KR20210033206A - High concentration of magma seawater mineral concentrated water - Google Patents
High concentration of magma seawater mineral concentrated water Download PDFInfo
- Publication number
- KR20210033206A KR20210033206A KR1020190114659A KR20190114659A KR20210033206A KR 20210033206 A KR20210033206 A KR 20210033206A KR 1020190114659 A KR1020190114659 A KR 1020190114659A KR 20190114659 A KR20190114659 A KR 20190114659A KR 20210033206 A KR20210033206 A KR 20210033206A
- Authority
- KR
- South Korea
- Prior art keywords
- lava seawater
- water
- citric acid
- concentrated water
- electrical conductivity
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 30000uS/cm 이상의 전기전도도에서도 미네랄이 석출되지 않는 용암해수 고농도 미네랄 농축수에 관한 것이다. The present invention relates to a high concentration mineral enriched lava seawater in which minerals are not precipitated even with an electrical conductivity of 30000uS/cm or more.
용암해수는 바닷물이 화산 암반층에 의해 자연 여과되어 육지의 지하로 스며든 물로서 오염물질 및 유해세균을 함유하지 않으면서 칼슘(Ca), 아연(Zn) 등 다양한 미네랄성분을 포함하고 있으며, 담수화 과정을 통한 천연 미네랄 원료원으로 유용하게 사용되고 있다. Lava seawater is water naturally filtered by the volcanic bedrock and soaked into the basement of the land. It does not contain pollutants and harmful bacteria, and contains various minerals such as calcium (Ca) and zinc (Zn). It is usefully used as a raw material source of natural minerals.
다만, 사람이 용암해수의 미네랄을 충분히 섭취하기 위해서는 상기 용암해수를 농축시킬 필요가 있다. 그러나, 상기 용암해수를 농축시키는 과정에서 상기 미네랄이 용해 상태로 존재하지 않고 석출되는 현상이 발생한다. 따라서, 일정 농도 이상의 미네랄 농축수를 만들기 어려웠다. 결과적으로, 많은 양의 용암해수를 마시지 않는 한 사람이 충분한 미네랄을 섭취하기 어려웠다. However, in order for a person to sufficiently consume the minerals of lava seawater, it is necessary to concentrate the lava seawater. However, in the process of concentrating the lava seawater, the mineral does not exist in a dissolved state and is precipitated. Therefore, it was difficult to make concentrated mineral water above a certain concentration. As a result, it was difficult for a person to consume enough minerals unless they drink a large amount of lava seawater.
본 발명은 30000uS/cm 이상의 전기전도도에서도 미네랄이 석출되지 않고 용해 상태를 유지하는 용암해수 고농도 미네랄 농축수를 제공하는 것이다.The present invention is to provide a high-concentration mineral concentrated water of lava seawater that maintains a dissolved state without depositing minerals even with an electrical conductivity of 30000uS/cm or more.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 용암해수 미네랄 농축수는 용암해수 탈염수에 구연산 무수물을 첨가함에 의해 제조되되, 상기 구연산 무수물은 상기 용암해수 탈염수 1톤 기준으로 0.13㎏ 내지 0.65㎏의 범위 내에서 첨가된다. In order to achieve the above object, the lava seawater mineral enriched water according to an embodiment of the present invention is prepared by adding citric acid anhydride to the lava seawater demineralized water, and the citric acid anhydride is 0.13 based on 1 ton of the lava seawater demineralized water. It is added within the range of kg to 0.65 kg.
본 발명에 따른 용암해수 고농도 미네랄 농축수는 용암해수 탈염수에 구연산 무수물을 첨가한 후 농축시키므로, 30000uS/cm 이상의 전기전도도에서도 미네랄이 석출되지 않고 용해 상태를 유지할 수 있다. 결과적으로, 더 높은 농도의 용암해수 미네랄 농축수의 제조가 가능하다. Since the lava seawater high-concentration mineral enriched water according to the present invention is concentrated after adding citric anhydride to the lava seawater demineralized water, minerals are not precipitated and the dissolved state can be maintained even at an electrical conductivity of 30000 uS/cm or more. As a result, it is possible to prepare a higher concentration of lava seawater mineral concentrated water.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. Singular expressions used in the present specification include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as “consisting of” or “comprising” should not be construed as necessarily including all of the various elements or various steps described in the specification, and some of the elements or some steps It may not be included, or it should be interpreted that it may further include additional components or steps.
본 발명은 30000uS/cm 이상의 전기전도도에도 미네랄이 석출되지 않고 용해된 상태를 유지하는 고농도 미네랄 농축수 및 이를 제조하는 방법에 관한 것이다. The present invention relates to a high-concentration mineral concentrated water that maintains a dissolved state without precipitation of minerals even with an electrical conductivity of 30000 uS/cm or more, and a method of manufacturing the same.
용암해수 탈염수를 가열하여 농축수를 생성하면 농축수의 전기전도도가 높아지게 되며, 전기전도도가 30000uS/cm 이상 높아지면 미네랄이 용해된 상태로 존재하지 않고 석출되는 현상이 발생한다. When the concentrated water is generated by heating the demineralized lava water, the electrical conductivity of the concentrated water increases, and when the electrical conductivity is higher than 30000 uS/cm, the mineral does not exist in a dissolved state and precipitates.
따라서, 본 발명은 미네랄 농축수를 만들때 전기전도도가 30000uS/cm 이상 높아지더라도 미네랄을 용해된 상태로 유지할 수 있도록 용암해수 탈염수에 구연산(citric acid) 무수물을 첨가한다. 이 경우, 농축수를 만드는 과정에서 전기전도도가 30000uS/cm 이상 높아지더라도 상기 농축수가 미네랄을 계속적으로 포함하고 있게 된다. 결과적으로, 본 발명은 더 높은 농도의 미네랄 농축수를 만들 수 있다. Accordingly, in the present invention, citric acid anhydride is added to the demineralized water of lava seawater so that the mineral can be maintained in a dissolved state even if the electrical conductivity is increased by 30000 uS/cm or more when making mineral concentrated water. In this case, the concentrated water continues to contain minerals even if the electrical conductivity increases by 30000 uS/cm or more in the process of making the concentrated water. As a result, the present invention can make a higher concentration of mineral concentrated water.
전기전도도가 30000uS/cm 이상 높아지더라도 미네랄이 석출되지 않는 이유는 구연산과 미네랄이 매우 용해도가 높은 킬레이드 구조를 형성함으로써 용액 속 미네랄 이온의 정전기적 힘이 안정화되면서 미네랄 농도가 높아져도 서로 응집하지 않기 때문이다. The reason that minerals do not precipitate even if the electrical conductivity is higher than 30000uS/cm is that citric acid and minerals form a highly soluble chelaid structure, thereby stabilizing the electrostatic force of mineral ions in the solution and not coagulating with each other even when the mineral concentration increases. Because.
일 실시예에 따르면, 용암해수 탈염수 1톤 기준으로 상기 구연산 무수물은 0.13㎏ 내지 0.65㎏의 범위 내에서 첨가될 수 있다. According to an embodiment, the citric acid anhydride may be added within the range of 0.13 kg to 0.65 kg based on 1 ton of lava seawater demineralized water.
상기 구연산 무수물이 0.65㎏를 초과하면, 구연산과 미네랄이 구연산-미네랄 킬레이드를 형성하는게 아니라 점점 용해도가 낮은 구연산염을 형성하기 때문에 미네랄이 석출되는 현상이 발생한다. When the citric acid anhydride exceeds 0.65 kg, citric acid and minerals do not form citric acid-mineral chelates, but gradually form citrates with low solubility, so that minerals are precipitated.
이하, 본 발명의 고농도 미네랄 농축수의 실험예 및 제조 과정을 살펴보겠다. Hereinafter, an experimental example and a manufacturing process of the high-concentration mineral concentrated water of the present invention will be described.
실시예 1Example 1
전기 투석으로 탈염처리를 한 용암해수 탈염수 1톤을 증발농축기에 넣는다. 탈염수가 들어있는 증발농축기에 구연산 무수물 0.65Kg을 첨가한 후 교반하면서 60도로 가열한다. 탈염수의 온도가 60도에 도달하면 진공펌프를 가동하여 농축기 내부를 -76cmHg로 감압을 하면서 농축한다. 증발농축기 내부의 탈염수의 전기전도도가 70000uS/cm 될 때까지 농축을 진행한다. 농축이 완료되면 농축된 탈염수 양을 재고, 미네랄 함량을 분석한다.1 ton of demineralized lava seawater desalted by electrodialysis is placed in the evaporation concentrator. After adding 0.65Kg of citric acid anhydride to the evaporation concentrator containing demineralized water, it is heated to 60 degrees while stirring. When the temperature of the demineralized water reaches 60 degrees, the vacuum pump is operated and the inside of the concentrator is reduced to -76 cmHg while concentrating. Concentration is performed until the electrical conductivity of the demineralized water inside the evaporative concentrator becomes 70000uS/cm. When concentration is complete, the amount of concentrated demineralized water is measured and the mineral content is analyzed.
비교예1Comparative Example 1
전기 투석으로 탈염처리를 한 용암해수 탈염수 1톤을 증발농축기에 넣고 교반하면서 60도로 가열한다. 탈염수의 온도가 60도에 도달하면 진공펌프를 가동하여 농축기 내부를 -76cmHg로 감압을 하면서 농축한다. 증발농축기 내부의 탈염수에서 미네랄이 석출될 때까지 농축을 진행한다. 농축이 완료되면 농축된 탈염수 양을 재고, 전기전도도와 미네랄 함량을 분석한다.1 ton of demineralized lava seawater desalted by electrodialysis is placed in an evaporation concentrator and heated to 60 degrees while stirring. When the temperature of the demineralized water reaches 60 degrees, the vacuum pump is operated and the inside of the concentrator is reduced to -76 cmHg while concentrating. Concentration is performed until minerals are precipitated in the demineralized water inside the evaporation concentrator. When concentration is complete, the amount of concentrated demineralized water is measured and the electrical conductivity and mineral content are analyzed.
비교예2Comparative Example 2
전기 투석으로 탈염처리를 한 용암해수 탈염수 1톤을 증발농축기에 넣는다. 탈염수가 들어있는 증발농축기에 구연산 무수물 6.5Kg을 첨가한 후 교반하면서 60도로 가열한다. 탈염수의 온도가 60도에 도달하면 진공펌프를 가동하여 농축기 내부를 -76cmHg로 감압을 하면서 농축한다. 증발농축기 내부의 탈염수의 전기전도도가 70000uS/cm 될 때까지 농축을 진행한다. 농축이 완료되면 농축된 탈염수 양을 재고, 미네랄 함량을 분석한다.1 ton of demineralized lava seawater desalted by electrodialysis is placed in the evaporation concentrator. After adding 6.5 kg of citric acid anhydride to the evaporation concentrator containing demineralized water, it is heated to 60 degrees while stirring. When the temperature of the demineralized water reaches 60 degrees, the vacuum pump is operated and the inside of the concentrator is reduced to -76 cmHg while concentrating. Concentration is performed until the electrical conductivity of the demineralized water inside the evaporative concentrator becomes 70000uS/cm. When concentration is complete, the amount of concentrated demineralized water is measured and the mineral content is analyzed.
실시예 2Example 2
전기 투석으로 탈염처리를 한 용암해수 탈염수 1톤을 증발농축기에 넣는다. 탈염수가 들어있는 증발농축기에 구연산 무수물 0.39Kg을 첨가한 후 교반하면서 60도로 가열한다. 탈염수의 온도가 60도에 도달하면 진공펌프를 가동하여 농축기 내부를 -76cmHg로 감압을 하면서 농축한다. 증발농축기 내부의 탈염수의 전기전도도가 60000uS/cm 될 때까지 농축을 진행한다. 농축이 완료되면 농축된 탈염수 양을 재고, 전기전도도와 미네랄 함량을 분석한다.1 ton of demineralized lava seawater desalted by electrodialysis is placed in the evaporation concentrator. After adding 0.39Kg of citric acid anhydride to the evaporation concentrator containing demineralized water, it is heated to 60 degrees while stirring. When the temperature of the demineralized water reaches 60 degrees, the vacuum pump is operated and the inside of the concentrator is reduced to -76 cmHg while concentrating. Concentration is performed until the electrical conductivity of the demineralized water inside the evaporation concentrator becomes 60000uS/cm. When concentration is complete, the amount of concentrated demineralized water is measured and the electrical conductivity and mineral content are analyzed.
실시예 3Example 3
전기 투석으로 탈염처리를 한 용암해수 탈염수 1톤을 증발농축기에 넣는다. 탈염수가 들어있는 증발농축기에 구연산 무수물 0.13Kg을 첨가한 후 교반하면서 60도로 가열한다. 탈염수의 온도가 60도에 도달하면 진공펌프를 가동하여 농축기 내부를 -76cmHg로 감압을 하면서 농축한다. 증발농축기 내부의 탈염수의 전기전도도가 50000uS/cm 될 때까지 농축을 진행한다. 농축이 완료되면 농축된 탈염수 양을 재고, 전기전도도와 미네랄 함량을 분석한다.1 ton of demineralized lava seawater desalted by electrodialysis is placed in the evaporation concentrator. After adding 0.13Kg of citric acid anhydride to the evaporation concentrator containing demineralized water, the mixture is heated to 60 degrees while stirring. When the temperature of the demineralized water reaches 60 degrees, the vacuum pump is operated and the inside of the concentrator is reduced to -76 cmHg while concentrating. Concentration is performed until the electrical conductivity of the demineralized water inside the evaporation concentrator becomes 50000uS/cm. When concentration is complete, the amount of concentrated demineralized water is measured and the electrical conductivity and mineral content are analyzed.
실시예와 비교예의 실험 결과표는 하기 표 1과 같다. Tables of experimental results of Examples and Comparative Examples are shown in Table 1 below.
구연산 무수물을 첨가하지 않고 용암해수 탈염수를 농축시킬 경우에는, 비교예1에서 보여지는 바와 같이 약 30000uS/cm의 전기전도도에서부터 탈염수에 용해되어 있던 미네랄이 석출되는 현상이 발생한다. In the case of concentrating lava seawater demineralized water without adding citric acid anhydride, a phenomenon in which minerals dissolved in demineralized water are precipitated occurs from an electrical conductivity of about 30000 uS/cm as shown in Comparative Example 1.
반면에, 구연산 무수물을 첨가한 실시예들에서는 30000uS/cm 이상의 전기전도도에서도 미네랄이 석출되지 않음을 확인할 수 있다. 이것은 구연산과 미네랄이 킬레이드 구조를 형성하였기 때문이다. On the other hand, in the examples to which citric acid anhydride was added, it can be seen that minerals were not precipitated even at an electrical conductivity of 30000 uS/cm or more. This is because citric acid and minerals formed a chelated structure.
다만, 구연산 무수물이 0.65㎏를 초과하면, 비교예2에서 보여지는 바와 같이 소정 전기전도도 이상(예를 들어 약 63000uS/cm의 전기전도도 이상)에서는 미네랄이 다시 석출된다. 이는 미네랄과 구연산이 용해도가 낮은 구연산염을 형성하기 때문이다. However, when citric acid anhydride exceeds 0.65 kg, minerals are precipitated again at a predetermined electrical conductivity or higher (for example, an electrical conductivity of about 63000 uS/cm or higher) as shown in Comparative Example 2. This is because minerals and citric acid form citrates with low solubility.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다. The above-described embodiments of the present invention are disclosed for the purpose of illustration, and those skilled in the art who have ordinary knowledge of the present invention will be able to make various modifications, changes, and additions within the spirit and scope of the present invention, and such modifications, changes and additions It should be seen as falling within the scope of the following claims.
Claims (3)
상기 구연산 무수물은 상기 용암해수 탈염수 1톤 기준으로 0.13㎏ 내지 0.65㎏의 범위 내에서 첨가되는 것을 특징으로 하는 용암해수 미네랄 농축수. It is prepared by adding citric anhydride to demineralized lava seawater,
The citric acid anhydride is lava seawater mineral concentrated water, characterized in that added within the range of 0.13kg to 0.65kg based on 1 ton of the lava seawater demineralized water.
The method of claim 1, wherein the lava seawater mineral enriched water is heated to 60 degrees while stirring after adding 1 ton of demineralized lava seawater desalted by electrodialysis into an evaporation concentrator, adding citric acid anhydride, and stirring. Lava seawater mineral concentrated water, characterized in that produced by concentrating while decompressing the inside of the concentrator to -76cmHg by operating a vacuum pump when the temperature reaches 60 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190114659A KR20210033206A (en) | 2019-09-18 | 2019-09-18 | High concentration of magma seawater mineral concentrated water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190114659A KR20210033206A (en) | 2019-09-18 | 2019-09-18 | High concentration of magma seawater mineral concentrated water |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210033206A true KR20210033206A (en) | 2021-03-26 |
Family
ID=75259308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190114659A KR20210033206A (en) | 2019-09-18 | 2019-09-18 | High concentration of magma seawater mineral concentrated water |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20210033206A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101689059B1 (en) | 2014-06-13 | 2016-12-22 | 한국해양과학기술원 | Removal of anions and conversion technology of carbonate ions from seawater |
-
2019
- 2019-09-18 KR KR1020190114659A patent/KR20210033206A/en active Search and Examination
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101689059B1 (en) | 2014-06-13 | 2016-12-22 | 한국해양과학기술원 | Removal of anions and conversion technology of carbonate ions from seawater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69937224D1 (en) | PROCESS FOR PRODUCING HIGH-PURITY RUTHENIUM SPUTTER TARGET | |
KR101639848B1 (en) | The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system | |
CN104163519B (en) | The process for purification of effluent brine in a kind of glyphosate production | |
KR20200029809A (en) | Manufacturing method of lithium compound | |
CN112850867B (en) | Deep defluorination medicament and preparation method thereof | |
JP2004065196A5 (en) | ||
KR20160004063A (en) | Removal system of sulfate in seawater using ion exchange resin | |
KR101689059B1 (en) | Removal of anions and conversion technology of carbonate ions from seawater | |
CN112194282A (en) | Method for chemically removing chloride ions | |
KR20170024523A (en) | Method of producing gypsum and method of producing cement composition | |
KR20210033206A (en) | High concentration of magma seawater mineral concentrated water | |
CN109231387B (en) | Straw/polyaluminium chloride composite water treatment material and preparation method thereof | |
CN105037584B (en) | A kind of method that heparan is separated in the useless albumen from heparin byproduct | |
CN117362520A (en) | Flocculant for sewage treatment and preparation method thereof | |
CN106587112B (en) | A kind of brine method of comprehensive utilization | |
KR100992428B1 (en) | Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane | |
KR20070056644A (en) | Manufacturing method of organic mineral salts by using contained in deep sea water mineral salts | |
KR20160085158A (en) | High Basicity Water Treatment Chemicals | |
KR100899014B1 (en) | Preparation method of natural mineral salt from deep ocean water | |
WO2021003889A1 (en) | Process for preparing high-dissolved oxygen water | |
CN108516611B (en) | Preparation method and application of chitosan nanofiber ligand exchanger | |
CN104876270A (en) | Method for removing fluorine in sodium tungstate solution | |
KR20240103265A (en) | Purifying method of bittern | |
JP2006305412A (en) | Mineral water, and method for producing the same | |
WO2018116146A1 (en) | Compositions derived from galenia africana and methods of use for cancer treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |