KR20210023695A - 배터리 soh 예측 방법 및 이를 적용한 배터리 팩 - Google Patents
배터리 soh 예측 방법 및 이를 적용한 배터리 팩 Download PDFInfo
- Publication number
- KR20210023695A KR20210023695A KR1020200098001A KR20200098001A KR20210023695A KR 20210023695 A KR20210023695 A KR 20210023695A KR 1020200098001 A KR1020200098001 A KR 1020200098001A KR 20200098001 A KR20200098001 A KR 20200098001A KR 20210023695 A KR20210023695 A KR 20210023695A
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- soh
- value
- measured
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/185—Electrical failure alarms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은 본 발명은 배터리 SOH 예측 방법 및 이를 적용한 배터리 팩에 관한 것으로서, 보다 구체적으로는 배터리를 완전 방전시키지 않더라도, 일정 시점의 미분 값을 활용하여 충/방전 도중 실시간으로 해당 배터리의 SOH를 예측하는 방법과 이를 적용한 팩에 관한 것이다.
Description
본 발명은 배터리 SOH 예측 방법 및 이를 적용한 배터리 팩에 관한 것으로서, 보다 구체적으로는 충/방전 도중 실시간으로 배터리의 SOH를 예측하는 방법과 이를 적용한 배터리 팩에 관한 것이다.
스마트폰, 노트북, PDA 등의 휴대용 전자기기 분야뿐만 아니라 전기 자동차, 에너지 저장 시스템(ESS) 등에 이르기까지 다양한 분야에서 에너지 공급원으로 이용되고 있는 충전이 가능한 이차전지(이하, ‘배터리’라 함)는 지속적인 사용기간이 길수록, 충/방전을 거듭할수록 수명이 단축되는 특성이 있고, 이로 인해 배터리의 용량/성능이 점차 저하된다. 이러한 특성에 의한 배터리의 용량/성능의 저하는 배터리를 이용하는 시스템의 안정적인 운영에 영향을 미치게 된다.
따라서, 배터리의 SOH(State of Health)를 예측하는 것은 배터리의 교체가 필요한 시기를 파악할 수 있게 하고, 이에 따라 배터리의 용량/성능 저하로 인해 발생할 수 있는 부정적인 영향을 최소화할 수 있어 배터리를 이용하는 시스템이 안정적으로 운영될 수 있도록 한다.
한편, 종래에는 배터리의 SOH(State of Health)를 예측함에 있어서, 배터리 셀의 완전방전을 진행하면서 전류 적산 기반의 암페어 카운팅(Ahcounting)을 활용하여 해당 배터리 셀의 SOH(State of Health)을 계산하여 예측하였다.
하지만, 종래의 방식으로 배터리의 SOH(State of Health)를 예측하기 위해서는 강제적으로 완전방전을 시켜야만 하기 때문에, 배터리 운영에 있어서 시간적으로 비효율적이고 번거롭다는 문제점이 있고, 배터리를 완전방전 시키는 동작이 반복될 수록 배터리의 용량/성능 저하를 유발할 수 있는 가능성이 있다.
(특허문헌 1) KR10-1211789 B1
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 배터리를 완전 방전시키지 않더라도, 충/방전을 진행하는 도중 실시간으로 해당 배터리의 SOH를 예측할 수 있는 방법을 제공하고자 한다.
본 발명에 따른 배터리 SOH 예측 방법은, 소정의 기준 배터리에 대하여, 완충-방전 cycle에 대하여 dQ/dV:SOH 룩업테이블을 구성하고 저장하는 룩업테이블 저장단계; 상기 기준 배터리에 대하여, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하고, 상기 측정된 각 cycle 별 dQ/dV 값을 바탕으로 SOH 측정 배터리 전압을 설정하는 SOH 측정 배터리 전압 설정단계; SOH를 예측하고자 하는 실측 배터리에 대하여 충전을 진행하면서, 소정의 주기 간격으로, 상기 설정한 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하는 실측 dQ/dV 값 측정단계; 상기 측정한 실측 dQ/dV 값에 대응하는 SOH 값을, 상기 dQ/dV:SOH 룩업테이블에서 추출하여 실측 배터리의 실시간 SOH로 예측하는 배터리 SOH 예측단계; 를 포함하여 구성된다.
한편, 상기 실측 배터리에 대하여 측정한 dQ/dV 값을 바탕으로 하여, dQ/dV 값의 변화 폭에 따라 배터리의 이상여부를 판단하는 이상 여부 판단단계; 상기 이상 여부 판단단계에서 실측 배터리에 이상이 있는 것으로 판단 시, 이상신호 알람을 생성하고 발생시키는 이상 알림단계; 를 더 포함하여 구성된다.
구체적으로, 상기 SOH 측정 배터리 전압 설정단계는, 상기 기준 배터리를 완충-완방전하는 동작 cycle을 소정 횟수 진행하여, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하는 cycle 별 dQ/dV 값 측정단계; 상기 측정된 각 cycle 별 dQ/dV 값을 비교하는 cycle 별 dQ/dV 값 비교단계; 상기 비교 결과, 다수의 cycle 간에 dQ/dV 값 편차가 가장 크게 나타나는 배터리 전압을 도출하는 기준 배터리 전압 도출단계; 를 포함하여 구성되는 것을 특징으로 한다.
또한, 상기 배터리 SOH 예측단계는, 상기 실측 dQ/dV 값 측정단계에서 측정한 실측 dQ/dV에 대응하는 SOH를, 상기 dQ/dV:SOH 룩업테이블에서 추출하는 SOH 추출단계; 를 포함하여 구성되며, 상기 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측하는 것을 특징으로 한다.
한편, 상기 이상 여부 판단단계는, 상기 실측 dQ/dV 값 측정단계에서 측정한 현재 주기의 dQ/dV 값과 이전 주기의 dQ/dV 값 간의 편차|dQ/dV(t)-dQ/dV(t-1)|를 산출하는 dQ/dV 값 편차 산출단계; 상기 산출된 현재 주기와 이전 주기 간의 dQ/dV 값 편차와 소정의 기준 값을 비교하는 dQ/dV 값 편차 비교단계; 를 포함하여 구성되는 것을 특징으로 한다.
여기서, 상기 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값을 초과하면, 해당 배터리에 이상이 있는 것으로 판단하는 것을 특징으로 한다.
본 발명에 따른 배터리의 SOH를 측정하는 배터리 관리 장치는, 배터리에 충/방전 전원을 공급하고 충/방전을 제어하는 충/방전 제어부; 소정의 기준 배터리에 대하여, 다수의 완충-완방전의 cycle 별로 측정된 각 cycle 별 dQ/dV 값을 바탕으로 SOH 측정 배터리 전압을 설정하는 SOH 측정 배터리 전압 설정부; 실측 배터리의 충전이 진행되는 동안, 소정의 주기 간격으로, 상기 설정된 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하고, 이를 이용하여 실측 배터리의 실시간 SOH를 예측하는 SOH 예측부; 상기 기준 배터리에 대하여, 완전 방전을 진행하며 측정된 dQ/dV 값과 그에 해당하는 SOH 값을 바탕으로 하여 구성된 각 배터리 전압에서의 dQ/dV 값과 대응하는 SOH와의 관계인 룩업테이블(dQ/dV:SOH 룩업테이블)을 저장하는 저장부; 를 포함하여 구성된다.
한편, 상기 SOH 예측부에서 측정된 실측 dQ/dV 값을 이용하여, dQ/dV 값의 변화 폭에 따라 해당 배터리의 이상 여부를 판단하는 이상 판단부; 상기 SOH 예측부에서 예측되는 실측 배터리의 실시간 SOH를 표시하는 표시부; 상기 이상 판단부에서 배터리에 이상이 발생한 것으로 판단 시, 이상신호 알람을 생성하고 발생시키는 알림부; 를 더 포함하여 구성된다.
구체적으로, 상기 SOH 측정 배터리 전압 설정부는, 상기 충/방전 제어부에 의해 상기 기준 배터리를 완충-완방전하는 동작 cycle이 소정 횟수 진행되는 동안, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하는 제1 dQ/dV 값 측정부; 상기 제1 dQ/dV 값 측정부에서 측정된 각 cycle 별 dQ/dV 값을 비교하여, 다수의 cycle 간에 dQ/dV 값 편차가 가장 크게 나타나는 배터리 전압을 도출하는 기준 배터리 전압 도출부; 를 포함하여 구성되며, 상기 도출된 배터리 전압을 SOH 측정 배터리 전압으로 설정하는 것을 특징으로 한다.
한편, 상기 SOH 예측부는, 상기 충/방전 제어부에 의해 상기 실측 배터리를 충전하는 동안, 소정의 주기 간격으로, 상기 설정된 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하는 제2 dQ/dV 값 측정부; 상기 제2 dQ/dV 값 측정부에서 측정되는 실측 dQ/dV 값에 대응하는 SOH를, 상기 저장부에 저장된 dQ/dV:SOH 룩업테이블에서 추출하는 SOH 추출부; 를 포함하여 구성되며, 상기 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측하는 것을 특징으로 한다.
한편, 상기 이상 판단부는, 상기 제2 dQ/dV 값 측정부에 의해 실측 배터리에 대하여 측정된 현재 주기의 dQ/dV 값과 이전 주기의 dQ/dV 값 간의 편차 |dQ/dV(t)- dQ/dV(t-1)|를 산출하는 dQ/dV 편차 산출부; 상기 dQ/dV 편차 산출부에서 산출된 현재 주기와 이전 주기 간의 dQ/dV 값 편차를 소정의 기준 값과 비교하는 비교부; 상기 비교부의 비교 결과, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값을 초과하는 경우, 해당 배터리에 이상이 있는 것으로 판단하고 이상신호를 생성하여 출력하는 이상신호 생성부; 를 포함하여 구성된다.
한편, 상술한 본 발명에 따른 배터리 관리 장치를 포함하는 배터리 팩을 포함하는 것을 특징으로 한다.
본 발명은 배터리의 SOH(State of Health) 예측을 위해 종래처럼 완전 방전시키지 않아도 되기 때문에 배터리를 운영함에 있어 시간의 효율성을 향상 시킬 수 있고, 충/방전 도중 실시간으로 배터리의 SOH(State of Health)를 알 수 있기 때문에 보다 안정적인 배터리 운영이 가능하다.
도 1은 본 발명에 따른 배터리 SOH를 예측하는 방법을 보여주는 순서도이다.
도 2는 기준 배터리에 대하여 완충-완방전하는 동작 cycle을 300회 실시하였을 시 나타나는 첫번째 cycle과 300회째 cycle의 dQ/dV 값을 보여주는 실험 그래프이다.
도 3은 OCV, R, dQ와 dV 값 변화와 SOH의 상관성을 분석한 결과를 보여주는 실험 그래프이다.
도 4는 SOH 측정 배터리 전압에서의 dQ, dV과 SOH의 상관성을 분석한 결과를 보여주는 실험 그래프이다.
도 5는 본 발명에 따른 배터리 팩의 전체적인 구성을 개략적으로 나타내는 블록도이다.
도 2는 기준 배터리에 대하여 완충-완방전하는 동작 cycle을 300회 실시하였을 시 나타나는 첫번째 cycle과 300회째 cycle의 dQ/dV 값을 보여주는 실험 그래프이다.
도 3은 OCV, R, dQ와 dV 값 변화와 SOH의 상관성을 분석한 결과를 보여주는 실험 그래프이다.
도 4는 SOH 측정 배터리 전압에서의 dQ, dV과 SOH의 상관성을 분석한 결과를 보여주는 실험 그래프이다.
도 5는 본 발명에 따른 배터리 팩의 전체적인 구성을 개략적으로 나타내는 블록도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.
이하, 도면을 참조하여 본 발명에 대하여 상세히 설명한다.
1. 본 발명에서 사용하는 용어
1.1. 기준 배터리
특정 배터리의 SOH를 예측하기 위한 기준 데이터들을 마련하기 위하여 설정되는 배터리로서, 다수의 배터리 중 어느 하나의 배터리를 기준 배터리로 설정하고, 상기 설정된 기준 배터리에 대한 완충-완방전 동작을 진행하여 기준 데이터들을 마련하고, 이들을 바탕으로 아래에 룩업테이블 저장단계(S100)에서 설명하는 것처럼 룩업테이블을 구성할 수 있다.
1.2. 실측 배터리
SOH를 예측하고자 하는 배터리로서, 상기 기준 배터리에 대하여 구성된 룩업테이블을 바탕으로 하여, 상기 실측 배터리의 충전 진행을 통해 측정되는 데이터를 이용하여 실시간으로 SOH를 예측할 수 있다.
1.3. dQ/dV 값
이는 충/방전 진행에 따라 측정되는 배터리의 충/방전 용량(Q)을 전압(V)으로 미분한 값을 의미한다.
2. 본 발명에 따른 배터리 SOH 예측 방법
2.1. 룩업테이블 저장단계(S100)
룩업테이블 저장단계는, 소정의 기준 배터리에 대하여 완전 방전을 진행하면서 실시간 dQ/dV 값 및 그에 해당하는 SOH 값을 측정하고, 상기 측정된 dQ/dV 및 SOH 값을 바탕으로 하여 각 배터리 전압에서의 dQ/dV 값과 대응하는 SOH와의 룩업테이블을 구성하여 저장하는 단계이다. 상기 배터리 전압에서의 dQ/dV 값과 그에 대응하는 SOH와의 룩업테이블은, 후술하는 저장부(160)에 저장된다. 상기 룩업테이블은 이하 dQ/dV:SOH 룩업테이블이라 칭한다.
2.2. SOH 측정 배터리 전압 설정단계(S200)
상기 기준 배터리에 대하여, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하고, 각 cycle 별로 dQ/dV 값을 비교하여 dQ/dV 값 편차가 가장 크게 나타나는 배터리 전압을 도출하여, 이를 SOH 측정 배터리 전압으로 설정하는 단계로서, 하기의 세부 단계를 포함하여 구성되며, 이는 후술하는 SOH 측정 배터리 전압 설정부(130)에 의해 수행된다.
가. cycle 별 dQ/dV 값 측정단계(S210)
상기 기준 배터리에 대하여, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하는 단계로서, 기준 배터리를 완충-완방전하는 동작을 소정 횟수 진행하여, 각 cycle 진행 시 dQ/dV 값을 측정하는 것이다. 이는 후술하는 제1 dQ/dV 값 측정부(132)에 의해 수행된다.
나. cycle 별 dQ/dV 값 비교단계(S220)
상기 cycle 별 dQ/dV 값 측정단계(S210)를 통해 측정된 각 cycle 별 dQ/dV 값을 비교하는 단계이다.
상술한 바와 같이, 소정의 기준 배터리를 완충-완방전하는 동작 cycle을 다수 진행하여 각 cycle 진행 시 dQ/dV 값을 측정하므로, 각 cycle 별 dQ/dV 값들이 산출되고, 이에 cycle들 간의 가장 큰 편차를 보이는 dQ/dV 값을 확인하기 위하여 cycle 별 dQ/dV 값을 비교할 수 있다.
다. 기준 배터리 전압 도출단계(S230)
상기 cycle 별 dQ/dV 값 비교단계(S220)에서 각 cycle 별 dQ/dV 값을 비교한 결과, dQ/dV 값의 편차가 가장 크게 나타나는 배터리 전압을 도출하는 단계이다.
도면을 참조하여 구체적으로 설명하면, 도 2는 기준 배터리에 대하여 완충-완방전하는 동작 cycle을 300회 실시하여, 각 cycle 별로 측정된 dQ/dV 값 중 dQ/dV 값의 편차가 가장 크게 나타나는 첫번째 cycle과 300회째 cycle의 dQ/Dv 값을 보여주는 그래프이다. 도 2를 참조하면, 첫번째 cycle과 300회째 cycle 간에 일정 기준 이상의 dQ/dV 값 편차를 보이는 부분을 대략적으로 크게 A, B, C, D, E 영역으로 추출할 수 있는데, 이 중에서 dQ/dV 값의 편차가 가장 크게 나타나는 부분이 D인 것을 확인할 수 있다. 이에, 상기 D 영역에 해당하는 전압 값인 3.79V가 기준 배터리 전압으로 도출되며, 이를 이하에서는 SOH 측정 배터리 전압으로 지칭한다.
이와 같은 cycle 별 dQ/dV 값 비교단계(S220) 및 기준 배터리 전압 도출단계(S230)는 후술하는 기준 배터리 전압 도출부(134)에 의해 이루어진다.
2.3. 실측 dQ/dV 값 측정단계(S300)
실측 dQ/dV 값 측정단계는, SOH를 측정하고자 하는 실측 배터리에 대하여 충전을 진행하면서, 상기 기준 배터리 전압 도출단계(S230)를 통해 설정된 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하는 단계로서, 후술하는 SOH 예측부(140)의 제2 dQ/dV 값 측정부(142)에 의해 동작한다. 여기서, 배터리의 충전 도중 실측 dQ/dV 값을 측정하는 이유는, 방전은 사용자에 따라서 상이하게 방전할 수 있으나 충전은 방전에 비해 변화가 적고, 방전에서보다 충전에서의 배터리의 이온 특성이 잘 나타나기 때문에, SOH 예측의 정확성을 높이기 위하여 실측 배터리의 충전 도중 실측 dQ/dV 값 측정단계를 수행한다. 도 2를 참조하여 상술한 실험을 예로 들어 설명하면, 상기 SOH 측정 배터리 전압이 3.79V로 설정되었으므로, 이 단계에서는 실측 배터리를 충전하면서 3.79V에서의 dQ/dV 값을 측정하는 것이다.
이와 같은 실측 배터리의 충전 중 SOH 측정 배터리 전압에서의 dQ/dV 값을 측정하는 동작은, 소정의 주기 간격으로 수행되어, 실측 배터리의 충전과 방전을 하는 도중 SOH를 실시간으로 예측 가능하도록 한다.
2.4. 배터리 SOH 예측단계(S400)
배터리 SOH 예측단계는, 상기 측정된 실측 배터리에 대한 SOH 측정 배터리 전압에서의 dQ/dV 값에 대응하는 SOH를 상기 룩업테이블에서 추출하여, 상기 추출한 SOH를 실측 배터리의 실시간 SOH로 예측할 수 있다.
보다 구체적으로 설명하면, SOH 추출단계(S410)를 수행하여, 상기 실측 dQ/dV 값 측정단계(S300)에서 측정한 실측 배터리에 대한 SOH 측정 배터리 전압에서의 dQ/dV 값에 대응하는 SOH를 상기 룩업테이블 저장단계(S100)를 통해 구성된 dQ/dV: SOH 룩업테이블에서 추출한다. 이 때, 상기 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측할 수 있다.
도 2를 참조하여 상술한 실험을 예로 들어 설명하면, 상기 실측 dQ/dV 값 측정단계(S300)에서 측정한 3.79V(SOH 측정 배터리 전압)에서의 실측 배터리의 dQ/dV 값에 해당하는 SOH를 dQ/dV: SOH 룩업테이블에서 추출하여, 추출된 SOH를 실측 배터리의 실시간 SOH로 예측하는 것이다.
이와 같은 동작은, 후술하는 SOH 예측부(140)의 SOH 추출부(144)에 의해 이루어진다.
2.5. SOH 표시단계(S500)
SOH 표시단계는, 상기 배터리 SOH 예측단계(S400)에서 예측된 실측 배터리의 실시간 SOH를 표시하는 단계로서, 이를 통해 사용자는 실측 배터리의 실시간 SOH를 인지할 수 있다. 이는 후술하는 표시부(170)에 의해 수행된다.
2.6. 이상 여부 판단단계(S600)
이상 여부 판단단계는, 상기 실측 dQ/dV 값 측정단계(S300)에 의해 소정의 주기 간격으로 측정되는 실측 배터리의 dQ/dV 값을 바탕으로 하여, dQ/dV 값의 변화 폭에 따라 실측 배터리의 이상 여부를 판단하는 단계로서, 후술하는 이상 판단부(150)에 의해 수행된다.
가. dQ/dV 값 편차 산출단계(S610)
상기 실측 dQ/dV 값 측정단계(S300)에 의해 측정되는 실측 배터리의 SOH 측정 배터리 전압에서의 dQ/dV 값을 이용하여, 현재 주기의 dQ/dV 값과 이전 주기의 dQ/dV 값의 편차|dQ/dV(t)- dQ/dV(t-1)|를 산출할 수 있다. 이는 후술하는 dQ/dV 편차 산출부(152)에 의해 수행된다.
나. dQ/dV 값 편차 비교단계(S620)
상기 산출된 현재 주기와 이전 주기 간의 dQ/dV 값 편차와 소정의 기준 값을 비교하여, 그 비교 결과에 따라 실측 배터리의 이상 여부를 판단할 수 있다.
비교 결과, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값보다 크면, 해당 배터리에 이상이 발생하여 dQ/dV 값의 변화 폭이 기준보다 크게 나타나는 것으로 보고, 이상이 발생한 것으로 판단(S612)할 수 있다.
한편, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값 이하이면, dQ/dV 값의 변화 폭이 적정 수준인 것으로 보고, 이상이 없는 상태인 것으로 판단(S614)할 수 있다.
이와 같은 동작은, 후술하는 비교부(154)에 의해 동작한다.
2.7. 이상 알림단계(S700)
이상 알림단계는, 상기 이상 여부 판단단계(S600)에서 실측 배터리에 이상이 발생한 것으로 판단 시, 이상신호 알람을 생성하고 이를 발생시켜 사용자가 배터리의 이상을 감지할 수 있도록 하는 단계로서, 이상신호 생성부(156)로부터의 이상신호 생성에 따라, 알림부(180)에서 이상신호 알람을 발생시키는 것으로 이루어진다. 이와 같이, 본 발명에서 배터리의 SOH를 예측하는 데에 dQ와 dV 값의 변화를 이용하는 그 원리를 설명하면, 우선 셀을 완충-완방전하는 동작 cycle을 300회 실시하여, 그에 따른 각 요소들과 SOH와의 상관성 분석을 진행해보았을 때, 도 3을 참조하면, 굵게 표시된 선들을 중점으로 보면 충전 후 rest 마지막 전압 값(상단 OCV)은 0.59, 방전 후 rest 마지막 전압 값(하단 OCV)은 0.81, EOD(End of Discharge) 충전 저항은 0.77, EOC(End of Charge) 충전 저항은 0.79, EOD(End of Discharge) 방전 저항은 0.28, EOC(End of Charge) 방전 저항은 0.69 정도의 상관성을 갖는 것으로 분석되었으며, dQ,dV 변화는 각각 0.93, 0.94 정도의 상관성을 갖는 것으로 분석되었다. 따라서, OCV와 저항(R) 값보다 dQ와 dV 값 변화가 SOH와의 상관성이 더 높은 것을 확인할 수 있다.
더욱 구체적으로 dQ와 dV 값 변화와 SOH와의 상관관계를 분석해보면, 도 2를 참조하여 상술한 바와 같이, 기준 배터리에 대하여 완충-완방전하는 동작 cycle을 300회 실시하여 각 cycle 별로 측정된 dQ/dV 값을 그래프로 나타냈을 때, cycle 간 dQ/dV 값의 편차가 가장 크게 나타난 첫번째 cycle과 300회째 cycle의 dQ/dV 값에 해당하는 전압인 3.79V를 SOH 측정 배터리 전압으로 설정할 수 있다. 이를 바탕으로, SOH 측정 배터리 전압인 3.79V에 해당하는 dQ/dV, dV/dQ와 SOH의 상관관계를 분석해보면, 도 4와 같은 결과를 확인할 수 있었다. 도 4는 복수의 셀에 대하여 완충-완방전하는 동작 cycle을 300회 진행하면서, 충전 시 3.79V(SOH 측정 배터리 전압) 부분에 대한 SOH 상관성 평균 값과 방전 시 3.79V(SOH 측정 배터리 전압)에 대한 SOH 상관성 평균 값을 보여주는 그래프로서, (a)에 보이는 바와 같이 충전 시 3.79V의 dQ/dV 부분에 대한 SOH 상관성 평균 값은 0.88, (b)에 보이는 바와 같이 방전 시 3.79V의 dV/dQ 부분에 대한 SOH 상관성 평균 값도 0.88로서, 충/방전 시 SOH 측정 배터리 전압에서의 dQ와 dV 값과 SOH가 높은 상관성을 갖는 것을 확인할 수 있다.
이에 따라, 본 발명은 배터리 충/방전 시 실험을 통해 도출되는 특정 전압 부분(SOH 측정 배터리 전압)에서의 dQ/dV 값과 SOH와 높은 상관성을 갖는 점을 이용하여, 이를 바탕으로 배터리를 완전 방전시키지 않더라도, 충/방전을 진행하는 도중 실시간으로 해당 배터리의 SOH를 예측할 수 있기 때문에, 배터리를 운영함에 있어 시간의 효율성을 향상시킬 수 있고, 충/방전 도중 실시간으로 배터리의 SOH(State of Health)를 알 수 있기 때문에 보다 안정적인 배터리 운영이 가능하다.
3. 본 발명에 따른 배터리 팩
도 5는 본 발명에 따른 배터리 팩의 전체적인 구성을 개략적으로 보이는 블록도로서, 이를 참조하여 각 구성에 대하여 설명하도록 한다.
3.1. 배터리(110)
본 발명에 따른 배터리 팩(100)은, 다수의 배터리를 포함하며, 다수의 배터리는 하나의 SOH 측정이 가능하도록 하는 기준 배터리와, SOH를 측정하고자 하는 적어도 하나 이상의 실측 배터리로 구분하여 설명할 수 있다.
한편, 본 발명에 따른 배터리 팩은, 배터리의 SOH를 측정하는 배터리 관리 장치를 포함하며, 이는 하기와 같이 구성된다.
3.2. 충/방전 제어부(120)
상기 배터리에 충/방전 전원을 공급하고 충/방전을 제어하는 구성으로서, 기준 배터리로 설정된 배터리를 완충-완방전하는 동작 cycle을 소정 횟수 실시하도록 제어할 수 있고, 실측 배터리로 설정된 배터리의 충/방전 동작을 제어할 수 있다.
3.3. SOH 측정 배터리 전압 설정부(130)
소정의 기준 배터리에 대하여 완충-완방전의 cycle 별로 dQ/dV 값을 측정하고, 각 cycle 간 dQ/dV 값의 편차가 가장 크게 나타나는 배터리 전압을 도출하여, 그 값을 배터리의 SOH 예측을 위한 기준 배터리 전압인 SOH 측정 배터리 전압으로 설정하는 구성이다.
가. 제1 dQ/dV 값 측정부(132)
제1 dQ/dV 값 측정부는, 상기 충/방전 제어부(120)에 의해 소정의 기준 배터리를 완충-완방전하는 동작 cycle을 소정 횟수 진행하는 동안, 각 cycle 진행 시 dQ/dV 값을 측정할 수 있다.
예를 들어, 소정의 기준 배터리를 완충-완방전하는 동작 cycle을 300회 진행한다면, 첫번째 cycle부터 300회째 cycle까지 각 cycle 진행 시마다 dQ/dV를 측정하는 것이다.
이와 같이 측정된 기준 배터리에 대한 다수의 완충-완방전 cycle 별 dQ/dV 값들은, dQ/dV 값과 SOH와의 룩업테이블을 구성하여 후술하는 저장부(160)에 저장되고, SOH 예측을 위한 기준 배터리 전압을 도출하는 데에 사용된다.
나. 기준 배터리 전압 도출부(134)
상기 제1 dQ/dV 값 측정부(132)에서 측정된 기준 배터리에 대한 다수의 완충-완방전 cycle 별 dQ/dV 값을 바탕으로 하여, 배터리의 SOH 예측을 위한 기준 배터리 전압을 도출할 수 있다.
구체적으로, 상기 제1 dQ/dV 값 측정부(132)에서 측정된 각 cycle별 dQ/dV 값을 비교하여, cycle 간에 dQ/dV 값 편차가 가장 크게 나타나는 배터리 전압을 도출할 수 있다.
상기에서 설명한 바와 같이, 도 2는 기준 배터리에 대하여 완충-완방전하는 동작 cycle을 300회 실시하여, 각 cycle 별로 측정된 dQ/dV 값들 중 가장 큰 편차를 나타내는 첫번째 cycle과 300회째 cycle의 dQ/dV 값들을 보여주는 그래프이다. 도 2를 참조하여 실험 데이터를 예로 들어 설명하면, 첫번째 cycle과 300회째 cycle 간에 어느 정도의 dQ/dV 값 편차를 보이는 부분이 대략적으로 A, B, C, D, E 영역이 있는데, 이 중에서 가장 큰 편차를 보이는 D 영역에 해당하는 배터리 전압인 3.79V를 도출하여, 이를 배터리의 SOH 예측을 위한 기준 배터리 전압으로서 SOH 측정 배터리 전압으로 설정할 수 있다.
3.4. SOH 예측부(140)
SOH 예측부는, 상기 SOH 측정 배터리 전압 설정부(130)에 의해 설정된 SOH 측정 배터리 전압 값과 후술하는 저장부(160)에 저장되어 있는 dQ/dV: SOH 룩업테이블, 그리고 SOH를 측정하고자 하는 실측 배터리의 dQ/dV 값을 이용하여, 실측 배터리의 실시간 SOH를 예측할 수 있다.
가. 제2 dQ/dV 값 측정부(142)
제2 dQ/dV 값 측정부는, 상기 충/방전 제어부(120)에 의해 실측 배터리의 충전이 진행되는 동안, 상기 실측 배터리에 대하여 소정의 주기 간격으로 상기 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정할 수 있다.
도 2를 참조하여 상술한 실험을 예로 들면, 상기 SOH 측정 배터리 전압이 3.79V로 설정되었기 때문에, 상기 제2 dQ/dV 값 측정부는, 실측 배터리의 충전이 진행되는 동안, 소정의 주기 간격으로 실측 배터리의 3.79V에서의 dQ/dV 값을 측정하는 것이다.
나. SOH 추출부(144)
SOH 추출부는, 상기 제2 dQ/dV 값 측정부(142)에서 실측 배터리의 SOH 측정 배터리 전압에서의 dQ/dV 값이 측정되면, 측정된 dQ/dV 값에 대응하는 SOH를 저장부(160)에 저장된 dQ/dV: SOH 룩업테이블에서 추출할 수 있다.
이 때 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측할 수 있다.
도 2를 참조하여 상술한 실험을 예로 들면, 상기 제2 dQ/dV 값 측정부(142)에서 측정한 실측 배터리의 3.79V(SOH 측정 배터리 전압)에서의 dQ/dV 값에 해당하는 SOH를 저장부(160)에 저장된 dQ/dV: SOH 룩업테이블에서 추출하고, 이 때 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측하는 것이다.
3.5. 이상 판단부(150)
이상 판단부는, 상기 제2 dQ/dV 값 측정부(142)에서 소정의 주기 간격으로 측정되는 실측 배터리의 dQ/dV 값을 바탕으로 하여, dQ/dV 값의 변화 폭에 따라 실측 배터리의 이상 여부를 판단할 수 있다.
가. dQ/dV 편차 산출부(152)
우선, dQ/dV 편차 산출부는 상기 제2 dQ/dV 값 측정부(142)에서 측정된 실측 배터리의 SOH 측정 배터리 전압에서의 dQ/dV 값을 이용하여, 현재 주기의 dQ/dV 값과 이전 주기의 dQ/dV 값 간의 편차|dQ/dV(t)- dQ/dV(t-1)|를 산출할 수 있다.
나. 비교부(154)
비교부는, 상기 dQ/dV 편차 산출부(152)에 의해 현재 주기와 이전 주기 간의 dQ/dV 값 편차|dQ/dV(t)- dQ/dV(t-1)|가 산출되면, 이를 소정의 기준 값과 비교할 수 있다.
그 비교 결과, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값보다 크면, 해당 실측 배터리에 이상이 발생하여 dQ/dV 값의 변화 폭이 기준보다 크게 나타나는 것으로 보고, 이상이 발생한 것으로 판단할 수 있다.
한편, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값 이하이면, dQ/dV 값의 변화 폭이 적정 수준인 것으로 보고, 이상이 없는 상태인 것으로 판단할 수 있다.
다. 이상신호 생성부(156)
이상 신호 생성부는, 상기 비교부(154)의 비교 결과, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값보다 크게 나타나 해당 실측 배터리에 이상이 발생한 것으로 판단되면, 이상신호를 생성하여 후술하는 알림부(180)로 출력할 수 있다.
3.6. 저장부(160)
저장부는, 상기 SOH 예측부(140)에서 실측 배터리에 대하여 측정된 SOH 측정 배터리 전압에서의 dQ/dV 값을 이용하여 실측 배터리의 실시간 SOH를 예측할 수 있도록 하는 dQ/dV:SOH 룩업테이블을 저장한다.
상기 dQ/dV:SOH 룩업테이블은, 소정의 기준 배터리에 대하여 완전방전을 진행하면서 실시간으로 dQ/dV 값 및 그에 대응하는 SOH를 측정하는 실험을 통해 각 배터리 전압에서의 dQ/dV 값과 대응하는 SOH와의 룩업테이블을 구성하여, 이들 데이터를 저장부에 저장할 수 있다. 이와 같이 상기 저장부에 저장된 dQ/dV: SOH 룩업테이블은, 상술한 SOH 예측부(140)에서 실측 배터리의 실시간 SOH를 예측하는 데에 이용된다.
3.7. 표시부(170)
표시부는, 상기 SOH 예측부(140)에 의해 예측되는 실측 배터리의 실시간 SOH를 표시하는 구성으로서, 이를 통해 사용자가 실측 배터리의 실시간 SOH를 인지할 수 있다.
3.8. 알림부(180)
알림부는, 상기 이상 판단부(150)에서 실측 배터리에 이상이 발생한 것으로 판단 시 이상신호 알람을 생성하여 발생시키는 구성으로서, 구체적으로는 상기 이상신호 생성부(156)로부터 이상신호가 출력되면, 실측 배터리에 이상이 발생한 것으로 인식하고, 이상신호 알람을 생성하여 발생시켜, 사용자가 이상 상태를 감지할 수 있도록 한다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
100: 배터리 팩
110: 배터리
120: 충/방전 제어부
130: SOH 측정 배터리 전압 설정부
132: 제1 dQ/dV 값 측정부
134: 기준 배터리 전압 도출부
140: SOH 예측부
142: 제2 dQ/dV 값 측정부
144: SOH 추출부
150: 이상 판단부
152: dQ/dV 값 편차 산출부
154: 비교부
156: 이상신호 생성부
160: 저장부
170: 표시부
180: 알림부
110: 배터리
120: 충/방전 제어부
130: SOH 측정 배터리 전압 설정부
132: 제1 dQ/dV 값 측정부
134: 기준 배터리 전압 도출부
140: SOH 예측부
142: 제2 dQ/dV 값 측정부
144: SOH 추출부
150: 이상 판단부
152: dQ/dV 값 편차 산출부
154: 비교부
156: 이상신호 생성부
160: 저장부
170: 표시부
180: 알림부
Claims (12)
- 소정의 기준 배터리에 대하여, 완충-방전 cycle에 대하여 dQ/dV:SOH 룩업테이블을 구성하고 저장하는 룩업테이블 저장단계;
상기 기준 배터리에 대하여, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하고, 상기 측정된 각 cycle 별 dQ/dV 값을 바탕으로 SOH 측정 배터리 전압을 설정하는 SOH 측정 배터리 전압 설정단계;
SOH를 예측하고자 하는 실측 배터리에 대하여 충전을 진행하면서, 소정의 주기 간격으로, 상기 설정한 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하는 실측 dQ/dV 값 측정단계;
상기 측정한 실측 dQ/dV 값에 대응하는 SOH 값을, 상기 dQ/dV:SOH 룩업테이블에서 추출하여 실측 배터리의 실시간 SOH로 예측하는 배터리 SOH 예측단계;
를 포함하여 구성되는 배터리 SOH 예측 방법. - 제1항에 있어서,
상기 실측 배터리에 대하여 측정한 dQ/dV 값을 바탕으로 하여, dQ/dV 값의 변화 폭에 따라 배터리의 이상여부를 판단하는 이상 여부 판단단계;
상기 이상 여부 판단단계에서 실측 배터리에 이상이 있는 것으로 판단 시, 이상신호 알람을 생성하고 발생시키는 이상 알림단계;
를 더 포함하여 구성되는 배터리 SOH 예측 방법. - 제1항에 있어서,
상기 SOH 측정 배터리 전압 설정단계는,
상기 기준 배터리를 완충-완방전하는 동작 cycle을 소정 횟수 진행하여, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하는 cycle 별 dQ/dV 값 측정단계;
상기 측정된 각 cycle 별 dQ/dV 값을 비교하는 cycle 별 dQ/dV 값 비교단계;
상기 비교 결과, 다수의 cycle 간에 dQ/dV 값 편차가 가장 크게 나타나는 배터리 전압을 도출하는 기준 배터리 전압 도출단계;
를 포함하여 구성되는 것을 특징으로 하는 배터리 SOH 예측 방법. - 제3항에 있어서,
상기 배터리 SOH 예측단계는,
상기 실측 dQ/dV 값 측정단계에서 측정한 실측 dQ/dV에 대응하는 SOH를, 상기 dQ/dV:SOH 룩업테이블에서 추출하는 SOH 추출단계; 를 포함하여 구성되며, 상기 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측하는 것을 특징으로 하는 배터리 SOH 예측 방법. - 제2항에 있어서,
상기 이상 여부 판단단계는,
상기 실측 dQ/dV 값 측정단계에서 측정한 현재 주기의 dQ/dV 값과 이전 주기의 dQ/dV 값 간의 편차|dQ/dV(t)-dQ/dV(t-1)|를 산출하는 dQ/dV 값 편차 산출단계;
상기 산출된 현재 주기와 이전 주기 간의 dQ/dV 값 편차와 소정의 기준 값을 비교하는 dQ/dV 값 편차 비교단계;
를 포함하여 구성되는 것을 특징으로 하는 배터리 SOH 예측 방법. - 제5항에 있어서,
상기 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값을 초과하면, 해당 배터리에 이상이 있는 것으로 판단하는 것을 특징으로 하는 배터리 SOH 예측 방법. - 배터리의 SOH를 측정하는 배터리 관리 장치에 있어서,
배터리에 충/방전 전원을 공급하고 충/방전을 제어하는 충/방전 제어부;
소정의 기준 배터리에 대하여, 다수의 완충-완방전의 cycle 별로 측정된 각 cycle 별 dQ/dV 값을 바탕으로 SOH 측정 배터리 전압을 설정하는 SOH 측정 배터리 전압 설정부;
실측 배터리의 충전이 진행되는 동안, 소정의 주기 간격으로, 상기 설정된 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하고, 이를 이용하여 실측 배터리의 실시간 SOH를 예측하는 SOH 예측부;
상기 기준 배터리에 대하여, 완전 방전을 진행하며 측정된 dQ/dV 값과 그에 해당하는 SOH 값을 바탕으로 하여 구성된 각 배터리 전압에서의 dQ/dV 값과 대응하는 SOH와의 관계인 룩업테이블(dQ/dV:SOH 룩업테이블)을 저장하는 저장부;
를 포함하여 구성되는 배터리 관리 장치. - 제7항에 있어서,
상기 SOH 예측부에서 측정된 실측 dQ/dV 값을 이용하여, dQ/dV 값의 변화 폭에 따라 해당 배터리의 이상 여부를 판단하는 이상 판단부;
상기 SOH 예측부에서 예측되는 실측 배터리의 실시간 SOH를 표시하는 표시부;
상기 이상 판단부에서 배터리에 이상이 발생한 것으로 판단 시, 이상신호 알람을 생성하고 발생시키는 알림부;
를 더 포함하여 구성되는 배터리 관리 장치. - 제8항에 있어서,
상기 SOH 측정 배터리 전압 설정부는,
상기 충/방전 제어부에 의해 상기 기준 배터리를 완충-완방전하는 동작 cycle이 소정 횟수 진행되는 동안, 다수의 완충-완방전의 cycle 별로 dQ/dV 값을 측정하는 제1 dQ/dV 값 측정부;
상기 제1 dQ/dV 값 측정부에서 측정된 각 cycle 별 dQ/dV 값을 비교하여, 다수의 cycle 간에 dQ/dV 값 편차가 가장 크게 나타나는 배터리 전압을 도출하는 기준 배터리 전압 도출부;
를 포함하여 구성되며,
상기 도출된 배터리 전압을 SOH 측정 배터리 전압으로 설정하는 것을 특징으로 하는 배터리 관리 장치. - 제9항에 있어서,
상기 SOH 예측부는,
상기 충/방전 제어부에 의해 상기 실측 배터리를 충전하는 동안, 소정의 주기 간격으로, 상기 설정된 SOH 측정 배터리 전압에서의 실측 dQ/dV 값을 측정하는 제2 dQ/dV 값 측정부;
상기 제2 dQ/dV 값 측정부에서 측정되는 실측 dQ/dV 값에 대응하는 SOH를, 상기 저장부에 저장된 dQ/dV:SOH 룩업테이블에서 추출하는 SOH 추출부;
를 포함하여 구성되며,
상기 추출되는 SOH를 실측 배터리의 실시간 SOH로 예측하는 것을 특징으로 하는 배터리 관리 장치. - 제10항에 있어서,
상기 이상 판단부는,
상기 제2 dQ/dV 값 측정부에 의해 실측 배터리에 대하여 측정된 현재 주기의 dQ/dV 값과 이전 주기의 dQ/dV 값 간의 편차|dQ/dV(t)- dQ/dV(t-1)|를 산출하는 dQ/dV 편차 산출부;
상기 dQ/dV 편차 산출부에서 산출된 현재 주기와 이전 주기 간의 dQ/dV 값 편차를 소정의 기준 값과 비교하는 비교부;
상기 비교부의 비교 결과, 현재 주기와 이전 주기 간의 dQ/dV 값 편차가 소정의 기준 값을 초과하는 경우, 해당 배터리에 이상이 있는 것으로 판단하고 이상신호를 생성하여 출력하는 이상신호 생성부;
를 포함하여 구성되는 배터리 관리 장치. - 제7항 내지 제11항 중 어느 한 항에 따른 배터리 관리 장치를 포함하는 배터리 팩.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/010997 WO2021040306A1 (ko) | 2019-08-23 | 2020-08-18 | 배터리 soh 예측 방법 및 이를 적용한 배터리 팩 |
JP2022512415A JP7341322B2 (ja) | 2019-08-23 | 2020-08-18 | バッテリーのsohの予測方法及びこれを適用したバッテリーパック |
EP20858205.6A EP4006564B1 (en) | 2019-08-23 | 2020-08-18 | Method for predicting soh of battery and battery pack employing same |
US17/637,285 US20220283234A1 (en) | 2019-08-23 | 2020-08-18 | Method for predicting soh of battery and battery pack employing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190103485 | 2019-08-23 | ||
KR20190103485 | 2019-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210023695A true KR20210023695A (ko) | 2021-03-04 |
Family
ID=75174703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200098001A KR20210023695A (ko) | 2019-08-23 | 2020-08-05 | 배터리 soh 예측 방법 및 이를 적용한 배터리 팩 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20210023695A (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113917336A (zh) * | 2021-10-13 | 2022-01-11 | 国网福建省电力有限公司 | 基于片段充电时间和gru的锂离子电池健康状态预测方法 |
WO2023085906A1 (ko) * | 2021-11-15 | 2023-05-19 | 주식회사 에이치이아이 | 배터리 soh 추정시스템, 이를 위한 파라미터 추출시스템 및 방법 |
WO2023195592A1 (ko) * | 2022-04-05 | 2023-10-12 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 및 방법 |
WO2023224288A1 (ko) * | 2022-05-18 | 2023-11-23 | 주식회사 엘지에너지솔루션 | 배터리 상태 관리 장치 및 그것의 동작 방법 |
WO2024136352A1 (ko) * | 2022-12-23 | 2024-06-27 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치 및 방법 |
WO2024210321A1 (ko) * | 2023-04-07 | 2024-10-10 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치 및 이의 동작 방법 |
-
2020
- 2020-08-05 KR KR1020200098001A patent/KR20210023695A/ko unknown
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113917336A (zh) * | 2021-10-13 | 2022-01-11 | 国网福建省电力有限公司 | 基于片段充电时间和gru的锂离子电池健康状态预测方法 |
WO2023085906A1 (ko) * | 2021-11-15 | 2023-05-19 | 주식회사 에이치이아이 | 배터리 soh 추정시스템, 이를 위한 파라미터 추출시스템 및 방법 |
KR20230070628A (ko) * | 2021-11-15 | 2023-05-23 | 주식회사 에이치이아이 | 배터리 soh 추정시스템, 이를 위한 파라미터 추출시스템 및 방법 |
KR20230101789A (ko) * | 2021-11-15 | 2023-07-06 | 주식회사 에이치이아이 | 배터리 soh 추정시스템, 이를 위한 파라미터 추출시스템및 방법 |
WO2023195592A1 (ko) * | 2022-04-05 | 2023-10-12 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 및 방법 |
WO2023224288A1 (ko) * | 2022-05-18 | 2023-11-23 | 주식회사 엘지에너지솔루션 | 배터리 상태 관리 장치 및 그것의 동작 방법 |
WO2024136352A1 (ko) * | 2022-12-23 | 2024-06-27 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치 및 방법 |
WO2024210321A1 (ko) * | 2023-04-07 | 2024-10-10 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치 및 이의 동작 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210023695A (ko) | 배터리 soh 예측 방법 및 이를 적용한 배터리 팩 | |
JP6567582B2 (ja) | 充放電制御装置、使用条件作成装置、プログラム、及び蓄電システム | |
US9653759B2 (en) | Method and apparatus for optimized battery life cycle management | |
US10060986B2 (en) | Battery remaining power predicting device and battery pack | |
KR101972521B1 (ko) | 배터리 셀의 성능 테스트 장치 및 방법 | |
KR20220163736A (ko) | 리튬이온 배터리팩의 비정상 셀 검출 및 soh 예측 방법 | |
JP2018046667A (ja) | 充電パターン作成装置、充電制御装置、充電パターン作成方法、プログラム、及び蓄電システム | |
CN106662620B (zh) | 电池状态探测装置、二次电池系统、存储介质、电池状态探测方法 | |
US20140302355A1 (en) | Method for Ascertaining Operating Parameters of a Battery, Battery Management System, and Battery | |
US11815559B2 (en) | Apparatus and method for diagnosing battery cell | |
KR20150066464A (ko) | 전지 상태 산출 장치 및 전지 상태 산출 방법 | |
KR102698806B1 (ko) | 배터리 수명 예측 방법 및 이를 적용한 배터리 팩 | |
KR20190075684A (ko) | 배터리의 전하 균형을 탐지하는 배터리 모니터링 장치 및 방법 | |
JP6798051B2 (ja) | 充電パターン作成装置、充電制御装置、充電パターン作成方法、プログラム、及び蓄電システム | |
KR20180115124A (ko) | 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법 | |
JP2016171716A (ja) | 電池残量予測装置及びバッテリパック | |
JP2016023968A (ja) | 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法 | |
CN113678009A (zh) | 电池状态推定装置及方法 | |
KR20130125141A (ko) | 이차전지 수명 측정 장치, 이를 포함하는 전자기기 및 이차전지 수명 측정 방법 | |
JP7326237B2 (ja) | 複数の電池に関する判定装置、蓄電システム、判定方法及び判定プログラム | |
US20200195029A1 (en) | Charge control device, charge control method, non-transitory computer readable medium, control circuit and power storage system | |
JP2019049412A (ja) | 電池パックの状態推定装置 | |
KR102196668B1 (ko) | 배터리 충전 상태 추정 장치 및 방법 | |
KR20220149428A (ko) | 반도체 장치 및 배터리 잔량 감시 방법 | |
EP4006564B1 (en) | Method for predicting soh of battery and battery pack employing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant |