KR20210023771A - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
KR20210023771A
KR20210023771A KR1020200105631A KR20200105631A KR20210023771A KR 20210023771 A KR20210023771 A KR 20210023771A KR 1020200105631 A KR1020200105631 A KR 1020200105631A KR 20200105631 A KR20200105631 A KR 20200105631A KR 20210023771 A KR20210023771 A KR 20210023771A
Authority
KR
South Korea
Prior art keywords
compound
group
mmol
layer
formula
Prior art date
Application number
KR1020200105631A
Other languages
English (en)
Other versions
KR102437746B1 (ko
Inventor
김영석
김민준
이동훈
오중석
심재훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20210023771A publication Critical patent/KR20210023771A/ko
Application granted granted Critical
Publication of KR102437746B1 publication Critical patent/KR102437746B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • H01L51/0071
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자{Novel compound and organic light emitting device comprising the same}
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure pat00001
상기 화학식 1에서,
X는 각각 독립적으로 N, 또는 CH이고, 단 X 중 2개 이상이 N이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
R1 내지 R4는 모두 수소 또는 중수소이거나; 또는 R1 내지 R4 중 인접한 두 개가 결합하여 벤젠고리를 형성하고, 나머지는 수소, 또는 중수소이고,
R5는 수소, 또는 중수소이고,
R6는 각각 독립적으로, 수소, 또는 중수소이고,
n은 1 내지 3의 정수이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 전자억제, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 유기물층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공억제층(9), 전자수송층(10), 전자주입층(11) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
본 명세서에서,
Figure pat00002
또는
Figure pat00003
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure pat00007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은, 하기 화학식 1-1 내지 1-4 중 어느 하나의 구조로 표시될 수 있다:
[화학식 1-1]
Figure pat00008
[화학식 1-2]
Figure pat00009
[화학식 1-3]
Figure pat00010
[화학식 1-4]
Figure pat00011
상기 화학식 1-1 내지 1-4에서, X, Ar1, Ar2, R1 내지 R6, 및 n은 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 1에서, 바람직하게는, X는 모두 N이다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 9-메틸카바졸릴, 또는 9-페닐카바졸릴이다.
또한, 바람직하게는, 상기 Ar1 및 Ar2 중 적어도 하나는 페닐이거나, 또는 Ar1 및 Ar2 둘 모두가 나프틸이다. 구체적으로, 상기 Ar1 및 Ar2 중 하나는 페닐이고, 나머지는 비페닐, 나프틸, 안트라세닐, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 9-메틸카바졸릴, 또는 9-페닐카바졸릴이거나; Ar1 및 Ar2 둘 모두가 페닐이거나; 또는 Ar1 및 Ar2 둘 모두가 나프틸일 수 있다.
바람직하게는, R5는 수소이다.
바람직하게는, R6는 모두 수소이다. 이때 n은 3의 정수이다.
한편, R1 내지 R4 중 인접한 두 개가 결합하여 벤젠고리를 형성하고, 나머지는 수소, 또는 중수소이라는 것은, 구체적으로 R1 및 R2가 결합하거나, R2 및 R3가 결합하거나, 또는 R3 및 R4가 결합하여 벤젠고리를 형성한다는 것을 의미한다. 일례로, R1 및 R2가 결합하여 벤젠고리를 형성하게 되면 상기 화학식 1은 하기 화학식 1-1-1로 표시된다.
[화학식 1-1-1]
Figure pat00012
상기 화학식 1-1-1에서,
X, Ar1, Ar2, R3 내지 R6, 및 n의 정의는 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure pat00013
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018
Figure pat00019
Figure pat00020
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
.
한편, 본 발명은 일례로 하기 반응식 1과 같은, 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:
[반응식 1]
Figure pat00034
상기 반응식 1에서, X, Ar1, Ar2, R1~R6 및 n은 앞서 정의한 바와 같고, Y는 클로로 또는 보로모 등과 같은 할로겐기이다.
구체적으로, 상기 화학식 1의 화합물(1)은 모핵 구조를 갖는 화합물(I)과, 상기 모핵 구조에 결합되는, 전자 받개 치환기 포함 화합물(II)을 팔라듐계 촉매 및 염기의 존재 하에, 커플링 반응시키는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
상기 팔라듐계 촉매로는, 비스(트리-tert-부틸포스핀)팔라듐(0)(bis(tri-tert-butylphosphine)palladium(0), Pd(P-tBuP3)2), 테트라키스-(트리페닐포스핀)팔라듐 (tetrakis(triphenylphosphine)palladium(0), Pd(PPh3)4), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3)), 비스(트리페닐포스핀)팔라듐 클로라이드(Bis(triphenylphosphine)palladium chloride, Pd(PPh3)2Cl2), 비스(아세토니트릴)팔라듐 클로라이드(Bis(acetonitrile)palladium(Ⅱ) chloride, Pd(CH3CN)2Cl2), 팔라듐(Ⅱ) 아세테이트(Palladium(Ⅱ) acetate, Pd(OAc)2), 팔라듐(Ⅱ) 아세틸아세토네이트(Palladium(Ⅱ) acetylacetonate, Pd(acac)2], 알릴팔라듐(Ⅱ) 클로라이드 다이머(Allylpalladium(Ⅱ) chloride dimer, Pd(allyl)Cl]2), 팔라듐 카본(Palladium on carbon, Pd/C), 또는 팔라듐(Ⅱ) 클로라이드(Palladium(Ⅱ) chloride, PdCl2) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 염기(base)로는 소듐 tert-부톡사이드(sodium tert-butoxide, NaOtBu), 포타슘 tert-부톡사이드(potassium tert-butoxide), 소듐 tert―펜톡사이드(sodium tert-pentoxide), 소듐 에톡사이드(sodium ethoxide), 소듐 카보네이트(sodium carbonate), 포타슘 카보네이트(potassium carbonate), 세슘 카보네이트(cesium carbonate), 소듐 하이드리드(sodium hydride), 리튬 하이드리드(lithium hydride) 또는 포타슘 하이드리드(potassium hydride) 등과 같은 무기 염기; 테트라에틸암모늄 히드록시드((Et4NOH), 비스(테트라에틸암모늄)탄산염, 트리에틸아민 등의 유기 염기; 불화세슘 등의 무기염을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 커플링 반응은 유기 용매 중에서 수행될 수 있으며, 상기 유기 용매로는, 디에틸 에테르, 테트라히드로푸란, 1,4-디옥산, 에틸렌 글리콜 디에틸 에테르, 디메톡시에탄, 비스(2-메톡시에틸)에테르, 디에틸렌 글리콜 디에틸 에테르, 테트라하이드로퓨란 또는 아니솔과 같은 에테르 용매; 벤젠, 톨루엔 또는 자일렌과 같은 방향족 탄화수소계 용매; 클로로벤젠, 디메틸포름아마이드, 디메틸아세트아마이드, N-메틸피롤리돈, 디메틸이미다졸리돈 또는 아세토니트릴과 같은 할로겐화 방향족 용매; 또는 디메틸술폭사이드(DMSO)와 같은 설폭사이드계 용매 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
한편, 상기 화학식 1의 화합물(1) 제조에 사용되는 반응 물질들, 화합물 (I) 및 (II)는 통상의 유기 반응을 이용하여 제조할 수도 있고, 또는 상업적으로 입수하여 사용할 수도 있다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 호스트로 사용할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 전자억제층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 유기물층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 유기물층(3)에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공억제층(9), 전자수송층(10), 전자주입층(11) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공억제층(9), 전자수송층(10) 및 전자주입층(11) 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
한편, 상기의 전자수송층 및 전자주입층은 수취된 전자를 발광층까지 수송하는 전자수송층과 전자주입층의 역할을 동시에 수행하는 전자 주입 및 수송층의 형태로도 구비 가능하다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
합성예 1
Figure pat00035
질소 분위기에서 sub1 (10 g, 20.7mmol), 화학식A (4.9g, 22.7 mmol), sodium tert-butoxide (4 g, 41.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물1 8.4g 을 얻었다. (수율 61%, MS: [M+H]+= 665)
합성예 2
Figure pat00036
질소 분위기에서 sub2 (10 g, 18.7mmol), 화학식C (5.5g, 20.6 mmol), sodium tert-butoxide (3.6 g, 37.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물2 8.4g 을 얻었다. (수율 59%, MS: [M+H]+= 765)
합성예 3
Figure pat00037
질소 분위기에서 sub3 (10 g, 18.7mmol), 화학식B (5.5g, 20.6 mmol), sodium tert-butoxide (3.6 g, 37.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물3 8g 을 얻었다. (수율 56%, MS: [M+H]+= 765)
합성예 4
Figure pat00038
질소 분위기에서 sub4 (10 g, 18.7mmol), 화학식D (5.5g, 20.6 mmol), sodium tert-butoxide (3.6 g, 37.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물4 9.2g 을 얻었다. (수율 64%, MS: [M+H]+= 765)
합성예 5
Figure pat00039
질소 분위기에서 sub5 (10 g, 20.7mmol), 화학식A (4.9g, 22.7 mmol), sodium tert-butoxide (4 g, 41.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물5 9.5g 을 얻었다. (수율 69%, MS: [M+H]+= 665)
합성예 6
Figure pat00040
질소 분위기에서 sub6 (10 g, 17.9mmol), 화학식A (4.3g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물6 7.8g 을 얻었다. (수율 59%, MS: [M+H]+= 741)
합성예 7
Figure pat00041
질소 분위기에서 sub7 (10 g, 17.9mmol), 화학식C (5.3g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물7 9.3g 을 얻었다. (수율 66%, MS: [M+H]+= 791)
합성예 8
Figure pat00042
질소 분위기에서 sub8 (10 g, 17.9mmol), 화학식D (5.3g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물8 8.3g 을 얻었다. (수율 59%, MS: [M+H]+= 791)
합성예 9
Figure pat00043
질소 분위기에서 sub9 (10 g, 17.8mmol), 화학식A (4.3g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물9 7.5g 을 얻었다. (수율 57%, MS: [M+H]+= 743)
합성예 10
Figure pat00044
질소 분위기에서 sub10 (10 g, 17.8mmol), 화학식B (5.2g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물10 7.9g 을 얻었다. (수율 56%, MS: [M+H]+= 793)
합성예 11
Figure pat00045
질소 분위기에서 sub11 (10 g, 17.1mmol), 화학식A (4.1g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물11 7.7g 을 얻었다. (수율 59%, MS: [M+H]+= 765)
합성예 12
Figure pat00046
질소 분위기에서 sub12 (10 g, 17.1mmol), 화학식D (5g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물12 9.3g 을 얻었다. (수율 67%, MS: [M+H]+= 815)
합성예 13
Figure pat00047
질소 분위기에서 sub13 (10 g, 17.1mmol), 화학식C (5g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물13 8.6g 을 얻었다. (수율 62%, MS: [M+H]+= 815)
합성예 14
Figure pat00048
질소 분위기에서 sub14 (10 g, 17.1mmol), 화학식B (5g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물14 9.5g 을 얻었다. (수율 68%, MS: [M+H]+= 815)
합성예 15
Figure pat00049
질소 분위기에서 sub15 (10 g, 17.1mmol), 화학식D (5g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물15 9.8g 을 얻었다. (수율 70%, MS: [M+H]+= 815)
합성예 16
Figure pat00050
질소 분위기에서 sub16 (10 g, 15.4mmol), 화학식C (4.5g, 16.9 mmol), sodium tert-butoxide (3 g, 30.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물16 6.8g 을 얻었다. (수율 50%, MS: [M+H]+= 882)
합성예 17
Figure pat00051
질소 분위기에서 sub17 (10 g, 15.4mmol), 화학식B (4.5g, 16.9 mmol), sodium tert-butoxide (3 g, 30.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물17 9.1g 을 얻었다. (수율 67%, MS: [M+H]+= 882)
합성예 18
Figure pat00052
질소 분위기에서 sub18 (10 g, 17.4mmol), 화학식A (4.1g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물18 7g 을 얻었다. (수율 53%, MS: [M+H]+= 757)
합성예 19
Figure pat00053
질소 분위기에서 sub19 (10 g, 16.9mmol), 화학식A (4g, 18.6 mmol), sodium tert-butoxide (3.2 g, 33.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물19 8.3g 을 얻었다. (수율 64%, MS: [M+H]+= 773)
합성예 20
Figure pat00054
질소 분위기에서 sub20 (10 g, 16.9mmol), 화학식B (5g, 18.6 mmol), sodium tert-butoxide (3.2 g, 33.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물20 9g 을 얻었다. (수율 65%, MS: [M+H]+= 823)
합성예 21
Figure pat00055
질소 분위기에서 sub21 (10 g, 15.4mmol), 화학식A (3.7g, 16.9 mmol), sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물21 7.9g 을 얻었다. (수율 62%, MS: [M+H]+= 830)
합성예 22
Figure pat00056
질소 분위기에서 sub22 (10 g, 15.4mmol), 화학식D (4.5g, 16.9 mmol), sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물22 7.3g 을 얻었다. (수율 54%, MS: [M+H]+= 880)
합성예 23
Figure pat00057
질소 분위기에서 sub23 (10 g, 17.4mmol), 화학식A (4.2g, 19.2 mmol), sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물23 8.1g 을 얻었다. (수율 62%, MS: [M+H]+= 755)
합성예 24
Figure pat00058
질소 분위기에서 sub24 (10 g, 17.4mmol), 화학식D (5.1g, 19.2 mmol), sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물24 9.8g 을 얻었다. (수율 70%, MS: [M+H]+= 805)
합성예 25
Figure pat00059
질소 분위기에서 sub25 (10 g, 16.9mmol), 화학식D (5g, 18.6 mmol), sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물25 8.8g 을 얻었다. (수율 63%, MS: [M+H]+= 821)
합성예 26
Figure pat00060
질소 분위기에서 sub26 (10 g, 15.4mmol), 화학식A (3.7g, 16.9 mmol), sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물26 8.8g 을 얻었다. (수율 69%, MS: [M+H]+= 830)
합성예 27
Figure pat00061
질소 분위기에서 sub27 (10 g, 17.4mmol), 화학식A (4.2g, 19.2 mmol), sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물27 7.4g 을 얻었다. (수율 56%, MS: [M+H]+= 755)
합성예 28
Figure pat00062
질소 분위기에서 sub28 (10 g, 17.4mmol), 화학식D (5.1g, 19.2 mmol), sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물28 9.2g 을 얻었다. (수율 66%, MS: [M+H]+= 805)
합성예 29
Figure pat00063
질소 분위기에서 sub29 (10 g, 16.9mmol), 화학식D (5g, 18.6 mmol), sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물29 7.6g 을 얻었다. (수율 55%, MS: [M+H]+= 821)
합성예 30
Figure pat00064
질소 분위기에서 sub30 (10 g, 16.9mmol), 화학식B (5g, 18.6 mmol), sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물30 9.6g 을 얻었다. (수율 69%, MS: [M+H]+= 821)
합성예 31
Figure pat00065
질소 분위기에서 sub31 (10 g, 15.4mmol), 화학식A (3.7g, 16.9 mmol), sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물31 6.5g 을 얻었다. (수율 51%, MS: [M+H]+= 830)
합성예 32
Figure pat00066
질소 분위기에서 sub31 (10 g, 15.4mmol), 화학식A (3.7g, 16.9 mmol), sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물31 6.5g 을 얻었다. (수율 51%, MS: [M+H]+= 830)
합성예 33
Figure pat00067
질소 분위기에서 sub33 (10 g, 17.4mmol), 화학식C (5.1g, 19.2 mmol), sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물33 9.2g 을 얻었다. (수율 66%, MS: [M+H]+= 805)
합성예 34
Figure pat00068
질소 분위기에서 sub34 (10 g, 17.4mmol), 화학식B (5.1g, 19.2 mmol), sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물34 9.7g 을 얻었다. (수율 69%, MS: [M+H]+= 805)
합성예 35
Figure pat00069
질소 분위기에서 sub35 (10 g, 16.9mmol), 화학식B (5g, 18.6 mmol), sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 결과로 수득한 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 결과로 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물35 8.9g 을 얻었다. (수율 64%, MS: [M+H]+= 821)
<비교예 1>
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-도핑 하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 EB-1 증착막 위에 하기 RH-1 화합물과 하기 Dp-39 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공억제층을 형성하였다. 이어서, 상기 정공억제층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
Figure pat00070
<비교예 2 내지 10>
적색 발광층 호스트 재료로서 RH-1 대신 하기 화합물 RH-2 내지 RH-10를 각각 사용한 것을 제외하고는 비교예 1과 동일하게 실시하고 소자 성능을 측정하였다.
Figure pat00071
<실시예 1 내지 35>
적색 발광층 호스트 재료로서 비교예 1 대신 합성예에 의해 제조된 화합물 1 내지 35를 각각 사용한 것을 제외하고는 비교예 1과 동일하게 실시하고 소자 성능을 측정하였다.
상기 비교예 1 내지 10 및 실시예 1 내지 35와 같이 각각의 화합물을 적색 호스트 물질로 사용하여 제조한 유기 발광 소자에 대하여 구동전압, 전류효율 및 수명(T95)을 측정하였고, 그 결과를 하기 표 1에 나타내었다. 이때, 구동전압 및 효율은 10mA/cm2의 전류 밀도를 인가하여 측정되었으며, T95은 전류 밀도 10mA/cm2에서 초기 휘도가 95%로 저하할 때까지의 시간(hr)을 의미한다.
실험예 호스트 물질 구동전압
(V)
전류효율
(cd/A)
수명
(T95%, hr)
비교예 1 RH-1 5.46 15.00 52
비교예 2 RH-2 5.30 14.98 56
비교예 3 RH-3 5.29 14.22 74
비교예 4 RH-4 5.02 11.09 82
비교예 5 RH-5 5.33 14.41 66
비교예 6 RH-6 5.77 12.35 75
비교예 7 RH-7 5.65 15.01 65
비교예 8 RH-8 5.20 14.61 79
비교예 9 RH-9 5.55 13.94 77
비교예 10 RH-10 5.42 14.69 68
실시예 1 화합물 1 4.33 22.54 180
실시예 2 화합물 2 4.12 23.46 176
실시예 3 화합물 3 4.05 21.87 177
실시예 4 화합물 4 4.12 22.02 169
실시예 5 화합물 5 4.15 23.05 184
실시예 6 화합물 6 4.26 22.69 180
실시예 7 화합물 7 4.34 23.20 171
실시예 8 화합물 8 4.41 25.63 176
실시예 9 화합물 9 4.29 23.23 186
실시예 10 화합물 10 4.31 25.15 191
실시예 11 화합물 11 4.23 26.23 171
실시예 12 화합물 12 4.31 26.56 185
실시예 13 화합물 13 4.30 25.51 193
실시예 14 화합물 14 4.11 25.55 186
실시예 15 화합물 15 4.23 23.69 181
실시예 16 화합물 16 4.20 25.37 186
실시예 17 화합물 17 4.25 24.72 190
실시예 18 화합물 18 4.38 24.61 179
실시예 19 화합물 19 4.23 25.69 164
실시예 20 화합물 20 4.34 26.59 186
실시예 21 화합물 21 4.36 26.55 173
실시예 22 화합물 22 4.27 25.72 175
실시예 23 화합물 23 4.23 22.91 196
실시예 24 화합물 24 4.30 23.64 200
실시예 25 화합물 25 4.29 25.29 173
실시예 26 화합물 26 4.23 24.63 186
실시예 27 화합물 27 4.26 24.36 179
실시예 28 화합물 28 4.17 25.34 197
실시예 29 화합물 29 4.31 24.65 175
실시예 30 화합물 30 4.30 23.97 193
실시예 31 화합물 31 4.42 22.91 200
실시예 32 화합물 32 4.33 24.94 192
실시예 33 화합물 33 4.22 25.67 181
실시예 34 화합물 34 4.31 24.39 181
실시예 35 화합물 35 4.19 24.48 186
실험결과, 화학식 1로 표시되는 화합물을 포함하는 실시예 1 내지 35의 유기 발광 소자는, 비교예 1 내지 10의 유기 발광 소자와 비교하여, 5V 이하의 낮은 구동전압과 함께, 20 cd/A 이상의 높은 전류 효율 및 160 hr 이상의 증가된 수명 특성을 나타내었다.
1: 기판 2: 양극
3: 유기물층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 발광층
9: 정공억제층 10: 전자수송층
11: 전자주입층

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure pat00072

    상기 화학식 1에서,
    X는 각각 독립적으로 N, 또는 CH이고, 단 X 중 2개 이상이 N이고,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    R1 내지 R4는 모두 수소 또는 중수소이거나; 또는 R1 내지 R4 중 인접한 두 개가 결합하여 벤젠고리를 형성하고, 나머지는 수소 또는 중수소이고,
    R5는 수소 또는 중수소이고,
    R6는 각각 독립적으로, 수소 또는 중수소이고,
    n은 1 내지 3의 정수이다.
  2. 제1항에 있어서,
    X는 모두 N인,
    화합물.
  3. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 9-메틸카바졸릴, 또는 9-페닐카바졸릴인,
    화합물.
  4. 제3항에 있어서,
    Ar1 및 Ar2 중 적어도 하나는 페닐이거나, 또는
    Ar1 및 Ar2 둘 모두 나프틸인,
    화합물.
  5. 제1항에 있어서,
    R5는 수소인,
    화합물.
  6. 제1항에 있어서,
    R6는 모두 수소인,
    화합물.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure pat00073

    Figure pat00074

    Figure pat00075

    Figure pat00076

    Figure pat00077

    Figure pat00078

    Figure pat00079

    Figure pat00080

    Figure pat00081

    Figure pat00082

    Figure pat00083

    Figure pat00084

    Figure pat00085

    Figure pat00086

    Figure pat00087

    Figure pat00088

    Figure pat00089

    Figure pat00090

    Figure pat00091

    Figure pat00092

    Figure pat00093
    .
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제7항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
KR1020200105631A 2019-08-22 2020-08-21 신규한 화합물 및 이를 이용한 유기 발광 소자 KR102437746B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190103226 2019-08-22
KR1020190103226 2019-08-22

Publications (2)

Publication Number Publication Date
KR20210023771A true KR20210023771A (ko) 2021-03-04
KR102437746B1 KR102437746B1 (ko) 2022-08-29

Family

ID=75174715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200105631A KR102437746B1 (ko) 2019-08-22 2020-08-21 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
KR (1) KR102437746B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096318A1 (ko) * 2021-11-26 2023-06-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
CN104761535A (zh) * 2015-01-05 2015-07-08 北京鼎材科技有限公司 一种稠杂环芳烃衍生物及其应用
KR101614739B1 (ko) * 2015-12-01 2016-04-22 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20190045435A (ko) * 2017-10-23 2019-05-03 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN110317195A (zh) * 2018-03-29 2019-10-11 北京鼎材科技有限公司 有机化合物及其在有机电致发光器件中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
CN104761535A (zh) * 2015-01-05 2015-07-08 北京鼎材科技有限公司 一种稠杂环芳烃衍生物及其应用
CN107591496A (zh) * 2015-01-05 2018-01-16 北京鼎材科技有限公司 有机电致发光器件及其化合物
KR101614739B1 (ko) * 2015-12-01 2016-04-22 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20190045435A (ko) * 2017-10-23 2019-05-03 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN110317195A (zh) * 2018-03-29 2019-10-11 北京鼎材科技有限公司 有机化合物及其在有机电致发光器件中的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096318A1 (ko) * 2021-11-26 2023-06-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Also Published As

Publication number Publication date
KR102437746B1 (ko) 2022-08-29

Similar Documents

Publication Publication Date Title
KR20210048856A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210047817A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102411143B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102500849B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210020843A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210045947A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102420146B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20210058691A (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20210036856A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210019969A (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102437748B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210023774A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102217268B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210031409A (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102437746B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102437747B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102441472B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102412131B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102413613B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210098390A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20210039317A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210039316A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102463816B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102564847B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102602155B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant