을 조명하는 단계를 추가로 포함하고, 상기 광자들의 양을 카운팅하는 단계는 여기 광의 펄스로 상기 샘플을 조명하는 것에 응답하여 발생하는, 광검출 방법.
  40. 프로세서 실행가능 명령어들을 저장하는 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 프로세서 실행가능 명령어들은 적어도 하나의 하드웨어 프로세서에 의해 실행될 때, 상기 적어도 하나의 하드웨어 프로세서로 하여금,
    적어도 하나의 광원을 제어하도록 구성된 회로로부터, 상기 적어도 하나의 광원에 의해 방출된 광의 펄스에 대응하는 제어 신호를 수신하는 단계; 및
    상기 제어 신호를 수신하는 것에 응답하여, 광검출기들의 어레이에서의 광검출기에 입사된 광자들의 카운팅을 수행하도록 구성된 검출 회로를 제어하는 단계―상기 카운팅은 제1 시간 기간 및 제2 시간 기간 동안 상기 검출기에 의해 수신된 입사 광자들의 양을 카운팅하는 것을 포함함―
    를 포함하는 광검출 방법을 수행하게 하는, 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체.
  41. 제40항에 있어서,
    상기 검출 회로는 상기 제1 시간 기간 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 상기 입사 광자들의 양을 나타내는 신호들을 생성하도록 추가로 구성되는, 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체.
  42. 제40항 또는 임의의 다른 선행하는 항에 있어서,
    상기 검출 회로에 의해 생성된 상기 신호들은 상기 제1 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제1 양을 식별하는 제1 신호 및 상기 제2 시간 기간 동안 상기 광검출기에 의해 수신된 입사 광자들의 제2 양을 식별하는 제2 신호를 포함하는, 적어도 하나의 비일시적 컴퓨터 판독가능 저장 매체.
  43. 샘플 웰들의 어레이를 광검출기들의 어레이에 정렬시키기 위한 방법으로서, 상기 방법은,
    상기 광검출기들의 어레이를 이용하여, 상기 광검출기들의 어레이에 입사된 상기 샘플 웰들의 어레이로부터의 광을 검출하는 단계; 및
    상기 검출된 광에 기초해서, 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하여, 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 상기 광검출기들의 어레이에서의 상기 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계를 포함하는, 방법.
  44. 제43항에 있어서,
    상기 광검출기들의 어레이에서의 개별 광검출기들에 의해 검출된 광의 양은 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 정렬의 정도를 나타내는, 방법.
  45. 제43항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 샘플 웰들의 어레이를 제1 위치로부터 제2 위치로 이동하는 것을 포함하고, 상기 광검출기들의 어레이에서의 상기 광검출기들의 제1 서브세트는 상기 샘플 웰들의 어레이가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 많은 양의 광자들을 검출하는, 방법.
  46. 제45항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에서의 상기 광검출기들의 제2 서브세트는 상기 샘플 웰들의 어레이가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 적은 양의 광자들을 검출하는, 방법.
  47. 제43항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 광학적으로 정렬하도록 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 배치하는 것을 포함하는, 방법.
  48. 제43항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 샘플 웰들의 어레이 및/또는 상기 광검출기들의 어레이를 병진 방향으로 이동하는 것을 포함하는, 방법.
  49. 제43항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 샘플 웰들의 어레이 및/또는 상기 광검출기들의 어레이를 비스듬히 회전하는 것을 포함하는, 방법.
  50. 제43항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 검출된 광의 패턴을 정렬 패턴과 비교하는 것을 포함하고, 상기 정렬 패턴은 임계값 미만의 광의 양을 검출하는 것으로서의 상기 광검출기들 중 적어도 하나를 갖는, 방법.
  51. 시스템으로서,
    스테이지;
    광을 검출하도록 구성된 광검출기들의 어레이;
    상기 광검출기들의 어레이와 연관되고 상기 광검출기들의 어레이에 입사된 광자들을 나타내는 신호들을 생성하도록 구성되는 검출 회로; 및
    회로를 포함하고,
    상기 회로는,
    상기 검출 회로로부터 신호들을 수신하는 단계; 및
    상기 수신된 신호들에 기초해서, 상기 광검출기들의 어레이에 대한 상기 스테이지의 배치를 조정하여, 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 일부가 상기 광검출기들의 어레이에서의 상기 광검출기들의 적어도 일부와 광학적으로 정렬하게 하는 단계
    를 포함하는 방법을 수행하도록 구성되는, 시스템.
  52. 제51항에 있어서,
    상기 회로는,
    적어도 하나의 프로세서; 및
    실행될 때 상기 방법을 수행하는 컴퓨터 실행가능 명령어들로 인코딩된 적어도 하나의 컴퓨터 판독가능 저장 매체를 포함하는, 시스템.
  53. 제51항 또는 임의의 다른 선행하는 항에 있어서,
    상기 수신된 신호들은 상기 광검출기들의 어레이에서의 개별 광검출기들에 의해 검출된 광의 양을 나타내고, 상기 광의 양은 상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 정렬의 정도를 나타내는, 시스템.
  54. 제51항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 스테이지의 배치를 조정하는 것은 상기 스테이지의 위치를 제1 위치로부터 제2 위치로 조정하는 것을 추가로 포함하고, 상기 광검출기들의 어레이에서의 상기 광검출기들의 제1 서브세트는 상기 스테이지가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 많은 양의 광자들을 검출하는, 시스템.
  55. 제54항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에서의 상기 광검출기들의 제2 서브세트는 상기 샘플 웰들의 어레이가 상기 제1 위치에서보다 상기 제2 위치에 있을 때 더 적은 양의 광자들을 검출하는, 시스템.
  56. 제55항 또는 임의의 다른 선행하는 항에 있어서,
    상기 광검출기들의 어레이에 대한 상기 샘플 웰들의 어레이의 배치를 조정하는 것은 상기 광검출기들의 어레이에서의 광검출기들의 적어도 하나의 행과 정렬하도록 상기 샘플 웰들의 어레이에서의 샘플 웰들의 적어도 하나의 행을 배치하는 것을 포함하는, 시스템.
KR1020217008826A 2018-08-29 2019-08-29 광자 카운팅 광검출기들을 이용하여 수명을 검출하기 위한 시스템 및 방법들 KR20210046061A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862724167P 2018-08-29 2018-08-29
US62/724,167 2018-08-29
PCT/US2019/048824 WO2020047262A1 (en) 2018-08-29 2019-08-29 System and methods for detecting lifetime using photon counting photodetectors

Publications (1)

Publication Number Publication Date
KR20210046061A true KR20210046061A (ko) 2021-04-27

Family

ID=67953862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217008826A KR20210046061A (ko) 2018-08-29 2019-08-29 광자 카운팅 광검출기들을 이용하여 수명을 검출하기 위한 시스템 및 방법들

Country Status (11)

Country Link
US (1) US20200072752A1 (ko)
EP (1) EP3844486A1 (ko)
JP (1) JP2021535385A (ko)
KR (1) KR20210046061A (ko)
CN (1) CN112930476A (ko)
AU (1) AU2019330042A1 (ko)
BR (1) BR112021003146A2 (ko)
CA (1) CA3109816A1 (ko)
MX (1) MX2021002414A (ko)
TW (1) TW202016530A (ko)
WO (1) WO2020047262A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759658B2 (en) 2014-08-08 2017-09-12 Quantum-Si Incorporated Integrated device for temporal binning of received photons
US10441174B2 (en) 2016-02-17 2019-10-15 Tesseract Health, Inc. Sensor and device for lifetime imaging and detection applications
MX2019007530A (es) 2016-12-22 2019-08-16 Quantum Si Inc Fotodetector integrado con agrupamiento de pixeles directo.
KR20210022688A (ko) 2018-06-22 2021-03-03 퀀텀-에스아이 인코포레이티드 가변 검출 시간의 전하 저장 빈을 갖는 집적 광검출기
JP2023510578A (ja) 2020-01-14 2023-03-14 クアンタム-エスアイ インコーポレイテッド 寿命およびスペクトル特性評価用センサ
JP2023510577A (ja) 2020-01-14 2023-03-14 クアンタム-エスアイ インコーポレイテッド 寿命特性評価のための集積センサ
WO2021178438A1 (en) 2020-03-02 2021-09-10 Quantum-Si Incorporated Integrated sensor for multi-dimensional signal analysis
KR20220165754A (ko) 2020-04-08 2022-12-15 퀀텀-에스아이 인코포레이티드 스큐가 감소된 통합 센서
CN114015560A (zh) * 2021-10-20 2022-02-08 深圳市中科先见医疗科技有限公司 一种分子检测芯片
US11927814B2 (en) * 2022-01-05 2024-03-12 Scidatek Inc. Semiconductor photodetector array sensor integrated with optical-waveguide-based devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123469A (ja) * 1997-06-30 1999-01-29 Suzuki Motor Corp 蛍光免疫測定装置
DE19748211A1 (de) * 1997-10-31 1999-05-06 Zeiss Carl Fa Optisches Array-System und Reader für Mikrotiterplatten
US20060019265A1 (en) * 2004-04-30 2006-01-26 Kimberly-Clark Worldwide, Inc. Transmission-based luminescent detection systems
US10048208B2 (en) * 2013-11-17 2018-08-14 Quantum-Si Incorporated Integrated device with external light source for probing detecting and analyzing molecules
KR20220165282A (ko) * 2014-08-08 2022-12-14 퀀텀-에스아이 인코포레이티드 분자들을 프로빙, 검출 및 분석하기 위한 광학계 및 검정 칩
BR112017002501B1 (pt) * 2014-08-08 2022-06-07 Quantum-Si Incorporated Dispositivos integrados, sistemas, método de detecção de presença de molécula em amostra, método de formação de dispositivo integrado e método de análise de espécime
US9759658B2 (en) * 2014-08-08 2017-09-12 Quantum-Si Incorporated Integrated device for temporal binning of received photons
US10174363B2 (en) * 2015-05-20 2019-01-08 Quantum-Si Incorporated Methods for nucleic acid sequencing
MX2022001187A (es) * 2015-05-20 2023-01-04 Quantum Si Inc Método para determinar la secuencia de un ácido nucleico usando luminiscencia resuelta por tiempo.
US10246742B2 (en) * 2015-05-20 2019-04-02 Quantum-Si Incorporated Pulsed laser and bioanalytic system
WO2017121438A1 (en) * 2016-01-13 2017-07-20 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Emission lifetime measuring method and apparatus for measuring a mean lifetime of electronically excited states
CN109313925B (zh) * 2016-06-01 2022-09-02 宽腾矽公司 脉冲命名器及基质命名器

Also Published As

Publication number Publication date
TW202016530A (zh) 2020-05-01
JP2021535385A (ja) 2021-12-16
MX2021002414A (es) 2021-04-28
BR112021003146A2 (pt) 2021-05-11
CN112930476A (zh) 2021-06-08
WO2020047262A1 (en) 2020-03-05
AU2019330042A1 (en) 2021-03-11
EP3844486A1 (en) 2021-07-07
CA3109816A1 (en) 2020-03-05
US20200072752A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
KR20210046061A (ko) 광자 카운팅 광검출기들을 이용하여 수명을 검출하기 위한 시스템 및 방법들
US20230258862A1 (en) Optical coupler and waveguide system
US11869917B2 (en) Integrated sensor for lifetime characterization
US11774674B2 (en) Optical waveguides and couplers for delivering light to an array of photonic elements
US20230223419A1 (en) Integrated sensor
US20220128402A1 (en) Integrated circuit with sequentially-coupled charge storage and associated techniques
US20210318242A1 (en) Integrated sensor with reduced skew
US20240003811A1 (en) Integrated sensor for multi-dimensional signal analysis
WO2007144864A1 (en) Solid-state fluorescent analyser
US11885744B2 (en) Sensor for lifetime plus spectral characterization
US20220128471A1 (en) Systems and methods for determining quantitative loading of an integrated device
US20240088178A1 (en) Backside illuminated structures with parallel charge transfer
US20220186305A1 (en) Integrated circuit with improved charge transfer efficiency and associated techniques

Legal Events

Date Code Title Description
A201 Request for examination