KR20210031639A - Electrolytic solution and electrolytic capacitor for electrolytic capacitor - Google Patents

Electrolytic solution and electrolytic capacitor for electrolytic capacitor Download PDF

Info

Publication number
KR20210031639A
KR20210031639A KR1020207034982A KR20207034982A KR20210031639A KR 20210031639 A KR20210031639 A KR 20210031639A KR 1020207034982 A KR1020207034982 A KR 1020207034982A KR 20207034982 A KR20207034982 A KR 20207034982A KR 20210031639 A KR20210031639 A KR 20210031639A
Authority
KR
South Korea
Prior art keywords
group
silane coupling
electrolytic
coupling agent
electrolytic capacitor
Prior art date
Application number
KR1020207034982A
Other languages
Korean (ko)
Other versions
KR102603990B1 (en
Inventor
코이치 쿠로다
Original Assignee
니폰 케미콘 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰 케미콘 가부시키가이샤 filed Critical 니폰 케미콘 가부시키가이샤
Publication of KR20210031639A publication Critical patent/KR20210031639A/en
Application granted granted Critical
Publication of KR102603990B1 publication Critical patent/KR102603990B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Primary Cells (AREA)
  • Networks Using Active Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

내전압을 향상시키고, 그 내전압 효과가 장시간 지속됨과 함께, 유전체 산화 피막의 용해를 억제함으로써, 전해 콘덴서의 특성 변화를 억제하고, 수명 특성을 양호하게 하는 전해 콘덴서용 전해액 및 전해 콘덴서를 제공한다. 전해액은, 용질, 유기물로 표면 수식한 무기 산화물 콜로이드 입자 및 실란 커플링제 또는 실릴화제를 함유한다. 전해 콘덴서는, 콘덴서 소자에 당해 전해액을 함침시켜 이루어지며, 전극박의 표면에는 실란 커플링제 또는 실릴화제가 흡착되고, 또한 유기물로 표면 수식한 무기 산화물 콜로이드 입자끼리의 사이에 실란 커플링제 또는 실릴화제가 개재하기 때문에, 콜로이드 입자는 안정적으로 분산된다.There is provided an electrolytic solution and an electrolytic capacitor for an electrolytic capacitor which improves the withstand voltage, maintains the withstand voltage effect for a long time, and suppresses dissolution of the dielectric oxide film, thereby suppressing the change in characteristics of the electrolytic capacitor and improving the life characteristics. The electrolytic solution contains a solute, an inorganic oxide colloidal particle surface-modified with an organic substance, and a silane coupling agent or a silylating agent. Electrolytic capacitors are made by impregnating the electrolytic solution into a capacitor element, and a silane coupling agent or silylating agent is adsorbed on the surface of the electrode foil, and a silane coupling agent or silylating agent is interposed between colloidal inorganic oxide particles surface-modified with organic substances. Because is interposed, the colloidal particles are stably dispersed.

Description

전해 콘덴서용 전해액 및 전해 콘덴서Electrolytic solution and electrolytic capacitor for electrolytic capacitor

본 발명은, 전해 콘덴서용 전해액 및 전해 콘덴서에 관한 것이다.The present invention relates to an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor.

전해 콘덴서는, 탄탈 또는 알루미늄 등과 같은 밸브 작용 금속을 양극박 및 음극박으로서 구비하고 있다. 양극박은, 밸브 작용 금속을 소결체 또는 에칭박 등의 형상으로 함으로써 확면(擴面)화되고, 확면화된 표면에 유전체 산화 피막층을 갖는다. 양극박과 음극박 사이에는 전해액이 개재한다. 전해액은, 양극박의 요철면에 밀접하고, 진정한 음극으로서 기능한다.The electrolytic capacitor is provided with a valve-acting metal such as tantalum or aluminum as a positive electrode foil and a negative electrode foil. The anode foil is enlarged by forming a valve-acting metal into a shape such as a sintered body or an etching foil, and has a dielectric oxide film layer on the enlarged surface. An electrolyte is interposed between the anode foil and the cathode foil. The electrolytic solution is in close contact with the uneven surface of the positive electrode foil and functions as a true negative electrode.

전해액은, 양극박의 유전체 산화 피막층과 음극박 사이에 개재하고, 양극박과 음극박 사이에서 전자의 주고받음을 행한다. 이 때문에, 전해액의 전기 전도율 및 온도 특성 등은, 임피던스, 유전 손실(tanδ) 및 등가 직렬 저항(ESR) 등의 전해 콘덴서의 전기적 특성에 큰 영향을 미친다. 또한, 전해액은, 양극박에 형성된 유전체 산화 피막의 열화나 손상 등의 열화부를 수복하는 화성성(化成性)을 갖고, 전해 콘덴서의 누설 전류(LC)나 수명 특성에의 영향을 미친다.The electrolytic solution is interposed between the dielectric oxide film layer of the positive electrode foil and the negative electrode foil, and exchanges electrons between the positive electrode foil and the negative electrode foil. For this reason, the electric conductivity and temperature characteristics of the electrolytic solution have a great influence on the electric characteristics of the electrolytic capacitor, such as impedance, dielectric loss (tan?), and equivalent series resistance (ESR). In addition, the electrolytic solution has chemical conversion properties to repair deteriorated portions such as deterioration or damage of the dielectric oxide film formed on the anode foil, and has an influence on the leakage current (LC) and life characteristics of the electrolytic capacitor.

따라서, 전해 콘덴서에는 적어도 고(高)전기 전도율의 전해액이 적당하지만, 전해액의 전기 전도율을 높이면 불꽃 전압이 저하되는 경향이 있어, 전해 콘덴서의 내전압 특성이 손상될 우려가 있다. 안전성의 관점에서, 전해 콘덴서에 정격 전압을 넘는 이상 전압이 인가되는 것과 같은 가혹한 조건하여도, 쇼트나 발화를 일으키지 않도록 높은 내전압을 갖는 것이 바람직하다.Accordingly, an electrolyte solution having at least a high electrical conductivity is suitable for the electrolytic capacitor, but when the electrical conductivity of the electrolyte solution is increased, the spark voltage tends to decrease, and the withstand voltage characteristics of the electrolytic capacitor may be impaired. From the viewpoint of safety, it is desirable to have a high withstand voltage so as not to cause a short circuit or ignition even under severe conditions such as that an abnormal voltage exceeding the rated voltage is applied to the electrolytic capacitor.

그래서, 고전기 전도율을 유지하면서 내압 향상을 도모하기 위하여, 전해액에 여러 가지의 무기 산화물 콜로이드 입자를 첨가하는 시도가 이루어지고 있다(특허문헌 1 참조). 무기 산화물 콜로이드 입자는, 전형적으로는 실리카 콜로이드 입자이지만, 실리카 이외에도 지르코니아, 티타니아, 알루미노실리케이트, 알루미노실리케이트 피복 실리카 등도 제안되고 있다.Therefore, in order to improve the breakdown voltage while maintaining the high electric conductivity, attempts have been made to add various inorganic oxide colloid particles to the electrolyte solution (see Patent Document 1). The inorganic oxide colloidal particles are typically silica colloidal particles, but in addition to silica, zirconia, titania, aluminosilicate, aluminosilicate-coated silica, and the like have also been proposed.

특허문헌 1 : 일본 특허공개 평10-241999호 공보Patent Document 1: Japanese Patent Laid-Open Publication No. Hei 10-241999

그러나, 무기 산화물 콜로이드 입자를 함유한 전해액에서는, 시간의 경과와 함께 무기 산화물 콜로이드 입자의 침전이나 응집이 일어나, 전해액의 겔화가 확인되었다. 그리고, 이 현상에 따라 내전압의 저하가 확인되었다. 즉, 무기 산화물 콜로이드 입자의 겔화나 침전을 억제하여 안정적으로 콜로이드 상태를 유지하는 것이 내전압 향상에 대한 과제가 된다. 특히, 유기물로 표면 수식(修飾)한 무기 산화물 콜로이드 입자가 겔화나 침전을 일으키기 어려운 것이 확인되고 있지만, 전해액의 용매로서 에틸렌글리콜을 선택한 경우여도, 안정적인 콜로이드 상태의 보다 나은 장시간 지속이 요구되고 있다. 또한, 본 발명자들의 연구에 의해, 전해액에 유기물로 표면 수식한 무기 산화물 콜로이드 입자가 함유되어 있을 경우, 유전체 산화 피막이 용해되는 것이 확인되었다. 유전체 산화 피막이 용해되어 버리면, 장시간 경과 후의 전해 콘덴서의 여러 특성이나 수명 특성에 영향을 준다.However, in the electrolytic solution containing the inorganic oxide colloidal particles, precipitation or aggregation of the inorganic oxide colloidal particles occurred with the passage of time, and gelation of the electrolytic solution was confirmed. And, according to this phenomenon, a decrease in the withstand voltage was confirmed. That is, suppressing gelation or precipitation of inorganic oxide colloidal particles and stably maintaining the colloidal state becomes a problem for improving withstand voltage. In particular, although it has been confirmed that the inorganic oxide colloid particles surface-modified with organic substances are difficult to cause gelation or precipitation, even when ethylene glycol is selected as the solvent of the electrolyte, a stable colloidal state for a better long duration is required. Further, according to the research of the present inventors, it was confirmed that the dielectric oxide film was dissolved when the electrolytic solution contained inorganic oxide colloid particles surface-modified with organic substances. Dissolution of the dielectric oxide film affects various characteristics and life characteristics of the electrolytic capacitor after a long period of time has elapsed.

본 발명은, 상기 과제를 해결하기 위해서 제안된 것이며, 그 목적은, 내전압을 향상시키고, 그 내전압을 장시간 지속하는 전해 콘덴서용 전해액 및 전해 콘덴서를 제공하는 것에 있다. 또한, 전극박의 유전체 산화 피막의 용해를 억제함으로써, 전해 콘덴서의 특성 변화를 억제하여, 수명 특성을 양호하게 한다.The present invention has been proposed in order to solve the above problems, and an object thereof is to provide an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor which improves the withstand voltage and sustains the withstand voltage for a long time. Further, by suppressing the dissolution of the dielectric oxide film of the electrode foil, the change in the characteristics of the electrolytic capacitor is suppressed, and the life characteristics are improved.

상기 목적을 달성하기 위해서, 본 발명에 따른 전해 콘덴서용 전해액은, 용매, 용질, 유기물로 표면 수식한 무기 산화물 콜로이드 입자 및 실란 커플링제 또는 실릴화제를 함유하는 것을 특징으로 한다. In order to achieve the above object, the electrolytic solution for an electrolytic capacitor according to the present invention is characterized in that it contains colloidal inorganic oxide particles surface-modified with a solvent, a solute, and an organic substance, and a silane coupling agent or a silylating agent.

상기 실릴화제 또는 상기 실란 커플링제는, 하기 일반식(화학식 1)으로 표시되도록 해도 된다.The silylating agent or the silane coupling agent may be represented by the following general formula (Chemical Formula 1).

Figure pct00001
Figure pct00001

[식 중, X1은 탄소수가 1~20인 알킬기, 알케닐기, 아릴기 또는 아랄킬기이며, 그 수소의 일부가 카르복실기, 에스테르기, 아미드기, 시아노기, 케톤기, 포르밀기, 에테르기, 수산기, 아미노기, 메르캅토기, 술피드기, 술폭시드기, 술폰기, 이소시아네이트기, 우레이드기, 에폭시기로 치환되어 있어도 되는 탄화수소기(-R)이다. X2~X4는 아세톡시기, 탄소수 1~5의 알콕시기 또는 알킬기이며, X2~X4 중 적어도 2개 이상은 알콕시기이다.][In the formula, X 1 is an alkyl group, alkenyl group, aryl group or aralkyl group having 1 to 20 carbon atoms, and some of the hydrogens are carboxyl group, ester group, amide group, cyano group, ketone group, formyl group, ether group, It is a hydrocarbon group (-R) which may be substituted with a hydroxyl group, an amino group, a mercapto group, a sulfide group, a sulfoxide group, a sulfone group, an isocyanate group, a ureide group, or an epoxy group. X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms, or an alkyl group, and at least two or more of X 2 to X 4 are alkoxy groups.]

상기 일반식(화학식 1)으로 표시되는 실릴화제 또는 실란 커플링제는, 3-글리시독시프로필메틸디메톡시실란, 3-메타크릴옥시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필메틸디메톡시실란, 비닐트리메톡시실란, p-스티릴트리메톡시실란, 3-아크릴옥시프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란 및 3-글리시독시프로필메틸디에톡시실란의 군에서 선택되는 1종 이상이도록 해도 된다.The silylating agent or silane coupling agent represented by the general formula (Chemical Formula 1) is 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl ) Ethyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, It may be one or more selected from the group of 3-isocyanate propyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane.

상기 무기 산화물 콜로이드 입자는 실리카이도록 해도 된다.The inorganic oxide colloidal particles may be silica.

상기 실란 커플링제 또는 상기 실릴화제의 상기 용매에 대한 첨가량이 0.05 이상 0.40mol/kg 이하이도록 해도 된다.The amount of the silane coupling agent or the silylating agent added to the solvent may be 0.05 or more and 0.40 mol/kg or less.

상기 유기물로 표면 수식한 무기 산화물 콜로이드 입자 1g에 대한 상기 실릴화제 또는 실란 커플링제의 첨가량은, 0.76×10-3mol 이상이도록 해도 된다.The amount of the silylating agent or the silane coupling agent added to 1 g of the inorganic oxide colloid particles surface-modified with the organic substance may be 0.76×10 −3 mol or more.

상기 용매는, 주로 에틸렌글리콜을 함유하도록 해도 된다.The solvent may mainly contain ethylene glycol.

또한, 이 전해 콘덴서용 전해액을 구비하는 전해 콘덴서도 본 발명의 일형태이다. 그 전해 콘덴서는, 한 쌍의 전극박을 구비하고, 상기 실릴화제 또는 상기 실란 커플링제의 일부는, 상기 전극박의 표면에 존재하고, 상기 유기물로 표면 수식한 무기 산화물 콜로이드 입자의 일부는, 상기 전극박의 표면에 존재하는 상기 실릴화제 또는 상기 실란 커플링제를 통해 상기 전극박에 근접하고 있도록 해도 된다.Moreover, an electrolytic capacitor provided with this electrolytic solution for electrolytic capacitors is also one embodiment of the present invention. The electrolytic capacitor includes a pair of electrode foils, a part of the silylating agent or the silane coupling agent is present on the surface of the electrode foil, and a part of the inorganic oxide colloidal particles surface-modified with the organic substance is the You may make it close to the electrode foil through the said silylating agent or the said silane coupling agent existing on the surface of an electrode foil.

본 발명에 따르면, 장기간 안정적으로 콜로이드상을 유지하고, 높은 내전압을 장기간 유지할 수 있다. 또한, 전극박의 유전체 산화 피막의 용해를 억제하고, 수화 열화 반응을 억제함으로써, 전해 콘덴서의 여러 특성의 변화를 억제하여, 장수명화를 도모할 수 있다.According to the present invention, the colloidal phase can be stably maintained for a long period of time, and a high withstand voltage can be maintained for a long period of time. Further, by suppressing the dissolution of the dielectric oxide film of the electrode foil and suppressing the hydration deterioration reaction, changes in various characteristics of the electrolytic capacitor can be suppressed and a longer life can be achieved.

도 1은 음극박의 유전체 산화 피막의 내전압 측정 결과를 나타내는 그래프이다.
도 2는 양극박의 유전체 산화 피막의 내전압 측정 결과를 나타내는 그래프이다.
도 3은 양극박의 SEM 화상이다.
도 4는 전해 콘덴서의 정전 용량의 시간 변화를 나타내는 그래프이다.
도 5는 전해 콘덴서의 정전 용량의 시간 변화를 나타내는 그래프이다.
1 is a graph showing the results of measuring withstand voltage of a dielectric oxide film of a negative electrode foil.
2 is a graph showing the results of measuring the withstand voltage of a dielectric oxide film of an anode foil.
3 is an SEM image of a positive electrode foil.
4 is a graph showing a change in electrostatic capacity over time of an electrolytic capacitor.
5 is a graph showing a change in electrostatic capacity over time of an electrolytic capacitor.

본 발명의 실시형태에 따른 전해액 및 전해 콘덴서에 대해서 설명한다. 전해 콘덴서는, 정전 용량에 따라 전하의 축전 및 방전을 행하는 수동 소자이다. 전해 콘덴서는, 양극박과 음극박을 세퍼레이터를 통해 대향시킨 콘덴서 소자를 갖고, 콘덴서 소자에는 전해액이 함침되어 있다. 양극박과 음극박은 표면에 다공질 구조를 갖고, 적어도 양극박의 다공질 구조 부분에는 유전체 산화 피막층이 형성되어 있다. 전해액은, 양극박과 음극박 사이에 개재하고, 양극박의 유전체 산화 피막층에 밀접하며, 박의 전계를 전달하는 진정한 음극이 된다. 세퍼레이터는, 양극박과 음극박의 쇼트를 방지하고, 또한 전해액을 유지한다.An electrolytic solution and an electrolytic capacitor according to an embodiment of the present invention will be described. The electrolytic capacitor is a passive element that stores and discharges electric charges according to the electrostatic capacity. The electrolytic capacitor has a capacitor element in which a positive electrode foil and a negative electrode foil are opposed through a separator, and an electrolytic solution is impregnated in the capacitor element. The anode foil and the cathode foil have a porous structure on their surfaces, and a dielectric oxide film layer is formed at least in the porous structure portion of the anode foil. The electrolyte is interposed between the anode foil and the cathode foil, is in close contact with the dielectric oxide film layer of the anode foil, and becomes a true cathode that transmits the electric field of the foil. The separator prevents a short circuit between the positive electrode foil and the negative electrode foil, and further holds the electrolytic solution.

양극박 및 음극박은, 밸브 작용 금속을 재료로 하는 장척의 박체(箔體)이다. 밸브 작용 금속은, 알루미늄, 탄탈, 니오븀, 산화니오븀, 티타늄, 하프늄, 지르코늄, 아연, 텅스텐, 비스무트 및 안티몬 등이다. 순도는, 양극박에 관해서 99.9% 정도 이상이 바람직하고, 음극에 관해서 99% 정도 이상이 바람직하지만, 규소, 철, 구리, 마그네슘, 아연 등의 불순물이 함유되어 있어도 된다.The positive electrode foil and the negative electrode foil are elongated thin bodies made of a valve-acting metal as a material. Valve acting metals are aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony. The purity is preferably about 99.9% or more for the positive electrode foil and about 99% or more for the negative electrode, but impurities such as silicon, iron, copper, magnesium, and zinc may be contained.

양극박 및 음극박은, 밸브 작용 금속의 분체(粉體)를 소결한 소결체, 또는 연신된 박에 에칭 처리를 실시한 에칭박이며, 다공질 구조는, 터널상의 피트, 해면(海綿)상의 피트 또는 밀집한 분체 사이의 공극에 의해 이루어진다. 다공질 구조는, 전형적으로는 염산 등의 할로겐 이온이 존재하는 산성 수용액 중에서 직류 또는 교류를 인가하는 직류 에칭 또는 교류 에칭에 의해 형성되거나, 또는 코어부에 금속 입자 등을 증착 또는 소결함으로써 형성된다. 음극박은, 양극박과 비교해서 전해 콘덴서의 정전 용량에 대한 표면적의 영향이 적기 때문에, 다공질 구조에 의한 표면 거칠기는 작아도 된다.The anode and cathode foils are sintered bodies obtained by sintering valve-acting metal powder, or an etched foil obtained by etching the stretched foil, and the porous structure is a tunnel-shaped pit, a sea pit, or a dense powder. It is made by the voids between. The porous structure is typically formed by direct current etching or alternating current etching by applying direct current or alternating current in an acidic aqueous solution in which halogen ions such as hydrochloric acid are present, or by depositing or sintering metal particles or the like in the core portion. Since the negative electrode foil has less influence of the surface area on the electrostatic capacity of the electrolytic capacitor compared to the positive electrode foil, the surface roughness due to the porous structure may be small.

유전체 산화 피막층은, 전형적으로는, 양극박의 표층에 형성되는 산화 피막이며, 양극박이 알루미늄제이면 다공질 구조 부분을 산화시킨 산화 알루미늄층이다. 이 유전체 산화 피막층은, 붕산암모늄, 인산암모늄, 아디프산암모늄 등의 산 또는 이들 산의 수용액 등의 할로겐 이온 부재의 용액 중에서 전압 인가하는 화성 처리에 의해 형성된다. 음극박에 유전체 산화 피막층을 형성해도 된다.The dielectric oxide film layer is typically an oxide film formed on the surface layer of an anode foil, and when the anode foil is made of aluminum, it is an aluminum oxide layer obtained by oxidizing a portion of a porous structure. This dielectric oxide film layer is formed by chemical conversion treatment in which a voltage is applied in a solution of a halogen ion member such as an acid such as ammonium borate, ammonium phosphate, or ammonium adipic acid, or an aqueous solution of these acids. A dielectric oxide film layer may be formed on the cathode foil.

세퍼레이터는, 크라프트, 마닐라삼, 에스파르토, 헴프, 레이온 등의 셀룰로오스 및 이들의 혼합지(混合紙), 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 이들의 유도체 등의 폴리에스테르계 수지, 폴리테트라플루오로에틸렌계 수지, 폴리불화 비닐리덴계 수지, 비닐론계 수지, 지방족 폴리아미드, 반방향족 폴리아미드, 전방향족 폴리아미드 등의 폴리아미드계 수지, 폴리이미드계 수지, 폴리에틸렌 수지, 폴리프로필렌 수지, 트리메틸펜텐 수지, 폴리페닐렌설파이드 수지, 아크릴 수지 등을 들 수 있고, 이들 수지를 단독으로 또는 혼합하여 사용할 수 있다.The separator is a polyester type such as cellulose such as kraft, manila hemp, esparto, hemp, rayon, and mixed paper thereof, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof. Resin, polytetrafluoroethylene resin, polyvinylidene fluoride resin, vinylon resin, aliphatic polyamide, semi-aromatic polyamide, polyamide resin such as wholly aromatic polyamide, polyimide resin, polyethylene resin, poly Propylene resin, trimethylpentene resin, polyphenylene sulfide resin, acrylic resin, and the like, and these resins may be used alone or in combination.

전해액은, 용매에 대해서 용질을 용해하고, 또한 용매에 첨가제가 첨가된 혼합액이다. 첨가제로서는, 적어도 유기물로 표면 수식한 무기 산화물 콜로이드 입자(이하, 유기 수식 콜로이드 입자라 함), 및 실란 커플링제 또는 실릴화제(이하, 총칭해서 실란 커플링제라 함)가 전해액에 첨가된다.The electrolytic solution is a mixed solution in which a solute is dissolved in a solvent and an additive is added to the solvent. As the additive, at least inorganic oxide colloid particles surface-modified with an organic substance (hereinafter, referred to as organically modified colloid particles), and a silane coupling agent or a silylating agent (hereinafter, collectively referred to as a silane coupling agent) are added to the electrolytic solution.

무기 산화물 콜로이드 입자로서는, 실리카, 알루미나, 티타니아, 지르코니아, 산화안티몬, 알루미노실리케이트, 실리카지르코니아, 티타니아지르코니아, 알루미노실리케이트로 피복된 실리카, 실리카지르코니아로 피복된 실리카 등 또는 이들의 혼합물을 들 수 있다. 이들 무기 산화물 콜로이드 입자 중, 실릴화 처리의 용이함이나 콜로이드 입자의 안정성, 내전압의 향상 효과의 관점에서 특히 실리카, 알루미노실리케이트, 또는 알루미노실리케이트로 피복된 실리카가 바람직하다.Examples of the inorganic oxide colloidal particles include silica, alumina, titania, zirconia, antimony oxide, aluminosilicate, silica zirconia, titania zirconia, silica coated with aluminosilicate, silica coated with silica zirconia, or a mixture thereof. . Among these inorganic oxide colloid particles, silica coated with silica, aluminosilicate, or aluminosilicate is particularly preferred from the viewpoint of the ease of silylation treatment, stability of the colloid particles, and the effect of improving the withstand voltage.

무기 산화물 콜로이드 입자의 표면을 수식하는 유기물은, 무기 산화물 콜로이드 입자의 표면 수산기와 치환되고, 무기 산화물 콜로이드 입자끼리의 응집을 억제하는 것이며, 예를 들면 실릴화제, 실란 커플링제, 티타네이트계 커플링제, 알루미늄계 커플링제, 알코올류, 라텍스 등의 각종 고분자 화합물 등이다. 실릴화제 또는 실란 커플링제는, 하기 일반식(화학식 2)으로 표시된다.The organic substances that modify the surface of the inorganic oxide colloid particles are substituted with the surface hydroxyl groups of the inorganic oxide colloid particles to suppress aggregation of the inorganic oxide colloid particles, such as a silylating agent, a silane coupling agent, and a titanate coupling agent. , Aluminum-based coupling agents, alcohols, and various high molecular compounds such as latex. The silylating agent or the silane coupling agent is represented by the following general formula (Chemical Formula 2).

Figure pct00002
Figure pct00002

[식 중, X1은 탄소수가 1~20인 알킬기, 알케닐기, 아릴기 또는 아랄킬기이며, 그 수소의 일부가 카르복실기, 에스테르기, 아미드기, 시아노기, 케톤기, 포르밀기, 에테르기, 수산기, 아미노기, 메르캅토기, 술피드기, 술폭시드기, 술폰기, 이소시아네이트기, 우레이드기, 에폭시기로 치환되어 있어도 되는 탄화수소기(-R)이다. X2~X4는 아세톡시기, 탄소수 1~5의 알콕시기 또는 알킬기이며, X2~X4 중 적어도 2개 이상은 알콕시기이다.][In the formula, X 1 is an alkyl group, alkenyl group, aryl group or aralkyl group having 1 to 20 carbon atoms, and some of the hydrogens are carboxyl group, ester group, amide group, cyano group, ketone group, formyl group, ether group, It is a hydrocarbon group (-R) which may be substituted with a hydroxyl group, an amino group, a mercapto group, a sulfide group, a sulfoxide group, a sulfone group, an isocyanate group, a ureide group, or an epoxy group. X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms, or an alkyl group, and at least two or more of X 2 to X 4 are alkoxy groups.]

X1의 구체예로서는, 메틸기, 에틸기, 프로필기, 부틸기, 데실기, 옥타데실기 등의 알킬기류; 비닐기, 알릴기 등의 알케닐기류; 페닐기, 나프틸기, 스티릴기 등의 아릴기류; 벤질기, 페네틸기 등의 아랄킬기류 등의 탄화수소기, 메톡시기, 에톡시기, 프로폭시기, 부톡시기, 비닐옥시기, 페녹시기, 벤질옥시기 등의 옥시 탄화수소기 또는 수산기를 들 수 있다. 또한, 치환기를 갖는 경우의 예로서, 3-메타크릴옥시프로필기, 3-아크릴옥시프로필기 등의 아크릴기류; 3-글리시독시프로필기, 2-(3,4-에폭시시클로헥실)에틸기 등의 에폭시기류; 3-아미노프로필기, N-페닐-3-아미노프로필기, N-2-(아미노에틸)-3-아미노프로필기 등의 아미노기류; 3-메르캅토프로필기 등의 메르캅토기류; 3-이소시아네이트프로필기 등의 이소시아네이트기류; 3-우레이드프로필기 등의 우레이드기 등을 들 수 있다. X2~X4의 구체예로서는, 메톡시기, 에톡시기, 프로폭시기, 부톡시기 등의 알콕시기류; 메틸기, 에틸기, 프로필기, 부틸기, 데실기, 옥타데실기 등의 알킬기류; 아세톡시기를 들 수 있다. X2~X4 중 적어도 2개 이상은 알콕시기이다.Specific examples of X 1 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, decyl group, and octadecyl group; Alkenyl groups such as vinyl group and allyl group; Aryl groups such as a phenyl group, a naphthyl group, and a styryl group; Hydrocarbon groups such as aralkyl groups such as benzyl group and phenethyl group, oxyhydrocarbon groups such as methoxy group, ethoxy group, propoxy group, butoxy group, vinyloxy group, phenoxy group, and benzyloxy group, or hydroxyl groups are mentioned. In addition, examples of the case having a substituent include acrylic groups such as 3-methacryloxypropyl group and 3-acryloxypropyl group; Epoxy groups such as 3-glycidoxypropyl group and 2-(3,4-epoxycyclohexyl)ethyl group; Amino groups such as 3-aminopropyl group, N-phenyl-3-aminopropyl group, and N-2-(aminoethyl)-3-aminopropyl group; Mercapto groups such as 3-mercaptopropyl group; Isocyanate groups, such as 3-isocyanate propyl group; A ureide group, such as a 3-ureide propyl group, etc. are mentioned. Specific examples of X 2 to X 4 include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group; Alkyl groups, such as a methyl group, an ethyl group, a propyl group, a butyl group, a decyl group, and an octadecyl group; And an acetoxy group. At least two or more of X 2 to X 4 are alkoxy groups.

이들 조합 중에서도 메틸트리메톡시실란, 메틸트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란, 이소부틸트리메톡시실란, 이소부틸트리에톡시실란, 데실트리메톡시실란, 데실트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 3-메타크릴옥시프로필트리에톡시실란, 3-메타크릴옥시프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸디메톡시실란, 3-글리시독시프로필메틸디에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 3-우레이드프로필트리알콕시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, N-페닐-3-아미노프로필트리메톡시실란, N-페닐-3-아미노프로필트리에톡시실란, N-2-(아미노에틸)-3-아미노프로필트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필트리에톡시실란, N-2-(아미노에틸)-3-아미노프로필메틸디메톡시실란, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 3-아크릴옥시프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, p-스티릴트리메톡시실란 등이 바람직하다.Among these combinations, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, iso Butyltrimethoxysilane, isobutyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-metha Acryloxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxy Silane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-ureidepropyltrialkoxysilane, 3-aminopropyltri Methoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3- Aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrime Toxicsilane, 3-mercaptopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, p-styryltrimethoxysilane, and the like are preferable.

티타네이트계 커플링제의 구체예로서는, 이소프로필트리이소스테아로일티타네이트, 이소프로필트리도데실벤젠술포닐티타네이트, 이소프로필트리스(디옥틸피로포스페이트)티타네이트, 테트라이소프로필비스(디옥틸포스파이트)티타네이트, 테트라옥틸비스(디트리데실포스파이트)티타네이트, 테트라(2,2-디알릴옥시메틸-1-부틸)비스(디트리데실)포스파이트티타네이트, 비스(디옥틸피로포스페이트)옥시아세테이트티타네이트, 이소프로필트리옥타노일티타네이트, 이소프로필디메타크릴로일이소스테아로일티타네이트, 이소프로필트리(디옥틸포스페이트)티타네이트, 이소프로필트리쿠밀페닐티타네이트, 이소프로필트리(N-아미노에틸아미노에틸)티타네이트 등을 들 수 있다.Specific examples of the titanate-based coupling agent include isopropyltriisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropyltris(dioctylpyrrophosphate) titanate, tetraisopropylbis(dioctylphos). Pite) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrrophosphate) ) Oxyacetate titanate, isopropyltrioctanoyl titanate, isopropyldimethacryloylisostearoyl titanate, isopropyltri(dioctylphosphate) titanate, isopropyltricumylphenyl titanate, isopropyl And tri(N-aminoethylaminoethyl) titanate.

알루미늄계 커플링제의 구체예로서는, 알루미늄에틸아세토아세테이트디이소프로필레이트, 알루미늄트리스(에틸아세토아세테이트), 알루미늄트리스(아세틸아세토네이트), 알루미늄비스(에틸아세토아세테이트)모노아세틸아세토네이트 등을 들 수 있다. 알코올의 구체예로서는, 메탄올, 에탄올, n-프로판올, iso-프로판올, n-부탄올, 아밀알코올, 4-메틸-2-펜탄올, n-헵탄올, n-옥타놀, 2-에틸헥산올, 노난올, 데칸올, 트리데칸올, 2-메톡시에탄올, 2-에톡시에탄올, 2-부톡시에탄올, 3-메톡시부탄올, 3-메틸-3-메톡시부탄올, 폴리비닐알코올 등을 들 수 있다.Specific examples of the aluminum-based coupling agent include aluminum ethylacetoacetate diisopropylate, aluminum tris (ethylacetoacetate), aluminum tris (acetylacetonate), aluminum bis (ethylacetoacetate) monoacetylacetonate, and the like. As specific examples of alcohol, methanol, ethanol, n-propanol, iso-propanol, n-butanol, amyl alcohol, 4-methyl-2-pentanol, n-heptanol, n-octanol, 2-ethylhexanol, no Nanol, decanol, tridecanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 3-methoxybutanol, 3-methyl-3-methoxybutanol, and polyvinyl alcohol. have.

이들 실릴화제, 실란 커플링제, 티타네이트계 커플링제, 알루미늄계 커플링제, 알코올류, 각종 고분자 화합물 등의 표면 수식에 사용하는 유기물은, 단독으로 또는 복수의 조합으로 사용할 수 있다.Organic substances used for surface modification of these silylating agents, silane coupling agents, titanate-based coupling agents, aluminum-based coupling agents, alcohols, and various high molecular compounds can be used alone or in combination of a plurality of them.

유기 수식 콜로이드 입자와 함께 전해액에 첨가되는 실란 커플링제도 상기 일반식(화학식 2)으로 표시된다. 무기 산화물 콜로이드 입자의 표면을 수식하는 유기물과 실란 커플링제는 동일한 것을 사용해도 되고, 다른 것을 사용해도 된다. 이 유기 수식 콜로이드 입자와 실란 커플링제는, 전해액의 겔화 및 콜로이드 입자의 응집을 억제하고, 유기 수식 콜로이드 입자의 첨가에 의해 향상된 전해 콘덴서의 내전압을 유지시킨다. 실란 커플링제의 상기 용매 1kg에 대한 첨가량은, 0.05 이상 0.40mol/kg 이하인 것이 바람직하다. 이 범위이면, 전해액의 겔화나 콜로이드 입자의 응집은 장기간 억제되어, 유기 수식 콜로이드 입자가 장기간 안정적으로 분산된다. 단, 실란 커플링제의 첨가량이 과대하면, 겔화 및 응집은 억제할 수 있지만, 그 효과는 저하된다. 따라서, 0.40mol/kg 이상을 첨가할 경우에는, 전해 콘덴서의 다른 여러 특성과의 밸런스를 고려하는 것이 바람직하다.The silane coupling agent added to the electrolyte solution together with the modified organic colloidal particles is represented by the general formula (Chemical Formula 2). The same organic substance and the silane coupling agent for modifying the surface of the inorganic oxide colloidal particle may be used, or different ones may be used. The modified organic colloidal particles and the silane coupling agent suppress gelation of the electrolytic solution and agglomeration of the colloidal particles, and maintain the withstand voltage of the electrolytic capacitor improved by the addition of the modified organic colloidal particles. The amount of the silane coupling agent added to 1 kg of the solvent is preferably 0.05 or more and 0.40 mol/kg or less. Within this range, gelation of the electrolytic solution and aggregation of colloidal particles are suppressed for a long period of time, and the modified organic colloidal particles are stably dispersed for a long period of time. However, when the addition amount of the silane coupling agent is excessive, gelation and aggregation can be suppressed, but the effect thereof is reduced. Therefore, when 0.40 mol/kg or more is added, it is desirable to consider the balance between various other characteristics of the electrolytic capacitor.

응집 억제 및 내전압 유지의 이유는, 이 메커니즘에 한정되지 않지만, 다음과 같이 추측된다. 우선, 유기 수식 콜로이드 입자는, 유기물로 표면 수식하고 있지 않은 무기 산화물 콜로이드 입자보다도 분산 안정성이 높아, 전해액의 겔화를 억제한다. 이 때문에, 유기 수식 콜로이드 입자의 첨가에 의해 향상된 내전압을 장기간 유지하는 것이 가능하다. 또한 본 출원에서는, 유기 수식 콜로이드 입자 뿐만 아니라, 실란 커플링제도 아울러 사용한다. 실란 커플링제와 병용함으로써, 유기 수식 콜로이드 입자끼리의 사이에 실란 커플링제가 개재하여, 유기 수식 콜로이드 입자의 응집 억제 효과를 더욱 높일 수 있다. 따라서, 전해액에 유기 수식 콜로이드 입자와 실란 커플링제 모두를 첨가함으로써, 전해액의 겔화 및 콜로이드 입자의 응집이 억제되어, 높은 내전압이 유지된다.The reason for suppression of aggregation and maintenance of withstand voltage is not limited to this mechanism, but is estimated as follows. First, the organically modified colloidal particles have higher dispersion stability than the inorganic oxide colloidal particles that are not surface-modified with an organic substance, thereby suppressing gelation of the electrolyte solution. For this reason, it is possible to maintain an improved withstand voltage for a long period of time by the addition of the modified organic colloidal particles. In addition, in the present application, not only the organically modified colloid particles but also a silane coupling agent are used. By using in combination with a silane coupling agent, the silane coupling agent is interposed between the modified organic colloid particles, and the effect of inhibiting aggregation of the modified organic colloid particles can be further enhanced. Therefore, by adding both the modified organic colloidal particles and the silane coupling agent to the electrolytic solution, gelation of the electrolytic solution and aggregation of the colloidal particles are suppressed, and a high withstand voltage is maintained.

또한, 발명자들의 예의 연구 결과, 유기 수식 콜로이드 입자는 양극박 및 음극박의 유전체 산화 피막의 용해에 영향을 준다는 식견을 얻었다. 또한, 유기 수식 콜로이드 입자와 실란 커플링제 모두를 전해액에 첨가하면, 양극박 및 음극박의 유전체 산화 피막의 용해가 억제되어, 정전 용량의 변화가 억제된다는 식견을 얻었다. 정전 용량의 변화 억제의 관점에서는, 유기 수식 콜로이드 입자 1g에 대한 실란 커플링제의 첨가량은, 0.76×10-3mol 이상이 바람직하고, 2.27×10-3mol 이상이면 비약적으로 높아져 특히 바람직하다. 또한, 7.57×10-3mol 이상이면, 유기 수식 콜로이드 입자가 첨가되어 있지 않은 상태와 동일한 정도까지 정전 용량의 변화를 억제할 수 있다.In addition, as a result of extensive research by the inventors, it was found that the organically modified colloidal particles influence the dissolution of the dielectric oxide film of the anode foil and the cathode foil. Further, it was found that when both the modified organic colloidal particles and the silane coupling agent were added to the electrolytic solution, dissolution of the dielectric oxide film of the positive electrode foil and the negative electrode foil was suppressed, and the change in electrostatic capacity was suppressed. From the viewpoint of suppressing the change in electrostatic capacity, the amount of the silane coupling agent added to 1 g of the modified organic colloidal particles is preferably 0.76 × 10 -3 mol or more, and if it is 2.27 × 10 -3 mol or more, it is dramatically increased, and is particularly preferable. In addition, if it is 7.57×10 −3 mol or more, the change in electrostatic capacity can be suppressed to the same degree as in the state in which the modified organic colloidal particles are not added.

이것도 추측이며, 이 메커니즘에 한정되지 않지만, 용해 억제 및 정전 용량의 변화 억제의 효과는 다음의 이유에 의한다고 생각된다. 즉, 유기 수식 콜로이드 입자 표면에는 수산기가 잔존하고 있다고 생각된다. 유기 수식 콜로이드 입자 표면의 수산기는, 전해액 중의 수분을 끌어당긴다. 따라서, 유기 수식 콜로이드 입자가 전극박의 근방에 존재하면, 유기 수식 콜로이드 입자 표면의 수산기에 의해 끌어당겨진 수분이 유전체 산화 피막에 접근하기 쉽고, 유전체 산화 피막을 용해하고, 유전체 산화 피막을 통과해서 밸브 작용 금속에 도달하여, 밸브 작용 금속을 수화 열화시킨다. 그러나, 이 전해 콘덴서의 유전체 산화 피막에는 실란 커플링제가 흡착되어 있다. 이 때문에, 유기 수식 콜로이드 입자와 전극박 사이에 일정한 거리를 유지할 수 있어, 유기 수식 콜로이드 입자 표면의 수산기나 이것에 끌어당겨진 수분이 전극박에 접근하기 어려워, 수화 열화를 억제하는 것이 가능하다.This is also conjecture, and although it is not limited to this mechanism, it is thought that the effect of suppressing dissolution and suppressing change in electrostatic capacity is due to the following reasons. That is, it is considered that hydroxyl groups remain on the surface of the organically modified colloid particles. The hydroxyl groups on the surface of the modified organic colloid particles attract moisture in the electrolytic solution. Therefore, when the organically modified colloidal particles are present in the vicinity of the electrode foil, the moisture attracted by the hydroxyl groups on the surface of the organically modified colloidal particles is easily accessible to the dielectric oxide film, dissolves the dielectric oxide film, passes through the dielectric oxide film and passes the valve. It reaches the working metal and hydration deteriorates the valve working metal. However, a silane coupling agent is adsorbed to the dielectric oxide film of this electrolytic capacitor. For this reason, a certain distance can be maintained between the modified organic colloid particle and the electrode foil, the hydroxyl groups on the surface of the modified organic colloid particle and the moisture attracted thereto are hardly accessible to the electrode foil, and hydration deterioration can be suppressed.

상술한 바와 같이, 본 출원의 전해 콘덴서는, 전극박에 실란 커플링제가 흡착되어 전극박의 표면에 존재함으로써 유전체 산화 피막의 용해를 억제하고, 또한 그 전극박에 흡착된 실란 커플링제를 통해 유기 수식 콜로이드 입자가 전극박에 근접함으로써 내전압이 향상된다. 또한, 유기 수식 콜로이드 입자끼리의 사이에 실란 커플링제가 개재하여, 유기 수식 콜로이드 입자의 응집을 억제한다.As described above, in the electrolytic capacitor of the present application, the silane coupling agent is adsorbed to the electrode foil and is present on the surface of the electrode foil, thereby suppressing the dissolution of the dielectric oxide film, and organically through the silane coupling agent adsorbed on the electrode foil. When the modified colloidal particles come close to the electrode foil, the withstand voltage is improved. Further, a silane coupling agent is interposed between the modified organic colloid particles to suppress aggregation of the modified organic colloid particles.

이 유기 수식 콜로이드 입자 및 실란 커플링제와 함께 사용되는 용매는 프로톤성의 유기 극성 용매 또는 비프로톤성의 유기 극성 용매 중 어느 것이나 된다. 프로톤성의 유기 극성 용매로서, 1가 알코올류, 및 다가 알코올류, 옥시알코올 화합물류 등을 대표적으로 들 수 있다. 비프로톤성의 유기 극성 용매로서는, 술폰계, 아미드계, 락톤류, 환상 아미드계, 니트릴계, 옥시드계 등을 대표적으로 들 수 있다.The solvent used together with the modified organic colloidal particles and the silane coupling agent may be either a protic organic polar solvent or an aprotic organic polar solvent. As a protic organic polar solvent, monohydric alcohols, polyhydric alcohols, oxyalcohol compounds, and the like are typically exemplified. Representative examples of the aprotic organic polar solvent include sulfone-based, amide-based, lactone-based, cyclic amide-based, nitrile-based, and oxide-based solvents.

1가 알코올류로서는, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 시클로부탄올, 시클로펜탄올, 시클로헥산올, 벤질알코올 등을 들 수 있다. 다가 알코올류 및 옥시알코올 화합물류로서는, 에틸렌글리콜, 프로필렌글리콜, 글리세린, 메틸셀로솔브, 에틸셀로솔브, 메톡시프로필렌글리콜, 디메톡시프로판올 등을 들 수 있다. 술폰계로서는, 디메틸술폰, 에틸메틸술폰, 디에틸술폰, 술포란, 3-메틸술포란, 2,4-디메틸술포란 등을 들 수 있다. 아미드계로서는, N-메틸포름아미드, N,N-디메틸포름아미드, N-에틸포름아미드, N,N-디에틸포름아미드, N-메틸아세트아미드, N,N-디메틸아세트아미드, N-에틸아세트아미드, N,N-디에틸아세트아미드, 헥사메틸포스포릭아미드 등을 들 수 있다. 락톤류, 환상 아미드계로서는, γ-부티로락톤, γ-발레로락톤, δ-발레로락톤, N-메틸-2-피롤리돈, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 이소부틸렌카보네이트, 이소부틸렌카보네이트 등을 들 수 있다. 니트릴계로서는, 아세토니트릴, 3-메톡시프로피오니트릴, 글루타로니트릴 등을 들 수 있다. 옥시드계로서는 디메틸술폭시드 등을 들 수 있다. 용매로서, 이들이 단독으로 사용되어도 되고, 또한 2종류 이상을 조합해도 된다. 또한, 용매로서 물을 함유해도 된다.Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol. Examples of polyhydric alcohols and oxyalcohol compounds include ethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, and dimethoxypropanol. Examples of the sulfone system include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane. As an amide system, N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethyl Acetamide, N,N-diethylacetamide, hexamethylphosphoricamide, and the like. Examples of lactones and cyclic amides include γ-butyrolactone, γ-valerolactone, δ-valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, and isobutylene carbonate. And isobutylene carbonate. Examples of the nitrile type include acetonitrile, 3-methoxypropionitrile, glutaronitrile, and the like. Examples of the oxide system include dimethyl sulfoxide and the like. As the solvent, these may be used alone or in combination of two or more. Moreover, you may contain water as a solvent.

특히, 에틸렌글리콜 또는 에틸렌글리콜을 주체로 해서 다른 용매와 혼합하여 이루어지는 용매를 사용한 경우는, 이 유기 수식 콜로이드 입자와 실란 커플링제를 첨가하면, 겔화 억제 및 응집 억제의 효과가 매우 높아, 바람직한 조합이다.In particular, in the case of using a solvent composed mainly of ethylene glycol or ethylene glycol and mixed with another solvent, the addition of the organically modified colloid particles and a silane coupling agent has a very high effect of inhibiting gelation and inhibiting agglomeration, which is a preferred combination. .

전해액에 함유되는 용질로서는, 통상 전해 콘덴서용 전해액에 사용되는, 유기산, 무기산 및 유기산과 무기산의 복합 화합물 중 적어도 1종의 염을 들 수 있다. 이들은 단독으로 사용해도 되고, 2종 이상을 조합하여 사용해도 된다.Examples of the solute contained in the electrolytic solution include salts of at least one of organic acids, inorganic acids, and complex compounds of organic and inorganic acids, which are usually used in electrolytic solutions for electrolytic capacitors. These may be used alone or in combination of two or more.

유기산으로서는, 프탈산, 이소프탈산, 테레프탈산, 말레산, 아디프산, 벤조산, 톨루일산, 에난트산, 말론산, 1,6-데칸디카르복시산, 1,7-옥탄디카르복시산, 아젤라산, 운데칸2산, 도데칸2산, 트리데칸2산 등의 카르복시산, 페놀류, 술폰산을 들 수 있다. 또한, 무기산으로서는, 붕산, 인산, 아인산, 차아인산, 탄산, 규산 등을 들 수 있다. 유기산과 무기산의 복합 화합물로서는, 보로디살리실산, 보로디옥살산, 보로디글리콜산 등을 들 수 있다.As organic acids, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octane dicarboxylic acid, azelaic acid, undecane2 Carboxylic acids such as acids, dodecanedioic acid and tridecanedioic acid, phenols, and sulfonic acids. Moreover, boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid, etc. are mentioned as an inorganic acid. Examples of the complex compound of an organic acid and an inorganic acid include borodisalicylic acid, borodioxalic acid, and borodiglycolic acid.

또한, 유기산, 무기산 및 유기산과 무기산의 복합 화합물 중 적어도 1종의 염으로서, 암모늄염, 4급 암모늄염, 4급화 아미디늄염, 아민염, 나트륨염, 칼륨염 등을 들 수 있다. 4급 암모늄염의 4급 암모늄 이온으로서는 테트라메틸암모늄, 트리에틸메틸암모늄, 테트라에틸암모늄 등을 들 수 있다. 4급화 아미디늄으로서는, 에틸디메틸이미다졸리늄, 테트라메틸이미다졸리늄 등을 들 수 있다. 아민염의 아민으로서는, 1급 아민, 2급 아민, 3급 아민을 들 수 있다. 1급 아민으로서는, 메틸아민, 에틸아민, 프로필아민 등, 2급 아민으로서는, 디메틸아민, 디에틸아민, 에틸메틸아민, 디부틸아민 등, 3급 아민으로서는, 트리메틸아민, 트리에틸아민, 트리부틸아민, 에틸디메틸아민, 에틸디이소프로필아민 등을 들 수 있다.Further, examples of at least one salt of organic acids, inorganic acids, and complex compounds of organic and inorganic acids include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, potassium salts, and the like. Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, and tetraethylammonium. Examples of the quaternized amidinium include ethyl dimethyl imidazolinium and tetramethyl imidazolinium. As an amine of an amine salt, a primary amine, a secondary amine, and a tertiary amine can be mentioned. As a primary amine, methylamine, ethylamine, propylamine, etc., As a secondary amine, dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc., As a tertiary amine, trimethylamine, triethylamine, tributyl Amine, ethyldimethylamine, ethyldiisopropylamine, and the like.

특히, 암모늄염, 아민염이 바람직하다. 암모늄염은, 전해액의 비저항이 낮아지기 때문에, 전해 콘덴서의 저ESR화가 가능하다. 아민염을 사용하면, 아민염에 의한 수화 억제 효과가 얻어지기 때문에, 전해 콘덴서의 장수명화로 이어진다. 또한 아민염 중에서도, 내전압과 비저항의 밸런스가 우수한 2급 아민이 특히 바람직하다.In particular, ammonium salts and amine salts are preferable. The ammonium salt lowers the specific resistance of the electrolytic solution, so that the electrolytic capacitor can be reduced in ESR. When an amine salt is used, the effect of suppressing hydration due to the amine salt is obtained, which leads to a longer life of the electrolytic capacitor. In addition, among amine salts, secondary amines having excellent balance between withstand voltage and specific resistance are particularly preferred.

또한, 전해액에는 다른 첨가제로서, 유기 수식 콜로이드 입자, 실릴화제 또는 실란 커플링제 이외의 것을 더 첨가해도 된다. 예를 들면, 폴리알킬렌폴리올, 붕산, 붕산과 다당류(만닛트, 소르비트 등)의 착화합물, 붕산과 다가 알코올(에틸렌글리콜, 만니톨, 소르비톨)의 착화합물, 붕산에스테르 등의 붕산 화합물, 니트로 화합물(o-니트로벤조산, m-니트로벤조산, p-니트로벤조산, o-니트로페놀, m-니트로페놀, p-니트로페놀, m-니트로아세토페논, p-니트로벤질알코올 등), 인산, 인산에스테르 등의 인 화합물을 들 수 있다.Further, as other additives, to the electrolytic solution, those other than the modified organic colloidal particles, a silylating agent, or a silane coupling agent may be further added. For example, polyalkylene polyol, boric acid, complex compounds of boric acid and polysaccharides (mannit, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohols (ethylene glycol, mannitol, sorbitol), boric acid compounds such as boric acid esters, and nitro compounds ( o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, m-nitroacetophenone, p-nitrobenzyl alcohol, etc.), phosphoric acid, phosphoric acid ester, etc. And phosphorus compounds.

(실시예)(Example)

이하에, 실시예에 기초해서 본 발명을 더욱 상세하게 설명한다. 또한, 본 발명은 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples. In addition, the present invention is not limited to the following examples.

(겔화의 평가 1)(Evaluation of gelation 1)

하기 표 1과 같이, 비교예 1 내지 3 및 실시예 1 내지 7의 전해액을 제작했다.As shown in Table 1 below, electrolytic solutions of Comparative Examples 1 to 3 and Examples 1 to 7 were prepared.

Figure pct00003
Figure pct00003

전해액의 용매는 에틸렌글리콜과 물의 혼합액으로 하고, 용질은 아젤라산암모늄으로 하며, 첨가제로서 p-니트로벤질알코올을 첨가했다. 비교예 1의 전해액의 조성은 이상과 같지만, 비교예 2의 전해액에는, 무기 산화물 콜로이드 입자인 실리카를 더 첨가했다. 비교예 3 및 실시예 1 내지 7의 전해액에는, 유기 수식 콜로이드 입자로서 유기 수식 실리카를 첨가했다. 이 유기 수식 실리카는, 실리카의 표면을 3-글리시독시프로필트리메톡시실란으로 수식한 것이다. 또한 실시예 1 내지 7의 전해액에는, 실란 커플링제로서 3-글리시독시프로필메틸디메톡시실란(신에츠실리콘제 KBM-402)을 첨가했다. 각 조성비는 중량%로 표 1에 나타내는 바와 같다. 또한, 용매 1kg에 대한 실란 커플링제의 첨가량 및 유기 수식 실리카 1g에 대한 실란 커플링제의 첨가량에 대해서도 표 1에 기재했다. 여기에서, 용매란, 에틸렌글리콜과 물의 총량이다.The solvent of the electrolyte was a mixture of ethylene glycol and water, the solute was ammonium azelarate, and p-nitrobenzyl alcohol was added as an additive. The composition of the electrolytic solution of Comparative Example 1 is as described above, but silica, which is an inorganic oxide colloidal particle, was further added to the electrolytic solution of Comparative Example 2. To the electrolytic solutions of Comparative Example 3 and Examples 1 to 7, modified organic silica was added as modified organic colloidal particles. This organically modified silica is obtained by modifying the surface of silica with 3-glycidoxypropyltrimethoxysilane. In addition, to the electrolytic solutions of Examples 1 to 7, 3-glycidoxypropylmethyldimethoxysilane (KBM-402 manufactured by Shin-Etsu Silicone) was added as a silane coupling agent. Each composition ratio is as shown in Table 1 in weight %. In addition, Table 1 also shows the addition amount of the silane coupling agent to 1 kg of the solvent and the addition amount of the silane coupling agent to 1 g of organically modified silica. Here, the solvent is the total amount of ethylene glycol and water.

제작한 전해액의 비저항도 표 1에 나타낸다. 비저항은 30℃에서 측정을 행했다.The specific resistance of the produced electrolytic solution is also shown in Table 1. The specific resistance was measured at 30°C.

이 비교예 1 내지 비교예 3 및 실시예 1 내지 7의 전해액에 대해서 겔화의 상황을 확인하는 방치 시험을 행했다. 그 결과도 표 1에 나타낸다. 방치 시험에서는, 각 전해액이 겔화될 때까지의 시간을 계측했다. 각 전해액을 앰플관에 넣어, 125℃로 유지하고, 최대 2300시간 동안, 각 측정 시간에 있어서 겔화되고 있는지 육안으로 확인했다. 전해액을 수용한 앰플관을 기울여도 내용물에 유동성이 없는 상태를 겔화로 했다. 표 1에 기재된 시간은, 겔화된 것을 확인한 시간을 기재하고 있고, 겔화된 시간이 아니라, 또한 하이픈(-) 표시는 2300시간 경과에서 겔화가 관찰되지 않은 경우에 기록하고 있다.The electrolytic solutions of Comparative Examples 1 to 3 and Examples 1 to 7 were subjected to a standing test to confirm the state of gelation. The results are also shown in Table 1. In the standing test, the time until each electrolytic solution gelled was measured. Each electrolytic solution was put into an ampoule tube, maintained at 125°C, and visually checked whether gelation was occurring at each measurement time for up to 2300 hours. Even if the ampoule tube containing the electrolyte solution was tilted, the state in which the contents did not have fluidity was taken as gelation. The time indicated in Table 1 describes the time when gelation was confirmed, and not the gelation time, and a hyphen (-) mark is recorded when no gelation was observed after 2300 hours.

또한, 각 전해액을 콘덴서 소자에 함침시킨 후, 저부를 갖는 통 형상의 외장 케이스에 수납하고, 실링 고무로 봉지했다. 양극박은, 알루미늄박을 에칭 처리에 의해 확면화되고, 이어서 화성 처리에 의해 유전체 산화 피막층이 형성된다. 또한, 알루미늄박을 에칭 처리에 의해 확면화하고, 알루미늄제의 음극박을 제작했다. 제작한 양극박 및 음극박에 전극 인출 수단을 접속하고, 셀룰로오스계 세퍼레이터를 개재시켜 권회함으로써, 콘덴서 소자를 제작했다. 이에 따라 콘덴서 소자 치수가 지름 10㎜ 및 길이 25㎜의 권회형 전해 콘덴서가 얻어졌다. 이 비교예 1 내지 3 및 실시예 1 내지 7의 전해 콘덴서에 대해서 내전압 시험을 행했다. 그 결과도 표 1에 나타낸다. 내전압 시험에서는, 125℃에서 내압을 측정했다.Further, after each electrolytic solution was impregnated into the condenser element, it was housed in a cylindrical outer case having a bottom portion and sealed with a sealing rubber. As for the anode foil, the aluminum foil is enlarged by etching treatment, and then a dielectric oxide film layer is formed by chemical conversion treatment. Further, the aluminum foil was enlarged by an etching treatment to prepare an aluminum cathode foil. A capacitor element was produced by connecting an electrode withdrawing means to the produced positive electrode foil and negative electrode foil, and winding it through a cellulose separator. Accordingly, a wound electrolytic capacitor having a diameter of 10 mm and a length of 25 mm was obtained. The electrolytic capacitors of Comparative Examples 1 to 3 and Examples 1 to 7 were subjected to a withstand voltage test. The results are also shown in Table 1. In the withstand voltage test, the withstand voltage was measured at 125°C.

표 1에 나타내는 바와 같이, 주용매가 에틸렌글리콜이면, 실리카를 첨가한 비교예 2의 전해액은 2시간에서 겔화되어 버렸다. 비교예 3의 전해액은 주용매가 에틸렌글리콜이며, 유기 수식 실리카가 첨가되어 있고, 비교예 2와 비교해서 겔화의 시간은 길어졌지만, 그래도 250시간에서 겔화되어 버렸다.As shown in Table 1, when the main solvent was ethylene glycol, the electrolytic solution of Comparative Example 2 to which silica was added was gelled in 2 hours. In the electrolytic solution of Comparative Example 3, the main solvent was ethylene glycol, and organically modified silica was added, and the gelation time was longer than that of Comparative Example 2, but still gelled in 250 hours.

한편, 표 1에 나타내는 바와 같이, 주용매가 에틸렌글리콜이어도, 유기 수식 실리카와 실란 커플링제가 첨가된 실시예 1 내지 7의 전해액은 겔화에 도달하는 시간이 장시간화되었다. 특히, 실란 커플링제의 첨가량을 용매에 대해서 0.40mol/kg 이하로 억제한 실시예 1 내지 4 및 실시예 6의 전해액은, 2300시간의 관찰 중, 겔화에 도달하는 경우가 없었다. 즉, 유기 수식 실리카와 실란 커플링제가 첨가된 전해액은, 겔화가 억제되어 있는 것이 확인되고, 특히 실란 커플링제가 용매의 총량에 대해서 0.40mol/kg 이하이면, 겔화는 비약적으로 억제할 수 있는 것이 확인되었다.On the other hand, as shown in Table 1, even if the main solvent was ethylene glycol, the electrolytic solutions of Examples 1 to 7 to which the modified organic silica and the silane coupling agent were added had a longer time to reach gelation. In particular, the electrolytic solutions of Examples 1 to 4 and 6, in which the addition amount of the silane coupling agent was suppressed to 0.40 mol/kg or less with respect to the solvent, did not reach gelation during 2300 hours of observation. That is, it is confirmed that gelation is suppressed in the electrolytic solution to which the organic modified silica and the silane coupling agent are added, and in particular, if the silane coupling agent is 0.40 mol/kg or less with respect to the total amount of the solvent, the gelation can be drastically suppressed. Confirmed.

다음에 표 1에 나타내는 바와 같이, 주용매가 에틸렌글리콜이어도, 유기 수식 실리카가 첨가되어 있을 경우에는, 전해 콘덴서의 내전압이 향상되는 것이 확인되었다. 따라서, 전해액에 유기 수식 실리카를 첨가함으로써 내전압이 향상되고, 실란 커플링제를 더 첨가함으로써, 전해액의 겔화를 억제하는 것이 확인되었다.Next, as shown in Table 1, it was confirmed that even if the main solvent was ethylene glycol, when organically modified silica was added, the withstand voltage of the electrolytic capacitor was improved. Therefore, it was confirmed that the withstand voltage was improved by adding the modified organic silica to the electrolytic solution, and that gelation of the electrolytic solution was suppressed by further adding a silane coupling agent.

(겔화의 평가 2)(Evaluation of gelation 2)

하기 표 2와 같이, 비교예 4 내지 7 및 실시예 8 내지 9의 전해액을 제작했다. 표 1과 마찬가지로, 겔화의 상황을 확인하는 방치 시험 및 125℃에서 측정한 내전압의 결과를 나타낸다.As shown in Table 2 below, electrolytic solutions of Comparative Examples 4 to 7 and Examples 8 to 9 were prepared. As in Table 1, the results of the stand-alone test and the withstand voltage measured at 125°C to confirm the state of gelation are shown.

Figure pct00004
Figure pct00004

비교예 4, 비교예 5, 실시예 8은, 용질로서 아젤라산디에틸아민을 사용한 것 이외에는 각각 비교예 1, 비교예 3, 실시예 1과 마찬가지로 했다. 비교예 6, 비교예 7, 실시예 9는, 용질로서 아젤라산트리에틸아민을 사용한 것 이외에는 각각 비교예 1, 비교예 3, 실시예 1과 마찬가지로 했다.Comparative Example 4, Comparative Example 5, and Example 8 were the same as those of Comparative Example 1, Comparative Example 3, and Example 1, respectively, except that diethylamine azelaate was used as the solute. Comparative Example 6, Comparative Example 7, Example 9 was carried out in the same manner as in Comparative Example 1, Comparative Example 3, and Example 1, except that triethylamine azelaate was used as a solute.

표 2의 결과로부터, 용질의 염기 성분으로서 디에틸아민 또는 트리에틸아민을 사용한 경우에도, 유기 수식 실리카와 실란 커플링제가 첨가된 실시예 8 내지 9의 전해액은 겔화에 도달하는 시간이 장시간화되었다. 또한, 유기 수식 실리카가 첨가됨으로써, 전해 콘덴서의 내전압이 향상되는 것도 확인되었다.From the results of Table 2, even when diethylamine or triethylamine was used as the base component of the solute, the electrolytic solutions of Examples 8 to 9 to which the modified organic silica and the silane coupling agent were added had a longer time to reach gelation. . Further, it was also confirmed that the withstand voltage of the electrolytic capacitor was improved by adding the modified organic silica.

실시예 1 및 실시예 8 내지 9의 비저항을 비교하면, 실시예 1이 가장 작은 것이 확인되었다. 염기 성분으로서 암모니아를 사용함으로써, 비저항이 작아지고, 그 결과, 전해 콘덴서의 ESR이 작아진다고 예측된다.When comparing the specific resistances of Example 1 and Examples 8 to 9, it was confirmed that Example 1 was the smallest. It is predicted that the use of ammonia as the base component decreases the specific resistance and, as a result, decreases the ESR of the electrolytic capacitor.

실시예 1 및 실시예 8 내지 9의 내전압을 비교하면, 실시예 1이 가장 내전압이 높고, 염기 성분으로서 암모니아를 사용함으로서 내전압이 높아지는 것이 확인되었다. 또한, 실시예 8 및 실시예 9는, 내전압은 동등하지만, 비저항은 실시예 8이 작은 것이 확인되었다. 이러한 점에서, 아민염 중에서도 2급 아민인 디에틸아민은, 내전압과 비저항의 밸런스가 우수한 것을 알 수 있다.Comparing the withstand voltages of Example 1 and Examples 8 to 9, it was confirmed that Example 1 had the highest withstand voltage, and the withstand voltage was increased by using ammonia as a base component. In addition, it was confirmed that Example 8 and Example 9 had the same withstand voltage, but the specific resistance was small in Example 8. From this point of view, it can be seen that among amine salts, diethylamine, which is a secondary amine, has an excellent balance between withstand voltage and specific resistance.

(겔화의 평가 3)(Evaluation of gelation 3)

하기 표 3과 같이, 실시예 10 내지 12의 전해액을 제작했다. 표 1과 마찬가지로, 겔화의 상황을 확인하는 방치 시험 및 125℃에서 측정한 내전압의 결과를 나타낸다.As shown in Table 3 below, electrolytic solutions of Examples 10 to 12 were prepared. As in Table 1, the results of the stand-alone test and the withstand voltage measured at 125°C to confirm the state of gelation are shown.

Figure pct00005
Figure pct00005

실시예 10 내지 12는, 유기 수식 실리카 1g에 대한 실란 커플링제의 첨가량을 실시예 2와 동등하게 하고, 실란 커플링제의 종류를 변경했다. 실시예 10은 3-글리시독시프로필트리메톡시실란(신에츠실리콘제 KBM-403), 실시예 11은 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란(신에츠실리콘제 KBM-303), 실시예 12는 N-2-(아미노에틸)-3-아미노프로필메틸디메톡시실란(신에츠실리콘제 KBM-602)을 사용했다.In Examples 10 to 12, the amount of the silane coupling agent added to 1 g of the organically modified silica was made equal to that of Example 2, and the type of the silane coupling agent was changed. Example 10 is 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Silicone), and Example 11 is 2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303 manufactured by Shin-Etsu Silicone). ), in Example 12, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane (KBM-602 manufactured by Shin-Etsu Silicone) was used.

실시예 10 내지 실시예 12로부터, 실란 커플링제를 변경해도, 내전압이 양호하며, 전해액이 겔화되지 않은 것이 확인되었다. 실시예 2 및 실시예 10 내지 12의 비저항과 내전압의 밸런스로부터 고려하면, 실란 커플링제로서 3-글리시독시프로필메틸디메톡시실란, 3-글리시독시프로필트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란이 바람직하고, 특히 3-글리시독시프로필메틸디메톡시실란, 3-글리시독시프로필트리메톡시실란이 바람직한 것이 확인되었다.From Examples 10 to 12, it was confirmed that even when the silane coupling agent was changed, the withstand voltage was good and the electrolytic solution did not gel. Considering the balance of the specific resistance and withstand voltage of Examples 2 and 10 to 12, as silane coupling agents, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2-(3, It was confirmed that 4-epoxycyclohexyl)ethyltrimethoxysilane is preferable, and in particular, 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropyltrimethoxysilane are preferable.

(정전 용량의 평가)(Evaluation of electrostatic capacity)

우선, 비교예 1, 비교예 3 및 실시예 1의 전해 콘덴서를 150℃의 고온 환경하에서 300시간 동안, 무부하로 방치했다. 이들 전해 콘덴서를 분해하여, 음극박 및 양극박을 물로 세정하고, 각각의 유전체 산화 피막의 내전압 측정을 행했다. 그 결과를 도 1 및 도 2에 나타낸다. 도 1은 세로축이 유전체 산화 피막의 내전압(V vs. Pt)이며, 도 2는 세로축이 유전체 산화 피막의 내전압(V)이고, 두 도면 모두 가로축은 시간이고, 도 1은 음극박의 결과, 도 2는 양극박의 결과를 나타낸다.First, the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 1 were allowed to stand for 300 hours in a high temperature environment of 150° C. under no load. These electrolytic capacitors were disassembled, the negative electrode foil and the positive electrode foil were washed with water, and the withstand voltage of each dielectric oxide film was measured. The results are shown in FIGS. 1 and 2. 1 is a vertical axis is the dielectric strength (V vs. Pt) of the dielectric oxide film, Fig. 2 is a vertical axis is the dielectric strength (V) of the dielectric oxide film, in both figures, the horizontal axis is time, and Fig. 1 is a result of the cathode foil, Fig. 2 shows the results of the anode foil.

도 1에 나타내는 바와 같이, 비교예 3의 음극박에 비해서 실시예 3의 음극박은 임계 전압이 높다. 여기에서, 유기 수식 실리카 및 실란 커플링제를 함유하지 않는 비교예 1은 0.1Vvs. Pt 정도의 임계 전압을 나타내고 있지만, 유기 수식 실리카만을 함유하는 비교예 3은 임계 전압이 -0.5Vvs. Pt 정도까지 내려가고, 비교예 1에 비해 0.6V 정도의 유전체 산화 피막의 용해가 보여진다. 한편, 실시예 3은 -0.35Vvs. Pt와, 비교예 3에 비해 피막 내압이 있고, 유전체 산화 피막의 용해가 억제되어 있음을 알 수 있었다.As shown in FIG. 1, the threshold voltage of the negative electrode foil of Example 3 is higher than that of the negative electrode foil of Comparative Example 3. Here, Comparative Example 1 containing no organically modified silica and silane coupling agent was 0.1 Vvs. Although the threshold voltage was about Pt, Comparative Example 3 containing only organically modified silica had a threshold voltage of -0.5 Vvs. It goes down to about Pt, and dissolution of the dielectric oxide film of about 0.6V compared to Comparative Example 1 is seen. On the other hand, Example 3 was -0.35Vvs. Compared with Pt and Comparative Example 3, it was found that the film had an internal pressure and that the dissolution of the dielectric oxide film was suppressed.

또한, 도 2에 나타내는 바와 같이, 실시예 3의 양극박에 비해서 비교예 3의 양극박은 전압 상승이 완만하며, 실시예 3의 양극박은 비교예 1의 양극박과 동일한 거동을 나타냈다. 이 이유로서는, 유기 수식 실리카만을 함유하는 비교예 3의 양극박은 유전체 산화 피막이 용해되어, 전압 상승이 완만해졌다고 생각된다. 한편, 유기 수식 실리카와 실란 커플링제가 첨가된 실시예 3의 양극박은 유전체 산화 피막의 용해가 억제되어, 유기 수식 실리카와 실란 커플링제를 함유하지 않는 비교예 1의 양극박과 동일한 거동을 나타냈다고 생각된다.In addition, as shown in FIG. 2, compared with the positive electrode foil of Example 3, the positive electrode foil of Comparative Example 3 had a gentle increase in voltage, and the positive electrode foil of Example 3 exhibited the same behavior as that of the positive electrode foil of Comparative Example 1. For this reason, it is considered that the dielectric oxide film was dissolved in the anode foil of Comparative Example 3 containing only organically modified silica, so that the voltage increase was gentle. On the other hand, the anode foil of Example 3 to which the modified organic silica and the silane coupling agent were added suppressed the dissolution of the dielectric oxide film, and exhibited the same behavior as the anode foil of Comparative Example 1 which did not contain the modified organic silica and the silane coupling agent. I think.

유전체 산화 피막층의 용해를 뒷받침하기 위해서, 비교예 1, 비교예 3 및 실시예 3의 전해 콘덴서의 누설 전류(LC)를 측정했다. 누설 전류는, 전해 콘덴서를 제작한 초기의 단계와, 150℃, 300시간 및 무부하로 방치한 고온 시험 후에 측정되었다. 인가 전압은 200V로 하고, 30초 후의 누설 전류값을 측정했다. 그 결과를 하기 표 4에 나타낸다.In order to support the dissolution of the dielectric oxide film layer, the leakage current (LC) of the electrolytic capacitors of Comparative Examples 1, 3, and 3 was measured. The leakage current was measured after the initial stage of manufacturing the electrolytic capacitor and after a high-temperature test left at 150° C. for 300 hours and no load. The applied voltage was 200 V, and the leakage current value after 30 seconds was measured. The results are shown in Table 4 below.

Figure pct00006
Figure pct00006

표 4에 나타내는 바와 같이, 비교예 1, 비교예 3 및 실시예 3의 전해 콘덴서의 초기의 누설 전류는 모두 동등했다. 그러나, 고온 시험 후의 누설 전류는 비교예 3이 가장 컸다. 이는, 고온 시험에 의해 비교예 3의 양극박의 유전체 산화 피막이 용해되었기 때문에, 누설 전류가 커졌다고 생각된다. 한편, 실시예 3의 고온 시험 후의 누설 전류는, 비교예 3의 약 반 정도로 억제되어 있고, 유기 수식 실리카와 실란 커플링제를 사용함으로써 유전체 산화 피막의 용해가 억제되어 있는 것이 확인되었다.As shown in Table 4, the initial leakage currents of the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 3 were all equal. However, the leakage current after the high-temperature test was the largest in Comparative Example 3. It is considered that the leakage current increased because the dielectric oxide film of the anode foil of Comparative Example 3 was dissolved by a high-temperature test. On the other hand, the leakage current after the high-temperature test in Example 3 was suppressed to about half that of Comparative Example 3, and it was confirmed that the dissolution of the dielectric oxide film was suppressed by using the modified organic silica and the silane coupling agent.

또한, 비교예 1, 비교예 3 및 실시예 3의 전해 콘덴서를 150℃의 고온 환경하에서 300시간 동안, 무부하로 방치했다. 이들 전해 콘덴서를 분해하고, 물로 세정한 양극박의 표면 상태를, 주사형 전자 현미경(이하, SEM이라 함. JSM-7800FPrime, 니혼 덴시 가부시키가이샤제)에 의해 5,000배로 관찰했다. 그 SEM 관찰에 있어서 촬영한 사진을 도 3에 나타낸다. 도 3의 (a)는 비교예 1의 사진이며, (b)는 비교예 3의 사진이고, (c)는 실시예 3의 사진이다.In addition, the electrolytic capacitors of Comparative Example 1, Comparative Example 3, and Example 3 were allowed to stand for 300 hours in a high temperature environment of 150°C under no load. These electrolytic capacitors were disassembled and the surface condition of the positive electrode foil washed with water was observed at 5,000 times with a scanning electron microscope (hereinafter referred to as SEM. JSM-7800FPrime, manufactured by Nippon Denshi Co., Ltd.). A photograph taken in the SEM observation is shown in FIG. 3. 3A is a photograph of Comparative Example 1, (b) is a photograph of Comparative Example 3, and (c) is a photograph of Example 3.

도 3에 나타내는 바와 같이, 비교예 3의 양극박은, 에칭 피트가 보이지 않게 된 부분이 많아지고 있다. 한편, 실시예 3의 양극박은, 비교예 1의 양극박의 표면 상태에 가깝고, 에칭 피트가 선명하게 남아 있다. 이 결과는, 비교예 3의 양극박의 유전체 산화 피막층의 용해나 유전체 산화 피막에 어떤 물질이 퇴적된 것을 나타내고 있다.As shown in FIG. 3, in the anode foil of Comparative Example 3, the portion where the etching pits were not visible is increasing. On the other hand, the positive electrode foil of Example 3 was close to the surface state of the positive electrode foil of Comparative Example 1, and the etching pits remained clear. This result indicates that the dielectric oxide film layer of the anode foil of Comparative Example 3 was dissolved or that a substance was deposited on the dielectric oxide film.

유전체 산화 피막층의 용해 및 물질의 퇴적을 더욱 뒷받침하기 위해서, SEM 관찰을 행한 비교예 1, 비교예 3 및 실시예 3의 양극박의 표면의 원소 분석을 행했다. 원소 분석은 에너지 분산형 X선 분광기(EDS)로 행했다. 그 결과를 표 5에 나타낸다. 표 5에 있어서 각 수치는, 각 원소의 존재 비율(질량%)을 나타낸다.In order to further support the dissolution of the dielectric oxide film layer and deposition of substances, elemental analysis of the surfaces of the anode foils of Comparative Examples 1, 3, and 3 in which SEM observation was performed was performed. Elemental analysis was performed with an energy dispersive X-ray spectroscopy (EDS). The results are shown in Table 5. In Table 5, each numerical value represents the abundance ratio (mass%) of each element.

Figure pct00007
Figure pct00007

표 5에 나타내는 바와 같이, 비교예 1 및 실시예 3의 양극박 표면의 규소의 검출량은 미량이었던 것에 대해, 비교예 3의 양극박은 규소가 다량으로 검출되었다. 즉, 유기 수식 실리카만을 전해액에 첨가하면, 규소 화합물이 양극박의 표면에 부착되어 있는 것이 확인되었다. 이상에 의해, 유기 수식 콜로이드 입자는 양극박에 어떤 영향을 미치는 것에 대해서, 유기 수식 실리카 및 실란 커플링제를 병용함으로써, 양극박의 유전체 산화 피막에 유기 수식 실리카가 영향을 주는 것을 억제하고, 양극박의 표면 상태의 변화를 억제하고 있는 것이 발견되었다. As shown in Table 5, the amount of silicon detected on the surface of the positive electrode foils of Comparative Examples 1 and 3 was trace, whereas the positive electrode foil of Comparative Example 3 contained a large amount of silicon. That is, when only the modified organic silica was added to the electrolytic solution, it was confirmed that the silicon compound adhered to the surface of the positive electrode foil. As described above, with respect to the influence of the modified organic colloid particles on the anode foil, by using the modified organic silica and the silane coupling agent together, the influence of the modified organic silica on the dielectric oxide film of the anode foil is suppressed, and the anode foil It was found that it suppressed the change in the surface state of

유기 수식 콜로이드 입자가 유전체 산화 피막의 용해에 영향을 주는 것이 확인된 것을 근거로 하여, 다음으로, 비교예 1, 비교예 3 및 실시예 1 내지 7의 전해 콘덴서의 초기의 정전 용량(Cap)을 측정한 후, 150℃의 온도 환경하에서 무부하 방치하고, 각 시간 경과 후에 정전 용량을 측정해서 정전 용량의 시간 변화를 산출했다. 정전 용량의 시간 변화를 표 6, 도 4에 나타낸다. 표 6은, 초기의 정전 용량에 대한 각 시간 경과 후의 변화율(ΔCap(%))을 나타내는 표이며, 도 4는, 각각 세로축이 ΔCap이고, 가로축이 시간인 그래프이다. 또한, ΔCap는, 하기 식 1로 산출했다. 식 1 중, 시간 경과 후의 정전 용량이란, 110시간 경과 후, 200시간 경과 후 및 300시간 경과 후의 정전 용량이다.Based on the confirmation that the modified organic colloidal particles affect the dissolution of the dielectric oxide film, next, the initial capacitance (Cap) of the electrolytic capacitors of Comparative Examples 1, 3, and Examples 1 to 7 After the measurement, it was allowed to stand without load in a temperature environment of 150°C, and the electrostatic capacity was measured after each lapse of time to calculate the time change in electrostatic capacity. The time change of the electrostatic capacity is shown in Table 6 and Fig. 4. Table 6 is a table showing the rate of change (ΔCap(%)) after each time lapse with respect to the initial electrostatic capacity, and FIG. 4 is a graph in which the vertical axis is ΔCap and the horizontal axis is time. In addition, ΔCap was calculated by the following formula (1). In Equation 1, the electrostatic capacity after the passage of time is the electrostatic capacity after the passage of 110 hours, the passage of 200 hours, and the passage of 300 hours.

(식 1)(Equation 1)

Figure pct00008
Figure pct00008

Figure pct00009
Figure pct00009

표 6, 도 4에 나타내는 바와 같이, 유기 수식 실리카만을 첨가한 비교예 3의 전해 콘덴서는, 유기 수식 실리카 및 실란 커플링제를 첨가하고 있지 않은 비교예 1의 전해 콘덴서와 비교해서, 정전 용량의 변화가 컸다. 그러나, 실란 커플링제도 첨가한 실시예 1 내지 7의 전해 콘덴서는, 비교예 3과 비교해서 정전 용량의 변화가 억제되어 있다.As shown in Table 6 and FIG. 4, the electrolytic capacitor of Comparative Example 3 to which only the modified organic silica was added was compared with the electrolytic capacitor of Comparative Example 1 to which the modified organic silica and the silane coupling agent were not added, and the change in capacitance. Was great. However, in the electrolytic capacitors of Examples 1 to 7 to which a silane coupling agent was added, the change in electrostatic capacity was suppressed as compared with Comparative Example 3.

또한, 유기 수식 실리카 1g에 대한 실란 커플링제의 첨가량이 0.76×10-3mol인 실시예 1에 비해서, 동 첨가량이 2.27×10-3mol인 실시예 2는, ΔCap가 약 66% 정도(표 5 중, 300h 후의 수치에 의해 계산)로 억제되어 있으며, 동 첨가량이 커질수록 억제 효과는 높아지고 있다. 그리고, 유기 수식 실리카 1g에 대한 실란 커플링제의 첨가량이 7.57×10-3mol인 실시예 5의 전해 콘덴서는, 비교예 1과 동등한 정도까지 정전 용량의 변화가 억제되어 있다.In addition, compared to Example 1 in which the addition amount of the silane coupling agent to 1 g of organically modified silica is 0.76 × 10 -3 mol, in Example 2 in which the copper addition amount is 2.27 × 10 -3 mol, ΔCap is about 66% (Table 5, calculated by the numerical value after 300 h), and the inhibitory effect increases as the amount of copper added increases. In addition, in the electrolytic capacitor of Example 5 in which the addition amount of the silane coupling agent to 1 g of the modified organic silica was 7.57 × 10 -3 mol, the change in electrostatic capacity was suppressed to the same degree as in Comparative Example 1.

이에 따라, 유기 수식 콜로이드 입자와 실란 커플링제 모두를 첨가하면, 정전 용량의 변화를 억제할 수 있는 것이 확인되었다. 유기 수식 콜로이드 입자 1g에 대한 실란 커플링제의 첨가량이 0.76×10-3mol 이상이면 정전 용량의 변화를 억제할 수 있고, 2.27×10-3mol 이상이면, 정전 용량의 변화가 비약적으로 억제되고, 그리고, 유기 수식 콜로이드 입자 1g에 대한 실란 커플링제의 첨가량이 7.57×10-3mol 이상이면, 유기 수식 콜로이드 입자를 첨가하고 있지 않은 경우와 같은 정도로까지 정전 용량의 변화를 억제할 수 있는 것이 확인되었다.Accordingly, it was confirmed that the change in electrostatic capacity can be suppressed by adding both the modified organic colloidal particles and the silane coupling agent. If the amount of the silane coupling agent added to 1 g of the organically modified colloid particles is 0.76 × 10 -3 mol or more, the change in capacitance can be suppressed, and if it is 2.27 × 10 -3 mol or more, the change in capacitance is drastically suppressed, And, it was confirmed that if the addition amount of the silane coupling agent to 1 g of the organically modified colloid particles was 7.57 × 10 -3 mol or more, the change in the electrostatic capacity could be suppressed to the same degree as when the organically modified colloid particles were not added. .

다음으로, 비교예 4 내지 7 및 실시예 8 내지 9의 전해 콘덴서의 초기의 정전 용량(Cap)을 측정한 후, 150℃의 온도 환경하에서 무부하 방치하고, 각 시간 경과 후에 정전 용량을 측정하여 정전 용량의 시간 변화를 산출했다. 정전 용량의 시간 변화를 표 7, 도 5에 나타낸다. 표 7은, 초기의 정전 용량에 대한 각 시간 경과 후의 변화율(ΔCap(%))을 나타내는 표이며, 도 5는, 각각 세로축이 ΔCap이고, 가로축이 시간인 그래프이다. 또한, ΔCap는, 하기 식 2로 산출했다. 식 2 중, 시간 경과 후의 정전 용량이란, 110시간 경과 후, 200시간 경과 후 및 300시간 경과 후의 정전 용량이다.Next, after measuring the initial capacitance (Cap) of the electrolytic capacitors of Comparative Examples 4 to 7 and Examples 8 to 9, they were allowed to stand without load in a temperature environment of 150°C, and the electrostatic capacity was measured after each time period. The time change of the dose was calculated. The time change of the electrostatic capacity is shown in Table 7 and Fig. 5. Table 7 is a table showing the rate of change (ΔCap(%)) after each passage of time with respect to the initial electrostatic capacity, and FIG. 5 is a graph in which the vertical axis is ΔCap and the horizontal axis is time. In addition, ΔCap was calculated by the following formula (2). In Equation 2, the electrostatic capacity after the passage of time is the electrostatic capacity after the passage of 110 hours, the passage of 200 hours, and the passage of 300 hours.

(식 2)(Equation 2)

Figure pct00010
Figure pct00010

Figure pct00011
Figure pct00011

표 7로부터, 용질의 염기 성분으로서 디에틸아민이나 트리에틸아민을 사용한 경우여도, 유기 수식 실리카와 실란 커플링제를 병용한 실시예 8 내지 9는, 실시예 1과 마찬가지로 정전 용량의 변화를 억제하고 있는 것이 확인되었다. 또한, 실시예 1 및 실시예 8 내지 9를 대비하면, 300시간 후의 ΔCap의 값이, 실시예 1은 24.7%, 실시예 8은 4.3%, 실시예 9는 4.3%였다. 이 결과로부터, 용질로서 암모늄염을 사용하는 것보다도, 디에틸아민염이나 트리에틸아민염 등의 아민염을 사용한 쪽이 정전 용량의 변화율이 작고, 수명 특성이 양호하다는 것을 알 수 있었다.From Table 7, even in the case of using diethylamine or triethylamine as the base component of the solute, Examples 8 to 9 in which the organic modified silica and the silane coupling agent were used in combination were similar to those of Example 1, and the change in electrostatic capacity was suppressed. It was confirmed that there is. In addition, comparing Example 1 and Examples 8 to 9, the value of ΔCap after 300 hours was 24.7% in Example 1, 4.3% in Example 8, and 4.3% in Example 9. From this result, it was found that the rate of change in electrostatic capacity was small and the life characteristics were better in the case of using an amine salt such as diethylamine salt or triethylamine salt, rather than using an ammonium salt as a solute.

Claims (9)

용매, 용질, 유기물로 표면 수식(修飾)한 무기 산화물 콜로이드 입자, 및 실란 커플링제 또는 실릴화제를 함유하는 것을 특징으로 하는 전해 콘덴서용 전해액.An electrolytic solution for an electrolytic capacitor comprising a solvent, a solute, an inorganic oxide colloidal particle surface-modified with an organic substance, and a silane coupling agent or a silylating agent. 제 1 항에 있어서, 상기 실란 커플링제 또는 상기 실릴화제는, 하기 일반식(화학식 1)으로 표시되는 것을 특징으로 하는 전해 콘덴서용 전해액.
Figure pct00012

[식 중, X1은 탄소수가 1~20인 알킬기, 알케닐기, 아릴기 또는 아랄킬기이며, 그 수소의 일부가 카르복실기, 에스테르기, 아미드기, 시아노기, 케톤기, 포르밀기, 에테르기, 수산기, 아미노기, 메르캅토기, 술피드기, 술폭시드기, 술폰기, 이소시아네이트기, 우레이드기, 에폭시기로 치환되어 있어도 되는 탄화수소기(-R)이다. X2~X4는 아세톡시기, 탄소수 1~5의 알콕시기 또는 알킬기이며, X2~X4 중 적어도 2개 이상은 알콕시기이다.]
The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the silane coupling agent or the silylating agent is represented by the following general formula (Chemical Formula 1).
Figure pct00012

[In the formula, X 1 is an alkyl group, alkenyl group, aryl group or aralkyl group having 1 to 20 carbon atoms, and some of the hydrogens are carboxyl group, ester group, amide group, cyano group, ketone group, formyl group, ether group, It is a hydrocarbon group (-R) which may be substituted with a hydroxyl group, an amino group, a mercapto group, a sulfide group, a sulfoxide group, a sulfone group, an isocyanate group, a ureide group, or an epoxy group. X 2 to X 4 are an acetoxy group, an alkoxy group having 1 to 5 carbon atoms, or an alkyl group, and at least two or more of X 2 to X 4 are alkoxy groups.]
제 1 항 또는 제 2 항에 있어서, 상기 일반식(화학식 1)으로 표시되는 실릴화제 또는 실란 커플링제는, 3-글리시독시프로필메틸디메톡시실란, 3-메타크릴옥시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필메틸디메톡시실란, 비닐트리메톡시실란, p-스티릴트리메톡시실란, 3-아크릴옥시프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란 및 3-글리시독시프로필메틸디에톡시실란의 군에서 선택되는 1종 이상인 것을 특징으로 하는 전해 콘덴서용 전해액.The method according to claim 1 or 2, wherein the silylating agent or silane coupling agent represented by the general formula (Chemical Formula 1) is 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanate propyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. Electrolytic solution for electrolytic capacitors. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 무기 산화물 콜로이드 입자는 실리카인 것을 특징으로 하는 전해 콘덴서용 전해액.The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 3, wherein the inorganic oxide colloidal particles are silica. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 실란 커플링제 또는 상기 실릴화제의 상기 용매에 대한 첨가량이 0.05 이상 0.40mol/kg 이하인 것을 특징으로 하는 전해 콘덴서용 전해액.The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 4, wherein an amount of the silane coupling agent or the silylating agent added to the solvent is 0.05 or more and 0.40 mol/kg or less. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 유기물로 표면 수식한 무기 산화물 콜로이드 입자 1g에 대한 상기 실란 커플링제 또는 상기 실릴화제의 첨가량은, 0.76×10-3mol 이상인 것을 특징으로 하는 전해 콘덴서용 전해액.The method according to any one of claims 1 to 5, wherein the amount of the silane coupling agent or the silylating agent added to 1 g of the inorganic oxide colloid particles surface-modified with the organic material is 0.76 × 10 -3 mol or more. Electrolytic solution for electrolytic capacitors. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, 상기 용매는, 주로 에틸렌글리콜을 함유하는 것을 특징으로 하는 전해 콘덴서용 전해액.The electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 6, wherein the solvent mainly contains ethylene glycol. 제 1 항 내지 제 7 항 중 어느 한 항에 기재된 전해 콘덴서용 전해액을 구비하는 것을 특징으로 하는 전해 콘덴서.An electrolytic capacitor comprising the electrolytic solution for an electrolytic capacitor according to any one of claims 1 to 7. 제 8 항에 있어서, 한 쌍의 전극박을 구비하고,
상기 실란 커플링제 또는 상기 실릴화제의 일부는, 상기 전극박의 표면에 존재하고,
상기 유기물로 표면 수식한 무기 산화물 콜로이드 입자의 일부는, 상기 전극박의 표면에 존재하는 상기 실란 커플링제 또는 상기 실릴화제를 통해 상기 전극박에 근접하고 있는 것을 특징으로 하는 전해 콘덴서.
The method according to claim 8, comprising a pair of electrode foils,
Part of the silane coupling agent or the silylating agent is present on the surface of the electrode foil,
An electrolytic capacitor, wherein a part of the inorganic oxide colloidal particles surface-modified with the organic material is in close proximity to the electrode foil through the silane coupling agent or the silylating agent present on the surface of the electrode foil.
KR1020207034982A 2018-08-01 2019-07-30 Electrolyte and electrolytic capacitor for electrolytic capacitors KR102603990B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-145466 2018-08-01
JP2018145466 2018-08-01
PCT/JP2019/029822 WO2020027124A1 (en) 2018-08-01 2019-07-30 Electrolytic solution for electrolytic capacitor, and electrolytic capacitor

Publications (2)

Publication Number Publication Date
KR20210031639A true KR20210031639A (en) 2021-03-22
KR102603990B1 KR102603990B1 (en) 2023-11-17

Family

ID=69231888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207034982A KR102603990B1 (en) 2018-08-01 2019-07-30 Electrolyte and electrolytic capacitor for electrolytic capacitors

Country Status (5)

Country Link
JP (1) JP7384161B2 (en)
KR (1) KR102603990B1 (en)
CN (1) CN112385008B (en)
TW (1) TWI838391B (en)
WO (1) WO2020027124A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539689B (en) * 2020-04-15 2023-04-18 深圳新宙邦科技股份有限公司 Silica lactone sol, preparation method and electrolyte for aluminum electrolytic capacitor
TWI766400B (en) 2020-10-23 2022-06-01 財團法人工業技術研究院 Electrolyte and compound for the electrolyte and capacitor
CN113388870B (en) * 2021-06-11 2022-03-11 东莞天正新材料有限公司 Composite plating solution and preparation method thereof, electroplating method and plating layer formed by electroplating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257811A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JPH10241999A (en) 1997-03-03 1998-09-11 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2003203827A (en) * 2003-02-12 2003-07-18 Nippon Chemicon Corp Electrolytic solution for electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509633B (en) * 2011-04-20 2015-11-21 Mitsubishi Rayon Co Conductive composition, conductive body and solid electrolytic capacitor using the same
JP5788127B1 (en) * 2014-02-27 2015-09-30 テイカ株式会社 Oxidizing agent / dopant for conductive polymer production, solution thereof, conductive polymer produced using any of them, and electrolytic capacitor using the conductive polymer as electrolyte
CN107845504B (en) * 2016-09-19 2020-07-24 深圳新宙邦科技股份有限公司 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257811A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JPH10241999A (en) 1997-03-03 1998-09-11 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2003203827A (en) * 2003-02-12 2003-07-18 Nippon Chemicon Corp Electrolytic solution for electrolytic capacitor

Also Published As

Publication number Publication date
WO2020027124A1 (en) 2020-02-06
JP7384161B2 (en) 2023-11-21
CN112385008B (en) 2023-03-28
CN112385008A (en) 2021-02-19
TWI838391B (en) 2024-04-11
KR102603990B1 (en) 2023-11-17
TW202008404A (en) 2020-02-16
JPWO2020027124A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
KR102603990B1 (en) Electrolyte and electrolytic capacitor for electrolytic capacitors
CN110199367B (en) Electrolytic solution for electrolytic capacitor, and method for manufacturing electrolytic capacitor
JP4900456B2 (en) Aluminum electrolytic capacitor
JP3669804B2 (en) Electrolytic solution for electrolytic capacitors
JP6403006B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
EP3522190A1 (en) Electrode foil and electrolytic capacitor
JP4128465B2 (en) Electrolytic solution for electrolytic capacitors
JP2009182275A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP2007134524A (en) Electrolytic solution for drive of electrolytic capacitor, and electrolytic capacitor using the same
WO2019194092A1 (en) Electrolytic capacitor
JP5279687B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
TW201921396A (en) Solid electrolytic capacitor
JP2023097332A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2008091371A (en) Electrolytic capacitor and its manufacturing method
JP2021163864A (en) Electrolytic capacitor and power converter
CN113994445A (en) Electrolytic capacitor
JP2007273926A (en) Electrolytic capacitor
JP2008085241A (en) Electrolytic capacitor
JP2017034203A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JPH06168849A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using thereof
JP2002217063A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant