KR20210037384A - Dimethylchalcone derivatives and preparation method thereof - Google Patents

Dimethylchalcone derivatives and preparation method thereof Download PDF

Info

Publication number
KR20210037384A
KR20210037384A KR1020190119961A KR20190119961A KR20210037384A KR 20210037384 A KR20210037384 A KR 20210037384A KR 1020190119961 A KR1020190119961 A KR 1020190119961A KR 20190119961 A KR20190119961 A KR 20190119961A KR 20210037384 A KR20210037384 A KR 20210037384A
Authority
KR
South Korea
Prior art keywords
group
formula
substituted
compound represented
unsubstituted
Prior art date
Application number
KR1020190119961A
Other languages
Korean (ko)
Other versions
KR102285493B1 (en
Inventor
박광용
이하나
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020190119961A priority Critical patent/KR102285493B1/en
Publication of KR20210037384A publication Critical patent/KR20210037384A/en
Application granted granted Critical
Publication of KR102285493B1 publication Critical patent/KR102285493B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • C07C43/2055Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring containing more than one ether bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/38Unsaturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings
    • C07C47/46Unsaturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings containing hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a dimethylchalcone (DMC) derivative and a method for preparing the same. A compound according to the present invention is represented by chemical formula I, wherein R1, R2 and R3 are the same or different, R1 represents a hydroxyl group or a methoxy group, each of R2 and R3 is independently selected from the group consisting of H, deuterium, hydroxyl, thiol, amino, substituted or non-substituted (C1-C10 alkyl)amino, substituted or non-substituted C1-C10 alkoxy, substituted or non-substituted C1-C10 alkyl, substituted or non-substituted C2-C10 alkenyl, substituted or non-substituted C2-C10 alkynyl, and substituted or non-substituted C6-C20 aryl groups, and the 'substituted or non-substituted' expression means that the corresponding group is substituted or non-substituted with at least one substituent selected from the group consisting of halogen, nitrile, nitro, hydroxyl, carbonyl, ester, imide, amino, phosphine oxide, alkoxy, aryloxy, alkylthioxy, arylthioxy, alkylsulfoxy, arylsulfoxy, silyl, boron, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, aralkyl, aralkenyl, alkylaryl, alkylamine, aralkylamine, heteroarylamine, arylamine, aryl phosphine, and heterocyclic groups.

Description

다이메틸칼콘 유도체 및 이의 제조방법{DIMETHYLCHALCONE DERIVATIVES AND PREPARATION METHOD THEREOF}Dimethylchalcone derivative and its manufacturing method {DIMETHYLCHALCONE DERIVATIVES AND PREPARATION METHOD THEREOF}

본 발명은 다이메틸칼콘(Dimethylchalcone, DMC) 유도체 및 이의 제조방법에 관한 것으로, 다양하게 치환된 칼콘 구조를 가지는 유도체를 저렴한 플로로글루시놀(phloroglucinol)등을 시작물질로 하여 간단한 공정을 통해 높은 수율로 용이하게 제조하는 방법을 포함한다. The present invention relates to a dimethylchalcone (DMC) derivative and a method for preparing the same, and a high yield through a simple process using inexpensive phloroglucinol derivatives having various substituted chalcone structures as a starting material. It includes a method of making it easy to use.

천연 식물로부터 추출된 다양한 물질은 인간의 질병 치료에 있어 막대한 영향을 끼쳐왔다. 그러나 자연물 섭취의 경우 수요에 대비하여 양이 제한적이고, 특정 성분 조절을 통한 부작용이나 효능의 변화가 불가능하므로, 전합성 연구를 통한 천연물을 대체할 의약품의 생산은 필수적이다.Various substances extracted from natural plants have had a tremendous effect on the treatment of human diseases. However, in the case of ingestion of natural products, the amount is limited in response to demand, and side effects or effects cannot be changed through control of specific ingredients, so the production of pharmaceuticals that will replace natural products through total synthesis research is essential.

2',4'-다이하이드록시-6'-메톡시-3',5'-다이메틸칼콘(2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC)는 칼콘계 화합물로 방향족 케톤의 골격을 갖고 있다. 대표적으로 Cleistocalyx operculatus 꽃 봉오리에서 추출되고 있으며, 현재까지 항종양제, 항염증제와 같은 다양한 생물학적 활성을 가지고 있는 것으로 밝혀졌다.2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) It is a chalcone compound and has an aromatic ketone skeleton. It is typically extracted from Cleistocalyx operculatus flower buds, and has been found to have various biological activities such as anti-tumor agents and anti-inflammatory agents.

이처럼 생물학적 가치가 있는 디엠씨는 많은 관심과 함께 다양한 약리학적 연구가 진행되고 있지만, 현재 디엠씨 물질 자체의 연구만 존재하고 디엠씨 유도체의 특성에 관한 연구들은 아직 제대로 진행된 바 없다.As such, DMC having a biological value has a lot of interest and various pharmacological studies are being conducted, but only studies of the DMC substance itself exist, and studies on the properties of the DMC derivatives have not been properly conducted yet.

또한, Cleistocalyx operculatus 의 분포 자체가 드물고, Cleistocalyx operculatus 에서의 디엠씨 추출 함량이 매우 낮기 때문에 생산량이 부족하여 심도 깊은 약리학적 연구를 진행하는 것에 한계가 있다. 또한, 이미 보고되어 있는 디엠씨 합성에 대한 선행연구 사례를 보면 값비싼 아세토페논 계열의 화합물을 시작 물질로 사용해야 할 뿐만 아니라, 총 수율이 7% 미만인 연구들이 대부분이다. In addition, since the distribution of Cleistocalyx operculatus itself is rare, and the content of DMC extraction from Cleistocalyx operculatus is very low, there is a limitation in conducting in-depth pharmacological research due to insufficient production. In addition, in the case of previous studies on DMC synthesis, which has already been reported, most of the studies that not only require the use of expensive acetophenone-based compounds as starting materials, but also have a total yield of less than 7%.

따라서 저렴한 반응 물질을 사용하여 디엠씨 및 디엠씨 유도체의 경제적이고 효율적인 합성 경로를 설계하고, 작용기 변화를 통해 다양한 유도체들을 생산하고, 이를 통해 디엠씨 및 그 유도체가 가지는 효능을 극대화시킬 수 있는 새로운 제조 방법에 대한 연구가 필요하다. Therefore, design an economical and efficient synthesis route of DMC and DMC derivatives using inexpensive reactants, produce various derivatives through functional group change, and develop a new manufacturing method that can maximize the efficacy of DMC and its derivatives. Research is needed.

유럽 공개특허공보 EP0328669 A1European Patent Publication EP0328669 A1

본 발명은 산업적으로 유용하지만, 아직 합성이 보고된 적이 없는 다양한 다이메틸칼콘 유도체를 제조하고, 상기 유도체를 저렴한 플로로글루시놀(phloroglucinol) 등을 시작물질로 하여 간단한 공정을 통해 높은 수율로 제조하는 방법을 제공하고자 한다. Although the present invention is industrially useful, various dimethylchalcone derivatives that have not yet been synthesized are prepared, and the derivative is prepared in high yield through a simple process using inexpensive phloroglucinol as a starting material. I want to provide a way.

본 발명의 실시예를 따르는 화합물은 하기 화학식 I로 표시된다. A compound according to an embodiment of the present invention is represented by the following formula (I).

[화학식 I][Formula I]

Figure pat00001
Figure pat00001

상기 화학식 I에서,In Formula I,

R1, R2, 및 R3는 서로 동일하거나 상이하고, R1은 하이드록시기, 또는 메톡시기이고, R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고, 상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다. R1, R2, and R3 are the same as or different from each other, R1 is a hydroxy group or a methoxy group, and R2, and R3 are each independently hydrogen, deuterium, a hydroxy group, a thiol group, an amino group, a substituted or unsubstituted (C1-C10 alkyl) amino group, substituted or unsubstituted C1-C10 alkoxy group, substituted or unsubstituted C1-C10 alkyl group, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl , A substituted or unsubstituted C6-C20 aryl group, and the'substituted or unsubstituted' is a halogen group, a nitrile group, a nitro group, a hydroxy group, a carbonyl group, an ester group, an imide group, an amino group, Phosphine oxide group, alkoxy group, aryloxy group, alkylthioxy group, arylthioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group , Aralkenyl group, alkylaryl group, alkylamine group. It is unsubstituted or substituted with one or more substituents selected from the group consisting of aralkylamine group, heteroarylamine group, arylamine group, arylphosphine group, and heterocyclic group.

본 발명의 실시예를 따르는 화합물은 하기 화학식 II로 표시될 수 있다. A compound according to an embodiment of the present invention may be represented by the following formula (II).

[화학식 II][Formula II]

Figure pat00002
Figure pat00002

상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.In Formula II, R2 and R3 are the same as defined in Formula I.

본 발명의 실시예를 따르는 화합물은 하기 화학식 II-1 내지 화학식 II-7로 표시되는 화합물 중 어느 하나일 수 있다.The compound according to an embodiment of the present invention may be any one of the compounds represented by the following formulas II-1 to II-7.

[화학식 II-1][Formula II-1]

Figure pat00003
Figure pat00003

[화학식 II-2][Formula II-2]

Figure pat00004
Figure pat00004

[화학식 II-3][Formula II-3]

Figure pat00005
Figure pat00005

[화학식 II-4][Formula II-4]

Figure pat00006
Figure pat00006

[화학식 II-5][Formula II-5]

Figure pat00007
Figure pat00007

[화학식 II-6][Formula II-6]

Figure pat00008
Figure pat00008

[화학식 II-7][Formula II-7]

Figure pat00009
.
Figure pat00009
.

본 발명의 실시예를 따르는 화합물은 하기 화학식 III으로 표시될 수 있다. A compound according to an embodiment of the present invention may be represented by the following formula (III).

[화학식 III][Formula III]

Figure pat00010
Figure pat00010

상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.In Formula III, R2 and R3 are the same as defined in Formula I.

본 발명의 실시예를 따르는 화합물은 하기 화학식 III-1 내지 화학식 III-7로 표시되는 화합물 중 어느 하나일 수 있다. The compound according to an embodiment of the present invention may be any one of the compounds represented by the following formulas III-1 to III-7.

[화학식 III-1][Formula III-1]

Figure pat00011
Figure pat00011

[화학식 III-2][Formula III-2]

Figure pat00012
Figure pat00012

[화학식 III-3][Formula III-3]

Figure pat00013
Figure pat00013

[화학식 III-4][Formula III-4]

Figure pat00014
Figure pat00014

[화학식 III-5][Formula III-5]

Figure pat00015
Figure pat00015

[화학식 III-6][Formula III-6]

Figure pat00016
Figure pat00016

[화학식 III-7][Formula III-7]

Figure pat00017
.
Figure pat00017
.

본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법은 하기 화학식 C로 표시되는 화합물로부터 하기 화학식 E로 표시되는 화합물을 합성하는 반응 3/4 단계; 및 하기 화학식 E으로 표시되는 화합물로부터 하기 화학식 II로 표시되는 화합물을 합성하는 반응 5-1단계; 를 포함한다. A method of preparing a compound represented by Formula II according to an embodiment of the present invention includes a reaction 3/4 step of synthesizing a compound represented by Formula E from a compound represented by Formula C below; And a reaction step 5-1 of synthesizing a compound represented by the following formula II from the compound represented by the following formula E; Includes.

[화학식 C][Formula C]

Figure pat00018
Figure pat00018

[화학식 E][Formula E]

Figure pat00019
Figure pat00019

[화학식 II][Formula II]

Figure pat00020
Figure pat00020

상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.In Formula II, R2 and R3 are the same as defined in Formula I.

본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법은 상기 반응 3단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 B로 표시되는 화합물을 합성하는 반응 1단계; 및 하기 B로 표시되는 화합물로부터 상기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계를 더 포함할 수 있다. A method for preparing a compound represented by Formula II according to an embodiment of the present invention may include a first step of synthesizing a compound represented by the following B from a compound represented by the following Formula A before step 3 of the reaction; And it may further include a reaction step 2 of synthesizing the compound represented by the formula (C) from the compound represented by the following B.

[화학식 A] [Formula A]

Figure pat00021
Figure pat00021

[화학식 B][Formula B]

Figure pat00022
.
Figure pat00022
.

본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법에서 상기 반응 3/4단계는 상기 화학식 C로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 및 하기 화학식 D로 표시되는 화합물로부터 상기 화학식 E으로 표시되는 화합물을 합성하는 반응 4단계; 를 더 포함할 수 있다.In the method for preparing a compound represented by Formula II according to an embodiment of the present invention, step 3/4 of the reaction includes a step 3 of synthesizing a compound represented by Formula D from the compound represented by Formula C; And a reaction step 4 of synthesizing the compound represented by Formula E from the compound represented by Formula D below. It may further include.

[화학식 D][Formula D]

Figure pat00023
Figure pat00023

본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법은 하기 화학식 C로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 하기 화학식 D로 표시되는 화합물로부터 하기 화학식 F로 표시되는 화합물을 합성하는 반응 4/(5-2)단계; 및 하기 화학식 F로 표시되는 화합물로부터 하기 화학식 III로 표시되는 화합물을 합성하는 반응 6단계;를 포함한다. A method of preparing a compound represented by Formula III according to an embodiment of the present invention comprises: 3 steps of synthesizing a compound represented by Formula D from a compound represented by Formula C; Reaction 4/(5-2) step of synthesizing a compound represented by Formula F below from a compound represented by Formula D below; And a reaction step 6 of synthesizing a compound represented by the following formula (III) from the compound represented by the following formula (F).

[화학식 C][Formula C]

Figure pat00024
Figure pat00024

[화학식 D][Formula D]

Figure pat00025
Figure pat00025

[화학식 F][Formula F]

Figure pat00026
Figure pat00026

[화학식 III][Formula III]

Figure pat00027
Figure pat00027

상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.In Formula III, R2 and R3 are the same as defined in Formula I.

본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법에서 상기 반응 3단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 화학식 B로 표시되는 화합물을 합성하는 반응 1단계; 및 하기 화학식 B로 표시되는 화합물로부터 상기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계를 더 포함할 수 있다. In a method for preparing a compound represented by Formula III according to an embodiment of the present invention, prior to step 3 of the reaction, a reaction step 1 of synthesizing a compound represented by Formula B from a compound represented by Formula A below; And it may further include a reaction step 2 of synthesizing the compound represented by the formula (C) from the compound represented by the following formula (B).

[화학식 A] [Formula A]

Figure pat00028
Figure pat00028

[화학식 B][Formula B]

Figure pat00029
.
Figure pat00029
.

본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법에서 상기 반응 4/(5-2)단계는 상기 화학식 D로 표시되는 화합물로부터 하기 화합물 E로 표시되는 화합물을 합성하는 반응 4단계; 및 하기 화합물 E로 표시되는 화합물로부터 상기 화합물 F로 표시되는 화합물을 합성하는 반응 5-2단계;를 더 포함할 수 있다. In the method of preparing a compound represented by Formula III according to an embodiment of the present invention, the reaction step 4/(5-2) is a reaction step 4 of synthesizing a compound represented by Compound E below from the compound represented by Formula D. ; And a reaction step 5-2 of synthesizing the compound represented by compound F from the compound represented by compound E below.

[화학식 E] [Formula E]

Figure pat00030
.
Figure pat00030
.

본 발명의 실시예는 산업적으로 유용하지만, 아직 합성이 보고된 적이 없는 다양한 다이메틸칼콘 유도체를 제조하고, 상기 유도체를 저렴한 플로로글루시놀(phloroglucinol) 등을 시작물질로 하여 간단한 공정을 통해 높은 수율로 제조하는 방법을 제공한다. The examples of the present invention are industrially useful, but have not yet been reported to be synthesized, and prepare various dimethylchalcone derivatives, and use the derivative as a starting material, such as phloroglucinol, as a starting material, resulting in high yield through a simple process. It provides a method of manufacturing.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다. Hereinafter, the present invention will be described in more detail through examples. Since these examples are for illustrative purposes only, the scope of the present invention is not to be construed as being limited by these examples.

본 명세서에서 사용되는 "포함하는"과 같은 표현은, 해당 표현이 포함되는 문구 또는 문장에서 특별히 다르게 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.Expressions such as "comprising" used herein are understood as open-ended terms including the possibility of including other embodiments, unless specifically stated otherwise in the phrase or sentence in which the expression is included. It should be.

본 명세서에서 사용되는 "바람직한" 및 "바람직하게"는 소정 환경 하에서 소정의 이점을 제공할 수 있는 본 발명의 실시 형태를 지칭한다. 그러나, 동일한 환경 또는 다른 환경 하에서, 다른 실시 형태가 또한 바람직할 수 있다. 추가로, 하나 이상의 바람직한 실시 형태의 언급은 다른 실시 형태가 유용하지 않다는 것을 의미하지 않으며, 본 발명의 범주로부터 다른 실시 형태를 배제하고자 하는 것은 아니다.As used herein, "preferable" and "preferably" refer to embodiments of the present invention that may provide certain advantages under certain circumstances. However, under the same or different circumstances, other embodiments may also be desirable. Additionally, reference to one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the present invention.

본 발명의 일 실시예는 저렴한 플로로글루시놀(phloroglucinol)을 시작물질로 하여 아세토페논(acetophenone) 물질을 만들고 이 화합물과 다양한 벤즈알데하이드(Benzaldehyde) 간의 클라이젠-슈미트(Claisen-Schmidt) 반응을 이용하여 다이메틸칼콘 및 그 유도체를 합성한다. 이로써 식물 그 자체에서 추출하는 것보다 훨씬 효율적이고 경제적인 합성법을 제공한다. 또한, 전자주개(electron donating group, EDG) 및 전자끌개(electron withdrawing group, EWG)등 다양한 작용기를 갖는 다이메틸칼콘 유도체들을 제조하여 약리적인 효과가 기존 디엠씨보다 좋거나 독성이 적은 화합물을 합성하고 응용할 수 있다. 이하 이를 상세하게 설명한다.An embodiment of the present invention uses inexpensive phloroglucinol as a starting material to make acetophenone material and uses a Claisen-Schmidt reaction between this compound and various benzaldehydes. To synthesize dimethylchalcone and its derivatives. This provides a much more efficient and economical synthesis method than extracting from the plant itself. In addition, by preparing dimethylchalcone derivatives having various functional groups such as electron donating group (EDG) and electron withdrawing group (EWG), the pharmacological effect is better than the existing DMC or less toxic compounds can be synthesized and applied. I can. This will be described in detail below.

본 발명의 실시예를 따르는 화합물은 하기 화학식 I로 표시된다. A compound according to an embodiment of the present invention is represented by the following formula (I).

[화학식 I][Formula I]

Figure pat00031
Figure pat00031

상기 화학식 I에서, R1, R2, 및 R3는 서로 동일하거나 상이하고, R1은 하이드록시기, 또는 메톡시기이고, R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고, 상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다. In Formula I, R1, R2, and R3 are the same as or different from each other, R1 is a hydroxy group or a methoxy group, and R2, and R3 are each independently hydrogen, deuterium, a hydroxy group, a thiol group, an amino group, Substituted or unsubstituted (C1-C10 alkyl) amino group, substituted or unsubstituted C1-C10 alkoxy group, substituted or unsubstituted C1-C10 alkyl group, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, a substituted or unsubstituted C6-C20 aryl group, and the'substituted or unsubstituted' is a halogen group, a nitrile group, a nitro group, a hydroxy group, a carbonyl group, an ester group, Imide group, amino group, phosphine oxide group, alkoxy group, aryloxy group, alkylthioxy group, arylthioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, Aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group. It is unsubstituted or substituted with one or more substituents selected from the group consisting of an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, and a heterocyclic group.

하기 후술할 제조방법에 따르면, R1이 하이드록시기인 경우로서, 화학식 E로 표시되는 화합물로부터 화학식 II로 표시되는 화합물을 제조하거나, R1이 메톡시기인 경우로서, 화학식 F로 표시되는 화합물로부터 화학식 III으로 표시되는 화합물을 제조할 때에는 클라이젠-슈미트 반응(Claisen-Schmidt Reaction)이 수행될 수 있다. 이때 반응물은 R2 및 R3가 치환 또는 비치환된 벤즈알데하이드가 된다. R2 및 R3은 상기 클라이젠-슈미트 반응이 진행될 수 있다면 특별한 제한이 없다.According to the manufacturing method to be described below, when R1 is a hydroxy group, a compound represented by Formula II is prepared from a compound represented by Formula E, or R1 is a methoxy group, a compound represented by Formula F is used to prepare a compound represented by Formula III. When preparing the compound represented by the Claisen-Schmidt reaction (Claisen-Schmidt Reaction) may be carried out. At this time, the reactant becomes benzaldehyde in which R2 and R3 are substituted or unsubstituted. R2 and R3 are not particularly limited as long as the Klaigen-Schmidt reaction can proceed.

본 발명의 실시예를 따르는 각 반응 단계의 반응물 및 생성물은 다음에서 열거된 화합물일 수 있다. The reactants and products of each reaction step according to an embodiment of the present invention may be the compounds listed below.

[화학식 A] [Formula A]

Figure pat00032
Figure pat00032

[화학식 B][Formula B]

Figure pat00033
Figure pat00033

[화학식 C][Formula C]

Figure pat00034
Figure pat00034

[화학식 D][Formula D]

Figure pat00035
Figure pat00035

[화학식 E][Formula E]

Figure pat00036
Figure pat00036

[화학식 F][Formula F]

Figure pat00037
Figure pat00037

[화학식 II][Formula II]

Figure pat00038
Figure pat00038

[화학식 III][Formula III]

Figure pat00039
Figure pat00039

다만, 필수적인 반응 단계가 아니라면 상기 열거된 반응물 및 생성물이 아닌 다른 반응물 및 생성물이 반응하거나 생성될 수 있다. 필수적인 반응 단계가 아니라면 필수적인 반응 단계의 반응물 및 생성물을 생성할 수 있는 반응물이면 모두 허용된다. 또한 필수적인 반응 단계가 아니라면 필수적인 반응 단계의 반응물 및 생성물로부터 생성될 수 있는 생성물이면 모두 허용된다. However, if it is not an essential reaction step, reactants and products other than the above-listed reactants and products may react or be produced. Unless it is an essential reaction step, all reactants of the essential reaction step and reactants capable of producing a product are allowed. In addition, if it is not an essential reaction step, any product that can be produced from the reactant and product of the essential reaction step is acceptable.

화학식 II로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계는 상기 화학식 C로 표시되는 화합물로부터 상기 화학식 E로 표시되는 화합물을 합성하는 반응 3/4단계, 및 상기 화학식 E로 표시되는 화합물로부터 상기 화학식 II로 표시되는 화합물을 합성하는 반응 5-1단계가 된다.In the method of preparing a compound represented by Formula II, an essential reaction step is a reaction step 3/4 of synthesizing the compound represented by Formula E from the compound represented by Formula C, and the Formula E from the compound represented by Formula E. The reaction becomes step 5-1 to synthesize the compound represented by II.

화학식 III으로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계는 상기 화학식 C로 표시되는 화합물로부터 상기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계, 상기 화학식 D로 표시되는 화합물로부터 상기 화학식 F로 표시되는 화합물을 합성하는 반응 4/(5-2)단계, 및 상기 화학식 F로 표시되는 화합물로부터 상기 화학식 III으로 표시되는 화합물을 합성하는 반응 6단계가 된다. In the method for preparing a compound represented by Formula III, the essential reaction step is a reaction step 3 of synthesizing the compound represented by Formula D from the compound represented by Formula C, and represented by Formula F from the compound represented by Formula D. Step 4/(5-2) of synthesizing the compound to be formed, and step 6 of the reaction of synthesizing the compound represented by Formula III from the compound represented by Formula F.

본 발명의 실시예를 따르는 화학식 II로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계 및 필수적이지 않은 반응 단계를 포함한 반응루트 I를 도시하면 다음과 같다. A reaction route I including essential and non-essential reaction steps in a method for preparing a compound represented by Formula II according to an embodiment of the present invention is as follows.

<반응루트 I><Reaction route I>

Figure pat00040
Figure pat00040

본 발명의 실시예를 따르는 화학식 III으로 표시되는 화합물을 제조하는 방법에서 필수적인 반응 단계 및 필수적이지 않은 반응 단계를 포함한 반응루트 II를 도시하면 다음과 같다. A reaction route II including essential and non-essential reaction steps in a method for preparing a compound represented by Formula III according to an embodiment of the present invention is as follows.

<반응루트 II><Reaction route II>

Figure pat00041
Figure pat00041

본 발명의 일 실시예로서, 반응 1 단계는 A 화합물로부터 B 화합물을 합성하는 단계로서, 다음과 같이 진행될 수 있다. A 화합물은 비교적 저렴하게 구입할 수 있는 화합물이므로, 이를 이용하여 본 발명의 목적 생성물을 경제적으로 제조할 수 있다. As an embodiment of the present invention, step 1 of the reaction is a step of synthesizing compound B from compound A, and may proceed as follows. Since the compound A is a compound that can be purchased relatively inexpensively, the desired product of the present invention can be economically prepared by using it.

<반응 1 단계><Reaction Step 1>

Figure pat00042
Figure pat00042

일 실시예로서, 반응 1단계는 플로로글루시놀(phloroglucinol)에 dimethyl을 치환하기 위해 먼저 diformylation을 진행할 수 있다. 종래 2',4',6'-trihydroxyacetophenone을 출발 물질로 하여 formylation 반응을 진행하였지만 2',4',6'-trihydroxy-3',5'-diformylacetophenone의 수율이 현저히 낮았다. 이에 값이 더 저렴하고 높은 수율을 얻을 수 있는 phloroglucinol을 출발 물질로 하여 화합물 B를 합성할 수 있다. 이 반응은 먼저 dimethylformamide와 phosphorus(V) oxychloride를 교반하여 chloroiminium ion인 Vilsmeier 반응시약을 만들고 난 후 1,4-다이옥산에 녹인 phloroglucinol에 만든 반응시약 를 넣어 함께 교반함으로써 화합물 B가 합성될 수 있다. 합성 뒤에 물을 이용하여 석출시키고 다른 정제 과정 없이 건조시킬 수 있다. 하지만 다음 과정인 hydroxyl group에 methylation 하는 반응이 수분에 민감하기 때문에 MgSO4를 이용하여 미세수분을 제거한 후 다음 반응을 진행시키는 것이 보다 바람직하다. As an example, in the first step of the reaction, diformylation may be performed first in order to substitute dimethyl for phloroglucinol. Conventionally, the formylation reaction was carried out using 2',4',6'-trihydroxyacetophenone as a starting material, but the yield of 2',4',6'-trihydroxy-3',5'-diformylacetophenone was remarkably low. Accordingly, compound B can be synthesized using phloroglucinol, which is cheaper and can obtain a high yield, as a starting material. In this reaction, dimethylformamide and phosphorus(V) oxychloride are first stirred to make a Vilsmeier reaction reagent, which is a chloroiminium ion, and then a reaction reagent made in phloroglucinol dissolved in 1,4-dioxane is added and stirred together to synthesize compound B. After synthesis, it can be precipitated with water and dried without any other purification process. However, since the next process, methylation of the hydroxyl group, is sensitive to moisture, it is more preferable to proceed with the next reaction after removing the fine moisture using MgSO 4.

본 발명의 일 실시예로서, 반응 2, 및 3단계는 B 화합물로부터 C 화합물을 거쳐 D 화합물을 합성하는 단계로서 다음과 같이 진행될 수 있다. As an embodiment of the present invention, reactions 2 and 3 are steps of synthesizing compound D from compound B through compound C and may proceed as follows.

<반응 2, 및 3단계><Reaction 2 and 3>

Figure pat00043
Figure pat00043

Diformyl compound를 Dimethyl compound으로 변환시키는 Reduction반응은 NaBH3CN을 반응물로 사용한 방법과 HgCl2와 Zinc를 혼합하여 만든 Zinc amalgam을 반응물로 사용한 방법이 수행될 수 있다. 전자인 경우, 반응 최적화 과정을 거친 후의 최종 수율은 최대 45%에 그쳤다. 반응 진행에 있어 많은 열 발생이 생성물의 수율에 영향을 미칠 수 있기 때문이다. 뿐만 아니라 대량 생산을 고려한다면, NaBH3CN을 반응물은 가격이 상대적으로 비싸기 때문에, 경제적인 측면과 반응의 효율성 측면에서 모두 우수한 Zinc amalgam을 사용하는 것이 보다 바람직하다. 다만 상기 반응이 진행될 수 있다면 특별한 제한이 없다. The reduction reaction of converting a diformyl compound to a dimethyl compound can be performed by using NaBH 3 CN as a reactant and a method using zinc amalgam made by mixing HgCl 2 and Zinc as a reactant. In the former case, the final yield after going through the reaction optimization process was only a maximum of 45%. This is because the generation of a lot of heat in the course of the reaction can affect the yield of the product. In addition, considering mass production, since the price of the reactant for NaBH 3 CN is relatively expensive, it is more preferable to use zinc amalgam, which is excellent both in terms of economy and efficiency of reaction. However, there is no particular limitation as long as the reaction can proceed.

Reduction 반응의 전환율은 GC, TLC를 통해 최소 90-95%에 달하는 것으로 측정되었으나, Column chromatography를 통한 분리 이후엔 수율이 70%를 넘지 못했다. 수산화기와 Column 충전재로 사용한 silica gel과의 흡착이 원인일 수 있는바, 보다 바람직하게는 다음 반응 3단계인 O-methylation반응를 진행함에 있어 별다른 정제나 분리 과정 없이 Crude 상태로 반응을 진행할 수 있다. 그 결과, reduction진행 후 분리하여 O-methylation반응을 진행했을 때 보다, 별다른 분리 과정 없이 Crude 상태로 O-methylation을 진행하였을 때 수율이 10% 이상 향상되는 결과를 도출할 수 있었다.The conversion rate of the reduction reaction was measured to reach at least 90-95% through GC and TLC, but the yield did not exceed 70% after separation through column chromatography. The adsorption of the hydroxyl group with the silica gel used as the column filler may be the cause, and more preferably, the reaction can be carried out in a Crude state without any purification or separation process in proceeding the O-methylation reaction, which is the next reaction step 3. As a result, the yield was improved by more than 10% when O-methylation was performed in the Crude state without any separate separation process than when the O-methylation reaction was performed by separating after reduction.

본 발명의 일 실시예로서, 반응 4단계는 D 화합물로부터 E 화합물을 합성하는 단계로서 다음과 같이 진행될 수 있다. As an embodiment of the present invention, step 4 of the reaction is a step of synthesizing compound E from compound D and may proceed as follows.

<반응 4단계><Reaction Step 4>

Figure pat00044
Figure pat00044

상기 Acylation 반응에서 촉매는 Friedel-Craft형 촉매인 AlCl3를 사용한 방법과 BF3Et2O 촉매를 사용한 방법이 진행될 수 있다. 반응 양상은 두 촉매가 모두 비슷했지만, AlCl3 촉매의 경우 BF3Et2O 촉매보다 더 강한 반응성을 나타내기 때문에 반응 진행을 감압 상자에서 진행해야 하는 번거로움이 있었고, BF3Et2O촉매를 사용했을 때보다 부산물이 증가함을 확인할 수 있었다. 따라서, 보다 바람직하게는, 반응 조건이 mild하고, conversion 또한 뛰어난 BF3Et2O촉매를 사용할 수 있다. 다만 상기 반응이 진행될 수 있다면, 특별한 제한은 없다.As a catalyst in the acylation reaction, a method using AlCl 3 , which is a Friedel-Craft type catalyst, and a method using a BF 3 Et 2 O catalyst, may be performed. Reaction aspect but similar to both the catalyst, in the case of AlCl 3 catalyst BF 3 reaction proceeds as it represents a stronger reactivity than Et 2 O catalyst was a hassle to have to proceed in a vacuum box, BF 3 to Et 2 O catalyst It was confirmed that by-products were increased than when used. Therefore, more preferably, a BF 3 Et 2 O catalyst having mild reaction conditions and excellent conversion may be used. However, if the reaction can proceed, there is no particular limitation.

반응을 진행함에 있어 화합물 E를 합성한 이유는 첫번째로 선택성 문제로 인한 반응 조절이 힘들고, 다음 반응인 Acylation을 진행할 때, 한 개의 methoxy group이 hydroxyl group으로 deprotection 되기 때문이다. BF3Et2O촉매 사용시, 벤젠고리에 합성된 Acyl group, 촉매로 사용된 Boron trifluoride, 및 Acyl group 바로 옆에 존재하는 Methoxy group의 탄소가 삼각형의 ring을 이루며 BF3Et2O촉매가 떨어져 나갈 때 Methoxy의 methyl기도 같이 떨어져 나오기 때문에 deprotection이 될 수 있다. The reason why Compound E was synthesized in the course of the reaction is that it is difficult to control the reaction due to the selectivity problem first, and when the next reaction, acylation, is performed, one methoxy group is deprotected into a hydroxyl group. When using the BF 3 Et 2 O catalyst, the Acyl group synthesized in the benzene ring, the Boron trifluoride used as the catalyst, and the carbon of the Methoxy group present right next to the Acyl group form a triangular ring, and the BF 3 Et 2 O catalyst will fall off. When the methyl group of methoxy is released together, it can be deprotection.

본 발명의 일 실시예로서, 반응 5-1단계는 E 화합물로부터 II 화합물을 합성하는 단계로 진행될 수 있다.As an embodiment of the present invention, step 5-1 of the reaction may proceed to the step of synthesizing the II compound from the E compound.

<반응 5-1단계><Reaction Step 5-1>

Figure pat00045
Figure pat00045

상기 반응 5-1단계에서 Acetophenone과 Benzaldehyde의 Claisen-Schmidt 반응이 진행될 수 있다. In step 5-1 of the reaction, a Claisen-Schmidt reaction of Acetophenone and Benzaldehyde may proceed.

Acetophenone group의 경우, 2개가 methoxy group으로 되어있기 때문에 별다른 protection 없이 반응을 진행할 수 있다. 그 결과, 비교적 적은 공정을 통해 높은 수율로 최종 생성물인 다이메틸칼콘 유도체들을 합성할 수 있다. 그러나, 4-hydroxybenzaldehydem의 경우에는 바로 aldol reaction을 진행할 수 없으므로, 보다 바람직하게는 methoxymethyl chloride를 이용하여 protection 진행 후 Claisen-Schmidt 반응을 진행할 수 있다. In the case of the acetophenone group, since two are made of methoxy groups, the reaction can proceed without any special protection. As a result, it is possible to synthesize the final product dimethylchalcone derivatives in high yield through relatively few processes. However, in the case of 4-hydroxybenzaldehydem, since the aldol reaction cannot be proceeded immediately, more preferably, the Claisen-Schmidt reaction may be performed after protection using methoxymethyl chloride.

Hydroxyl group의 보호기로는 methyl group, methoxymethyl group 등이 이용될 수 있으나, 상기 반응이 진행될 수 있다면 특별한 제한은 없다. 보다 바람직하게는, deprotection 과정에서도 비교적 mild한 조건으로 반응 진행이 가능한 methoxymethyl group이 이용될 수 있다. As the protecting group of the hydroxyyl group, methyl group, methoxymethyl group, etc. may be used, but there is no particular limitation as long as the reaction can proceed. More preferably, a methoxymethyl group capable of performing the reaction under relatively mild conditions may be used even in the deprotection process.

다음으로 보호기를 제거하는 반응을 최적화하기 위하여 반응 온도, 산의 세기에 대한 실험이 실행되었다. 그 결과, HCl수용액과 같은 강한 산을 사용하여 반응을 진행했을 때, 빠른 시간 내에 시작물질이 사라지고 반응이 종결되는 양상을 보였지만, Chalcone구조의 이중결합이 깨지면서 retro-aldol 반응이 일어나는 것을 확인할 수 있다. 따라서, 보다 바람직하게는 생성물인 chalcone 구조에 영향을 미치지 않는 약한 산인 p-TsOH를 사용할 수 있고, 그 결과 가장 우수한 수율인 94.8%의 결과를 얻을 수 있었다. 각 반응의 조건에 따른 결과는 아래 표 1과 같다. 다만, 상기 반응이 진행될 수 있다면 특별한 제한은 없다. Next, in order to optimize the reaction to remove the protecting group, experiments were performed on the reaction temperature and the strength of the acid. As a result, when the reaction was carried out using a strong acid such as an aqueous HCl solution, the starting material disappeared and the reaction was terminated within a short time, but it was confirmed that the retro-aldol reaction occurred as the double bond of the chalcone structure was broken. . Therefore, more preferably, p -TsOH, a weak acid that does not affect the structure of the product chalcone, can be used, and as a result, a result of 94.8%, which is the best yield, can be obtained. The results according to the conditions of each reaction are shown in Table 1 below. However, there is no particular limitation as long as the reaction can proceed.

EntryEntry II, III (g) II, III (g) 반응시약Reaction reagent SolventSolvent TempTemp TimeTime II, III yield (%) II, III yield (%) 1One 1One 36% HCl (5mL)36% HCl (5mL) MeOHMeOH refluxreflux 20min20min 50.850.8 22 1One 36% HCl (5mL)36% HCl (5mL) MeOHMeOH 50 °C50 °C 2h2h 51.251.2 33 1One 36% HCl (5mL)36% HCl (5mL) MeOHMeOH r.t.r.t. 3h3h 52.652.6 44 1One 1% HCl (10mL)1% HCl (10mL) MeOHMeOH 50 °C50 °C overnightovernight 53.453.4 55 1One 1% HCl (10mL)1% HCl (10mL) MeOHMeOH r.t.r.t. overnightovernight 55.955.9 66 1One p-TsOH(2eq) p -TsOH (2eq) MeOHMeOH refluxreflux overnightovernight 78.678.6 77 1One p-TsOH(2eq) p -TsOH (2eq) MeOHMeOH 50 °C50 °C overnightovernight 80.480.4 88 1One p-TsOH(2eq) p -TsOH (2eq) MeOHMeOH r.t.r.t. 36h36h 92.692.6 99 1One p-TsOH(1.1eq) p -TsOH (1.1eq) MeOHMeOH r.t.r.t. 36h36h 94.894.8

본 발명의 일 실시예로서, 반응 5-2단계는 E 화합물로부터 F 화합물을 합성하는 단계로 진행될 수 있다.As an embodiment of the present invention, step 5-2 of the reaction may proceed to the step of synthesizing compound F from compound E.

<반응 5-2단계><Reaction Step 5-2>

Figure pat00046
Figure pat00046

상기 반응 5-2 단계는 E 화합물에 potassium carbonate 를 넣어 반응을 진행시킨 후, Dimethyl sulfate를 환류시켜 진행될 수 있다. 그러나, 상기 화합물 F를 합성할 수 있다면, 특별한 제한은 없다. Step 5-2 of the reaction may be performed by adding potassium carbonate to compound E to proceed with the reaction, and then refluxing dimethyl sulfate. However, as long as the compound F can be synthesized, there is no particular limitation.

본 발명의 일 실시예로서, 반응 6단계는 F 화합물로부터 III 화합물을 합성하는 단계로 진행될 수 있다.As an embodiment of the present invention, step 6 of the reaction may proceed to the step of synthesizing compound III from compound F.

<반응 6단계><Reaction step 6>

Figure pat00047
Figure pat00047

상기 반응 6단계는 Acetophenone과 Benzaldehyde의 Claisen-Schmidt 반응으로 진행될 수 있다. 다만, 화합물 III이 합성될 수 있다면, 그 반응에 특별한 제한은 없다. Step 6 of the reaction may be carried out by a Claisen-Schmidt reaction of Acetophenone and Benzaldehyde. However, if compound III can be synthesized, there is no particular limitation on the reaction.

이처럼, 본 발명의 실시예에 따르면, 플로로글루시놀을 시작물질로 하여 다양한 다이메틸칼콘 유도체를 합성하는 경우, 총 5 내지 6단계를 거쳐 제조될 수 있다. 이는 기존의 제조 방법보다 적은 단계이며 훨씬 경제적이다. 또한, 하기 후술하는 바와 같이, 합성된 최종 합성물들은 분리 정제를 통해 구조 분석까지 완료하였다. As described above, according to an embodiment of the present invention, when synthesizing various dimethylchalcone derivatives using fluoroglucinol as a starting material, it can be prepared through a total of 5 to 6 steps. This is fewer steps and much more economical than conventional manufacturing methods. In addition, as described below, the synthesized final composites were separated and purified to complete structural analysis.

하기 후술할 각 실시예에서 각 반응 단계의 분석 방법은 다음과 같다. In each of the Examples to be described later, the analysis method of each reaction step is as follows.

<박층 크로마토그래피(Thin Layer Chromatography, TLC)><Thin Layer Chromatography (TLC)>

TLC 분석에 있어 사용된 기판은 두께 250μm, pore size 60Å(입자 크기 5에서 20 μm)인 Merck 사의 F254 제품을 사용하였다. 각 시료의 분석은 254nm, 365nm의 UV lamp를 이용하여 위치를 확인하였고, 각 조건에 부합하는 전개용매를 사용하고 Iodine TLC Chamber안에 기판을 세워 측정하였다.The substrate used in the TLC analysis was a product of Merck's F 254 with a thickness of 250 μm and a pore size of 60 Å (particle size 5 to 20 μm). Analysis of each sample was performed using a UV lamp of 254 nm and 365 nm, and a developing solvent that satisfies each condition was used, and the substrate was placed in the Iodine TLC Chamber for measurement.

<기체 크로마토그래피(Gas Chromatography, GC)><Gas Chromatography (GC)>

Hewlett packard의 HP 6890 gas chromatography (30m * 0.25 mm cross-linked methyl silicone column, a flame ionization detector)를 이용하여 반응이 진행중인 시료의 반응 진행 정도 및 생성물의 순도를 확인하였다. 생성된 샘플은 용매에 녹여 micro syringe를 이용하여 2-3㎛ GC로 주입하였다. 수소, 공기, 질소가 이동상으로 사용되었고 측정 온도 조건은 60℃를 시작 온도로 설정하여 분당 10℃씩 상승시켜 280℃까지 증가시켰다.Hewlett Packard's HP 6890 gas chromatography (30m * 0.25 mm cross-linked methyl silicone column, a flame ionization detector) was used to confirm the reaction progress and the purity of the product. The resulting sample was dissolved in a solvent and injected with 2-3 μm GC using a micro syringe. Hydrogen, air, and nitrogen were used as the mobile phase, and the measurement temperature condition was increased to 280°C by setting 60°C as the starting temperature and increasing by 10°C per minute.

<핵자기 공명법(Nuclear Magnetic Resonance, NMR)><Nuclear Magnetic Resonance (NMR)>

NMR분석은 Verian VNS (1H-NMR 600 MHz, 13C-NMR 150 MHz), Verian Germini 2000 spectrometer (1H-NMR 300MHz) 을 통해 측정하였다. 생성물은 Hydroxyl group의 측정을 위해 dmso-d 6 를 용매로 선정하여 사용하였고, 이는 2.50ppm에 나타난다. chemical shift 는 ppm (δ), coupling constant (J)는 hertz (Hz) 로 나타냈다.NMR analysis was measured by Verian VNS ( 1 H-NMR 600 MHz, 13 C-NMR 150 MHz), Verian Germini 2000 spectrometer ( 1 H-NMR 300 MHz). The product was used by selecting dmso-d 6 as a solvent for the measurement of the hydroxyl group, which appears at 2.50ppm. The chemical shift was expressed in ppm (δ) and the coupling constant (J) in hertz (Hz).

<녹는점 게이지(Melting Point Gauge)><Melting Point Gauge>

Bamstead Electrothermal Corporation’s 9100 (15V, 45W, 1AMP). 을 이용하여 측정하였다.Bamstead Electrothermal Corporation’s 9100 (15V, 45W, 1AMP). It was measured using.

<실시예 1> 반응 1단계<Example 1> Reaction Step 1

2구 둥근 바닥 플라스크에 dimethylformamide 59.30 ml (6.34 mol)를 넣고, phosphorus(V) oxychloride 49.12 ml (6.34 mol)를 dropping funnel을 사용하여 0 ℃에서 점적투입하며 30분간 강하게 교반하였다. 반응이 끝난 뒤 노란색 점성 액체(Vilsmeyer 반응시약)가 생성되었다. 또 다른 둥근 바닥 플라스크에 1,4-dioxane (200 ml)와 화합물 A인 anhydrous phloroglucinol (40 g, 3.17 mol)를 넣어 강하게 교반하여 완전히 녹인 뒤, 앞서 만든 Vilsmeyer 반응시약을 dropping funnel을 사용하여 0 ℃에서 점적투입하여 강하게 교반하였다. 상온에서 4시간 이상 교반하고 노란색 고체를 얻었다. 이 화합물을 2L 둥근 바닥 플라스크로 옮기고, DI water (1.5 L)를 넣어 3시간 동안 격렬하게 교반하였다. 교반 후, 침전된 노란색 고체를 여과하여 진공 오븐에서 30 ℃에서 12 시간 동안 건조시켜 연한 주황색의 화합물 B(56.84 g, 98.4 %)을 얻었다. Into a 2-neck round bottom flask, dimethylformamide 59.30 ml (6.34 mol) was added, and phosphorus(V) oxychloride 49.12 ml (6.34 mol) was added dropwise at 0°C using a dropping funnel, and stirred vigorously for 30 minutes. After the reaction was over, a yellow viscous liquid (Vilsmeyer reaction reagent) was formed. In another round-bottom flask, add 1,4-dioxane (200 ml) and compound A, anhydrous phloroglucinol (40 g, 3.17 mol), and strongly stir to completely dissolve it. Then, use a dropping funnel to dissolve the Vilsmeyer reaction reagent at 0 ℃ It was added dropwise and stirred vigorously. After stirring at room temperature for 4 hours or more, a yellow solid was obtained. This compound was transferred to a 2L round bottom flask, and DI water (1.5 L) was added thereto, followed by vigorous stirring for 3 hours. After stirring, the precipitated yellow solid was filtered and dried in a vacuum oven at 30° C. for 12 hours to obtain a pale orange compound B (56.84 g, 98.4%).

mp = 221-224 °C; TLC R f = 0.208 (n-hexane: acetone = 1:2); IR νmax (cm-1) 2887.88, 1598.70, 1503.24, 1438.64, 1393.32, 1253.50, and 1186.97; 1H NMR (300 MHz, DMSO-d 6 ) δ 12.52 (br s, 2H, -OH), 10.01 (s, 2H, CHO), 5.90 (s, 1H, ArH); and 13C NMR (150 MHz, DMSO-d 6 ) δ 191.37 (2C), 169.42 (2C), 169.02 (1C), 103.77 (2C) and 94.07 (1C). mp = 221-224 °C; TLC R f = 0.208 (n-hexane: acetone = 1:2); IR νmax (cm −1 ) 2887.88, 1598.70, 1503.24, 1438.64, 1393.32, 1253.50, and 1186.97; 1 H NMR (300 MHz, DMSO- d 6 ) δ 12.52 (br s, 2H, -OH), 10.01 (s, 2H, CHO), 5.90 (s, 1H, ArH); and 13 C NMR (150 MHz, DMSO- d 6 ) δ 191.37 (2C), 169.42 (2C), 169.02 (1C), 103.77 (2C) and 94.07 (1C).

<실시예 2> 반응 2단계<Example 2> Reaction step 2

1000mL 비커에 1% HCl 수용액 300mL 과 Zn 30g을 넣고 교반하여 Zn을 활성화시킨 후, 활성화된 Zn을 3% HCl 450ml를 넣은 비커에 옮겨 담아 mercury(II) chloride (HgCl2 0.9g)와 함께 넣어 상온에서 강하게 교반하였다. 혼합물이 Fluffy해질 때까지 교반하여 Zinc amalgam을 제조하였고, 이를 물과 1,4-dioxane을 사용하여 씻은 후, 여과지를 사용하여 여과시켰다. 둥근 바닥 플라스크에 앞서 합성한 화합물 B (3 g, 19.46 mmol)와 용매 1,4-dioxane(300mL)을 넣어 상온에서 녹인 후, 반응시약인 Zinc amalgam을 넣어 20분간 교반하고, 0℃로 냉각시켜 36% HCl 수용액(12mL)을 천천히 넣어 교반하였다. 반응물질인 화합물 B가 완전히 사라진 것을 확인한 후, 혼합물을 여과지를 사용하여 200mL의 물과 함께 여과시켰다. 혼합물은 300mL의 ethyl acetate로 희석하였고, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하여 씻은 후, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(n-hexane: acetone = 8: 1)를 이용하여 분리하여 적갈색의 화합물 C (1.717g, 67.4 %)을 얻었다. After activating Zn by adding 300 mL of 1% HCl aqueous solution and 30 g of Zn to a 1000 mL beaker, the activated Zn is transferred to a beaker containing 450 mL of 3% HCl, and mercury(II) chloride (HgCl 2 0.9g) and stirred vigorously at room temperature. The mixture was stirred until it became fluffy to prepare zinc amalgam, which was washed with water and 1,4-dioxane, and then filtered using a filter paper. Compound B (3 g, 19.46 mmol) synthesized beforehand in a round bottom flask and 1,4-dioxane (300 mL) were dissolved at room temperature, and then Zinc amalgam, a reaction reagent, was added, stirred for 20 minutes, and cooled to 0°C. A 36% HCl aqueous solution (12 mL) was slowly added and stirred. After confirming that the reactant compound B completely disappeared, the mixture was filtered with 200 mL of water using a filter paper. The mixture was diluted with 300 mL of ethyl acetate, and the organic solvent layer in which the product was dissolved was washed with water and saturated NaCl aqueous solution to remove salt, and then water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (n- hexane: acetone = 8: 1) to obtain a reddish brown compound C (1.717 g, 67.4%).

mp = 139-140 °C; TLC R f = 0.647 (n-hexane: acetone = 3:2); IR νmax (cm-1) 2897.52, 1614.13, 1593.88, 1188.90, and 1080.90; 1H NMR (300 MHz, CDCl3) δ 13.64 (s, 1H, -OH), 13.09 (s, 1H, -OH), 10.18 (s, 1H, CHO), 10.05 (s, 1H, CHO), 5.92 (s, 1H, ArH), 3.95 (s, 3H, OCH3); and 13C NMR (150 MHz, DMSO-d 6 ) δ 191.85 (1C), 191.48 (1C), 171.21 (1C), 168.89 (1C), 168.87 (1C), 104.60 (1C), 104.53 (1C) 91.96 (1C), and 57.46 (1C). mp = 139-140 ° C; TLC R f = 0.647 (n- hexane: acetone = 3:2); IR ν max (cm -1 ) 2897.52, 1614.13, 1593.88, 1188.90, and 1080.90; 1 H NMR (300 MHz, CDCl 3 ) δ 13.64 (s, 1H, -OH), 13.09 (s, 1H, -OH), 10.18 (s, 1H, CHO), 10.05 (s, 1H, CHO), 5.92 (s, 1H, ArH), 3.95 (s, 3H, OCH 3 ); and 13 C NMR (150 MHz, DMSO- d 6 ) δ 191.85 (1C), 191.48 (1C), 171.21 (1C), 168.89 (1C), 168.87 (1C), 104.60 (1C), 104.53 (1C) 91.96 (1C) 1C), and 57.46 (1C).

<실시예 3> 반응 3단계<Example 3> Reaction 3rd step

2구 둥근 바닥 플라스크에 생성된 화합물 C (1.717g, 11.14mmol) 와 potassium carbonate (K2CO3 6.1573g, 44.55mmol)를 넣은 후 감압하여 완전히 건조시키고 공기를 제거한 후, 질소 분위기에서 반응이 진행될 수 있도록 하였다. 이후 dry actone를 넣어 혼합물을 녹인 후 Dimethyl sulfate (DMS 4.2154ml, 44.55mmol)을 실린지를 이용하여 주입한 다음 다음날까지 환류시켰다. 반응물질인 화합물 C가 완전히 사라진 것을 확인한 후, 혼합물은 상온에서 식힌 다음, 300mL의 ethyl acetate로 희석하여 1% HCl수용액을 통해 남아 있는 염기인 potassium carbonate를 제거하였다. 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하여 씻고, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(n-hexane: acetone = 300: 1)를 이용하여 분리하여 흰색의 고체 화합물 D (2.1550g, 98.6%)을 얻었다. Compound C (1.717g, 11.14mmol) and potassium carbonate (K 2 CO 3 6.1573g, 44.55mmol) were added to a two-necked round bottom flask, dried completely under reduced pressure, and air was removed, and the reaction would proceed in a nitrogen atmosphere. I made it possible. Thereafter, dry actone was added to dissolve the mixture, and then dimethyl sulfate (DMS 4.2154ml, 44.55mmol) was injected using a syringe, and then refluxed until the next day. After confirming that the reactant compound C completely disappeared, the mixture was cooled at room temperature, diluted with 300 mL of ethyl acetate, and the remaining base potassium carbonate was removed through an aqueous 1% HCl solution. The organic solvent layer in which the product is dissolved was washed by removing salts using water and a saturated NaCl aqueous solution, and water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (n- hexane: acetone = 300: 1) to obtain a white solid compound D (2.1550g, 98.6%).

1H NMR (300 MHz, DMSO-d6) δ 6.45 (s, 1H, ArH), 3.81 (s, 6H, -OCH3), 3.61 (s, 3H, -OCH3), 2.02 (s, 6H, -CH3) 1 H NMR (300 MHz, DMSO-d 6 ) δ 6.45 (s, 1H, ArH), 3.81 (s, 6H, -OCH 3 ), 3.61 (s, 3H, -OCH 3 ), 2.02 (s, 6H, -CH 3 )

<실시예 4> 반응 4단계<Example 4> Reaction Step 4

2구 둥근 바닥 플라스크에 생성된 화합물 D(2.1550g, 10.98mmol)을 넣어 1시간 이상 감압하여 건조시킨 후, 질소 분위기에서 반응이 진행될 수 있도록 하였다. 이후 acetic anhydride (2.07ml, 21.96mmol)를 실린지를 이용하여 주입한 후, 아이스바스(ice-bath)를 이용하여 반응기의 온도를 0℃로 낮추었다. 이후 촉매인 Boron-trifluoride diethyl etherate (BF3Et2O 2.7582ml, 21.96mmol)를 실린지를 이용하여 첨가하였다. 반응기를 오일바스(oil-bath)로 옮겨 온도를 90℃로 맞춘 후, 2-3시간 후 시작물질이 전부 사라진 것을 GC로 확인한 다음, 반응을 종결하였다. 반응물을 상온에서 식힌 후, 300mL의 ethyl acetate로 희석하여 생성물이 녹아있는 유기 용매 층을 1% HCl수용액, 물과 포화 NaCl 수용액을 이용하여 염을 제거하여 씻고, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane)를 이용하여 분리하여 노란색 고체인 화합물 E (1.8812g, 76.4%)를 얻었다.The resulting compound D (2.1550g, 10.98mmol) was added to a two necked round bottom flask and dried under reduced pressure for at least 1 hour, and then the reaction was allowed to proceed in a nitrogen atmosphere. Thereafter, acetic anhydride (2.07ml, 21.96mmol) was injected using a syringe, and then the temperature of the reactor was lowered to 0°C using an ice-bath. Then, a catalyst, Boron-trifluoride diethyl etherate (BF 3 Et 2 O 2.7582ml, 21.96mmol) was added using a syringe. After moving the reactor to an oil-bath and adjusting the temperature to 90° C., after 2-3 hours, it was confirmed by GC that all of the starting materials disappeared, and the reaction was terminated. The reaction mixture was cooled at room temperature, diluted with 300 mL of ethyl acetate, and the organic solvent layer in which the product was dissolved was washed with 1% HCl aqueous solution, water and saturated NaCl aqueous solution to remove salts, and water was removed using MgSO 4. . The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n- hexane) to obtain a yellow solid compound E (1.8812g, 76.4%).

1H NMR (300 MHz, DMSO-d6) δ 12.81 (s, 1H, -OH), 3.70 (s, 3H, -OCH3), 3.68 (s, 3H, -OCH3), 2.65 (s, 3H, -COCH3), 2.09 (s, 3H, -CH3), 2.03 (s, 3H, CH3) 1 H NMR (300 MHz, DMSO-d 6 ) δ 12.81 (s, 1H, -OH), 3.70 (s, 3H, -OCH 3 ), 3.68 (s, 3H, -OCH 3 ), 2.65 (s, 3H , -COCH 3 ), 2.09 (s, 3H, -CH 3 ), 2.03 (s, 3H, CH 3 )

<실시예 5> 반응 5-1 단계<Example 5> Reaction 5-1 step

<실시예 5-1> 화합물 II-1의 합성<Example 5-1> Synthesis of Compound II-1

둥근 바닥 플라스크 (50mL)에 생성된 화합물 E (0.5g, 2.2296mmol)을 넣은 후, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 다음, benzaldehyde (0.273mL, 2.6756mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3753g, 6.6889mmol)를 넣었다. 이를 sonication을 통해 용해시켜 화합물 E가 들어있는 둥근 바닥 플라스크에 넣은 후, 48시간동안 반응을 진행시켰다. 화합물 E가 완전히 사라진 것을 TLC Check를 통해 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 II-1 (0.65g, 93.4%)을 얻었다. After putting the produced compound E (0.5g, 2.2296mmol) in a round bottom flask (50mL), it was dissolved by stirring with 20mL of methanol at room temperature, and then benzaldehyde (0.273mL, 2.6756mmol) was added using a syringe. After adding 10mL methanol to another beaker, potassium hydroxide (KOH 0.3753g, 6.6889mmol) was added. This was dissolved through sonication and placed in a round bottom flask containing Compound E, and the reaction was allowed to proceed for 48 hours. After confirming that Compound E completely disappeared through TLC Check, the reaction was terminated and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed with water and saturated NaCl aqueous solution. The reaction product from which the salt was removed was dried using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound II-1 ( 0.65g, 93.4%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 12.05 (s, 1H, OH), 7.777.64 (t, J = 18.18 Hz, J = 18.21 Hz, 1H, C=CH), 7.767.70 (m, 2H, ArH), 7.507.40 (m, 3H, ArH), 3.70 (s, 3H, OCH3), 3.62 (s, 3H, OCH3), 2.11 (s, 3H, CH3), and 2.07 (s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 194.23(1C), 162.64(1C), 158.83(1C), 157.86(1C), 143.96(1C), 135.02(1C), 131.13(1C), 129.55(2C), 129.00(2C), 127.26(1C), 115.92(1C), 115.13(1C), 113.86(1C), 62.43(1C), 60.36(1C), 9.28(1C), 9.21(1C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 12.05 (s, 1H, OH), 7.777.64 (t, J = 18.18 Hz, J = 18.21 Hz, 1H, C=CH), 7.767.70 (m , 2H, ArH), 7.507.40 (m, 3H, ArH), 3.70 (s, 3H, OCH 3 ), 3.62 (s, 3H, OCH 3 ), 2.11 (s, 3H, CH 3 ), and 2.07 ( s, 3H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.23(1C), 162.64(1C), 158.83(1C), 157.86(1C), 143.96(1C), 135.02(1C), 131.13(1C), 129.55(2C) , 129.00(2C), 127.26(1C), 115.92(1C), 115.13(1C), 113.86(1C), 62.43(1C), 60.36(1C), 9.28(1C), 9.21(1C).

<실시예 5-2> 화합물 II-2의 합성<Example 5-2> Synthesis of Compound II-2

둥근 바닥 플라스크 (50mL)에 생성된 화합물 E (0.5g, 2.2296mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 다음, p-tolubenzaldehyde (0.3155mL, 2.6756mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3753g, 6.6889mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 E가 완전히 사라진 것을 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 KOH를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거한 다음, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane을 이용하여 aldehyde를 분리한 후, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하 다음, 주황색의 고체 화합물 II-2 (0.6513g, 89.5%)을 얻었다. After putting the produced compound E (0.5g, 2.2296mmol) in a round bottom flask (50mL), stirring at room temperature with 20mL of methanol to dissolve, and then adding p -tolubenzaldehyde (0.3155mL, 2.6756mmol) using a syringe I did. After adding 10mL methanol to another beaker, potassium hydroxide (KOH 0.3753g, 6.6889mmol) was added. This was dissolved through sonication and added to the reactant, and the reaction was allowed to proceed for 48 hours. After confirming that the compound E completely disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the KOH remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed by salt using water and saturated NaCl aqueous solution, and then water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (after separating aldehyde using only n -hexane, and proceeding to n -hexane: acetone = 300: 1). Next, an orange solid compound II-2 (0.6513g, 89.5%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 12.12 (s, 1H, OH), 7.737.61 (t, J = 16.97 Hz, J = 16.94 Hz, 1H, C=CH), 7.657.60 (d, J = 7.90 Hz, 2H, ArH), 7.30-7.20(d, J = 7.89 Hz, 2H, ArH), 3.70 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 2.35 (s, 3H, CH3), 2.11 (s, 3H, CH3), and 2.07 (s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 194.18(1C), 162.56(1C), 158.90(1C), 157.84(1C), 144.18(1C), 141.28(1C), 132.30(1C), 130.18(1C), 129.53(1C), 129.05(1C), 126.65(1C), 126.18(1C), 115.85(1C), 115.10(1C), 113.81(1C), 62.39(1C), 60.35(1C), 21.53(1C), 9.28(1C), 9.20(1C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 12.12 (s, 1H, OH), 7.737.61 (t, J = 16.97 Hz, J = 16.94 Hz, 1H, C=CH), 7.657.60 (d , J = 7.90 Hz, 2H, ArH), 7.30-7.20 (d, J = 7.89 Hz, 2H, ArH), 3.70 (s, 3H, OCH 3 ), 3.61 (s, 3H, OCH 3 ), 2.35 (s , 3H, CH 3 ), 2.11 (s, 3H, CH 3 ), and 2.07 (s, 3H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.18(1C), 162.56(1C), 158.90(1C), 157.84(1C), 144.18(1C), 141.28(1C), 132.30(1C), 130.18(1C) , 129.53(1C), 129.05(1C), 126.65(1C), 126.18(1C), 115.85(1C), 115.10(1C), 113.81(1C), 62.39(1C), 60.35(1C), 21.53(1C) , 9.28(1C), 9.20(1C).

<실시예 5-3> 화합물 II-3의 합성<Example 5-3> Synthesis of Compound II-3

둥근 바닥 플라스크 (50mL)에 생성된 화합물 E (0.5g, 2.2296mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 다음, 4-isopropylbenzaldehyde (0.405mL, 2.6756mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3753g, 6.6889mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 E가 완전히 사라진 것을 확인한 다음, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물을 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하고, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane을 이용하여 aldehyde를 분리한 후, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리한 다음, 주황색의 고체 화합물 II-3 (0.73g, 92.4%)을 얻었다. Compound E (0.5g, 2.2296mmol) was added to a round bottom flask (50mL), stirred at room temperature with 20mL of methanol to dissolve, and then 4-isopropylbenzaldehyde (0.405mL, 2.6756mmol) was added using a syringe. I did. After adding 10mL methanol to another beaker, potassium hydroxide (KOH 0.3753g, 6.6889mmol) was added. This was dissolved through sonication and added to the reactant, and the reaction was allowed to proceed for 48 hours. After confirming that the compound E completely disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed by salt using water and saturated NaCl aqueous solution, and water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (after separating aldehyde using only n -hexane, and proceeding to n -hexane: acetone = 300: 1). Next, an orange solid compound II-3 (0.73g, 92.4%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ δ 12.14 (s, 1H, OH), 7.757.62 (t, J = 18.32 Hz, J = 18.49 Hz, 1H, C=CH), 7.687.63 (d, J = 8.17 Hz, 2H, ArH), 7.36-7.30(d, J = 8.24 Hz, 2H, ArH), 3.70 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 2.992.87 (septet, J = 6.90 Hz, 1H, CH), 2.11 (s, 3H, CH3), 2.06 (s, 3H, CH3), 1.23 (s, 3H, CH3), and 1.21 (s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 194.16(1C), 163.00(1C), 152.02(1C), 144.14(1C), 132.71(1C), 129.18(2C), 127.55(2C), 126.91(1C), 126.72(1C), 126.22(1C), 115.10(1C), 113.76(1C), 62.41(1C), 60.35(1C), 33.86(1C), 24.04(2C), 9.28(1C), 9.20(1C). 1 H NMR (300 MHz, DMSO-d 6 ) δ δ 12.14 (s, 1H, OH), 7.757.62 (t, J = 18.32 Hz, J = 18.49 Hz, 1H, C=CH), 7.687.63 ( d, J = 8.17 Hz, 2H, ArH), 7.36-7.30 (d, J = 8.24 Hz, 2H, ArH), 3.70 (s, 3H, OCH 3 ), 3.61 (s, 3H, OCH 3 ), 2.992. 87 (septet, J = 6.90 Hz, 1H, CH), 2.11 (s, 3H, CH 3 ), 2.06 (s, 3H, CH 3 ), 1.23 (s, 3H, CH 3 ), and 1.21 (s, 3H , CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.16(1C), 163.00(1C), 152.02(1C), 144.14(1C), 132.71(1C), 129.18(2C), 127.55(2C), 126.91(1C) , 126.72(1C), 126.22(1C), 115.10(1C), 113.76(1C), 62.41(1C), 60.35(1C), 33.86(1C), 24.04(2C), 9.28(1C), 9.20(1C) .

<실시예 5-4> 화합물 II-4의 합성<Example 5-4> Synthesis of Compound II-4

둥근 바닥 플라스크 (50mL)에 생성된 화합물 E(0.5g, 2.2296mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 교반하여 용해시킨 후, 4- methoxymethoxy benzaldehyde (0.4445g, 2.6756mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3753g, 6.6889mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간 동안 반응을 진행시켰다. 화합물 E가 완전히 사라진 것을 확인한 다음, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물을 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거한 다음, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 II-4 (0.7705g, 92.8%)을 얻었다. Compound E (0.5g, 2.2296mmol) was added to a round bottom flask (50mL), dissolved by stirring with 20 mL of methanol at room temperature, and then added 4-methoxymethoxy benzaldehyde (0.4445g, 2.6756mmol) using a syringe. I did. After adding 10mL methanol to another beaker, potassium hydroxide (KOH 0.3753g, 6.6889mmol) was added. This was dissolved through sonication and added to the reactant, followed by reaction for 48 hours. After confirming that the compound E completely disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed by salt using water and saturated NaCl aqueous solution, and then water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound II-4 ( 0.7705g, 92.8%) was obtained.

1H NMR (600 MHz, DMSO-d6) δ 12.17 (s, 1H, OH), 7.687.58 (t, J = 15.88 Hz, J = 15.75 Hz, 1H, C=CH), 7.737.66 (d, J = 8.7 Hz, 2H, ArH), 7.117.06 (d, J = 8.75 Hz, 2H, ArH), 5.26 (s, 2H, -CH2-O-), 3.70 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 3.38 (s, 3H, OCH3), 2.11 (s, 3H, CH3), and 2.06 (s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 194.04(1C), 162.49(1C), 159.32(1C), 158.93(1C), 157.82(1C), 144.06(1C), 130.83(1C), 128.57(1C), 128.19(1C), 125.12(1C), 116.98(1C), 116.58(1C), 115.81(1C), 115.07(1C), 113.78(1C), 94.14(1C), 62.38(1C), 60.34(1C), 56.19(1C), 9.28(1C), 9.20(1C). 1 H NMR (600 MHz, DMSO-d 6 ) δ 12.17 (s, 1H, OH), 7.687.58 (t, J = 15.88 Hz, J = 15.75 Hz, 1H, C=CH), 7.737.66 (d) , J = 8.7 Hz, 2H, ArH), 7.117.06 (d, J = 8.75 Hz, 2H, ArH), 5.26 (s, 2H, -CH 2 -O-), 3.70 (s, 3H, OCH 3 ) , 3.61 (s, 3H, OCH 3 ), 3.38 (s, 3H, OCH 3 ), 2.11 (s, 3H, CH 3 ), and 2.06 (s, 3H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.04(1C), 162.49(1C), 159.32(1C), 158.93(1C), 157.82(1C), 144.06(1C), 130.83(1C), 128.57(1C) , 128.19(1C), 125.12(1C), 116.98(1C), 116.58(1C), 115.81(1C), 115.07(1C), 113.78(1C), 94.14(1C), 62.38(1C), 60.34(1C) , 56.19(1C), 9.28(1C), 9.20(1C).

<실시예 5-5> 화합물 II-5의 합성<Example 5-5> Synthesis of Compound II-5

둥근 바닥 플라스크 (50mL)에 생성된 화합물 E (0.5g, 2.2296mmol)을 넣은 후, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 다음, 4- methoxybenzaldehyde (0.3244mL, 2.6756mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3753g, 6.6889mmol)를 넣었다. 이를 sonication을 통해 용해시켜 화합물 E가 들어있는 둥근 바닥 플라스크에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 E가 완전히 사라진 것을 확인하고, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은 MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 II-5 (0.694g, 90.9%)을 얻었다. Compound E (0.5g, 2.2296mmol) was added to a round bottom flask (50mL), and then dissolved by stirring with 20mL of methanol at room temperature, and then 4-methoxybenzaldehyde (0.3244mL, 2.6756mmol) was added using a syringe. I did. After adding 10mL methanol to another beaker, potassium hydroxide (KOH 0.3753g, 6.6889mmol) was added. This was dissolved through sonication, placed in a round bottom flask containing compound E, and reacted for 48 hours. It was confirmed that compound E completely disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed with water and saturated NaCl aqueous solution. The reaction product from which the salt was removed was dried using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound II-5 ( 0.694g, 90.9%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 12.19 (s, 1H, OH), 7.747.67 (d, J = 15.77 Hz, 1H, C=CH), 7.627.56 (d, J = 15.73 Hz, 1H, C=CH), 7.737.68 (d, J = 8.82 Hz, 2H, ArH), 7.056.97 (d, J = 8.79 Hz, 2H, ArH), 3.82 (3H, -OCH3), 3.69 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 2.11 (s, 3H, CH3), and 2.06 (s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 194.01(1C), 162.43(1C), 161.93(1C), 158.93(1C), 157.80(1C), 144.33(1C), 130.96(2C), 128.24(1C), 127.61(1C), 124.62(1C), 115.08(2C), 115.06(1C), 113.80(1C), 62.37(1C), 60.34(1C), 55.86(1C), 9.28(1C), 9.21(1C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 12.19 (s, 1H, OH), 7.747.67 (d, J = 15.77 Hz, 1H, C=CH), 7.627.56 (d, J = 15.73 Hz) , 1H, C=CH), 7.737.68 (d, J = 8.82 Hz, 2H, ArH), 7.056.97 (d, J = 8.79 Hz, 2H, ArH), 3.82 (3H, -OCH 3 ), 3.69 (s, 3H, OCH 3 ), 3.61 (s, 3H, OCH 3 ), 2.11 (s, 3H, CH 3 ), and 2.06 (s, 3H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.01(1C), 162.43(1C), 161.93(1C), 158.93(1C), 157.80(1C), 144.33(1C), 130.96(2C), 128.24(1C) , 127.61(1C), 124.62(1C), 115.08(2C), 115.06(1C), 113.80(1C), 62.37(1C), 60.34(1C), 55.86(1C), 9.28(1C), 9.21(1C) .

<실시예 5-6> 화합물 II-6의 합성<Example 5-6> Synthesis of Compound II-6

둥근 바닥 플라스크 (50mL)에 생성된 화합물 II-4 (1g, 2.6852mmol)을 넣은 뒤, 상온에서 Methanol 300mL와 함께 교반하여 용해시킨 후 p-toluenesulfonic acid (0.5619g, 2.9537mmol)을 첨가하여 36시간 동안 반응을 진행시켰다. 화합물 II-4가 완전히 사라진 것을 TLC Check를 통해 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은 MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(n-hexane: acetone = 30: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 II-6 (0.8359g, 94.8%)을 얻었다. After putting the resulting compound II-4 (1g, 2.6852mmol) in a round bottom flask (50mL), stirring at room temperature with 300mL of methanol to dissolve it, and then adding p -toluenesulfonic acid (0.5619g, 2.9537mmol) for 36 hours. The reaction proceeded during. After confirming that the compound II-4 completely disappeared through TLC Check, the reaction was terminated and the reaction product was diluted with 150 mL of ethyl acetate. The organic solvent layer in which the product was dissolved was removed using water and saturated NaCl aqueous solution. Moisture was removed from the reaction product from which the salt was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (n -hexane: acetone = 30: 1) to separate the orange solid compound II-6 (0.8359 g, 94.8%). ).

1H NMR (300 MHz, DMSO-d6) δ 12.31 (s, 1H, OH), 10.16 (s, 1H, OH), 7.727.64 (d, J = 15.64 Hz, 1H, C=CH), 7.607.52 (d, J = 15.60 Hz, 1H, C=CH), 7.877.79 (d, J = 8.61 Hz, 2H, ArH), 7.627.55 (d, J = 8.65 Hz, 2H, ArH), 3.69 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 2.10 (s, 3H, CH3), and 2.06(s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 193.91(1C), 162.39(1C), 160.79(1C), 159.05(1C), 157.82(1C), 145.04(1C), 131.23(2C), 126.05(1C), 123.41(1C), 116.49(2C), 115.75(1C), 115.02(1C), 113.65(1C), 62.35(1C), 60.33(1C), 9.27(1C), 9.19(1C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 12.31 (s, 1H, OH), 10.16 (s, 1H, OH), 7.727.64 (d, J = 15.64 Hz, 1H, C=CH), 7.607 .52 (d, J = 15.60 Hz, 1H, C=CH), 7.877.79 (d, J = 8.61 Hz, 2H, ArH), 7.627.55 (d, J = 8.65 Hz, 2H, ArH), 3.69 (s, 3H, OCH 3 ), 3.61 (s, 3H, OCH 3 ), 2.10 (s, 3H, CH 3 ), and 2.06 (s, 3H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 193.91(1C), 162.39(1C), 160.79(1C), 159.05(1C), 157.82(1C), 145.04(1C), 131.23(2C), 126.05(1C) , 123.41(1C), 116.49(2C), 115.75(1C), 115.02(1C), 113.65(1C), 62.35(1C), 60.33(1C), 9.27(1C), 9.19(1C).

<실시예 6> 반응 5-2단계<Example 6> Reaction 5-2 step

2구 둥근 바닥 플라스크에 생성된 화합물 E (1.8812g, 8.389mmol) 와 potassium carbonate (K2CO3 1.3913g, 10.06mmol)를 넣은 후 감압하여 완전히 건조시키고 공기를 제거한 다음, 질소 분위기에서 반응이 진행될 수 있도록 하였다. 이후 dry actone를 넣어 혼합물을 녹인 후 Dimethyl sulfate (DMS 0.9519ml, 10.06mmol)을 실린지를 이용하여 주입한 후 다음날까지 환류시켰다. 반응물질인 화합물 E가 완전히 사라진 것을 확인한 후, 혼합물은 상온에서 식혀준 다음, 300mL의 ethyl acetate로 희석하여 1% HCl수용액을 통해 남아 있는 염기인 potassium carbonate를 제거하였다. 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하여 씻고, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(n-hexane: acetone = 300: 1)를 이용하여 분리하여 흰색의 고체 화합물 F (1.933g, 96.7%)을 얻었다. Compound E (1.8812g, 8.389mmol) and potassium carbonate (K 2 CO 3 1.3913g, 10.06mmol) were added to a two-necked round bottom flask, dried completely under reduced pressure, and air was removed, and the reaction could proceed in a nitrogen atmosphere. I made it possible. Thereafter, dry actone was added to dissolve the mixture, and then dimethyl sulfate (DMS 0.9519ml, 10.06mmol) was injected using a syringe and refluxed until the next day. After confirming that the reactant compound E completely disappeared, the mixture was cooled at room temperature, diluted with 300 mL of ethyl acetate, and the remaining base potassium carbonate was removed through a 1% HCl aqueous solution. The organic solvent layer in which the product is dissolved was washed by removing salts using water and a saturated NaCl aqueous solution, and water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (n- hexane: acetone = 300: 1) to obtain a white solid compound F (1.933g, 96.7%).

1H NMR (300 MHz, DMSO-d6) δ 3.71 (s, 3H, -OCH3), 3.69 (s, 6H, -OCH3), 2.66 (s, 3H, -COCH3), 2.10 (s, 3H, -CH3), 2.04 (s, 3H, CH3) 1 H NMR (300 MHz, DMSO-d 6 ) δ 3.71 (s, 3H, -OCH 3 ), 3.69 (s, 6H, -OCH 3 ), 2.66 (s, 3H, -COCH 3 ), 2.10 (s, 3H, -CH 3 ), 2.04 (s, 3H, CH 3 )

<실시예 7> 반응 6단계<Example 7> Reaction step 6

<실시예 7-1> 화합물 III-1의 합성<Example 7-1> Synthesis of Compound III-1

둥근 바닥 플라스크 (50mL)에 생성된 화합물 F (0.5g, 2.0984mmol)을 넣은 후, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 다음, benzaldehyde (0.1284mL, 2.518mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.1761g, 3.1471mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 F가 완전히 사라진 것을 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은 MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-1 (0.6595g, 96.3%)을 얻었다. After putting the produced compound F (0.5g, 2.0984mmol) in a round bottom flask (50mL), it was dissolved by stirring with 20mL of methanol at room temperature, and then benzaldehyde (0.1284mL, 2.518mmol) was added using a syringe. After adding 10 mL methanol to another beaker, potassium hydroxide (KOH 0.1761 g, 3.1471 mmol) was added. This was dissolved through sonication and added to the reactant, and the reaction was allowed to proceed for 48 hours. After confirming that the compound F completely disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed with water and saturated NaCl aqueous solution. The reaction product from which the salt was removed was dried using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound III-1 ( 0.6595g, 96.3%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 7.327.24 (d, J = 16.17 Hz, 1H, C=CH), 7.147.05 (d, J = 16.11 Hz, 1H, C=CH), 7.747.67 (m, 2H, ArH), 7.467.35 (m, 3H, ArH), 3.70 (s, 3H, OCH3), 3.58 (s, 6H, OCH3), and 2.13 (s, 6H, CH3); and 13C NMR (151 MHz, dmso) δ 194.45(1C), 159.08(1C), 154.25(1C), 145.46(1C), 134.50(1C), 131.20(1C), 129.42(2C), 129.14(2C), 128.85(1C), 125.02(1C), 120.52(2C), 70.22(1C), 62.02(2C), 60.20(1C), 9.61(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 7.327.24 (d, J = 16.17 Hz, 1H, C=CH), 7.147.05 (d, J = 16.11 Hz, 1H, C=CH), 7.747 .67 (m, 2H, ArH), 7.467.35 (m, 3H, ArH), 3.70 (s, 3H, OCH 3 ), 3.58 (s, 6H, OCH 3 ), and 2.13 (s, 6H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.45(1C), 159.08(1C), 154.25(1C), 145.46(1C), 134.50(1C), 131.20(1C), 129.42(2C), 129.14(2C) , 128.85 (1C), 125.02 (1C), 120.52 (2C), 70.22 (1C), 62.02 (2C), 60.20 (1C), 9.61 (2C).

<실시예 7-2> 화합물 III-2의 합성<Example 7-2> Synthesis of Compound III-2

둥근 바닥 플라스크 (50mL)에 생성된 화합물 F (0.25g, 1.0492mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 후 p-tolubenzaldehyde (0.2969mL, 1.259mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3532g, 6.2952mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 F가 완전히 사라진 것을 TLC Check를 통해 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은 MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-2 (0.3289g, 92.1%)을 얻었다. Compound F (0.25g, 1.0492mmol) was added to a round bottom flask (50mL), and then dissolved by stirring with 20mL of methanol at room temperature, and then p -tolubenzaldehyde (0.2969mL, 1.259mmol) was added using a syringe. . After adding 10 mL methanol to another beaker, potassium hydroxide (KOH 0.3532 g, 6.2952 mmol) was added. This was dissolved through sonication and added to the reactant, and the reaction was allowed to proceed for 48 hours. After confirming that Compound F completely disappeared through TLC Check, the reaction was terminated and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed with water and saturated NaCl aqueous solution. Moisture was removed from the reaction product from which the salt was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound III-2 ( 0.3289g, 92.1%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 7.287.21 (d, J = 16.19 Hz, 1H, C=CH), 7.077.00 (d, J = 16.12 Hz, 1H, C=CH), 7.617.55 (d, J = 8.23 Hz, 2H, ArH), 7.247.17 (d, J = 8.00 Hz, 2H, ArH), 3.70 (s, 3H, OCH3), 3.58 (s, 6H, OCH3), 2.32 (s, 3H, CH3), and 2.13 (s, 6H, CH3); and 13C NMR (151 MHz, dmso) δ 194.45(1C), 159.00(1C), 154.19(2C), 145.62(1C), 141.31(1C), 131.77(1C) 130.05(2C), 129.15(2C), 127.95(1C), 125.11(1C), 120.49(2C), 61.99(2C), 60.18(1C), 21.48(1C), 9.6(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 7.287.21 (d, J = 16.19 Hz, 1H, C=CH), 7.077.00 (d, J = 16.12 Hz, 1H, C=CH), 7.617 .55 (d, J = 8.23 Hz, 2H, ArH), 7.247.17 (d, J = 8.00 Hz, 2H, ArH), 3.70 (s, 3H, OCH 3 ), 3.58 (s, 6H, OCH 3 ) , 2.32 (s, 3H, CH 3 ), and 2.13 (s, 6H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.45 (1C), 159.00 (1C), 154.19 (2C), 145.62 (1C), 141.31 (1C), 131.77 (1C) 130.05 (2C), 129.15 (2C), 127.95 (1C), 125.11 (1C), 120.49 (2C), 61.99 (2C), 60.18 (1C), 21.48 (1C), 9.6 (2C).

<실시예 7-3> 화합물 III-3의 합성<Example 7-3> Synthesis of Compound III-3

둥근 바닥 플라스크 (50mL)에 생성된 화합물 F (0.5g, 2.0984mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 후 4-isopropylbenzaldehyde (0.3812mL, 2.518mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3532g, 6.2952mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 F가 완전히 사라진 것을 TLC Check를 통해 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은 MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-3 (0.7291g, 94.3%)을 얻었다. Compound F (0.5g, 2.0984mmol) was added to a round bottom flask (50mL), stirred at room temperature with 20mL of methanol to dissolve, and then 4-isopropylbenzaldehyde (0.3812mL, 2.518mmol) was added using a syringe. . After adding 10 mL methanol to another beaker, potassium hydroxide (KOH 0.3532 g, 6.2952 mmol) was added. This was dissolved through sonication and added to the reactant, and the reaction was allowed to proceed for 48 hours. After confirming that Compound F completely disappeared through TLC Check, the reaction was terminated and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed with water and saturated NaCl aqueous solution. The reaction product from which the salt was removed was dried using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound III-3 ( 0.7291g, 94.3%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 7.297.22 (d, J = 16.17 Hz, 1H, C=CH), 7.106.95 (d, J = 16.12 Hz, 1H, C=CH), 7.657.58 (d, J = 8.20 Hz, 2H, ArH), 7.297.25 (d, J = 8.10 Hz, 2H, ArH), 3.70 (s, 3H, OCH3), 3.58 (s, 6H, OCH3), 3.002.80 (septet, J = 6.96 Hz, 1H, CH), 2.13 (s, 3H, CH3), 1.20 (s, 3H, CH3), and 1.18 (s, 3H, CH3); and 13C NMR (151 MHz, dmso) δ 194.40(1C), 159.01(1C), 154.22(2C), 152.04(1C), 145.53(1C), 132.19(1C), 129.28(2C), 128.04(1C), 127.41(2C), 125.10(1C), 120.48(2C), 61.98(2C), 60.19(1C), 33.82(1C), 24.00(2C), 9.61(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 7.297.22 (d, J = 16.17 Hz, 1H, C=CH), 7.106.95 (d, J = 16.12 Hz, 1H, C=CH), 7.657 .58 (d, J = 8.20 Hz, 2H, ArH), 7.297.25 (d, J = 8.10 Hz, 2H, ArH), 3.70 (s, 3H, OCH 3 ), 3.58 (s, 6H, OCH 3 ) , 3.002.80 (septet, J = 6.96 Hz, 1H, CH), 2.13 (s, 3H, CH 3 ), 1.20 (s, 3H, CH 3 ), and 1.18 (s, 3H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.40(1C), 159.01(1C), 154.22(2C), 152.04(1C), 145.53(1C), 132.19(1C), 129.28(2C), 128.04(1C) , 127.41 (2C), 125.10 (1C), 120.48 (2C), 61.98 (2C), 60.19 (1C), 33.82 (1C), 24.00 (2C), 9.61 (2C).

<실시예 7-4> 화합물 III-4의 합성<Example 7-4> Synthesis of Compound III-4

둥근 바닥 플라스크 (50mL)에 생성된 화합물 F (0.5g, 2.0984mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 후 4-methoxymethoxy benzaldehyde (0.4183g, 2.518mmol)을 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3532g, 6.2952mmol)를 넣었다. 이를 sonication을 통해 용해시켜 화합물 F가 들어있는 둥근 바닥 플라스크에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 F가 완전히 사라진 것을 확인하고, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하한 다음, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-4(7.44g, 91.8%)을 얻었다. The resulting compound F (0.5g, 2.0984mmol) was put in a round bottom flask (50mL), stirred at room temperature with 20mL of methanol to dissolve, and then 4-methoxymethoxy benzaldehyde (0.4183g, 2.518mmol) was added. After adding 10 mL methanol to another beaker, potassium hydroxide (KOH 0.3532 g, 6.2952 mmol) was added. This was dissolved through sonication, placed in a round bottom flask containing Compound F, and reacted for 48 hours. It was confirmed that compound F completely disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed with water and saturated NaCl aqueous solution to remove the salt, and then water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound III-4 ( 7.44g, 91.8%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 7.277.17 (d, J = 16.11 Hz, 1H, C=CH), 7.026.93 (d, J = 16.23 Hz, 1H, C=CH), 7.707.62 (d, J = 8.79 Hz, 2H, ArH), 7.067.0 (d, J = 8.74 Hz, 2H, ArH), 5.23 (2H, -CH2-O-), 3.70 (s, 3H, OCH3), 3.58 (s, 6H, OCH3), 3.37 (s, 3H, OCH3), and 2.13 (s, 6H, CH3); and 13C NMR (151 MHz, dmso) δ 194.33(1C), 159.29(1C), 158.92(1C), 154.16(2C), 145.35(1C), 130.92(2C), 128.03(1C), 127.09(1C), 125.21(1C), 120.46(2C), 116.83(2C), 94.12(1C), 61.97(2C), 60.18(1C), 56.18(1C), 9.61(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 7.277.17 (d, J = 16.11 Hz, 1H, C=CH), 7.026.93 (d, J = 16.23 Hz, 1H, C=CH), 7.707 .62 (d, J = 8.79 Hz, 2H, ArH), 7.067.0 (d, J = 8.74 Hz, 2H, ArH), 5.23 (2H, -CH2-O-), 3.70 (s, 3H, OCH 3 ), 3.58 (s, 6H, OCH 3 ), 3.37 (s, 3H, OCH 3 ), and 2.13 (s, 6H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.33(1C), 159.29(1C), 158.92(1C), 154.16(2C), 145.35(1C), 130.92(2C), 128.03(1C), 127.09(1C) , 125.21 (1C), 120.46 (2C), 116.83 (2C), 94.12 (1C), 61.97 (2C), 60.18 (1C), 56.18 (1C), 9.61 (2C).

<실시예 7-5> 화합물 III-5의 합성<Example 7-5> Synthesis of Compound III-5

둥근 바닥 플라스크 (50mL)에 생성된 화합물 F (0.5g, 2.0984mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 후 4-methoxybenzaldehyde (0.3053mL, 2.518mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3532g, 6.2952mmol)를 넣었다. 이를 sonication을 통해 용해시켜 반응물에 넣은 후 48시간동안 반응을 진행시켰다. 화합물 F가 완전히 사라진 것을 TLC Check를 통해 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하고, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-5 (0.6948g, 92.9%)을 얻었다. Compound F (0.5g, 2.0984mmol) was added to a round bottom flask (50mL), stirred at room temperature with 20mL of methanol to dissolve, and then 4-methoxybenzaldehyde (0.3053mL, 2.518mmol) was added using a syringe. . After adding 10 mL methanol to another beaker, potassium hydroxide (KOH 0.3532 g, 6.2952 mmol) was added. This was dissolved through sonication and added to the reactant, and the reaction was allowed to proceed for 48 hours. After confirming that Compound F completely disappeared through TLC Check, the reaction was terminated and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed by salt using water and saturated NaCl aqueous solution, and water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound III-5 ( 0.6948 g, 92.9%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 7.277.13 (d, J = 16.10 Hz, 1H, C=CH), 7.026.88 (d, J = 15.90 Hz, 1H, C=CH), 7.707.60 (d, J = 8.70 Hz, 2H, ArH), 7.006.93 (d, J = 8.79 Hz, 2H, ArH), 3.79 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 3.58 (s, 6H, OCH3), and 2.13 (s, 6H, CH3); and 13C NMR (151 MHz, dmso) δ 194.33(1C), 161.88(1C), 158.88(1C), 154.14(2C), 145.58(1C), 131.03(2C), 127.05(1C), 126.66(1C), 125.27(1C), 120.45(2C), 114.92(2C), 61.96(2C), 60.18(1C), 55.81(1C), 9.61(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 7.277.13 (d, J = 16.10 Hz, 1H, C=CH), 7.026.88 (d, J = 15.90 Hz, 1H, C=CH), 7.707 .60 (d, J = 8.70 Hz, 2H, ArH), 7.006.93 (d, J = 8.79 Hz, 2H, ArH), 3.79 (s, 3H, OCH 3 ), 3.69 (s, 3H, OCH 3 ) , 3.58 (s, 6H, OCH 3 ), and 2.13 (s, 6H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.33(1C), 161.88(1C), 158.88(1C), 154.14(2C), 145.58(1C), 131.03(2C), 127.05(1C), 126.66(1C) , 125.27 (1C), 120.45 (2C), 114.92 (2C), 61.96 (2C), 60.18 (1C), 55.81 (1C), 9.61 (2C).

<실시예 7-6> 화합물 III-6의 합성<Example 7-6> Synthesis of Compound III-6

둥근 바닥 플라스크 (50mL)에 생성된 화합물 III-4 (1g, 2.5877mmol)을 넣은 뒤, 상온에서 Methanol 300mL와 함께 교반하여 용해시킨 후 p-toluenesulfonic acid (0.5415g, 2.8465mmol)을 첨가하여 36시간동안 반응을 진행시켰다. 화합물 III-4가 완전히 사라진 것을 TLC Check를 통해 확인한 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거하였다. 염이 제거된 반응물은 MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(n-hexane: acetone = 30: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-6 (0.8293g, 93.6%)을 얻었다. After putting the resulting compound III-4 (1g, 2.5877mmol) in a round bottom flask (50mL), stirring at room temperature with 300mL of methanol to dissolve it, and then adding p -toluenesulfonic acid (0.5415g, 2.8465mmol) for 36 hours. The reaction proceeded during. After confirming that Compound III-4 completely disappeared through TLC Check, the reaction was terminated and the reaction product was diluted with 150 mL of ethyl acetate. The salt was removed from the organic solvent layer in which the product was dissolved using water and a saturated NaCl aqueous solution. Moisture was removed from the reaction product from which the salt was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (n- hexane: acetone = 30: 1), and the orange solid compound III-6 (0.8293g, 93.6%). ).

1H NMR (300 MHz, DMSO-d6) δ 10.09 (s, 1H, OH), 7.207.10 (d, J = 16.07 Hz, 1H, C=CH), 6.916.83 (d, J = 16.01 Hz, 1H, C=CH), 7.567.48 (d, J = 8.69 Hz, 2H, ArH), 6.806.74 (d, J = 8.62 Hz, 2H, ArH), 3.69 (s, 3H, OCH3), 3.57 (s, 6H, OCH3), and 2.12 (s, 6H, CH3); and 13C NMR (151 MHz, dmso) δ 194.26(1C), 160.65(2C), 158.81(1C), 154.12(2C), 146.14(1C), 131.22(2C), 125.71(1C), 125.34(1C), 120.41(2C), 116.32(2C), 61.93(2C), 60.17(1C), 9.59(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 10.09 (s, 1H, OH), 7.207.10 (d, J = 16.07 Hz, 1H, C=CH), 6.916.83 (d, J = 16.01 Hz) , 1H, C=CH), 7.567.48 (d, J = 8.69 Hz, 2H, ArH), 6.806.74 (d, J = 8.62 Hz, 2H, ArH), 3.69 (s, 3H, OCH 3 ), 3.57 (s, 6H, OCH 3 ), and 2.12 (s, 6H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 194.26(1C), 160.65(2C), 158.81(1C), 154.12(2C), 146.14(1C), 131.22(2C), 125.71(1C), 125.34(1C) , 120.41 (2C), 116.32 (2C), 61.93 (2C), 60.17 (1C), 9.59 (2C).

<실시예 7-7> 화합물 III-7의 합성<Example 7-7> Synthesis of Compound III-7

둥근 바닥 플라스크 (50mL)에 생성된 화합물 F (0.5g, 2.0984mmol)을 넣은 뒤, 상온에서 Methanol 20mL와 함께 교반하여 용해시킨 후 4-dimethylamino benzaldehyde (0.3754g, 2.518mmol)을 실린지를 사용하여 첨가하였다. 다른 비커에 10mL Methanol을 넣은 후, potassium hydroxide (KOH 0.3532g, 6.2952mmol)를 넣었다. 이를 sonication을 통해 용해시켜 화합물 F가 들어있는 둥근 바닥 플라스크에 넣어 준 후 48시간동안 반응을 진행시켰다. 화합물 F가 사라진 것을 확인 후, 반응을 종결하여 반응물을 150mL의 ethyl acetate로 희석하였다. NH4Cl 수용액 100mL로 반응물에 남아있는 potassium hydroxide를 중화시킨 후, 생성물이 녹아있는 유기 용매 층을 물과 포화 NaCl 수용액을 이용하여 염을 제거한 다음, MgSO4를 이용하여 수분을 제거하였다. 혼합물이 든 유기 용매 층은 감압 증류하여 용매를 제거하였고, 생성물은 column chromatography(only n-hexane, n-hexane: acetone = 300: 1으로 진행)를 이용하여 분리하여 주황색의 고체 화합물 III-7 (0.607g, 78.3%)을 얻었다. Compound F (0.5g, 2.0984mmol) was added to a round bottom flask (50mL), stirred at room temperature with 20mL of methanol to dissolve, and then 4-dimethylamino benzaldehyde (0.3754g, 2.518mmol) was added using a syringe. I did. After adding 10 mL methanol to another beaker, potassium hydroxide (KOH 0.3532 g, 6.2952 mmol) was added. This was dissolved through sonication and placed in a round bottom flask containing Compound F, and the reaction was allowed to proceed for 48 hours. After confirming that the compound F disappeared, the reaction was terminated, and the reaction product was diluted with 150 mL of ethyl acetate. After neutralizing the potassium hydroxide remaining in the reaction with 100 mL of NH 4 Cl aqueous solution, the organic solvent layer in which the product was dissolved was removed by salt using water and saturated NaCl aqueous solution, and then water was removed using MgSO 4. The organic solvent layer containing the mixture was distilled under reduced pressure to remove the solvent, and the product was separated using column chromatography (only n -hexane, n -hexane: acetone = 300: 1) to separate the orange solid compound III-7 ( 0.607g, 78.3%) was obtained.

1H NMR (300 MHz, DMSO-d6) δ 7.167.06 (d, J = 15.94 Hz, 1H, C=CH), 6.836.75 (d, J = 15.90 Hz, 1H, C=CH), 7.527.43 (d, J = 8.90 Hz, 2H, ArH), 6.716.63 (d, J = 8.94 Hz, 2H, ArH), 3.69 (s, 3H, OCH3), 3.57 (s, 6H, OCH3), 2.98 (s, 6H, NCH3), and 2.12 (s, 6H, CH3); and 13C NMR (151 MHz, dmso) δ 193.91(1C), 158.60(1C), 154.04(2C), 152.44(1C), 146.83(1C), 130.91(2C), 125.69(1C), 123.61(2C), 121.58(1C), 120.34(2C), 112.20(2C), 111.31(1C), 61.89(2C), 60.17(1C), 9.61(2C). 1 H NMR (300 MHz, DMSO-d 6 ) δ 7.167.06 (d, J = 15.94 Hz, 1H, C=CH), 6.836.75 (d, J = 15.90 Hz, 1H, C=CH), 7.527 .43 (d, J = 8.90 Hz, 2H, ArH), 6.716.63 (d, J = 8.94 Hz, 2H, ArH), 3.69 (s, 3H, OCH 3 ), 3.57 (s, 6H, OCH 3 ) , 2.98 (s, 6H, NCH 3 ), and 2.12 (s, 6H, CH 3 ); and 13 C NMR (151 MHz, dmso) δ 193.91(1C), 158.60(1C), 154.04(2C), 152.44(1C), 146.83(1C), 130.91(2C), 125.69(1C), 123.61(2C) , 121.58 (1C), 120.34 (2C), 112.20 (2C), 111.31 (1C), 61.89 (2C), 60.17 (1C), 9.61 (2C).

<실험예 1><Experimental Example 1>

본 발명의 실시예를 따르는 각 단계별 생성물의 수율은 표 2와 같다. The yield of each step product according to an embodiment of the present invention is shown in Table 2.

Compd.Compd. ProductProduct Yield (%)Yield (%) Compd.Compd. ProductProduct Yield (%)Yield (%) BB

Figure pat00048
Figure pat00048
98.498.4 FF
Figure pat00049
Figure pat00049
96.796.7 CC
Figure pat00050
Figure pat00050
67.467.4 IIII
Figure pat00051
Figure pat00051
--
DD
Figure pat00052
Figure pat00052
98.698.6 IIIIII
Figure pat00053
Figure pat00053
--
EE
Figure pat00054
Figure pat00054
76.476.4

<실험예 2><Experimental Example 2>

본 발명의 실시예를 따르는 화합물 II의 제조방법에서 각 생성물의 수율은 표 3과 같다. The yield of each product in the preparation method of compound II according to the embodiment of the present invention is shown in Table 3.

Compd.Compd. ProductProduct Yield (%)Yield (%) II-1II-1

Figure pat00055
Figure pat00055
93.493.4 II-2II-2
Figure pat00056
Figure pat00056
89.589.5
II-3II-3
Figure pat00057
Figure pat00057
92.492.4
II-4II-4
Figure pat00058
Figure pat00058
90.990.9
II-5II-5
Figure pat00059
Figure pat00059
92.892.8
II-6II-6
Figure pat00060
Figure pat00060
86.286.2

<실험예 3><Experimental Example 3>

본 발명의 실시예를 따르는 화합물 III의 제조방법에서 각 생성물의 수율은 표 4와 같다. The yield of each product in the preparation method of compound III according to an embodiment of the present invention is shown in Table 4.

Compd.Compd. ProductProduct Yield (%)Yield (%) III-1III-1

Figure pat00061
Figure pat00061
96.396.3 III-2III-2
Figure pat00062
Figure pat00062
92.192.1
III-3III-3
Figure pat00063
Figure pat00063
94.394.3
III-4III-4
Figure pat00064
Figure pat00064
92.992.9
III-5III-5
Figure pat00065
Figure pat00065
91.891.8
III-6III-6
Figure pat00066
Figure pat00066
88.188.1
III-7III-7
Figure pat00067
Figure pat00067
78.378.3

Claims (11)

하기 화학식 I로 표시되는 화합물:
[화학식 I]
Figure pat00068

상기 화학식 I에서,
R1, R2, 및 R3는 서로 동일하거나 상이하고,
R1은 하이드록시기, 또는 메톡시기이고,
R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고,
상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
Compounds represented by the following formula (I):
[Formula I]
Figure pat00068

In Formula I,
R1, R2, and R3 are the same as or different from each other,
R1 is a hydroxy group or a methoxy group,
R2, and R3 are each independently hydrogen, deuterium, hydroxy group, thiol group, amino group, substituted or unsubstituted (C1-C10 alkyl) amino group, substituted or unsubstituted C1-C10 alkoxy group, substituted or unsubstituted It is selected from the group consisting of a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl, a substituted or unsubstituted C2-C10 alkynyl, and a substituted or unsubstituted C6-C20 aryl group,
The'substituted or unsubstituted' is a halogen group, nitrile group, nitro group, hydroxy group, carbonyl group, ester group, imide group, amino group, phosphine oxide group, alkoxy group, aryloxy group, alkyl thioxy group, aryl Thioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group. It is unsubstituted or substituted with one or more substituents selected from the group consisting of an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, and a heterocyclic group.
제 1 항에 있어서,
상기 화학식 I은 하기 화학식 II로 표시되는 화합물:
[화학식 II]
Figure pat00069

상기 화학식 II에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
The method of claim 1,
Formula I is a compound represented by the following formula II:
[Formula II]
Figure pat00069

In Formula II, R2 and R3 are the same as defined in Formula I.
제 1 항에 있어서,
상기 화학식 I은 하기 화학식 II-1 내지 화학식 II-7로 표시되는 화합물 중 어느 하나:
[화학식 II-1]
Figure pat00070

[화학식 II-2]
Figure pat00071

[화학식 II-3]
Figure pat00072

[화학식 II-4]
Figure pat00073

[화학식 II-5]
Figure pat00074

[화학식 II-6]
Figure pat00075

[화학식 II-7]
Figure pat00076
.
The method of claim 1,
Formula I is any one of the compounds represented by the following formulas II-1 to II-7:
[Formula II-1]
Figure pat00070

[Formula II-2]
Figure pat00071

[Formula II-3]
Figure pat00072

[Formula II-4]
Figure pat00073

[Formula II-5]
Figure pat00074

[Formula II-6]
Figure pat00075

[Formula II-7]
Figure pat00076
.
제 1 항에 있어서,
상기 화학식 I은 하기 화학식 III으로 표시되는 화합물:
[화학식 III]
Figure pat00077

상기 화학식 III에서, R2 및 R3는 상기 화학식 I에서 정의한 바와 동일하다.
The method of claim 1,
Formula I is a compound represented by the following formula III:
[Formula III]
Figure pat00077

In Formula III, R2 and R3 are the same as defined in Formula I.
제 1 항에 있어서,
상기 화학식 I은 하기 화학식 III-1 내지 화학식 III-7로 표시되는 화합물 중 어느 하나:
[화학식 III-1]
Figure pat00078

[화학식 III-2]
Figure pat00079

[화학식 III-3]
Figure pat00080

[화학식 III-4]
Figure pat00081

[화학식 III-5]
Figure pat00082

[화학식 III-6]
Figure pat00083

[화학식 III-7]
Figure pat00084
.
The method of claim 1,
Formula I is any one of the compounds represented by the following formulas III-1 to III-7:
[Formula III-1]
Figure pat00078

[Formula III-2]
Figure pat00079

[Formula III-3]
Figure pat00080

[Formula III-4]
Figure pat00081

[Formula III-5]
Figure pat00082

[Formula III-6]
Figure pat00083

[Formula III-7]
Figure pat00084
.
하기 화학식 C로 표시되는 화합물로부터 하기 화학식 E로 표시되는 화합물을 합성하는 반응 3/4 단계; 및
하기 화학식 E으로 표시되는 화합물로부터 하기 화학식 II로 표시되는 화합물을 합성하는 반응 5-1단계; 를 포함하는,
화학식 II로 표시되는 화합물을 제조하는 방법:
[화학식 C]
Figure pat00085

[화학식 E]
Figure pat00086

[화학식 II]
Figure pat00087

상기 화학식 II에서,
R2, 및 R3는 서로 동일하거나 상이하고,
R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고,
상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
3/4 step of synthesizing a compound represented by the following formula (E) from a compound represented by the following formula (C); And
5-1 step of synthesizing a compound represented by the following formula (II) from a compound represented by the following formula (E); Containing,
Method for preparing a compound represented by Formula II:
[Formula C]
Figure pat00085

[Formula E]
Figure pat00086

[Formula II]
Figure pat00087

In Formula II,
R2, and R3 are the same as or different from each other,
R2, and R3 are each independently hydrogen, deuterium, hydroxy group, thiol group, amino group, substituted or unsubstituted (C1-C10 alkyl) amino group, substituted or unsubstituted C1-C10 alkoxy group, substituted or unsubstituted It is selected from the group consisting of a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl, a substituted or unsubstituted C2-C10 alkynyl, and a substituted or unsubstituted C6-C20 aryl group,
The'substituted or unsubstituted' is a halogen group, nitrile group, nitro group, hydroxy group, carbonyl group, ester group, imide group, amino group, phosphine oxide group, alkoxy group, aryloxy group, alkyl thioxy group, aryl Thioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group. It is unsubstituted or substituted with one or more substituents selected from the group consisting of an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, and a heterocyclic group.
제 6 항에 있어서,
상기 반응 3단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 B로 표시되는 화합물을 합성하는 반응 1단계; 및
하기 B로 표시되는 화합물로부터 상기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계를 더 포함하는,
화학식 II로 표시되는 화합물을 제조하는 방법:
[화학식 A]
Figure pat00088

[화학식 B]
Figure pat00089
.
The method of claim 6,
Prior to the reaction step 3, a reaction step 1 of synthesizing a compound represented by the following B from the compound represented by the following formula A; And
Further comprising a reaction step 2 of synthesizing the compound represented by Formula C from the compound represented by the following B,
Method for preparing a compound represented by Formula II:
[Formula A]
Figure pat00088

[Formula B]
Figure pat00089
.
제 6 항에 있어서,
상기 반응 3/4단계는 상기 화학식 C로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계; 및
하기 화학식 D로 표시되는 화합물로부터 상기 화학식 E으로 표시되는 화합물을 합성하는 반응 4단계; 를 더 포함하는,
화학식 II로 표시되는 화합물을 제조하는 방법:
[화학식 D]
Figure pat00090

The method of claim 6,
The reaction step 3/4 is a reaction step 3 of synthesizing a compound represented by the following formula (D) from the compound represented by the formula (C); And
A reaction step 4 of synthesizing the compound represented by Formula E from the compound represented by Formula D below; Further comprising,
Method for preparing a compound represented by Formula II:
[Formula D]
Figure pat00090

하기 화학식 C로 표시되는 화합물로부터 하기 화학식 D로 표시되는 화합물을 합성하는 반응 3단계;
하기 화학식 D로 표시되는 화합물로부터 하기 화학식 F로 표시되는 화합물을 합성하는 반응 4/(5-2)단계; 및
하기 화학식 F로 표시되는 화합물로부터 하기 화학식 III로 표시되는 화합물을 합성하는 반응 6단계;를 포함하는,
화학식 III으로 표시되는 화합물을 제조하는 방법:
[화학식 C]
Figure pat00091

[화학식 D]
Figure pat00092

[화학식 F]
Figure pat00093

[화학식 III]
Figure pat00094

상기 화학식 III에서,
R2, 및 R3는 서로 동일하거나 상이하고,
R2, 및 R3는 각각 독립적으로 수소, 중수소, 하이드록시기, 싸이올기, 아미노기, 치환 또는 비치환된 (C1-C10 알킬)아미노기, 치환 또는 비치환된 C1 -C10 알콕시기, 치환 또는 비치환된 C1 -C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐, 치환 또는 비치환된 C2 -C10 알키닐, 치환 또는 비치환된 C6-C20 아릴기로 이루어진 군에서 선택되고,
상기 '치환 또는 비치환된'은 할로겐기, 니트릴기, 니트로기, 하이드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 시클로알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기. 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 것이다.
3 step of synthesizing a compound represented by the following formula (D) from the compound represented by the following formula (C);
Reaction 4/(5-2) step of synthesizing a compound represented by Formula F below from a compound represented by Formula D below; And
Including a reaction step 6 of synthesizing a compound represented by the following formula (III) from the compound represented by the following formula F;
Method for preparing a compound represented by Formula III:
[Formula C]
Figure pat00091

[Formula D]
Figure pat00092

[Formula F]
Figure pat00093

[Formula III]
Figure pat00094

In Formula III,
R2, and R3 are the same as or different from each other,
R2, and R3 are each independently hydrogen, deuterium, hydroxy group, thiol group, amino group, substituted or unsubstituted (C1-C10 alkyl) amino group, substituted or unsubstituted C1-C10 alkoxy group, substituted or unsubstituted It is selected from the group consisting of a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl, a substituted or unsubstituted C2-C10 alkynyl, and a substituted or unsubstituted C6-C20 aryl group,
The'substituted or unsubstituted' is a halogen group, nitrile group, nitro group, hydroxy group, carbonyl group, ester group, imide group, amino group, phosphine oxide group, alkoxy group, aryloxy group, alkyl thioxy group, aryl Thioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group. It is unsubstituted or substituted with one or more substituents selected from the group consisting of an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, and a heterocyclic group.
제 9 항에 있어서,
상기 반응 3단계 이전에, 하기 화학식 A로 표시되는 화합물로부터 하기 화학식 B로 표시되는 화합물을 합성하는 반응 1단계; 및
하기 화학식 B로 표시되는 화합물로부터 상기 화학식 C로 표시되는 화합물을 합성하는 반응 2단계를 더 포함하는,
화학식 III으로 표시되는 화합물을 제조하는 방법:
[화학식 A]
Figure pat00095

[화학식 B]
Figure pat00096
.
The method of claim 9,
Prior to the reaction step 3, a reaction step 1 of synthesizing a compound represented by the following formula B from the compound represented by the following formula A; And
Further comprising a reaction step 2 of synthesizing the compound represented by the formula C from the compound represented by the following formula (B),
Method for preparing a compound represented by Formula III:
[Formula A]
Figure pat00095

[Formula B]
Figure pat00096
.
제 9 항에 있어서,
상기 반응 4/(5-2)단계는 상기 화학식 D로 표시되는 화합물로부터 하기 화합물 E로 표시되는 화합물을 합성하는 반응 4단계; 및
하기 화합물 E로 표시되는 화합물로부터 상기 화합물 F로 표시되는 화합물을 합성하는 반응 5-2단계;를 더 포함하는,
화학식 III으로 표시되는 화합물을 제조하는 방법:
[화학식 E]
Figure pat00097
.

The method of claim 9,
The reaction step 4/(5-2) is a reaction step 4 of synthesizing a compound represented by the following compound E from the compound represented by the formula (D); And
5-2 step of synthesizing the compound represented by the compound F from the compound represented by the following compound E; further comprising,
Method for preparing a compound represented by Formula III:
[Formula E]
Figure pat00097
.

KR1020190119961A 2019-09-27 2019-09-27 Dimethylchalcone derivatives and preparation method thereof KR102285493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190119961A KR102285493B1 (en) 2019-09-27 2019-09-27 Dimethylchalcone derivatives and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190119961A KR102285493B1 (en) 2019-09-27 2019-09-27 Dimethylchalcone derivatives and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20210037384A true KR20210037384A (en) 2021-04-06
KR102285493B1 KR102285493B1 (en) 2021-08-03

Family

ID=75473189

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190119961A KR102285493B1 (en) 2019-09-27 2019-09-27 Dimethylchalcone derivatives and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102285493B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328669A1 (en) 1987-07-25 1989-08-23 Nippon Oil And Fats Company, Limited Chalcone derivative compounds
CN101906029A (en) * 2010-08-16 2010-12-08 山西医科大学 Flavonoid derivative , preparation method thereof and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328669A1 (en) 1987-07-25 1989-08-23 Nippon Oil And Fats Company, Limited Chalcone derivative compounds
CN101906029A (en) * 2010-08-16 2010-12-08 山西医科大学 Flavonoid derivative , preparation method thereof and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HETEROCYCLES, 2009, Vol. 78, No. 1, pp. 207-212* *
HETEROCYCLES, 2009, Vol. 78, No. 8, pp. 2061-2065* *
Medicinal Chemistry Research, 2018, Vol. 27, No. 6, pp. 1690-1704* *

Also Published As

Publication number Publication date
KR102285493B1 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
EP0370461B1 (en) Chalcone derivatives and process for producing the same
JP4969767B2 (en) Synthesis of cannabinoids
CN109988117B (en) Preparation method of 3-methylquinoxaline-2 (1H) -ketone derivatives
KR102393639B1 (en) Dimethylchalcone derivatives and preparation method thereof
KR102285493B1 (en) Dimethylchalcone derivatives and preparation method thereof
KR102285494B1 (en) Halogen-substituted dimethylchalcone derivatives and preparation method thereof
US20220009899A1 (en) Process and compounds for preparation of cannabinoids
CN113480468B (en) Method for synthesizing isoindigo derivative by visible light catalysis
CN110981720B (en) Diaryl acetate compound and preparation method thereof
EP2368895A1 (en) Ferrocenyl flavonoids
JPS60237039A (en) Benzalacetophenone, its derivative and their production
CN116023357B (en) Method for converting o-hydroxyacetophenone into quaternary carbon center-containing chromanone compound
CN113234083B (en) Tetrahydroquinoline pyran compound and preparation method and application thereof
CN116082217B (en) N-axis chiral bisindole compound and synthesis method thereof
KR100966027B1 (en) The novel preparation method of decursin and decursin analoges
CN111333528B (en) Synthesis method of multi-configuration O-phenyl-serine compound
RU2828128C1 (en) Method for synthesis of fascaplysin and its derivatives
KR102563123B1 (en) Method of manufacturing fisetin or its derivatives
CN100556906C (en) A kind of preparation method of proteinase inhibitor important intermediate
JP2913706B2 (en) Chalcone derivative and method for producing the same
JP3097281B2 (en) Synthesis of benzyl ether of phloroglucin-type phenol
CN117865963A (en) Synthesis method of pyrimidinone derivative and pyrimidinone derivative
CN117886742A (en) Method for preparing pyridine derivative
CN117384233A (en) Process for preparing diterpene lactone compounds
CN117720479A (en) Preparation method of 2-substituted benzothiazole compound

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant