KR20210033858A - 비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법 - Google Patents

비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법 Download PDF

Info

Publication number
KR20210033858A
KR20210033858A KR1020190115695A KR20190115695A KR20210033858A KR 20210033858 A KR20210033858 A KR 20210033858A KR 1020190115695 A KR1020190115695 A KR 1020190115695A KR 20190115695 A KR20190115695 A KR 20190115695A KR 20210033858 A KR20210033858 A KR 20210033858A
Authority
KR
South Korea
Prior art keywords
unit
picture
intra prediction
block
prediction
Prior art date
Application number
KR1020190115695A
Other languages
English (en)
Inventor
이범식
산딥 쉬레스따
Original Assignee
(주)휴맥스
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)휴맥스, 조선대학교산학협력단 filed Critical (주)휴맥스
Priority to KR1020190115695A priority Critical patent/KR20210033858A/ko
Publication of KR20210033858A publication Critical patent/KR20210033858A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

비디오 신호를 인코딩하거나 디코딩하는 비디오 신호 처리 방법 및 장치가 개시된다.

Description

비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법{DERIVATION AND MAPPING METHOD OF SECONDARY TRANSFORM KERNEL ACCORDING TO INTRA PREDICTION IN VIDEO CODEC}
본 발명은 비디오 신호의 처리 방법 및 장치에 관한 것으로, 보다 상세하게는 비디오 신호를 인코딩하거나 디코딩하는 비디오 신호 처리 방법 및 장치에 관한 것이다.
압축 부호화란 디지털화한 정보를 통신 회선을 통해 전송하거나, 저장 매체에 적합한 형태로 저장하기 위한 일련의 신호 처리 기술을 의미한다. 압축 부호화의 대상에는 음성, 영상, 문자 등의 대상이 존재하며, 특히 영상을 대상으로 압축 부호화를 수행하는 기술을 비디오 압축이라고 일컫는다. 비디오 신호에 대한 압축 부호화는 공간적인 상관관계, 시간적인 상관관계, 확률적인 상관관계 등을 고려하여 잉여 정보를 제거함으로써 이루어진다. 그러나 최근의 다양한 미디어 및 데이터 전송 매체의 발전으로 인해, 더욱 고효율의 비디오 신호 처리 방법 및 장치가 요구되고 있다.
본 발명의 실시예에 따르면 비디오 코딩의 부 복호화의 간결화 및 복잡도 감소를 달성할 수 있다.
상기와 같은 과제를 해결하기 위해, 본 발명은 다양한 비디오 신호 처리 장치 및 비디오 신호 처리 방법을 제공한다.
본 발명의 실시예에 따르면 비디오 코딩의 부 복호화의 간결화 및 복잡도 감소를 달성할 수 있다.
도 1은 본 발명의 실시예에 따른 비디오 신호 인코딩 장치의 개략적인 블록도이다.
도 2는 본 발명의 실시예에 따른 비디오 신호 디코딩 장치의 개략적인 블록도이다.
도 3은 픽처 내에서 코딩 트리 유닛이 코딩 유닛들로 분할되는 실시예를 도시한다.
도 4는 쿼드 트리 및 멀티-타입 트리의 분할을 시그널링하는 방법의 일 실시예를 도시한다.
도 5는 본 발명의 실시예에서 인트라 예측 모드에 따른 LFNST의 인덱스 매핑을 나타낸다.
도 6는 본 발명의 실시예에 따른 인트라 예측 모드에 따른 LFNST 인덱스 유도 방법 및 매핑 테이블을 도시한다.
도 7은 본 발며명의 실시에 따른 인트라 예측 모드에 따른 LFNST 인덱스 유도 방법 및 매핑 테이블을 도시한다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
본 명세서에서 일부 용어들은 다음과 같이 해석될 수 있다. 코딩은 경우에 따라 인코딩 또는 디코딩으로 해석될 수 있다. 본 명세서에서 비디오 신호의 인코딩(부호화)을 수행하여 비디오 신호 비트스트림을 생성하는 장치는 인코딩 장치 혹은 인코더로 지칭되며, 비디오 신호 비트스트림의 디코딩(복호화)을 수행하여 비디오 신호를 복원하는 장치는 디코딩 장치 혹은 디코더로 지칭된다. 또한, 본 명세서에서 비디오 신호 처리 장치는 인코더 및 디코더를 모두 포함하는 개념의 용어로 사용된다. 정보(information)는 값(values), 파라미터(parameter), 계수(coefficients), 성분(elements) 등을 모두 포함하는 용어로서, 경우에 따라 의미는 달리 해석될 수 있으므로 본 발명은 이에 한정되지 아니한다. '유닛'은 영상 처리의 기본 단위 또는 픽쳐의 특정 위치를 지칭하는 의미로 사용되며, 루마(luma) 성분과 크로마(chroma) 성분을 모두 포함하는 이미지 영역을 가리킨다. 또한, '블록'은 루마 성분 및 크로마 성분들(즉, Cb 및 Cr) 중 특정 성분을 포함하는 이미지 영역을 가리킨다. 다만, 실시예에 따라서 '유닛', '블록', '파티션' 및 '영역' 등의 용어는 서로 혼용하여 사용될 수 있다. 또한, 본 명세서에서 유닛은 코딩 유닛, 예측 유닛, 변환 유닛을 모두 포함하는 개념으로 사용될 수 있다. 픽쳐는 필드 혹은 프레임을 가리키며, 실시예에 따라 상기 용어들은 서로 혼용하여 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 비디오 신호 인코딩 장치의 개략적인 블록도이다. 도 1을 참조하면, 본 발명의 인코딩 장치(100)는 변환부(110), 양자화부(115), 역양자화부(120), 역변환부(125), 필터링부(130), 예측부(150) 및 엔트로피 코딩부(160)를 포함한다.
변환부(110)는 입력 받은 비디오 신호와 예측부(150)에서 생성된 예측 신호의 차이인 레지듀얼 신호를 변환하여 변환 계수 값을 획득한다. 예를 들어, 이산 코사인 변환(Discrete Cosine Transform, DCT), 이산 사인 변환(Discrete Sine Transform, DST) 또는 웨이블릿 변환(Wavelet Transform) 등이 사용될 수 있다. 이산 코사인 변환 및 이산 사인 변환은 입력된 픽쳐 신호를 블록 형태로 나누어 변환을 수행하게 된다. 변환에 있어서 변환 영역 내의 값들의 분포와 특성에 따라서 코딩 효율이 달라질 수 있다. 양자화부(115)는 변환부(110)에서 출력된 변환 계수 값을 양자화한다.
코딩 효율을 높이기 위하여 픽쳐 신호를 그대로 코딩하는 것이 아니라, 예측부(150)를 통해 이미 코딩된 영역을 이용하여 픽쳐를 예측하고, 예측된 픽쳐에 원본 픽쳐와 예측 픽쳐 간의 레지듀얼 값을 더하여 복원 픽쳐를 획득하는 방법이 사용된다. 인코더와 디코더에서 미스매치가 발생되지 않도록 하기 위해, 인코더에서 예측을 수행할 때에는 디코더에서도 사용 가능한 정보를 사용해야 한다. 이를 위해, 인코더에서는 부호화한 현재 블록을 다시 복원하는 과정을 수행한다. 역양자화부(120)에서는 변환 계수 값을 역양자화하고, 역변환부(125)에서는 역양자화된 변환 계수값을 이용하여 레지듀얼 값을 복원한다. 한편, 필터링부(130)는 복원된 픽쳐의 품질 개선 및 부호화 효율 향상을 위한 필터링 연산을 수행한다. 예를 들어, 디블록킹 필터, 샘플 적응적 오프셋(Sample Adaptive Offset, SAO) 및 적응적 루프 필터 등이 포함될 수 있다. 필터링을 거친 픽쳐는 출력되거나 참조 픽쳐로 이용하기 위하여 복호 픽쳐 버퍼(Decoded Picture Buffer, DPB, 156)에 저장된다.
예측부(150)는 인트라 예측부(152)와 인터 예측부(154)를 포함한다. 인트라 예측부(152)는 현재 픽쳐 내에서 인트라(intra) 예측을 수행하며, 인터 예측부(154)는 복호 픽쳐 버퍼(156)에 저장된 참조 픽쳐를 이용하여 현재 픽쳐를 예측하는 인터(inter) 예측을 수행한다. 인트라 예측부(152)는 현재 픽쳐 내의 복원된 샘플들로부터 인트라 예측을 수행하여, 인트라 부호화 정보를 엔트로피 코딩부(160)에 전달한다. 인트라 부호화 정보는 인트라 예측 모드, MPM(Most Probable Mode) 플래그, MPM 인덱스 중 적어도 하나를 포함할 수 있다. 인터 예측부(154)는 모션 추정부(154a) 및 모션 보상부(154b)를 포함하여 구성될 수 있다. 모션 추정부(154a)는 복원된 참조 픽쳐의 특정 영역을 참조하여 현재 영역의 모션 벡터값을 획득한다. 모션 추정부(154a)는 참조 영역에 대한 모션 정보(참조 픽쳐 인덱스, 모션 벡터 정보 등)를 엔트로피 코딩부(160)로 전달한다. 모션 보상부(154b)는 모션 추정부(154a)에서 전달된 모션 벡터값을 이용하여 모션 보상을 수행한다. 인터 예측부(154)는 참조 영역에 대한 모션 정보를 포함하는 인터 부호화 정보를 엔트로피 코딩부(160)에 전달한다.
위와 같은 픽쳐 예측이 수행될 경우, 변환부(110)는 원본 픽쳐와 예측 픽쳐 간의 레지듀얼 값을 변환하여 변환 계수 값을 획득한다. 이때, 변환은 픽쳐 내에서 특정 블록 단위로 수행될 수 있으며, 특정 블록의 크기는 기 설정된 범위 내에서 가변할 수 있다. 양자화부(115)는 변환부(110)에서 생성된 변환 계수 값을 양자화하여 엔트로피 코딩부(160)로 전달한다.
엔트로피 코딩부(160)는 양자화된 변환 계수, 인트라 부호화 정보, 및 인터 부호화 정보 등을 엔트로피 코딩하여 비디오 신호 비트스트림을 생성한다. 엔트로피 코딩부(160)에서는 가변 길이 코딩(Variable Length Coding, VLC) 방식과 산술 코딩(arithmetic coding) 방식 등이 사용될 수 있다. 가변 길이 코딩(VLC) 방식은 입력되는 심볼들을 연속적인 코드워드로 변환하는데, 코드워드의 길이는 가변적일 수 있다. 예를 들어, 자주 발생하는 심볼들을 짧은 코드워드로, 자주 발생하지 않은 심볼들은 긴 코드워드로 표현하는 것이다. 가변 길이 코딩 방식으로서 컨텍스트 기반 적응형 가변 길이 코딩(Context-based Adaptive Variable Length Coding, CAVLC) 방식이 사용될 수 있다. 산술 코딩은 연속적인 데이터 심볼들을 하나의 소수로 변환하는데, 산술 코딩은 각 심볼을 표현하기 위하여 필요한 최적의 소수 비트를 얻을 수 있다. 산술 코딩으로서 컨텍스트 기반 적응형 산술 부호화(Context-based Adaptive Binary Arithmetic Code, CABAC)가 이용될 수 있다.
상기 생성된 비트스트림은 NAL(Network Abstraction Layer) 유닛을 기본 단위로 캡슐화 된다. NAL 유닛은 부호화된 정수 개의 코딩 트리 유닛(coding tree unit)을 포함한다. 비디오 디코더에서 비트스트림을 복호화하기 위해서는 먼저 비트스트림을 NAL 유닛 단위로 분리한 후, 분리 된 각각의 NAL 유닛을 복호화해야 한다. 한편, 비디오 신호 비트스트림의 복호화를 위해 필요한 정보들은 픽쳐 파라미터 세트(Picture Parameter Set, PPS), 시퀀스 파라미터 세트(Sequence Parameter Set, SPS), 비디오 파라미터 세트(Video Parameter Set, VPS) 등과 같은 상위 레벨 세트의 RBSP(Raw Byte Sequence Payload)를 통해 전송될 수 있다.
한편, 도 1의 블록도는 본 발명의 일 실시예에 따른 인코딩 장치(100)를 나타낸 것으로서, 분리하여 표시된 블록들은 인코딩 장치(100)의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 전술한 인코딩 장치(100)의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 일 실시예에 따르면, 전술한 인코딩 장치(100)의 각 엘리먼트의 동작은 프로세서(미도시)에 의해 수행될 수 있다.
도 2는 본 발명의 일 실시예에 따른 비디오 신호 디코딩 장치(200)의 개략적인 블록도이다. 도 2를 참조하면 본 발명의 디코딩 장치(200)는 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(225), 필터링부(230) 및 예측부(250)를 포함한다.
엔트로피 디코딩부(210)는 비디오 신호 비트스트림을 엔트로피 디코딩하여, 각 영역에 대한 변환 계수, 인트라 부호화 정보, 인터 부호화 정보 등을 추출한다. 역양자화부(220)는 엔트로피 디코딩된 변환 계수를 역양자화하고, 역변환부(225)는 역양자화된 변환 계수를 이용하여 레지듀얼 값을 복원한다. 비디오 신호 처리 장치(200)는 역변환부(225)에서 획득된 레지듀얼 값을 예측부(250)에서 획득된 예측값과 합산하여 원래의 화소값을 복원한다.
한편, 필터링부(230)는 픽쳐에 대한 필터링을 수행하여 화질을 향상시킨다. 여기에는 블록 왜곡 현상을 감소시키기 위한 디블록킹 필터 및/또는 픽쳐 전체의 왜곡 제거를 위한 적응적 루프 필터 등이 포함될 수 있다. 필터링을 거친 픽쳐는 출력되거나 다음 픽쳐에 대한 참조 픽쳐로 이용하기 위하여 복호 픽쳐 버퍼(DPB, 256)에 저장된다.
예측부(250)는 인트라 예측부(252) 및 인터 예측부(254)를 포함한다. 예측부(250)는 전술한 엔트로피 디코딩부(210)를 통해 복호화된 부호화 타입, 각 영역에 대한 변환 계수, 인트라/인터 부호화 정보 등을 활용하여 예측 픽쳐를 생성한다. 복호화가 수행되는 현재 블록을 복원하기 위해서, 현재 블록이 포함된 현재 픽쳐 또는 다른 픽쳐들의 복호화된 영역이 이용될 수 있다. 복원에 현재 픽쳐만을 이용하는, 즉 인트라 예측만을 수행하는 픽쳐(또는, 타일/슬라이스)를 인트라 픽쳐 또는 I 픽쳐(또는, 타일/슬라이스), 인트라 예측과 인터 예측을 모두 수행할 수 있는 픽쳐(또는, 타일/슬라이스)를 인터 픽쳐(또는, 타일/슬라이스)라고 한다. 인터 픽쳐(또는, 타일/슬라이스) 중 각 블록의 샘플값들을 예측하기 위하여 최대 하나의 모션 벡터 및 참조 픽쳐 인덱스를 이용하는 픽쳐(또는, 타일/슬라이스)를 예측 픽쳐(predictive picture) 또는 P 픽쳐(또는, 타일/슬라이스)라고 하며, 최대 두 개의 모션 벡터 및 참조 픽쳐 인덱스를 이용하는 픽쳐(또는, 타일/슬라이스)를 쌍예측 픽쳐(Bi-predictive picture) 또는 B 픽쳐(또는, 타일/슬라이스) 라고 한다. 다시 말해서, P 픽쳐(또는, 타일/슬라이스)는 각 블록을 예측하기 위해 최대 하나의 모션 정보 세트를 이용하고, B 픽쳐(또는, 타일/슬라이스)는 각 블록을 예측하기 위해 최대 두 개의 모션 정보 세트를 이용한다. 여기서, 모션 정보 세트는 하나 이상의 모션 벡터와 하나의 참조 픽쳐 인덱스를 포함한다.
인트라 예측부(252)는 인트라 부호화 정보 및 현재 픽쳐 내의 복원된 샘플들을 이용하여 예측 블록을 생성한다. 전술한 바와 같이, 인트라 부호화 정보는 인트라 예측 모드, MPM(Most Probable Mode) 플래그, MPM 인덱스 중 적어도 하나를 포함할 수 있다. 인트라 예측부(252)는 현재 블록의 좌측 및/또는 상측에 위치한 복원된 픽셀들을 참조 픽셀들로 이용하여 현재 블록의 픽셀값들을 예측한다. 일 실시예에 따르면, 참조 픽셀들은 현재 블록의 좌측 경계에 인접한 픽셀들 및/또는 상측 경계에 인접한 픽셀들일 수 있다. 다른 실시예에 따르면, 참조 픽셀들은 현재 블록의 주변 블록의 픽셀들 중 현재 블록의 좌측 경계로부터 기 설정된 거리 이내에 인접한 픽셀들 및/또는 현재 블록의 상측 경계로부터 기 설정된 거리 이내에 인접한 픽셀들일 수 있다. 이때, 현재 블록의 주변 블록은 현재 블록에 인접한 좌측(L) 블록, 상측(A) 블록, 하좌측(Below Left, BL) 블록, 상우측(Above Right, AR) 블록 또는 상좌측(Above Left, AL) 블록 중 적어도 하나를 포함할 수 있다.
인터 예측부(254)는 복호 픽쳐 버퍼(256)에 저장된 참조 픽쳐 및 인터 부호화 정보를 이용하여 예측 블록을 생성한다. 인터 부호화 정보는 참조 블록에 대한 현재 블록의 모션 정보(참조 픽쳐 인덱스, 모션 벡터 정보 등)을 포함할 수 있다. 인터 예측에는 L0 예측, L1 예측 및 쌍예측(Bi-prediction)이 있을 수 있다. L0 예측은 L0 픽쳐 리스트에 포함된 1개의 참조 픽쳐를 이용한 예측이고, L1 예측은 L1 픽쳐 리스트에 포함된 1개의 참조 픽쳐를 이용한 예측을 의미한다. 이를 위해서는 1세트의 모션 정보(예를 들어, 모션 벡터 및 참조 픽쳐 인덱스)가 필요할 수 있다. 쌍예측 방식에서는 최대 2개의 참조 영역을 이용할 수 있는데, 이 2개의 참조 영역은 동일한 참조 픽쳐에 존재할 수도 있고, 서로 다른 픽쳐에 각각 존재할 수도 있다. 즉, 쌍예측 방식에서는 최대 2세트의 모션 정보(예를 들어, 모션 벡터 및 참조 픽쳐 인덱스)가 이용될 수 있는데, 2개의 모션 벡터가 동일한 참조 픽쳐 인덱스에 대응될 수도 있고 서로 다른 참조 픽쳐 인덱스에 대응될 수도 있다. 이때, 참조 픽쳐들은 시간적으로 현재 픽쳐 이전이나 이후 모두에 표시(또는 출력)될 수 있다.
인터 예측부(254)는 모션 벡터 및 참조 픽쳐 인덱스를 이용하여 현재 블록의 참조 블록을 획득할 수 있다. 상기 참조 블록은 참조 픽쳐 인덱스에 대응하는 참조 픽쳐 내에 존재한다. 또한, 모션 벡터에 의해서 특정된 블록의 픽셀값 또는 이의 보간(interpolation)된 값이 현재 블록의 예측값(predictor)으로 이용될 수 있다. 서브펠(sub-pel) 단위의 픽셀 정확도를 갖는 모션 예측을 위하여 이를 테면, 루마 신호에 대하여 8-탭 보간 필터가, 크로마 신호에 대하여 4-탭 보간 필터가 사용될 수 있다. 다만, 서브펠 단위의 모션 예측을 위한 보간 필터는 이에 한정되지 않는다. 이와 같이 인터 예측부(254)는 이전에 복원된 픽쳐로부터 현재 유닛의 텍스쳐를 모션 정보를 이용하여 예측하는 모션 보상(motion compensation)을 수행한다.
상기 인트라 예측부(252) 또는 인터 예측부(254)로부터 출력된 예측값, 및 역변환부(225)로부터 출력된 레지듀얼 값이 더해져서 복원된 비디오 픽쳐가 생성된다. 즉, 비디오 신호 디코딩 장치(200)는 예측부(250)에서 생성된 예측 블록과 역변환부(225)로부터 획득된 레지듀얼을 이용하여 현재 블록을 복원한다.
한편, 도 2의 블록도는 본 발명의 일 실시예에 따른 디코딩 장치(200)를 나타낸 것으로서, 분리하여 표시된 블록들은 디코딩 장치(200)의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 전술한 디코딩 장치(200)의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 일 실시예에 따르면, 전술한 디코딩 장치(200)의 각 엘리먼트의 동작은 프로세서(미도시)에 의해 수행될 수 있다.
도 3은 픽쳐 내에서 코딩 트리 유닛(Coding Tree Unit, CTU)이 코딩 유닛들(Coding Units, CUs)로 분할되는 실시예를 도시한다. 비디오 신호의 코딩 과정에서, 픽쳐는 코딩 트리 유닛(CTU)들의 시퀀스로 분할될 수 있다. 코딩 트리 유닛은 루마(luma) 샘플들의 NXN 블록과, 이에 대응하는 크로마(chroma) 샘플들의 2개의 블록들로 구성된다. 코딩 트리 유닛은 복수의 코딩 유닛들로 분할될 수 있다. 코딩 유닛은 상기에서 설명한 비디오 신호의 처리 과정, 즉 인트라/인터 예측, 변환, 양자화 및/또는 엔트로피 코딩 등의 과정에서 픽쳐를 처리하기 위한 기본 단위를 가리킨다. 하나의 픽쳐 내에서 코딩 유닛의 크기 및 모양은 일정하지 않을 수 있다. 코딩 유닛은 정사각형 혹은 직사각형의 모양을 가질 수 있다. 직사각형 코딩 유닛(혹은, 직사각형 블록)은 수직 코딩 유닛(혹은, 수직 블록)과 수평 코딩 유닛(혹은, 수평 블록)을 포함한다. 본 명세서에서, 수직 블록은 높이가 너비보다 큰 블록이며, 수평 블록은 너비가 높이보다 큰 블록이다. 또한, 본 명세서에서 정사각형이 아닌(non-square) 블록은 직사각형 블록을 가리킬 수 있지만, 본 발명은 이에 한정되지 않는다.
도 3을 참조하면, 코딩 트리 유닛은 먼저 쿼드 트리(Quad Tree, QT) 구조로 분할된다. 즉, 쿼드 트리 구조에서 2NX2N 크기를 가지는 하나의 노드는 NXN 크기를 가지는 네 개의 노드들로 분할될 수 있다. 본 명세서에서 쿼드 트리는 4진(quaternary) 트리로도 지칭될 수 있다. 쿼드 트리 분할은 재귀적으로 수행될 수 있으며, 모든 노드들이 동일한 깊이로 분할될 필요는 없다.
한편, 전술한 쿼드 트리의 리프 노드(leaf node)는 멀티-타입 트리(Multi-Type Tree, MTT) 구조로 더욱 분할될 수 있다. 본 발명의 실시예에 따르면, 멀티 타입 트리 구조에서는 하나의 노드가 수평 혹은 수직 분할의 2진(binary, 바이너리) 혹은 3진(ternary, 터너리) 트리 구조로 분할될 수 있다. 즉, 멀티-타입 트리 구조에는 수직 바이너리 분할, 수평 바이너리 분할, 수직 터너리 분할 및 수평 터너리 분할의 4가지 분할 구조가 존재한다. 본 발명의 실시예에 따르면, 상기 각 트리 구조에서 노드의 너비 및 높이는 모두 2의 거듭제곱 값을 가질 수 있다. 예를 들어, 바이너리 트리(Binary Tree, BT) 구조에서, 2NX2N 크기의 노드는 수직 바이너리 분할에 의해 2개의 NX2N 노드들로 분할되고, 수평 바이너리 분할에 의해 2개의 2NXN 노드들로 분할될 수 있다. 또한, 터너리 트리(Ternary Tree, TT) 구조에서, 2NX2N 크기의 노드는 수직 터너리 분할에 의해 (N/2)X2N, NX2N 및 (N/2)X2N의 노드들로 분할되고, 수평 바이너리 분할에 의해 2NX(N/2), 2NXN 및 2NX(N/2)의 노드들로 분할될 수 있다. 이러한 멀티-타입 트리 분할은 재귀적으로 수행될 수 있다.
멀티-타입 트리의 리프 노드는 코딩 유닛이 될 수 있다. 코딩 유닛이 최대 변환 길이에 비해 너무 크지 않으면, 해당 코딩 유닛은 더 이상의 분할 없이 예측 및 변환의 단위로 사용된다. 한편, 전술한 쿼드 트리 및 멀티-타입 트리에서 다음의 파라메터들 중 적어도 하나가 사전에 정의되거나 PPS, SPS, VPS 등과 같은 상위 레벨 세트의 RBSP를 통해 전송될 수 있다. 1) CTU 크기: 쿼드 트리의 루트 노드(root node) 크기, 2) 최소 QT 크기(MinQtSize): 허용된 최소 QT 리프 노드 크기, 3) 최대 BT 크기(MaxBtSize): 허용된 최대 BT 루트 노드 크기, 4) 최대 TT 크기(MaxTtSize): 허용된 최대 TT 루트 노드 크기, 5) 최대 MTT 깊이(MaxMttDepth): QT의 리프 노드로부터의 MTT 분할의 최대 허용 깊이, 6) 최소 BT 크기(MinBtSize): 허용된 최소 BT 리프 노드 크기, 7) 최소 TT 크기(MinTtSize): 허용된 최소 TT 리프 노드 크기.
도 4는 쿼드 트리 및 멀티-타입 트리의 분할을 시그널링하는 방법의 일 실시예를 도시한다. 전술한 쿼드 트리 및 멀티-타입 트리의 분할을 시그널링하기 위해 기 설정된 플래그들이 사용될 수 있다. 도 4를 참조하면, 쿼드 트리 노드의 분할 여부를 지시하는 플래그 'qt_split_flag', 멀티-타입 트리 노드의 분할 여부를 지시하는 플래그 'mtt_split_flag', 멀티-타입 트리 노드의 분할 방향을 지시하는 플래그 'mtt_split_vertical_flag' 또는 멀티-타입 트리 노드의 분할 모양을 지시하는 플래그 'mtt_split_binary_flag' 중 적어도 하나가 사용될 수 있다.
본 발명의 실시예에 따르면, 코딩 트리 유닛은 쿼드 트리의 루트 노드이며, 쿼드 트리 구조로 우선 분할될 수 있다. 쿼드 트리 구조에서는 각각의 노드 'QT_node' 별로 'qt_split_flag'가 시그널링된다. 'qt_split_flag'의 값이 1일 경우 해당 노드는 4개의 정사각형 노드들로 분할되며, 'qt_split_flag'의 값이 0일 경우 해당 노드는 쿼드 트리의 리프 노드 'QT_leaf_node'가 된다.
각각의 쿼드 트리 리프 노드 'QT_leaf_node'는 멀티-타입 트리 구조로 더 분할될 수 있다. 멀티-타입 트리 구조에서는 각각의 노드 'MTT_node' 별로 'mtt_split_flag'가 시그널링된다. 'mtt_split_flag'의 값이 1일 경우 해당 노드는 복수의 직사각형 노드들로 분할되며, 'mtt_split_flag'의 값이 0일 경우 해당 노드는 멀티-타입 트리의 리프 노드 'MTT_leaf_node'가 된다. 멀티-타입 트리 노드 'MTT_node'가 복수의 직사각형 노드들로 분할될 경우(즉, 'mtt_split_flag'의 값이 1일 경우), 노드 'MTT_node'를 위한 'mtt_split_vertical_flag' 및 'mtt_split_binary_flag'가 추가로 시그널링될 수 있다. 'mtt_split_vertical_flag'의 값이 1일 경우 노드 'MTT_node'의 수직 분할이 지시되며, 'mtt_split_vertical_flag'의 값이 0일 경우 노드 'MTT_node'의 수평 분할이 지시된다. 또한, 'mtt_split_binary_flag'의 값이 1일 경우 노드 'MTT_node'는 2개의 직사각형 노드들로 분할되며, 'mtt_split_binary_flag'의 값이 0일 경우 노드 'MTT_node'는 3개의 직사각형 노드들로 분할된다.
본 발명은 비디오 코덱에서 인트라 예측 모드와 인트라 예측 방법으로 생성된 잔차 신호에 대해 적용하는 저주파수 비분리형 이차 변환 (Low Frequency Non-separable Secondary Transform, LFNST) 사이의 매핑에 관한 것이다. 화면 내 예측 방법은 기존의 일반적인 화면 내 예측 방법뿐 만 아니라, 행렬 기반 인트라 예측 (Matrix-based Intra Prediction)과 광각 인트라 예측 방법 (Wide Angle Intra Prediction, WAIP)를 포함한다.
WAIP는 광각 인트라 예측 방법으로, 기존 인트라 예측 방법의 각도가 좁아 예측의 정확도가 제한적인 블록에 대해 화면 내 예측을 보다 넓은 각으로 적용하여 보다 정확한 예측 성능을 얻기 위하여 적용된다. WAIP의 화면 내 예측 인덱스는 -14~-2 그리고 67~80번에 해당된다. 0은 Planar, 1은 DC, 2~66은 광각이 아닌 일반 방향성 인트라 예측 모드를 나타낸다.
LFNST는 2차 변환 기법으로서 화면 내 예측 신호의 모드에 따라 LFNST 커널 적용을 달리한다. 예측 방법을 통해 얻은 잔차 신호에 DCT-2, DST-7 등 주변환을 통해 얻은 변환 계수에 대해 저주파 영역에 대하여 이미 정의된 2차 변환 커널을 적용하여 보다 높은 압축 성능을 얻고자 2차 변환 방법이다. LFNST는 오프라인에서 학습을 통해 얻은 변환 커널로서 화면 내 예측 모드와 2차 변환이 적용되는 블록의 크기에 따라 다르게 정의되어 적용된다. 즉, LFNST커널에 대한 인덱스는 0~3까지 정의되면 각 인덱스는 인트라 예측모드에 따라 매핑되며 각 인덱스에, 총 2개의 LFNST 커널이 정의되어 적용된다. 인트라 예측모드에 따라 매핑되는 LFNST 인덱스는 도 1과 표 1과 같이 정의된다.
Figure pat00001
도 1. 인트라 예측 모드에 따른 LFNST의 인덱스 매핑
인트라 예측 모드에 따른 LFNST의 인덱스 매핑 테이블
predModeIntra lfnstTrSetIdx
0 <= predModeIntra <= 1 0
2 <= predModeIntra <= 12 1
13 <= predModeIntra <= 23 2
24 <= predModeIntra <= 44 3
45 <= predModeIntra <= 55 2
56 <= predModeIntra <= 80 1
표 1에서 WAIP 모드는 LFNST 인덱스(lfnstTrSetIdx) 1로 매핑된다. 그러나 표 1과 같이 정의된 LFNST 인덱스 테이블은 MIP와 WAIP를 모두 한 매핑 테이블에 정의하여 테이블이 방대하고 메모리에 저장 시 불필요한 데이터로 인해 낭비할 수 있으므로 매핑 테이블을 간소화하고 인트라 모드에 따른 LFNST 인덱스 유도를 간소화할 필요가 있다.
본 발명에서는 인트라 블록 모드에서 MIP와 WAIP 모드를 고려한 새로운 LFNST 인덱스 유도 방법과 테이블을 제안한다. 본 발명에서는 MIP와 WAIP 모드를 LFNST 인덱스로 매핑하는 것을 매핑 테이블에 저장하지 않고, 현재 블록을 MIP 또는 WAIP 모드 시, 바로 LFNST 인덱스 0 또는 1로 결정하고, Planar, DC 또는 일반 방향성 모드 일 때 만 매핑 테이블을 통해 LFNST 인덱스를 결정한다.
Figure pat00002
도 5. 실시예 1: 제안하는 인트라 예측 모드에 따른 LFNST 인덱스 유도 방법 및 매핑 테이블
Figure pat00003
도 6. 실시예 2: 제안하는 인트라 예측 모드에 따른 LFNST 인덱스 유도 방법 및 매핑 테이블
도 5와 도 6에서 보는 것 처럼, 현재 블록이 MIP블록일 때 현재 블록은 Planar 모드로 매핑 후, 이에 해당하는 LFNST 인덱스 0 으로 바로 결정한다. 또한 현재 블록이 WAIP 모드 일 때는 바로 바로 LFNST 인덱스 1로 결정한다. 현재 블록이 MIP와 WAIP가 아닐 때는 표 2의 매핑 테이블을 이용하여 LFNST 인덱스를 결정한다.
제안하는 인트라 예측 모드에 따른 LFNST의 인덱스 매핑 테이블
predModeIntra lfnstTrSetIdx
0 <= predModeIntra <= 1 0
2 <= predModeIntra <= 12 1
13 <= predModeIntra <= 23 2
24 <= predModeIntra <= 44 3
45 <= predModeIntra <= 55 2
56 <= predModeIntra <= 66 1
표 2에서처럼 제안하는 매핑 테이블에는 WAIP와 MIP에 해당하는 모드에 대한 매핑이 정의되어 있지 않고 도 2와 같은 방법으로 유도한다. 표 2에서는 WAIP에 해당하는 predModeIntra 67 - predModeIntra 80 번의 매핑 정보를 저장하지 않기 때문에 저장해야 할 매핑 테이블의 정보량의 감소하고, WAIP의 음수에 해당하는 매핑 정보까지도 저장할 필요가 없으므로 총 28 bytes의 저장 공간을 절약할 수 있다. 표 2와 같이 정의된 매핑 테이블은 아래와 같은 배열로서 구현할 수 있다.
lfnstLutTable[NUM_LUMA_MODE]={
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
여기서 NUM_LUMA_MODE은 67로 정의한다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 프로세서의 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 프로세서와 데이터를 주고받을 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예 들은 모든 면에서 예시적인 것이며 한정적인 것이 아는 것으로 해석해야 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (1)

  1. 비디오 신호의 처리 방법.
KR1020190115695A 2019-09-19 2019-09-19 비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법 KR20210033858A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190115695A KR20210033858A (ko) 2019-09-19 2019-09-19 비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190115695A KR20210033858A (ko) 2019-09-19 2019-09-19 비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법

Publications (1)

Publication Number Publication Date
KR20210033858A true KR20210033858A (ko) 2021-03-29

Family

ID=75250186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190115695A KR20210033858A (ko) 2019-09-19 2019-09-19 비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법

Country Status (1)

Country Link
KR (1) KR20210033858A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220528A1 (ko) * 2021-04-12 2022-10-20 엘지전자 주식회사 영상 코딩 방법 및 그 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220528A1 (ko) * 2021-04-12 2022-10-20 엘지전자 주식회사 영상 코딩 방법 및 그 장치

Similar Documents

Publication Publication Date Title
KR20230043814A (ko) 비디오 신호 처리 방법 및 장치
EP4002848A1 (en) Video signal processing method and device
US11863760B2 (en) Video signal processing method and device
US11949916B2 (en) Method and apparatus for encoding and decoding video signals using multiple transform kernels
US11616984B2 (en) Video signal processing method and device using secondary transform
WO2013063117A1 (en) Determining boundary strength values for deblocking filtering for video coding
EP3985970A1 (en) Video signal processing method and device using block dpcm prediction method
US11870995B2 (en) Method and device for processing video signal by using cross-component linear model
KR20210054011A (ko) 예측 모드를 시그널링하는 비디오 신호 처리 방법 및 장치
KR20200057991A (ko) 비디오 신호를 위한 dst-7, dct-8 변환 커널 생성 유도 방법 및 장치
KR20210033858A (ko) 비디오 코덱에서 인트라 예측에 따른 이차 변환 커널의 유도 및 매핑 방법
US11979554B2 (en) Intra prediction-based video signal processing method and device
KR20210035602A (ko) 비디오 코덱에서 행렬 변환 기반 인트라 예측에 따른 2차 변환 적용 방법
KR20210036479A (ko) 비디오 코덱에서 행렬 변환 기반 예측 조건에 따른 2차 변환 블록 크기 제한 방법
KR20210035413A (ko) 비디오 코덱에서 행렬 기반 인트라 예측에 따른 명시적 주변환 커널 적용 방법
KR20210034790A (ko) 비디오 코덱에서 이차 변환 부호화 방법
US20210377519A1 (en) Intra prediction-based video signal processing method and device
KR20220055101A (ko) 비디오 코덱에서 인루프 필터의 적용 방법
KR20210000829A (ko) 비디오 코덱에서 화면 내 예측 방법
KR20220055105A (ko) 비디오 코덱에서 신경망 네트워트를 이용한 필터 적용 방법
KR20200096385A (ko) 코딩블록과 변환 블록 간 화면내 예측 모드를 통합 사용하는 비디오 신호 처리 방법 및 장치
KR20210000828A (ko) 비디오 코덱에서 2차 변환 계수의 생성 방법
KR20200055562A (ko) 비디오 신호 처리 방법 및 장치
KR20200054052A (ko) 화면내 블록 복사를 사용하는 비디오 신호 처리 방법 및 장치
KR20200084274A (ko) 비디오 코덱을 위한 저복잡도 dst-7 변환 커널 생성 유도 방법