KR20210026882A - Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same - Google Patents

Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same Download PDF

Info

Publication number
KR20210026882A
KR20210026882A KR1020190108283A KR20190108283A KR20210026882A KR 20210026882 A KR20210026882 A KR 20210026882A KR 1020190108283 A KR1020190108283 A KR 1020190108283A KR 20190108283 A KR20190108283 A KR 20190108283A KR 20210026882 A KR20210026882 A KR 20210026882A
Authority
KR
South Korea
Prior art keywords
astrocytes
hippocampus
cognitive function
brain
stimulation
Prior art date
Application number
KR1020190108283A
Other languages
Korean (ko)
Inventor
석경호
장일성
김재홍
이만기
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020190108283A priority Critical patent/KR20210026882A/en
Publication of KR20210026882A publication Critical patent/KR20210026882A/en
Priority to KR1020210074632A priority patent/KR20210071917A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/20Animals treated with compounds which are neither proteins nor nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/30Animals modified by surgical methods
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to an animal model of cognitive impairment using optogenetic or chemogenetic stimulation of hippocampal astrocytes, and a screening method for cognitive function improvement drugs using the same. More specifically, in order to regulate astrocytes in vivo, an adenovirus including a light- or chemical-responsive gene regulated by a cell-specific (GFAP) promoter is injected into the brain of a mouse, and thus light or chemical reaction genes are expressed in astrocytes. According to the present invention, it has been confirmed that cognitive impairment can be induced through stimulation of light or chemical activation of astrocytes in a hippocampal region. Also, it has been confirmed that inhibition of astrocyte activities using an inhibitory chemical reaction can protect cognitive impairment observed in neuroinflammatory situations. Accordingly, the technology developed according to the present invention can be useful to study cognitive impairment and presents the possibility of developing astrocyte-centered prevention/therapeutic strategies for controlling cognitive functions and treating related diseases.

Description

해마 성상세포의 광유전학적 또는 화학유전학적 자극을 통한 인지기능 손상 동물 모델 및 이를 이용한 인지기능 개선 약물의 스크리닝 방법{Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same}Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same}

본 발명은 해마 성상세포의 광유전학적 또는 화학유전학적 자극을 통한 인지기능 손상 동물 모델 및 이를 이용한 인지기능 개선 약물의 스크리닝 방법에 관한 것이다.The present invention relates to an animal model for impairing cognitive function through optogenetic or chemogenetic stimulation of hippocampal astrocytes and a method for screening a drug for improving cognitive function using the same.

인지기능은 지식과 정보를 효율적으로 조작하는 능력으로서, 기억력, 공간지각력, 판단력, 집행기능, 언어능력 등을 포괄하는 것이다. 의료 기술의 발전과 경제적 성장으로 인해 고령화 사회에 접어들면서 인지기능 및 인지능력을 손상시키는 신경퇴행성 질병으로 인한 물질적인 피해와 이러한 질병에 연관되는 정신적인 피해가 함께 나타나고 있다. 인지기능의 저하는 주로 기억력 등과 관계된 기능 및 능력의 쇠퇴를 의미하는 경우가 많았으나, 근래에는 기억력 저하에 국한하지 않고 뇌의 변화 과정에 따라 복합 주의력, 지각 능력, 실행 기능, 학습 및 기억력, 언어 능력, 지각-운동 기능, 및 사회 인지 등 저하되는 능력과 영역 면에서 다양한 양상으로 나타날 수 있다고 보고 있다.Cognitive function is the ability to efficiently manipulate knowledge and information, and encompasses memory, spatial perception, judgment, executive function, and language ability. As medical technology advances and economic growth enters an aging society, both material damage caused by neurodegenerative diseases that impair cognitive function and cognitive ability and mental damage related to these diseases are appearing together. Decreased cognitive function often means a decline in functions and abilities related to memory, but in recent years, it is not limited to a decrease in memory, but complex attention, perceptual ability, executive function, learning and memory, language according to the process of changes in the brain. It is believed that it can appear in various aspects in terms of degraded abilities and areas such as ability, perceptual-motor function, and social cognition.

신경세포의 일종인 성상세포(astrocyte)는 성상교세포라고도 하는데, 신경계에 가장 많은 수를 차지하는 세포로서 뉴런이 분비하는 신경전달물질을 적절하게 제거하거나 뇌 내의 이온 농도를 조절하면서 뉴런 활성을 보조하는 역할을 수행한다고 알려져 있다. 최근에는, 뉴런의 시냅스 형성, 시냅스 숫자 조절, 시냅스 가소성 등에 일정한 역할을 수행하고, 퇴행성 신경계 질환의 발병에도 일정한 역할을 수행하며, 신경줄기세포가 신경으로 분화할 때에도 일정한 역할을 수행함이 규명됨에 따라, 성상세포를 분화시켜서, 퇴행성 신경계 질환에 치료 또는 개선에 사용할 수 있는지에 대한 연구가 활발히 진행되고 있다.Astrocytes, a type of neuron, are also known as astrocytes, which occupy the largest number of cells in the nervous system, and play a role in supporting neuron activity by appropriately removing neurotransmitters secreted by neurons or regulating the concentration of ions in the brain. It is known to perform. Recently, as it has been found that it plays a certain role in the formation of synapses of neurons, regulation of synaptic numbers, and synaptic plasticity, plays a certain role in the onset of degenerative nervous system diseases, and plays a certain role even when neural stem cells differentiate into neurons. Research on whether astrocytes can be differentiated and used for treatment or improvement in degenerative neurological diseases is being actively conducted.

한국공개특허 10-2018-0022150 (2018.03.06. 공개)Korean Patent Publication 10-2018-0022150 (published on March 6, 2018)

본 발명의 목적은 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하는 단계를 포함하는 인지기능 손상 동물 모델 제조방법, 상기 방법으로 제조된 인지기능 손상 동물 모델 및 이를 이용한 인지기능 개선 약물의 스크리닝 방법을 제공하는데 있다.An object of the present invention is a method for manufacturing a cognitive impaired animal model comprising the step of stimulating astrocytes in the brain hippocampus photogenetically or chemogeneically, a cognitive impaired animal model manufactured by the above method, and a drug for improving cognitive function using the same It is to provide a screening method of.

또한, 본 발명의 다른 목적은 뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 뇌질환 예방 또는 치료용 약학조성물과, 인지기능 개선용 건강기능식품 조성물을 제공하는데 있다.In addition, another object of the present invention is to provide a pharmaceutical composition for preventing or treating brain diseases, comprising an inhibitor of activating cerebral hippocampal astrocytes as an active ingredient, and a health functional food composition for improving cognitive function.

본 발명은 인간을 제외한 동물의 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하는 단계를 포함하는 인지기능 손상 동물 모델 제조방법을 제공한다.The present invention provides a method for manufacturing a cognitive impaired animal model comprising the step of stimulating astrocytes in the hippocampus of the brain of animals other than humans by photogenetic or chemogenetic stimulation.

또한, 본 발명은 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하여 제작된 인간을 제외한 인지기능 손상 동물 모델을 제공한다.In addition, the present invention provides an animal model with impaired cognitive function except for humans produced by stimulating astrocytes in the brain hippocampus by photogenetic or chemogenetic stimulation.

또한, 본 발명은 상기 인지기능 손상 동물 모델에 인지기능 개선 약물 후보물질을 투여하는 단계; 및 대조물질을 투여한 동물군과 비교하여 인지기능 개선 효과를 나타내는 약물 후보물질을 선별하는 단계를 포함하는 인지기능 개선 약물의 스크리닝 방법을 제공한다.In addition, the present invention comprises the steps of administering a drug candidate for improving cognitive function to the cognitive impaired animal model; And it provides a method for screening a drug for improving cognitive function, comprising the step of selecting a drug candidate material showing an effect of improving cognitive function compared to the animal group administered with the control substance.

또한, 본 발명은 뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 뇌질환 예방 또는 치료용 약학조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating brain diseases comprising an inhibitor of activating cerebral hippocampal astrocytes as an active ingredient.

또한, 본 발명은 뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 인지기능 개선용 건강기능식품 조성물을 제공한다.In addition, the present invention provides a health functional food composition for improving cognitive function comprising a brain hippocampal astrocyte activation inhibitor as an active ingredient.

본 발명은 해마 성상세포의 광유전학적 또는 화학유전학적 자극을 통한 인지기능 손상 동물 모델 및 이를 이용한 인지기능 개선 약물의 스크리닝 방법에 관한 것으로서, 더욱 구체적으로는 생체 내에서 성상세포를 조절하기 위해 세포 특이적 (GFAP) 프로모터에 의해 조절되는 빛 또는 화학물질에 반응하는 유전자를 포함하는 아데노바이러스를 마우스의 뇌 내로 주사하여 성상세포에서 광 또는 화학반응 유전자를 발현시켰다. 본 발명을 통하여 해마영역 내의 성상세포에 대한 광 또는 화학 활성화 자극을 통해 인지기능 손상을 유도할 수 있음을 확인하였으며, 억제성 화학반응을 이용한 성상세포 활성 저해는 신경염증 상황에서 보이는 인지기능 손상을 보호할 수 있음을 확인하였다. 따라서 본 발명을 통해 개발된 기술은 인지기능 손상을 연구하는데 유용하게 이용될 수 있을 뿐만 아니라 인지기능을 제어하고 관련 질환을 치료하기 위한 성상세포 중심의 예방/치료전략 개발의 가능성을 제시한다.The present invention relates to an animal model for cognitive function impairment through optogenetic or chemogenetic stimulation of hippocampal astrocytes, and a method for screening a drug for improving cognitive function using the same, and more specifically, to a cell for controlling astrocytes in vivo. An adenovirus containing a gene that responds to light or chemicals regulated by a specific (GFAP) promoter was injected into the brain of a mouse to express a light or chemically reactive gene in astrocytes. Through the present invention, it was confirmed that cognitive impairment can be induced through light or chemical activation stimulation of astrocytes in the hippocampus region, and inhibition of astrocyte activity using an inhibitory chemical reaction can reduce cognitive impairment seen in neuroinflammation situations. It was confirmed that it can be protected. Therefore, the technology developed through the present invention not only can be usefully used to study cognitive impairment, but also suggests the possibility of developing a stellate cell-centered prevention/treatment strategy to control cognitive function and treat related diseases.

도 1은 바이러스에 의한 해마 CA1의 성상세포 특이적 ChR2 발현 유도 결과를 나타낸다. A, 바이러스 구성 도면을 나타낸다. B, 대조군과 ChR2 바이러스 주입 2주 후 생쥐의 해마에서 성상세포와 신경세포를 항체 (GFAP와 NeuN)를 이용하여 형광면역염색으로 시각화하였다. C, 성상세포 (GFAP)와 ChR2가 겹치는 것이 확인하였고(노란색 화살표), 신경세포에서 겹치지 않았다.
도 2는 성상세포 자극 지속시간에 따른 공간 인지 기능 손상 결과를 나타낸다. A, 성상세포의 광자극 자극방법과 Y-maze test를 위한 실험 디자인 모식도를 나타낸다. B, 동물에게 하루에 5분, 10분, 그리고 20분의 광자극을 주었다. 20분 자극 3일째에서 대조군 바이러스 그룹 (eYFP)과 비교해 ChR2 그룹에서 공간인지기능이 손상되었다. 바이러스를 처리하지 않은 그룹과 대조군 그룹에서는 차이가 없었다.
도 3은 성상세포 특이적 활성화 지속 시간에 따른 공간 탐색 및 기억력 손상 결과를 나타낸다. A, 성상세포 광자극 방법과 수동 회피 테스트(Passive avoidance test)를 위한 실험 디자인 모식도를 나타낸다. B, 훈련 기간에 광자극 5분, 10분, 그리고 20분 자극을 3일간 반복하였다. 20분 자극 3일째 훈련에 의한 탈출구를 찾는 속도가 다른 그룹에 비하여 유의미하게 차이가 있었다. 프로브 테스트에 의한 기억력 검사에서 4일째 손상을 보였으나 6일째 다른 그룹에 비하여 차이가 없었다.
도 4는 성상세포 특이적 자극에 의한 해마 내 전염증성 물질의 발현 증가 결과를 나타낸다. 바이러스를 주입하지 않은 그룹, 대조군 바이러스 주입 그룹, 그리고 ChR2 바이러스 주입 그룹에 하루 광자극 20분씩 총 3일 동안 자극된 동물의 해마조직에서 ChR2 그룹에서 Il-1b, Lcn2, Tnf의 mRNA 발현이 증가되었지만, 광자극이 없을 경우 변화가 없었다.
도 5는 해마 CA1 영역에서의 DREADD 발현 결과를 나타낸다. 해마 CA1 영역에서 hM3D(Gq)-mCherry (A) 및 hM4Di-mCherry (B)의 발현은 성상 세포 마커 GFAP (백색)와 동일한 위치에서 나타났다(노란색 화살표). 그러나 신경 세포 마커 NeuN (빨간색)에서는 나타나지 않았다.
도 6은 hM3Dq에 의한 성상세포 활성화에 의한 해마 의존적 인지기능의 손상 결과를 나타낸다. A, 성상세포 활성화를 위한 hM3Dq 자극과 Y-maze test를 위한 실험 디자인 모식도를 나타낸다. B, CNO (3 mg/kg) 복강주사 후 90분과 120분에서 유의미하게 교차 방문행동이 감소되었다. 활동성 지표로 사용한 전체 방문횟수는 차이가 없었다. C, 성상세포 활성화를 위한 hM3Dq 자극과 수동 회피 테스트(Passive avoidance test)를 위한 실험 디자인 모식도를 나타낸다. D, CNO (3 mg/kg) 복강주사 후 30분 뒤 훈련과정에서 eYFP와 hM3Dq 그룹간 차이가 없었다. 24시간 후 수행된 공포학습 관련 기억력에 hM3Dq 그룹에서 유의미한 차이가 나타났다.
도 7은 hM4Di에 의한 성상세포 활성화에 의한 해마 의존적 인지기능의 손상 결과를 나타낸다. A, 성상세포 활성화를 위한 hM4Di 자극과 Y-maze test를 위한 실험 디자인 모식도를 나타낸다. B, LPS 처리 30분 전 CNO (3 mg/kg) 그리고 LPS 처리 후 6시간 간격으로 추가로 CNO를 3회 복강주사 하였다. LPS 처리 24시간 후 유의미하게 hM4Di CNO+LPS 그룹에서 교차 방문 행동이 감소되었다. 활동성 지표로 사용한 전체 방문횟수는 차이가 없었다. C, 성상세포 활성화를 위한 hM4Di 자극과 수동 회피 테스트(Passive avoidance test)를 위한 실험 디자인 모식도를 나타낸다. D, LPS 처리 30분 전 CNO (3 mg/kg) 그리고 LPS 처리 후 6시간 간격으로 추가로 CNO를 3회 복강주사 하였다. 훈련기간에 hM4Di LPS 그룹 대조군과 비교하여 유의미한 감소가 나타났다. 24시간 후 수행된 공포학습 관련 기억력에 hM4Di 그룹에서 유의미한 차이가 나타났다.
1 shows the results of induction of astrocyte-specific ChR2 expression of hippocampal CA1 by virus. A, virus configuration diagram is shown. B, Astrocytes and neurons in the hippocampus of mice 2 weeks after injection of the control and ChR2 virus were visualized by fluorescence immunostaining using antibodies (GFAP and NeuN). C, astrocytes (GFAP) and ChR2 were confirmed to overlap (yellow arrows), and neurons did not overlap.
2 shows the result of impairment of spatial cognitive function according to the duration of astrocyte stimulation. A, A schematic diagram of the optical stimulation stimulation method of astrocytes and the experimental design for the Y-maze test is shown. B, the animals were given photostimulation of 5 minutes, 10 minutes, and 20 minutes per day. At the 3rd day of 20-minute stimulation, spatial cognitive function was impaired in the ChR2 group compared to the control virus group (eYFP). There was no difference between the group not treated with virus and the control group.
3 shows the results of spatial search and memory impairment according to astrocyte-specific activation duration. A, A schematic diagram of the experimental design for the astrocyte photostimulation method and passive avoidance test is shown. B, during the training period, 5 minutes, 10 minutes, and 20 minutes of photostimulation were repeated for 3 days. There was a significant difference in the speed of finding an exit by training on the 3rd day of 20-minute stimulation compared to other groups. The memory test by the probe test showed impairment on the 4th day, but there was no difference compared to the other groups on the 6th day.
4 shows the result of increasing the expression of pro-inflammatory substances in the hippocampus by astrocyte-specific stimulation. The mRNA expressions of Il-1b, Lcn2, and Tnf were increased in the ChR2 group in the hippocampal tissues of animals that were stimulated for a total of 3 days for a total of 3 days in the group without virus injection, the control virus injection group, and the ChR2 virus injection group. In the absence of photostimulation, there was no change.
5 shows the results of DREADD expression in the CA1 region of the hippocampus. Expression of hM3D(Gq)-mCherry (A) and hM4Di-mCherry (B) in the hippocampal CA1 region was at the same location as the astrocyte marker GFAP (white) (yellow arrow). However, it did not appear in the neuronal marker NeuN (red).
6 shows the results of impairment of hippocampal-dependent cognitive function by activation of astrocytes by hM3Dq. A, A schematic diagram of the experimental design for hM3Dq stimulation and Y-maze test for astrocyte activation is shown. The cross-visit behavior was significantly decreased at 90 and 120 minutes after intraperitoneal injection of B and CNO (3 mg/kg). There was no difference in the total number of visits used as an indicator of activity. C, a schematic diagram of the experimental design for hM3Dq stimulation for astrocyte activation and passive avoidance test is shown. There was no difference between the eYFP and hM3Dq groups during training 30 minutes after D, CNO (3 mg/kg) intraperitoneal injection. There was a significant difference in the memory related to fear learning performed 24 hours later in the hM3Dq group.
7 shows the results of impairment of hippocampal-dependent cognitive function by activation of astrocytes by hM4Di. A, A schematic diagram of the experimental design for hM4Di stimulation for astrocyte activation and Y-maze test is shown. B, CNO (3 mg/kg) 30 minutes before LPS treatment, and CNO intraperitoneally injected 3 times at 6 hour intervals after LPS treatment. After 24 hours of LPS treatment, the cross-visit behavior was significantly reduced in the hM4Di CNO+LPS group. There was no difference in the total number of visits used as an indicator of activity. C, a schematic diagram of the experimental design for hM4Di stimulation for astrocyte activation and passive avoidance test is shown. D, CNO (3 mg/kg) 30 minutes before LPS treatment, and CNO intraperitoneally three times at 6 hour intervals after LPS treatment. During the training period, there was a significant decrease compared to the hM4Di LPS group control group. There was a significant difference in the memory related to fear learning performed after 24 hours in the hM4Di group.

본 발명은 인간을 제외한 동물의 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하는 단계를 포함하는 인지기능 손상 동물 모델 제조방법을 제공한다. 바람직하게는, 상기 동물은 생쥐일 수 있으나, 이에 제한되는 것은 아니다.The present invention provides a method for manufacturing a cognitive impaired animal model comprising the step of stimulating astrocytes in the hippocampus of the brain of animals other than humans by photogenetic or chemogenetic stimulation. Preferably, the animal may be a mouse, but is not limited thereto.

바람직하게는, 상기 뇌 해마 내 성상세포를 광유전학적으로 자극하는 단계는 1) 뇌 해마 내 성상세포를 광활성화 이온채널(light-activated ion channel) 유전자를 포함하는 발현벡터로 형질전환하여, 상기 광활성화 이온채널을 발현시키는 단계; 및 2) 상기 뇌 해마 내 성상세포를 광자극하는 단계를 포함할 수 있으나, 이에 제한되는 것은 아니다. Preferably, the step of optogeneically stimulating astrocytes in the hippocampus of the brain is 1) transforming astrocytes in the hippocampus of the brain with an expression vector containing a light-activated ion channel gene, the Expressing a photoactivated ion channel; And 2) photostimulating astrocytes in the hippocampus of the brain, but is not limited thereto.

본 발명에 있어서, 광유전학(optogenetics)은 최근 각광받고 있는 바이오 기술 분야의 하나로, 유전자를 조작해 빛으로 무엇인가를 조절한다는 뜻이다. 광유전학의 초기 연구는 빛을 이용해 신경세포의 활성을 조절하는데 응용되었고, 이는 신경세포에 빛을 쪼여주면 신경세포가 활성화되는 기술을 말한다. 이렇게 빛을 이용하여 신경세포의 활성을 조절하면 기존의 전기 자극을 이용해 신경세포를 조절하는 것보다 보다 정밀하게 신경세포의 활성을 통제할 수 있다. 전기 자극이 불특정 다수의 신경세포를 자극하는 것에 반해 광유전학 기술은 목표로 하는 특정세포를 정확하게 자극할 수 있기 때문이다. 따라서, 본 발명에서는 상기 광자극에 의해 성상세포를 활성화시킬 수 있는 광활성화 이온 채널을 성상세포 특이적 프로모터의 조절하에서 형질전환시키는 것을 목적으로 한다.In the present invention, optogenetics is one of the biotechnology fields that have been in the spotlight recently, and it means controlling something with light by manipulating genes. Early research in optogenetics was applied to control the activity of nerve cells using light, which refers to a technology that activates nerve cells when light is irradiated to them. By controlling the activity of nerve cells using light in this way, you can control the activity of nerve cells more precisely than controlling the nerve cells using conventional electrical stimulation. This is because, while electrical stimulation stimulates a large number of unspecified nerve cells, optogenetic technology can accurately stimulate specific cells of interest. Accordingly, an object of the present invention is to transform a photoactivated ion channel capable of activating astrocytes by the photostimulation under the control of an astrocyte-specific promoter.

본 발명에 있어서, 상기 광활성화 이온채널(light-activated ion channel)은 광 자극에 의해 공극을 열고 닫는 막 투과성 단백질 그룹이다. 본 발명에서 상기 광활성화 이온채널은 광 자극에 노출이 되었을 때에 이에 반응하여 세포막의 이온 채널을 열 수 있는 단백질이라면 제한 없이 사용이 가능하며, 채널로돕신(channelrhodopsin), 할로로돕신(halorhodopsin) 또는 알키로돕신(archaerhodopsin)과 같은 단백질을 사용할 수 있다. 바람직하게는, 본 발명의 일실시예에서는 채널로돕신-2(channelrhodopsin-2; ChR2)를 사용하였다. 한편, 본 발명에 사용한 채널로돕신-2는 genbank number EF47017(ChR2)의 401번째 염기가 구아닌으로 점 돌연변이된 변이체로서, ChR2(H134R)로도 표시하였다.In the present invention, the light-activated ion channel is a group of membrane-permeable proteins that open and close pores by light stimulation. In the present invention, the photoactivated ion channel can be used without limitation as long as it is a protein capable of opening an ion channel of a cell membrane in response to exposure to light stimulation. Proteins such as (archaerhodopsin) can be used. Preferably, in one embodiment of the present invention, channelrhodopsin-2 (ChR2) was used. On the other hand, channelrhodopsin-2 used in the present invention is a mutant in which the 401th base of genbank number EF47017 (ChR2) is point mutated to guanine, and is also indicated as ChR2 (H134R).

상기 채널로돕신(channel rhodopsin)의 채널(channel)은 무엇인가가 통과한다는 뜻이고, 로돕신(rhodopsin)이라는 단어는 빛과 관련된다. 이는 빛을 받으면 채널로돕신의 채널이 열려 무엇인가가 세포 안으로 들어오고, 빛이 없으면 채널이 열리지 않는 특징이 있다. 따라서, 상기 채널로돕신-2 단백질을 성상세포에 주입하여 성상세포 세포막에서 채널의 열림을 빛으로 조절할 수 있도록 하였고, 성상세포의 채널이 열리면 세포 안으로 칼륨(K)과 같은 양이온들이 세포 안으로 들어오게 되며, 이로 인하여 세포 안과 밖의 전위차가 발생하여 성상세포가 활성화되게 된다.The channel of the channel rhodopsin means that something passes, and the word rhodopsin is related to light. This has the characteristic that when it receives light, the channel of channel rhodopsin opens and something enters the cell, and without light, the channel does not open. Therefore, the channel rhodopsin-2 protein was injected into astrocytes to control the opening of the channel in the astrocyte cell membrane with light, and when the channel of the astrocyte is opened, cations such as potassium (K) enter the cell into the cell. As a result, a potential difference between the inside and outside of the cell is generated, and the astrocyte is activated.

본 발명에서 성상세포를 광활성화 이온 채널로 형질전환 시키는 방법은 당업계에서 공지된 형질전환 방법을 제한없이 이용할 수 있으며, 이의 비제한적인 예시로는 형질전환(transformation), 형질주입(transfection), 전기천공(electrophoresis), 형질도입(transduction), 미세주입(microinjection) 및 총알식 도입(balliatic introduction)으로 이루어진 군에서 선택될 수 있다.In the present invention, the method of transforming astrocytes with a photoactivated ion channel may use a transformation method known in the art without limitation, and non-limiting examples thereof include transformation, transfection, and It may be selected from the group consisting of electrophoresis, transduction, microinjection, and balliatic introduction.

본 발명에서 상기 광 자극은 450 내지 480 nm의 파장을 갖는 청색광을 조사하는 것이 바람직하며, 광 자극을 조사하는 시간은 5분 내지 30분으로, 1회 내지 3회 광 자극하는 것이 바람직하다. 한편, 광 자극을 조사하는 방법은 특별히 제한되지 않으며 동물을 고정시키고 외부에서 광 자극을 조사할 수도 있으며, 뇌 해마 내로 광 섬유(optic fiber)를 이식하여 해마에 직접적인 광 자극을 조사할 수도 있다. 상기 광의 파장은 형질전환하는 광활성화 이온채널의 종류에 따라 달라질 수 있으며, 최적의 광 파장은 통상의 기술자가 반복시험을 통해 용이하게 선정할 수 있다.In the present invention, the optical stimulation is preferably irradiated with blue light having a wavelength of 450 to 480 nm, and the time for irradiating the optical stimulation is 5 to 30 minutes, preferably 1 to 3 times. On the other hand, the method of irradiating the optical stimulation is not particularly limited, and the animal may be immobilized and the optical stimulation may be irradiated from the outside, and an optical fiber may be implanted into the hippocampus to irradiate the direct optical stimulation to the hippocampus. The wavelength of the light may vary depending on the type of the photoactivated ion channel to be transformed, and the optimal light wavelength can be easily selected by a person skilled in the art through repeated tests.

바람직하게는, 상기 뇌 해마 내 성상세포를 화학유전학적으로 자극하는 단계는 1) 뇌 해마 내 성상세포를 hM3Dq DREADD(designer receptors exclusively activated by designer drugs) 수용체를 포함하는 발현벡터로 형질전환하여, 상기 hM3Dq DREADD 수용체를 발현시키는 단계; 및 2) 상기 발현된 hM3Dq DREADD 수용체와 클로자핀 N-산화물(Clozapine N-oxide; CNO)을 반응시켜, 뇌 해마 내 성상세포를 활성화시키는 단계를 포함할 수 있으나, 이에 제한되는 것은 아니다. Preferably, the step of stimulating astrocytes in the brain hippocampus chemogeneically comprises: 1) transforming astrocytes in the brain hippocampus with an expression vector containing an hM3Dq DREADD (designer receptors exclusively activated by designer drugs) receptor, the expressing the hM3Dq DREADD receptor; And 2) reacting the expressed hM3Dq DREADD receptor with Clozapine N-oxide (CNO) to activate astrocytes in the hippocampus of the brain, but is not limited thereto.

본 발명에 있어서, 화학유전학(chemogenetic)은 화학생물학 또는 화학유전체학으로도 불리며 알려지지 않은 저분자 합성물질에 반응하는 단백질을 적용해 세포의 활성을 조절하여 생리학적 기능의 이해를 돕는 응용기술이다. 인산화효소(kinase), 비인산화효소(non-kinase enzyme), GPCR (G protein-coupled receptors), 그리고 ligand-gated ion channel 등의 단백질들이 화학유전학적으로 만들어졌다. 화학유전학적으로 설계된 다양한 단백질들 중 wild type muscarinic receptor를 일부 돌연변이 시켜 아세틸콜린(acetylcholine; Ach)과의 반응성은 낮추고 새로운 합성물질(예를 들면, clozapine-N-oxide)에 반응성을 높인 DREADDs(designer receptors exclusively activated by designer drugs)가 가장 많이 사용된다.In the present invention, chemogenetics, also called chemical biology or chemogenomics, is an applied technology that helps understanding physiological functions by controlling the activity of cells by applying a protein that reacts to an unknown low-molecular synthetic material. Proteins such as kinase, non-kinase enzyme, GPCR (G protein-coupled receptors), and ligand-gated ion channels have been made chemically. DREADDs (designer) lowered reactivity with acetylcholine (Ach) and increased reactivity to new synthetic substances (e.g., clozapine-N-oxide) by partially mutating wild type muscarinic receptors among various chemogeneically designed proteins. receptors exclusively activated by designer drugs) are most commonly used.

DREADDs 중 하나인, hM3Dq는 신경세포 활성을 촉진하기 위한 수용체로 Gq 단백질을 이용한 hM3Dq와 ligand로 클로자핀 N-산화물(clozapine N-oxide; CNO)의 조합이 일반적으로 사용된다. Gq-DREADDs는 낮은 CNO의 농도(nM)에서 활성화되어 세포 내 칼슘 분비를 증가시켜 신경세포 활성을 촉진한다. One of the DREADDs, hM3Dq, is a receptor for promoting neuronal activity. A combination of hM3Dq using Gq protein and clozapine N-oxide (CNO) as a ligand is generally used. Gq-DREADDs are activated at low concentrations of CNO (nM) to increase intracellular calcium secretion and promote neuronal activity.

DREADDs 중 하나인, hM4Di는 신경세포 활성을 억제하기 위한 수용체로, Gi 단백질을 이용하여 개발되었다. hM4Di는 CNO, perlapine, compound 21에 의해 활성화된다.One of the DREADDs, hM4Di, is a receptor for inhibiting neuronal activity and was developed using Gi protein. hM4Di is activated by CNO, perlapine, and compound 21.

본 발명에서 상기 발현벡터는 선형 DNA 벡터, 플라스미드 DNA 벡터 및 재조합 바이러스 벡터로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아니며 당업계에서 형질전환을 위해 사용되는 통상적인 벡터들은 모두 본 발명의 방법에 사용될 수 있다.In the present invention, the expression vector may be selected from the group consisting of a linear DNA vector, a plasmid DNA vector, and a recombinant viral vector, but is not limited thereto, and all conventional vectors used for transformation in the art are the methods of the present invention. Can be used for

바람직하게는, 본 발명의 일실시예에서 사용한 발현벡터는 아데노바이러스 벡터(adenoviral vector) 또는 아데노-관련 바이러스 벡터(adeno-associated viral vector)일 수 있으나, 이에 제한되는 것은 아니다. Preferably, the expression vector used in an embodiment of the present invention may be an adenovirus vector or an adeno-associated viral vector, but is not limited thereto.

또한, 본 발명은 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하여 제작된 인간을 제외한 인지기능 손상 동물 모델을 제공한다. 바람직하게는, 상기 동물은 생쥐일 수 있으나, 이에 제한되는 것은 아니다.In addition, the present invention provides an animal model with impaired cognitive function except for humans produced by stimulating astrocytes in the brain hippocampus by photogenetic or chemogenetic stimulation. Preferably, the animal may be a mouse, but is not limited thereto.

바람직하게는, 상기 광유전학적 자극은 뇌 해마 내 성상세포를 광활성화 이온채널 유전자를 포함하는 발현벡터로 형질전환하여, 상기 광활성화 이온채널을 발현시키고, 상기 뇌 해마 내 성상세포를 광자극하는 것일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the optogenetic stimulation transforms astrocytes in the brain hippocampus with an expression vector containing a photoactivated ion channel gene, expressing the photoactivated ion channel, and photostimulating astrocytes in the brain hippocampus. It may be, but is not limited thereto.

바람직하게는, 상기 화학유전학적 자극은 뇌 해마 내 성상세포를 hM3Dq DREADD 수용체를 포함하는 발현벡터로 형질전환하여, 상기 hM3Dq DREADD 수용체를 발현시키고, 상기 발현된 hM3Dq DREADD 수용체와 클로자핀 N-산화물(Clozapine N-oxide; CNO)을 반응시켜, 뇌 해마 내 성상세포를 활성화시킨 것일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the chemogenetic stimulation transforms astrocytes in the brain hippocampus with an expression vector containing the hM3Dq DREADD receptor to express the hM3Dq DREADD receptor, and the expressed hM3Dq DREADD receptor and clozapine N-oxide (Clozapine N-oxide; CNO) may be reacted to activate astrocytes in the hippocampus of the brain, but is not limited thereto.

또한, 본 발명은 상기 인지기능 손상 동물 모델에 인지기능 개선 약물 후보물질을 투여하는 단계; 및 대조물질을 투여한 동물군과 비교하여 인지기능 개선 효과를 나타내는 약물 후보물질을 선별하는 단계를 포함하는 인지기능 개선 약물의 스크리닝 방법을 제공한다. In addition, the present invention comprises the steps of administering a drug candidate for improving cognitive function to the cognitive impaired animal model; And it provides a method for screening a drug for improving cognitive function, comprising the step of selecting a drug candidate material showing an effect of improving cognitive function compared to the animal group administered with the control substance.

본 발명에서 상기 인지기능 개선 약물 후보물질은 그 종류가 특별히 제한되지 않으며, 바람직하게는 천연물, 합성화합물, RNA, DNA, 폴리펩티드, 효소, 단백질, 리간드, 항체, 박테리아 또는 진균의 대사물 및 생활성 분자로 이루어진 군에서 선택될 수 있다. In the present invention, the type of the candidate drug for improving cognitive function is not particularly limited, and preferably natural products, synthetic compounds, RNA, DNA, polypeptides, enzymes, proteins, ligands, antibodies, metabolites and bioactivity of bacteria or fungi It may be selected from the group consisting of molecules.

상기 인지기능 개선 약물 후보물질을 동물에 투여하는 방법은 당업계에서 동물에 약물을 투여하는 방법은 제한 없이 이용될 수 있으며, 예를 들어 복강투여, 경구투여, 정맥투여, 음수투여, 척수강 내 투여 등이 이용될 수 있다. 후보물질의 투여 시기는 광유전학적 또는 화학유전학적 자극 직후 내지 1일 이내일 수 있으나 이에 제한되는 것은 아니며, 후보물질의 종류에 따라서는 광유전학적 또는 화학유전학적 자극 이전에 미리 약물을 투여하여 인지기능 개선 효과를 평가할 수도 있다. 약물의 투여 시기, 투여 경로, 투여 간격 및 투여 용량은 후보물질의 종류, 성상, 작용기전 등에 따라 통상의 기술자가 예비 실험을 통해 최적의 조건을 용이하게 선정하여 적용할 수 있다.The method of administering the cognitive improvement drug candidate to an animal can be used without limitation in the art of administering the drug to the animal, for example, intraperitoneal administration, oral administration, intravenous administration, negative administration, intrathecal administration. Etc. can be used. The timing of administration of the candidate substance may be within 1 day immediately after optogenetic or chemogenetic stimulation, but is not limited thereto. Depending on the type of candidate substance, the drug may be administered before optogenetic or chemogenetic stimulation. The effect of improving cognitive function can also be evaluated. The timing of administration, route of administration, administration interval, and dosage of the drug can be applied by a person skilled in the art by easily selecting and applying optimal conditions through preliminary experiments according to the type, nature, and mechanism of action of the candidate substance.

또한, 본 발명은 뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 뇌질환 예방 또는 치료용 약학조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating brain diseases comprising an inhibitor of activating cerebral hippocampal astrocytes as an active ingredient.

본 발명의 약학 조성물은 화학물질, 뉴클레오타이드, 안티센스, siRNA 올리고뉴클레오타이드 및 천연물 추출물을 유효성분으로 포함할 수 있다. 본 발명의 약학 조성물 또는 복합 제제는 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. 본 발명의 약학 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1 종 이상 포함하여 약학 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. The pharmaceutical composition of the present invention may include chemical substances, nucleotides, antisense, siRNA oligonucleotides, and natural product extracts as active ingredients. The pharmaceutical composition or complex formulation of the present invention may be prepared using a pharmaceutically suitable and physiologically acceptable adjuvant in addition to the active ingredient, and the adjuvant may be an excipient, a disintegrant, a sweetening agent, a binder, a coating agent, an expanding agent, and a lubricant. , A solubilizing agent such as a lubricant or a flavoring agent may be used. The pharmaceutical composition of the present invention may be preferably formulated as a pharmaceutical composition, including at least one pharmaceutically acceptable carrier in addition to the active ingredient for administration. Acceptable pharmaceutical carriers for compositions formulated as liquid solutions are sterilized and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added as necessary. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare injection formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets.

본 발명의 약학 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 약학 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 성인의 경우, 1일 1회 내지 수회 투여시, 본 발명의 조성물은 1일 1회 내지 수회 투여시, 화합물일 경우 0.1ng/kg~10g/kg, 폴리펩타이드, 단백질 또는 항체일 경우 0.1ng/kg~10g/kg, 안티센스 뉴클레오타이드, siRNA, shRNAi, miRNA일 경우 0.01ng/kg~10g/kg의 용량으로 투여할 수 있다. The pharmaceutical formulation form of the pharmaceutical composition of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions, and sustained-release formulations of active compounds. I can. The pharmaceutical composition of the present invention is in a conventional manner through intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, transdermal, intranasal, inhalation, topical, rectal, oral, intraocular or intradermal routes. It can be administered as. The effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required for prevention or treatment of a disease. Therefore, the type of disease, the severity of the disease, the type and content of the active ingredient and other ingredients contained in the composition, the type of formulation and the patient's age, weight, general health condition, sex and diet, administration time, administration route and composition It can be adjusted according to various factors, including the rate of secretion, duration of treatment, and drugs used concurrently. Although not limited thereto, for example, in the case of an adult, when administered once to several times a day, the composition of the present invention is administered once to several times a day, in the case of a compound, 0.1 ng/kg to 10 g/kg, a polypeptide, In the case of protein or antibody, 0.1 ng/kg to 10 g/kg, for antisense nucleotides, siRNA, shRNAi, and miRNA, it can be administered at a dose of 0.01 ng/kg to 10 g/kg.

또한, 본 발명은 뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 인지기능 개선용 건강기능식품 조성물을 제공한다.In addition, the present invention provides a health functional food composition for improving cognitive function comprising a brain hippocampal astrocyte activation inhibitor as an active ingredient.

본 발명의 건강기능식품 조성물은 분말, 과립, 정제, 캡슐, 시럽 또는 음료의 형태로 제공될 수 있으며, 상기 건강기능식품 조성물은 유효성분 이외에 다른 식품 또는 식품 첨가물과 함께 사용되고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 그의 사용 목적 예를 들어 예방, 건강 또는 치료적 처치에 따라 적합하게 결정될 수 있다.The health functional food composition of the present invention may be provided in the form of powder, granule, tablet, capsule, syrup or beverage, and the health functional food composition is used with other foods or food additives in addition to the active ingredient, according to a conventional method. Can be used appropriately. The mixing amount of the active ingredient may be appropriately determined according to the purpose of use, for example, prevention, health or therapeutic treatment.

상기 건강기능식품 조성물에 함유된 유효성분의 유효용량은 상기 약학조성물의 유효용량에 준해서 사용할 수 있으나, 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효성분은 안전성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로도 사용될 수 있음은 확실하다.The effective dose of the active ingredient contained in the health functional food composition may be used in accordance with the effective dose of the pharmaceutical composition, but in the case of long-term intake for the purpose of health and hygiene or health control, it should be less than the above range. It is clear that the active ingredient can be used in an amount beyond the above range because there is no problem in terms of safety.

상기 건강기능식품의 종류에는 특별한 제한이 없고, 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등을 들 수 있다.There are no particular restrictions on the types of health functional foods, examples of which include meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, tea. , Drinks, alcoholic beverages, and vitamin complexes.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.

<< 실험예Experimental example >>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다. The following experimental examples are intended to provide experimental examples commonly applied to each of the examples according to the present invention.

1. 실험동물1. Experimental animals

실험동물은 코아텍에서 구입한 18-20g 수컷 C57BL/6 생쥐를 사용하였다. 실험 동물의 사육과 처치는 경북대학교 실험동물윤리위원회의 방침과 동물실험관련 규정을 따랐으며, 실험에 사용한 생쥐는 온도 (21-23℃), 습도 (40-60%)와 조명(12시간 명/암)이 자동적으로 유지되는 사육실에서 음수와 사료를 자유롭게 공급하며 사육되었고, 실험실 환경에 1주 이상 적응시킨 후 사용하였다.As the experimental animal, 18-20g male C57BL/6 mice purchased from Coretech were used. The breeding and treatment of experimental animals followed the policy of the Kyungpook National University Laboratory Animal Ethics Committee and the regulations related to animal testing. The mice used in the experiment were subjected to temperature (21-23℃), humidity (40-60%) and lighting (12 hours). / Cancer) was raised in a breeding room where drinking water and feed were supplied freely, and was used after acclimating to the laboratory environment for at least 1 week.

2. 동물의 해마 CA1 조직으로 바이러스 전달 및 광섬유 이식2. Virus delivery and optical fiber implantation into animal hippocampal CA1 tissue

생쥐를 케타민(Ketamine) (100 mg/ kg)과 자일라진(Xylazine) (20 mg/ kg)의 혼합물로 마취시키고 Stereotaxic 뇌수술 기구 (Harvard Apparatus)에 위치시켰다. 두개골은 두피를 조금 절개하여 노출되었고 바이러스의 주사 및 캐뉼러 설치를 위해 작은 구멍을 뚫었다. 뇌에 주사 바늘을 삽입하고 AAV5/GFAP-ChR2-eYFP virus (titer: 2.0 × 1012 particles per ml); AAV5/GFAP-hM3D(Gq)-mCherry-WPRE (titer: 1.0 × 1012 particles per ml); AAV5/GFAP-hM4D(Gi)-mCherry-WPRE (titer: 4.0 × 1012 particles per ml) 바이러스 및 대조군 AAV5/GFAP-eYFP virus (titer: 2.5 × 1012 particles per ml) 바이러스를 해마 CA1에 (좌표, bregma: -2 mm; midline: ±1.8 mm; skull surface: -2.5 mm) 분당 0.1 μl의 속도로 총 0.5 μl를 주입하고 10분뒤 주사바늘을 꺼냈다. 바이러스 주입 후 동일한 위치에 26 게이지 스테인레스 스틸 캐뉼러를 삽입하였다. 치과용 시멘트를 사용하여 가이드 캐뉼러를 두개골에 고정하고 광유전학적 자극(Optogenetic stimulation)을 위해 단일 광섬유 (Doric Lenses Inc, Quebec, Canada)를 이식하고 팁을 해마 CA1보다 0.5 mm 위에 위치한 뒤 치과용 시멘트로 고정하였다. 생쥐를 외과적 수술 후 바이러스 발현과 수술회복을 위해 적어도 2주 동안 생쥐를 각각 단독으로 케이지에서 회복하였다.Mice were anesthetized with a mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg) and placed in a Stereotaxic Brain Surgery Instrument (Harvard Apparatus). The skull was exposed by a small incision in the scalp and a small hole was drilled for virus injection and cannulation. Insert the injection needle into the brain and AAV5/GFAP-ChR2-eYFP virus (titer: 2.0 x 10 12 particles per ml); AAV5/GFAP-hM3D(Gq)-mCherry-WPRE (titer: 1.0×10 12 particles per ml); AAV5/GFAP-hM4D(Gi)-mCherry-WPRE (titer: 4.0 × 10 12 particles per ml) virus and control AAV5/GFAP-eYFP virus (titer: 2.5 × 10 12 particles per ml) virus to hippocampus CA1 (coordinates , bregma: -2 mm; midline: ±1.8 mm; skull surface: -2.5 mm) A total of 0.5 μl was injected at a rate of 0.1 μl per minute, and the needle was taken out after 10 minutes. After virus injection, a 26 gauge stainless steel cannula was inserted in the same position. The guide cannula is fixed to the skull using dental cement, and a single optical fiber (Doric Lenses Inc, Quebec, Canada) is implanted for optogenetic stimulation, and the tip is positioned 0.5 mm above the hippocampus CA1. It was fixed with cement. After the surgical operation of the mice, the mice were recovered from the cages alone for at least 2 weeks for viral expression and recovery from surgery.

3. 3. 광자극Photostimulation

바이러스 주입 및 수술 회복 후, 광자극은 자극기에 의해 20 Hz의 주파수에서 구동되는 청색 레이져 (473 nm; SDL-473-100MFL, Shanghai Dream Laser Technology Co., Shanghai, China)를 사용하여 일방적으로 적용되었다 (Model S-88, Grass medical Inc., Quincy, MA). 광섬유 정맥의 끝 부분에서 광 강도는 1.7mW/ mm2이 었다 (PM204, Tholabs Co., Ann Arbor, MI).After virus injection and surgical recovery, photostimulation was applied unilaterally using a blue laser (473 nm; SDL-473-100MFL, Shanghai Dream Laser Technology Co., Shanghai, China) driven at a frequency of 20 Hz by a stimulator. (Model S-88, Grass medical Inc., Quincy, MA). The light intensity at the tip of the fiber optic vein was 1.7mW/mm 2 (PM204, Tholabs Co., Ann Arbor, MI).

4. 행동 실험4. Behavioral experiment

본 발명에 사용된 생쥐는 행동 실험을 시작하기 전에 새 환경에 순응하기 위해 적어도 일주일 동안 개체별로 단독 케이지에서 사육되었다. 각각의 행동 실험은 관련 도면에 대략적으로 그림으로 설명되고 서로 다른 실험 요구 사항에 따라 서로 다른 시간 간격으로 측정되었다.The mice used in the present invention were kept in individual cages individually for at least a week to acclimatize to the new environment before starting behavioral experiments. Each behavioral experiment was outlined graphically in the relevant drawing and measured at different time intervals according to different experimental requirements.

(1) Y-maze test(1) Y-maze test

공간인지기능은 Y-maze에서 자발적 교대 작업을 통해 조사되었다. Y-maze는 세개의 팔이 수평으로 (40 cm long and 3 cm wide with 12 cm high walls) 존재하는 미로이다. 생쥐는 처음에 중앙에 놓았으며, 시퀀스 (ABCCAB) 및 수평 팔에 방문한 수를 측정하였고 각 개체에 대해 7분 동안 수동으로 기록하였다. 자발 선택은 연속적으로 방문 (즉 ABC, CAB 또는 BCA이며, BAB는 제외)에서 모든 3개의 팔에 대한 순차적 방문으로 정의된다. 동물의 연속적인 측정을 위해 실험 종료 후 미로의 팔은 70% 에탄올을 사용하여 동물의 잔류 냄새를 제거하였다. 교대 비율은 다음 방정식에 따라 정의되었다. % alternation = [(number of alternations) / (total arm entries)] × 100. 전체 미로 팔의 출입 수는 운동 활동의 지표로 사용된다.Spatial cognitive function was investigated through voluntary shift work in Y-maze. Y-maze is a maze with three arms horizontally (40 cm long and 3 cm wide with 12 cm high walls). Mice were initially placed in the center, the sequence (ABCCAB) and the number of visits to the horizontal arm were measured and recorded manually for 7 minutes for each individual. Spontaneous selection is defined as sequential visits for all 3 arms at consecutive visits (ie ABC, CAB or BCA, excluding BAB). After the end of the experiment for continuous measurement of animals, the arm of the maze was removed with 70% ethanol to remove residual odor from the animals. The shift ratio was defined according to the following equation. % alternation = [(number of alternations) / (total arm entries)] × 100. The total number of maze arms in and out is used as an indicator of motor activity.

(2) 수동 회피 테스트(Passive avoidance test)(2) Passive avoidance test

수동 회피 테스트의 훈련을 위해 생쥐는 처음 밝은 챔버에 위치되었다. 생쥐가 어두운 챔버로 넘어갔을 때 발에 가벼운 충격을 (0.25 mA/1 sec) 가하였다. 어두운 챔버로 들어가기 위해 대기한 시간은 기준 측정 값으로 사용되었다. 훈련 24시간 후 프로브 시험 동안, 마우스를 다시 밝은 챔버에 넣고 어두운 챔버로 들어갈 때까지의 대기 시간을 수동적인 두려움 회피 지수로 측정하였다.For training of the passive avoidance test, the mice were first placed in a bright chamber. When the mice passed into the dark chamber, a light impact (0.25 mA/1 sec) was applied to the paws. The waiting time to enter the dark chamber was used as the reference measurement. During the probe test 24 hours after training, the mice were put back into the bright chamber and the waiting time until entering the dark chamber was measured as a passive fear avoidance index.

(3) Barnes maze test(3) Barnes maze test

Barnes maze는 탈출 구멍 (직격 5 cm)이 있는 (90 cm 높이의) 원형 플랫폼 (직경 100 cm)으로 플랫폼 아래에 작은 챔버가 연결되어 있다. 진짜 구멍을 쉽게 찾지 못하게 하기 위해 미로 주위에 19개의 다른 가짜 구멍이 플랫폼에 만들었다. 가짜 구멍은 탈출구처럼 보이지만 탈출구로 이어지지는 않는다. 미로 주변은 100 W 전구로 빛을 주었다. 첫째 날, 생쥐는 미로의 중심에 있는 불투명한 상자에 놓았다. 10초가 경과한 후에, 불투명한 박스를 제거하고 마우스를 손으로 탈출 구멍으로 유도하였다. 첫 번째 탈출 시도는 15분 뒤에 시작하였다. 첫 번째 시도에서 생쥐를 불투명 상자에 10초 동안 두었다. 불투명 상자에서 풀려난 생쥐는 탈출구를 찾기 위해 3분이 걸렸고 구멍을 발견하는 순간 불이 꺼졌다. 생쥐는 탈출구의 챔버에서 1분을 머문 다음 원래의 케이지로 돌려 보내졌다. 이 절차는 비디오 카메라 및 추적 소프트웨어로 기록되었으며 탈출구를 찾기 위한 대기 시간과 이동 거리가 기록되었다. 생쥐는 하루 15분 간격으로 네 번의 학습훈련을 받았다. 3일간 학습 후 4일과 6일째 생쥐를 미로에 놓은 뒤 프로브 시험이 수행되었다. 이번에는 탈출구가 덮여 다른 모든 구멍처럼 보이게 하였다. 생쥐의 탐색이 행동이 기록되었고 탈출구 주변에서 보낸 시간이 기록되었다. 또한 가짜구멍을 탐색한 양도 기록되었다. 테스트가 끝나고 90초 후에 원래 케이지로 돌려 보내졌다.Barnes maze is a circular platform (90 cm high) (100 cm in diameter) with an escape hole (5 cm direct), connected to a small chamber under the platform. To make it difficult to find the real hole, 19 different fake holes were made on the platform around the maze. The fake hole looks like a way out, but it doesn't lead to the way out. The area around the maze was lit with a 100 W bulb. On the first day, the mice were placed in an opaque box in the center of the maze. After 10 seconds had elapsed, the opaque box was removed and the mouse was guided to the escape hole by hand. The first escape attempt began 15 minutes later. In the first attempt, the mice were placed in an opaque box for 10 seconds. The mouse, released from the opaque box, took three minutes to find a way out, and the light went out as soon as it found the hole. The mice stayed in the chamber at the exit for 1 minute and then returned to their original cage. This procedure was recorded with a video camera and tracking software, and the waiting time and distance traveled to find the way out were recorded. The mice were trained four times a day at 15-minute intervals. After learning for 3 days, the mice were placed in a maze on the 4th and 6th days, and a probe test was performed. This time the escape was covered so that it looked like all the other holes. The mouse's search behavior was recorded and the time spent around the exit was recorded. Also, the amount of search for fake holes was recorded. 90 seconds after the test was over, it was returned to the original cage.

5. 약물 및 투여5. Drugs and Administration

본 발명에 사용한 클로자핀 N-산화물(Clozapine N-oxide; CNO)는 Enzo Life Sciences (Postfach, Lausen, Switzerland)에서 구입하여 3 mg/kg을 생리식염수에 녹여 복강투여 하였고, 리포폴리사카라이드(Lipopolysaccharide; LPS)는 Sigma-Aldrich (St. Louis, MO, USA)에서 구입하였으며, 개체별 1회 2 μg을 생리식염수에 녹여 뇌실 내 주입하였다.Clozapine N-oxide (CNO) used in the present invention was purchased from Enzo Life Sciences (Postfach, Lausen, Switzerland) and 3 mg/kg was dissolved in physiological saline and administered intraperitoneally, and lipopolysaccharide; LPS) was purchased from Sigma-Aldrich (St. Louis, MO, USA), and 2 μg per individual was dissolved in physiological saline and injected into the ventricle.

6. 뇌조직의 처리6. Treatment of brain tissue

실험동물을 틸레타민(tiletamine)과 졸라제팜(zolazepam)으로 마취한 상태에서 RT-PCR 실험용 생쥐를 단두로 희생시키고 뇌를 적출한 다음, 해마 조직을 분리하였다. 조직 염색용 생쥐는 개흉하고, 심장을 통하여 0.05 M phosphate buffered saline (PBS)과 4% paraformaldehyde로 충분히 관류하였다. 이후 뇌를 적출하여 24시간 정도 post-fixation하고, sucrose 용액에 담궈 침전 시킨 다음 뇌조직을 -40℃ dry ice-isopentane 용액으로 동결시켰다. 동결조직은 cryo-cut (Leica, 2800N, Germany)으로 30 μm 두께의 절편으로 제작하여 면역조직염색에 사용하였다.While the experimental animals were anesthetized with tiletamine and zolazepam, the RT-PCR mice were sacrificed with a single head, the brain was removed, and the hippocampal tissue was isolated. Mice for tissue staining were open thoracic, and sufficiently perfused with 0.05 M phosphate buffered saline (PBS) and 4% paraformaldehyde through the heart. Then, the brain was excised, post-fixed for about 24 hours, immersed in sucrose solution and precipitated, and then the brain tissue was frozen with a dry ice-isopentane solution at -40°C. The frozen tissue was prepared as a 30 μm thick section with a cryo-cut (Leica, 2800N, Germany) and used for immunohistochemistry.

7. 면역조직염색7. Immune tissue staining

생쥐로부터 얻은 뇌절편에 이용하여 이중 또는 삼중 면역조직염색을 위해 mouse anti-GFAP antibody (1:500 dilution; BD Biosciences), rabbit anti-GFAP (1:1000 dilution; Dako), rabbit anti-Iba-1 (1:1000 dilution; Wako), and mouse anti-NeuN (1:500 dilution; Millipore) 항체를 반응시키고 시각화를 위해 Cy3-, Cy5-, and FITC-conjugated anti-mouse, rabbit, or goat IgG antibody (The Jackson Laboratory, Bar Harbor, ME, Cy3-mouse, Cy3-rabbit, Cy-goat, Cy5-rabbit, FITC-mouse, FITC-rabbit, FITC-goat)를 사용하였다. 이미지 획득 또는 분석에 형광 또는 공초점 현미경을 이용하였다.Mouse anti-GFAP antibody (1:500 dilution; BD Biosciences), rabbit anti-GFAP (1:1000 dilution; Dako), rabbit anti-Iba-1 (1:1000 dilution; Wako), and mouse anti-NeuN (1:500 dilution; Millipore) antibodies were reacted and for visualization Cy3-, Cy5-, and FITC-conjugated anti-mouse, rabbit, or goat IgG antibody ( The Jackson Laboratory, Bar Harbor, ME, Cy3-mouse, Cy3-rabbit, Cy-goat, Cy5-rabbit, FITC-mouse, FITC-rabbit, FITC-goat) were used. Fluorescence or confocal microscopy was used for image acquisition or analysis.

8. 염증성 사이토카인 8. Inflammatory cytokines mRNA의mRNA RT- RT- PCRPCR 측정 Measure

생쥐의 뇌로부터 분리한 해마 조직으로부터 Trizol (Quagen, Germany)을 사용하여 total RNA를 추출하였다. 이후 1 μg의 total RNA와 Script cDNA synthesis Kit (Bio-Rad, USA)를 사용하여 DNA로 역전사하였다. PCR 증폭은 DNA Engine Tetrad Peltier Thermal Cycler (MJ Research, Waltham, MA)로 특정 프라이머 세트를 사용하였다. Il -1b (forward, 5'-AGT TGC CTT CTT GGG ACT GA-3'; reverse, 5'-TCC ACG ATT TCC CAG AGA AC-3'); Lcn2 (forward, 5'- ATG TCA ACC TCC ACC TGG TC-3'; reverse, 5'-CAC ACT CAC CAC CCA TTC AG-3'); Tnf (forward, 5'-CAT CTT CTC AAA ATT CGA GTG ACA A-3'; reverse, 5'-ACT TGG GCA GAT TGA CCT CAG-3'); Gapdh (forward, 5'-TGG GCT ACA CTG AGC ACC AG-3'; reverse, 5'-GGG TGT CGC TGT TGA AGT CA-3').Total RNA was extracted from the hippocampal tissue isolated from the mouse brain using Trizol (Quagen, Germany). Afterwards, 1 μg of total RNA and Script cDNA synthesis kit (Bio-Rad, USA) were used to reverse transcription into DNA. For PCR amplification, a specific primer set was used with DNA Engine Tetrad Peltier Thermal Cycler (MJ Research, Waltham, MA). Il- 1b (forward, 5'-AGT TGC CTT CTT GGG ACT GA-3'; reverse, 5'-TCC ACG ATT TCC CAG AGA AC-3'); Lcn2 (forward, 5'-ATG TCA ACC TCC ACC TGG TC-3'; reverse, 5'-CAC ACT CAC CAC CCA TTC AG-3'); Tnf (forward, 5'-CAT CTT CTC AAA ATT CGA GTG ACA A-3'; reverse, 5'-ACT TGG GCA GAT TGA CCT CAG-3'); Gapdh (forward, 5'-TGG GCT ACA CTG AGC ACC AG-3'; reverse, 5'-GGG TGT CGC TGT TGA AGT CA-3').

9. 통계처리9. Statistical processing

다양한 실험으로부터 얻은 결과는 mean ± standard error로 표시되었다. 각 자료의 통계적 유의성 검증은 student's t-test를 사용하여 p < 0.05 이상의 유의수준으로 검정하였다.Results obtained from various experiments were expressed as mean ± standard error. The statistical significance of each data was tested with a significance level of p <0.05 or higher using the student's t-test.

<< 실시예Example 1> 1> 광유전학적Optogenetic 접근을 위한 For access ChR2의ChR2 성상세포Astrocyte 특이적 발현 유도 Induction of specific expression

인지기능 조절에 중요한 뇌영역으로 알려진 해마에서 성상세포의 잠재적인 역할을 조사하기 위해, 광유전학 접근법을 이용하여 성상세포에 ChR2의 세포 특이적 발현을 바이러스를 이용하여 유도하였다(도 1). 사용한 바이러스는 GFAP 프로모터를 이용하여 성상세포에 특이적인 ChR2 발현을 유도하였고, 신경세포에서는 ChR2의 발현이 나타나지 않는 것을 면역형광염색을 이용하여 확인하였다. 이후 실험에서 동일한 바이러스를 이용하여 성상세포를 특이적으로 활성화하는 실험을 진행하였다.In order to investigate the potential role of astrocytes in the hippocampus, which is known as an important brain region for the regulation of cognitive function, cell-specific expression of ChR2 in astrocytes was induced using a virus using an optogenetic approach (FIG. 1). The virus used induces specific expression of ChR2 in astrocytes using the GFAP promoter, and it was confirmed by immunofluorescence staining that the expression of ChR2 did not appear in neurons. In the subsequent experiment, an experiment was conducted to specifically activate astrocytes using the same virus.

<< 실시예Example 2> 2> 성상세포Astrocyte 지속적인 continuous 광자극에To photostimulation 의한 인지기능의 손상 Cognitive impairment due to

성상세포의 활성화를 지속적으로 유도하였을 때 인지기능에 미치는 영향을 확인하기 위해 ChR2가 발현된 동물에게 하루에 5분, 10분, 그리고 20분 광자극을 처리하고 Y-maze test를 진행하여 공간인지기능을 검사하였다. 이를 모든 그룹과 자극 조건을 3일간 반복하였다. 광자극 첫째 날과 둘째 날에서는 모든 자극 시간에서 유의미한 차이는 없었고 삼일째에 공간인지기능이 감소된 것을 확인하였다(도 2). 이러한 결과는 성상세포의 지속적인 활성화가 공간인지기능을 손상킬수 있음을 알수있다. 공간 탐색 능력 및 기억력을 검사할 수 있는 Barnes maze test를 이용하여 인지기능의 손상이 유도됨을 한 번 더 검증하였다(도 3).In order to confirm the effect on cognitive function when the activation of astrocytes is continuously induced, the animals expressing ChR2 are subjected to photostimulation for 5 minutes, 10 minutes, and 20 minutes a day, and the Y-maze test is performed to determine spatial perception. Function was tested. This was repeated for 3 days in all groups and stimulation conditions. On the first and second days of photostimulation, there was no significant difference in all stimulation times, and it was confirmed that spatial cognitive function decreased on the third day (Fig. 2). These results indicate that continuous activation of astrocytes can impair spatial cognitive function. It was verified once more that cognitive impairment was induced using the Barnes maze test, which can test spatial search ability and memory (FIG. 3).

<< 실시예Example 3> 3> 광자극으로By photostimulation 유도된 Induced 성상세포Astrocyte 특이적 활성화에 의한 해마 내 In the hippocampus by specific activation 신경염증유도Induction of neuroinflammation

성상세포는 정상적인 상황에서 항상성을 유지하는 역할을 하지만 질환 또는 손상에 의해 염증반응을 매개하는 것으로 알려져있다. 본 발명의 결과에서 성상세포의 특이적 활성화에 의한 인지기능 손상에 신경염증의 가능성을 확인하기 위해 ChR2 발현된 동물에 하루에 20분의 광자극을 처리하고 이를 3일간 반복한 뒤 전염증성 사이토카인의 발현을 확인하였다. 그 결과 하루에 20분 광자극을 3일간 반복한 ChR2 발현 동물의 해마 조직에서 Il -1b, Lcn2, 그리고 Tnf의 발현이 유의미하게 증가되었다(도 4). 이러한 결과는 20분 광자극에 의해 나타난 인지기능의 손상과 신경염증이 상관관계가 있음을 나타낸다.Astrocytes play a role in maintaining homeostasis under normal circumstances, but are known to mediate inflammatory responses by disease or injury. In the results of the present invention, in order to confirm the possibility of neuroinflammation in cognitive function impairment due to specific activation of astrocytes, a ChR2-expressing animal was treated with photostimulation for 20 minutes a day and repeated for 3 days, followed by proinflammatory cytokines. The expression of was confirmed. As a result, the expression of Il- 1b , Lcn2 , and Tnf was significantly increased in the hippocampal tissues of ChR2-expressing animals, which were repeated 20 minutes a day photostimulation for 3 days (FIG. 4). These results indicate that there is a correlation between cognitive impairment and neuroinflammation caused by 20-minute photostimulation.

<< 실시예Example 4> 화학유전학적 방법을 이용한 4> Using chemogenetic methods 성상세포Astrocyte 선택적 활성화에 의한 인지기능 조절 Cognitive function control by selective activation

인지기능을 조절하는 해마 영역의 성상세포의 잠재적인 역할을 조사하기 위해, 화학유전학적 DREADD 접근법을 인지기능분석과 함께 사용하였다. DREADD는 GPCR에 선택적으로 결합하는 리간드에 의해 활성화되는 조작된 G-단백질-결합 수용체 (GPCR)를 사용한다. 예를 들어, 조작된 사람의 무스카린계 3형 GPCR (hM3D(Gq)와 hM4D(Gi)은 내인성 리간드에 반응하지 않지만 대신에 약리학적으로 불활성인 클로자핀-N-산화물 (CNO)에 의해 활성화된다. 적색 형광 단백질 mCherry에 융합된 무스카린성 수용체 변이체 hM3D(Gq)와 hM4D(Gi)는 GFAP 프로모터를 포함하는 바이러스를 사용하여 해마 CA1 영역의 성상 세포에서 코딩되었다. hM3Dq-와 hM4Di-mCherry 단백질을 발현하는 세포 유형을 특성화하기 위해, 우리는 바이러스가 주입된 동물의 뇌 절편에서 GFAP를 면역 염색 했고 hM3Dq-와 hM4Di-mCherry를 발현하는 세포가 GFAP를 발현한다는 것을 확인하였다(도 5). 인지 기능의 영향을 조사하기 위하여 Y-maze와 수동 회피 테스트(Passive avoidance test)를 시행하였다. 먼저 Y-maze test를 진행하기 위해 hM3Dq에 의한 성상세포의 활성화의 유도를 위해 시작전 30분 CNO (3 mg/kg)를 복강으로 주사하였다. 이후 90분과 120분에서 대조군과 비교하여 유의미하게 감소되었다(도 6B). 동물에게 전기자극을 부여하여 공포학습과 관련된 기억력을 테스트하는 수동 회피 테스트(Passive avoidance test)를 수행하였다. 처음 훈련단계에서 동물은 먼저 밝은 챔버에 위치하여 어두운 챔버로 이동하는 속도를 측정하였으며 양 그룹간 차이가 없었다. 훈련단계에서 동물이 어두운 챔버로 들어간 순간 발에 전기자극을 부여하여 공포를 학습하였다. 그리고 24시간후 전기자극의 기억 테스트에서 hM3Dq 그룹에서 밝은 챔버에서 어두운 챔버로 이동하는 속도가 유의미하게 감소되었다. 이러한 결과는 기본적으로 생쥐가 좋아하는 어두운 공간의 심리를 이용한 것으로 어두운 챔버로 이동하면 해로운 자극이 주어진다는 것을 잘 기억하지 못한다는 것을 의미한다(도 6D). 다음 실험으로 hM4Di에 의해 활성화된 성상세포가 인지기능에 미치는 영향을 확인하였다. CNO를 복강으로 투여하고 Y-maze 및 수동 회피 테스트(Passive avoidance test)에서 인지기능에 영향이 없는 것으로 나타났다(도 7B 및 도 7D).To investigate the potential role of astrocytes in the hippocampal region in regulating cognitive function, a chemogenetic DREADD approach was used in conjunction with cognitive function analysis. DREADD uses an engineered G-protein-coupled receptor (GPCR) that is activated by a ligand that selectively binds to the GPCR. For example, engineered human muscarinic type 3 GPCRs (hM3D(Gq) and hM4D(Gi) do not respond to endogenous ligands, but are instead activated by pharmacologically inactive clozapine-N-oxide (CNO)). The muscarinic receptor variants hM3D(Gq) and hM4D(Gi) fused to the red fluorescent protein mCherry were encoded in astrocytes of the hippocampal CA1 region using a virus containing the GFAP promoter. In order to characterize the expressing cell types, we immunostained GFAP in brain sections of animals injected with virus and confirmed that cells expressing hM3Dq- and hM4Di-mCherry express GFAP (Fig. 5). Y-maze and passive avoidance test were performed to investigate the effect of CNO (3 mg) 30 minutes before the start to induce activation of astrocytes by hM3Dq to proceed with the Y-maze test. /kg) was injected intraperitoneally, and then significantly decreased compared to the control group at 90 and 120 minutes (Fig. 6B) Passive avoidance test to test memory related to fear learning by applying electrical stimulation to animals In the first training phase, the animals were first placed in a bright chamber to measure the speed of moving to the dark chamber, and there was no difference between the two groups. Fear was learned, and in the memory test of electrical stimulation after 24 hours, the rate of movement from the light chamber to the dark chamber was significantly reduced in the hM3Dq group. This means that you don't remember well that when you move to the chamber, you are given a harmful stimulus (Fig. 6D). The following experiment confirmed the effect of astrocytes activated by hM4Di on cognitive function. CNO was administered intraperitoneally, and there was no effect on cognitive function in Y-maze and passive avoidance test (Fig. 7B and 7D).

광유전학적 성상세포 활성화 및 hM3Dq를 이용한 화학유전학적 방법에서 인지기능의 손상이 확인되었다. 하지만 hM4Di를 이용한 성상세포의 활성화에는 인지기능 손상 반응이 나타나지 않았다. 이러한 결과는 기본적으로 ChR2에 의한 활성화 및 hM3Dq에 의한 활성화는 신경염증을 증가시키고 인지기능을 손상시킬 수 있으며 hM4Di에 의한 활성화에서는 이러한 반응이 나타나지 않았다. 본 발명자들은 hM4Di에 의한 활성화가 신경염증에 의한 인지기능의 조절에 대한 영향을 확인하기 위한 실험을 수행하였다. 실험에 사용한 LPS 농도 (2 μg/ mouse)는 행동에는 영향을 주지 않을 정도의 낮은 농도가 사용되었고 약한 인지기능의 손상을 유발하는 것으로 확인되었다. Y-maze와 수동 회피 테스트(Passive avoidance test)에서 LPS의 효과를 억제하기 위해 CNO를 전처리하고, 30분 뒤 LPS를 뇌실 내로 주사하였고 지속적인 hM4Di의 활성을 유도하기 위해 6시간 간격으로 3번 추가로 주사하였다(도 7A 및 도 7C). 그 결과 Y-maze test에서 대조군 바이러스 그룹에 LPS를 처리하였을 때 인지기능의 손상이 나타났고 이는 hM4Di 바이러스 그룹에서 인지기능 손상이 완화되는 결과를 나타냈다(도 7B). 수동 회피 테스트(Passive avoidance test)에서도 마찬가지로 인지기능의 손상이 hM4Di 바이러스 그룹에서 유의미하게 인지기능의 손상이 감소됨을 확인하였다(도 7D). 이러한 결과는 hM4Di를 통한 성상세포의 활성이 신경염증에 의한 인지기능을 완화할 수 있음을 나타낸다.Cognitive impairment was confirmed by optogenetic stellate cell activation and chemogenetic method using hM3Dq. However, there was no cognitive impairment response to the activation of astrocytes using hM4Di. These results basically show that activation by ChR2 and activation by hM3Dq may increase neuroinflammation and impair cognitive function, and activation by hM4Di did not show this reaction. The present inventors conducted an experiment to confirm the effect of activation by hM4Di on the regulation of cognitive function by neuroinflammation. The concentration of LPS (2 μg/mouse) used in the experiment was low enough to not affect behavior and was found to cause weak cognitive impairment. In the Y-maze and passive avoidance test, CNO was pretreated to suppress the effect of LPS, and LPS was injected into the ventricle 30 minutes later, and three additional times at 6 hour intervals to induce continuous hM4Di activity. Was injected (Fig. 7A and 7C). As a result, in the Y-maze test, when LPS was treated in the control virus group, cognitive function was impaired, which showed that the cognitive function impairment was alleviated in the hM4Di virus group (Fig. 7B). Similarly in the passive avoidance test, it was confirmed that cognitive impairment significantly decreased cognitive impairment in the hM4Di virus group (Fig. 7D). These results indicate that the activation of astrocytes through hM4Di can alleviate cognitive function caused by neuroinflammation.

Claims (14)

인간을 제외한 동물의 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하는 단계를 포함하는 인지기능 손상 동물 모델 제조방법.Cognitive function impaired animal model manufacturing method comprising the step of stimulating astrocytes in the hippocampus of the brain of animals other than humans photogenetically or chemogeneically. 제1항에 있어서, 상기 뇌 해마 내 성상세포를 광유전학적으로 자극하는 단계는 1) 뇌 해마 내 성상세포를 광활성화 이온채널(light-activated ion channel) 유전자를 포함하는 발현벡터로 형질전환하여, 상기 광활성화 이온채널을 발현시키는 단계; 및 2) 상기 뇌 해마 내 성상세포를 광자극하는 단계를 포함하는 것을 특징으로 하는 인지기능 손상 동물 모델 제조방법. The method of claim 1, wherein the step of optogeneically stimulating astrocytes in the cerebral hippocampus comprises: 1) transforming astrocytes in the cerebral hippocampus with an expression vector containing a light-activated ion channel gene. , Expressing the photo-activated ion channel; And 2) photostimulating astrocytes in the brain hippocampus. 제2항에 있어서, 상기 광활성화 이온채널(light-activated ion channel) 유전자는 광-민감성 양이온 채널인 채널로돕신-2(channelrhodopsin-2; ChR2)인 것을 특징으로 하는 인지기능 손상 동물 모델 제조방법. The method of claim 2, wherein the light-activated ion channel gene is channelrhodopsin-2 (ChR2), which is a light-sensitive cation channel. 제2항에 있어서, 상기 뇌 해마 내 성상세포를 광자극하는 단계는 450 내지 480 nm의 광원을 5 내지 30분 동안, 1회 내지 3회 광자극하는 것을 특징으로 하는 인지기능 손상 동물 모델 제조방법.The method of claim 2, wherein the step of photostimulating astrocytes in the hippocampus of the brain comprises photostimulating a light source of 450 to 480 nm for 5 to 30 minutes, 1 to 3 times. . 제1항에 있어서, 상기 뇌 해마 내 성상세포를 화학유전학적으로 자극하는 단계는 1) 뇌 해마 내 성상세포를 hM3Dq DREADD(designer receptors exclusively activated by designer drugs) 수용체를 포함하는 발현벡터로 형질전환하여, 상기 hM3Dq DREADD 수용체를 발현시키는 단계; 및 2) 상기 발현된 hM3Dq DREADD 수용체와 클로자핀 N-산화물(Clozapine N-oxide; CNO)을 반응시켜, 뇌 해마 내 성상세포를 활성화시키는 단계를 포함하는 것을 특징으로 하는 인지기능 손상 동물 모델 제조방법. The method of claim 1, wherein the step of stimulating astrocytes in the cerebral hippocampus chemogeneically comprises: 1) transforming astrocytes in the cerebral hippocampus with an expression vector containing an hM3Dq DREADD (designer receptors exclusively activated by designer drugs) receptor , Expressing the hM3Dq DREADD receptor; And 2) reacting the expressed hM3Dq DREADD receptor with Clozapine N-oxide (CNO) to activate astrocytes in the hippocampus of the brain. 제2항 또는 제5항에 있어서, 상기 발현벡터는 아데노바이러스 벡터(adenoviral vector) 또는 아데노-관련 바이러스 벡터(adeno-associated viral vector)인 것을 특징으로 하는 인지기능 손상 동물 모델 제조방법. The method of claim 2 or 5, wherein the expression vector is an adenovirus vector or an adeno-associated viral vector. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 동물은 생쥐인 것을 특징으로 하는 인지기능 손상 동물 모델 제조방법.The method of claim 1, wherein the animal is a mouse. 뇌 해마 내 성상세포를 광유전학적 또는 화학유전학적으로 자극하여 제작된 인간을 제외한 인지기능 손상 동물 모델.An animal model with impaired cognitive function excluding humans produced by stimulating astrocytes in the hippocampus of the brain through optogenetic or chemogenetic stimulation. 제8항에 있어서, 상기 광유전학적 자극은 뇌 해마 내 성상세포를 광활성화 이온채널 유전자를 포함하는 발현벡터로 형질전환하여, 상기 광활성화 이온채널을 발현시키고, 상기 뇌 해마 내 성상세포를 광자극하는 것을 특징으로 하는 인간을 제외한 인지기능 손상 동물 모델.The method of claim 8, wherein the optogenetic stimulation transforms astrocytes in the hippocampus of the brain with an expression vector containing a photoactivated ion channel gene, thereby expressing the photoactivated ion channel, and lightening the astrocytes in the hippocampus. An animal model of cognitive impairment except for humans, characterized in that stimulation. 제8항에 있어서, 상기 화학유전학적 자극은 뇌 해마 내 성상세포를 hM3Dq DREADD 수용체를 포함하는 발현벡터로 형질전환하여, 상기 hM3Dq DREADD 수용체를 발현시키고, 상기 발현된 hM3Dq DREADD 수용체와 클로자핀 N-산화물(Clozapine N-oxide; CNO)을 반응시켜, 뇌 해마 내 성상세포를 활성화시킨 것을 특징으로 하는 인간을 제외한 인지기능 손상 동물 모델.The method of claim 8, wherein the chemogenetic stimulation transforms astrocytes in the brain hippocampus with an expression vector containing the hM3Dq DREADD receptor to express the hM3Dq DREADD receptor, and the expressed hM3Dq DREADD receptor and clozapine N-oxide (Clozapine N-oxide; CNO), a cognitive impairment animal model except for humans, characterized in that astrocytes in the brain hippocampus are activated. 제8항 내지 제10항 중 어느 한 항에 있어서, 상기 동물은 생쥐인 것을 특징으로 하는 인간을 제외한 인지기능 손상 동물 모델.11. The animal model for impaired cognitive function excluding humans according to any one of claims 8 to 10, wherein the animal is a mouse. 제8항 내지 제10항 중 어느 한 항에 따른 인지기능 손상 동물 모델에 인지기능 개선 약물 후보물질을 투여하는 단계; 및
대조물질을 투여한 동물군과 비교하여 인지기능 개선 효과를 나타내는 약물 후보물질을 선별하는 단계를 포함하는 인지기능 개선 약물의 스크리닝 방법.
Administering a drug candidate substance for improving cognitive function to the animal model for cognitive impairment according to any one of claims 8 to 10; And
A method for screening a drug for improving cognitive function, comprising the step of selecting a drug candidate that exhibits an effect of improving cognitive function compared to the animal group administered with a control substance.
뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 뇌질환 예방 또는 치료용 약학조성물.A pharmaceutical composition for preventing or treating cerebral diseases comprising a cerebral hippocampal astrocyte activation inhibitor as an active ingredient. 뇌 해마 성상세포 활성화 억제제를 유효성분으로 포함하는 인지기능 개선용 건강기능식품 조성물.A health functional food composition for improving cognitive function comprising a brain hippocampal astrocyte activation inhibitor as an active ingredient.
KR1020190108283A 2019-09-02 2019-09-02 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same KR20210026882A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190108283A KR20210026882A (en) 2019-09-02 2019-09-02 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same
KR1020210074632A KR20210071917A (en) 2019-09-02 2021-06-09 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190108283A KR20210026882A (en) 2019-09-02 2019-09-02 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210074632A Division KR20210071917A (en) 2019-09-02 2021-06-09 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same

Publications (1)

Publication Number Publication Date
KR20210026882A true KR20210026882A (en) 2021-03-10

Family

ID=75148497

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190108283A KR20210026882A (en) 2019-09-02 2019-09-02 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same
KR1020210074632A KR20210071917A (en) 2019-09-02 2021-06-09 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210074632A KR20210071917A (en) 2019-09-02 2021-06-09 Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same

Country Status (1)

Country Link
KR (2) KR20210026882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344513B1 (en) * 2021-09-17 2021-12-29 한국과학기술원 Automated System and Method for Behavior Training and Measuring of Perceptual Cognition in Laboratory Animals
CN115517224A (en) * 2021-12-07 2022-12-27 温州医科大学 Method for establishing cognitive disorder animal model and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022150A (en) 2016-08-23 2018-03-06 경북대학교 산학협력단 Method for inducing pain by optogenetic stimulation of spinal astrocytes and method for screening analgesic using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022150A (en) 2016-08-23 2018-03-06 경북대학교 산학협력단 Method for inducing pain by optogenetic stimulation of spinal astrocytes and method for screening analgesic using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344513B1 (en) * 2021-09-17 2021-12-29 한국과학기술원 Automated System and Method for Behavior Training and Measuring of Perceptual Cognition in Laboratory Animals
CN115517224A (en) * 2021-12-07 2022-12-27 温州医科大学 Method for establishing cognitive disorder animal model and application

Also Published As

Publication number Publication date
KR20210071917A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
Wilson et al. Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization
Li et al. NMDA NR2A and NR2B receptors in the rostral anterior cingulate cortex contribute to pain-related aversion in male rats
KR20210071917A (en) Animal model with damage of cognitive function by optogenetic or chemogenetic stimulation of hippocampal astrocytes and screening method of drug for improving cognitive function using the same
Tao et al. A natural carotenoid crocin exerts antidepressant action by promoting adult hippocampal neurogenesis through Wnt/β-catenin signaling
Lalive et al. Motor thalamus supports striatum-driven reinforcement
Nakamura et al. Evidence for Notch signaling involvement in retinal regeneration of adult newt
Yu et al. Endophilin A1 mediates seizure activity via regulation of AMPARs in a PTZ-kindled epileptic mouse model
Li et al. Different training patterns at recovery stage improve cognitive function in ischemic stroke rats through regulation of the axonal growth inhibitor pathway
Borelli et al. Distribution of Fos immunoreactivity in the rat brain after freezing or escape elicited by inhibition of glutamic acid decarboxylase or antagonism of GABA-A receptors in the inferior colliculus
Zhou et al. Modulation of Kalirin-7 expression by hippocampal CA1 5-HT1B receptors in spatial memory consolidation
Bitzer et al. Effects of muscarinic antagonists on ZENK expression in the chicken retina
Ahmadi et al. A dual effect of dopamine on hippocampal LTP and cognitive functions in control and kindled mice
He et al. A juvenile mouse model of anti-N-methyl-D-aspartate receptor encephalitis by active immunization
US20180318379A1 (en) Inhibition of triggering receptor expressed on myeloid cells 1 (trem1) to treat central nervous system disorders
Wu et al. Acute cannabinoids impair association learning via selectively enhancing synaptic transmission in striatonigral neurons
Ma et al. Astrocytic α4nAchRs signaling in the hippocampus governs the formation of temporal association memory
Giraldi-Guimaraes et al. Postnatal expression of the plasticity-related nerve growth factor-induced gene A (NGFI-A) protein in the superficial layers of the rat superior colliculus: relation to N-methyl-D-aspartate receptor function
JP6679093B1 (en) Method for screening inhibitor and therapeutic agent targeting functional inhibition of sodium channel and acid-sensitive ion channel and use thereof
Flores et al. CHAPTER THREE THE ROLE OF THE GUSTATORY CORTEX IN INCIDENTAL EXPERIENCE-EVOKED ENHANCEMENT OF LATER TASTE LEARNING
Zeng Neuronal activity enhances Brain-Derived Neurotrophic Factor local signaling in axon through modifying its axonal transport
Gangal et al. Traumatic Brain Injury Exacerbates Alcohol Consumption and Neuroinflammation with Decline in Cognition and Cholinergic Activity
Flanigan Orexin inputs to GABAergic lateral habenula neurons control aggression valence
Cimino Agonist-induced D1 Receptor Mediation of Spatial and Temporal Working Memory
Ji et al. Blockade of adenosine A
Lin Cell Type-Specific FGF13 Regulation of Neuronal Function

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2022101001312; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20220713

Effective date: 20231023