KR20210014510A - Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same - Google Patents

Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same Download PDF

Info

Publication number
KR20210014510A
KR20210014510A KR1020190092681A KR20190092681A KR20210014510A KR 20210014510 A KR20210014510 A KR 20210014510A KR 1020190092681 A KR1020190092681 A KR 1020190092681A KR 20190092681 A KR20190092681 A KR 20190092681A KR 20210014510 A KR20210014510 A KR 20210014510A
Authority
KR
South Korea
Prior art keywords
catalyst
methane oxidation
regeneration system
group
catalyst regeneration
Prior art date
Application number
KR1020190092681A
Other languages
Korean (ko)
Other versions
KR102305781B1 (en
Inventor
윤승희
박상철
함진기
김도희
유상범
Original Assignee
한국조선해양 주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국조선해양 주식회사, 서울대학교산학협력단 filed Critical 한국조선해양 주식회사
Priority to KR1020190092681A priority Critical patent/KR102305781B1/en
Publication of KR20210014510A publication Critical patent/KR20210014510A/en
Application granted granted Critical
Publication of KR102305781B1 publication Critical patent/KR102305781B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

The present invention provides a catalyst regeneration system for removing sulfur oxides from a catalyst for a low-temperature methane oxidation reaction, wherein sulfur oxides are removed from a catalyst at 450 to 600°C. The present invention can extend the life of the catalyst, secure economic feasibility of a reaction system, and reduce a volume of a methane oxidation reactor.

Description

메탄 산화 촉매 재생 시스템 및 이를 포함하는 메탄 산화 반응 장치{REGENERATION SYSTEM FOR METHANE OXIDATION CATALYST AND METHANE OXIDATION REACTOR COMPRISING THE SAME}Methane oxidation catalyst regeneration system and methane oxidation reaction apparatus including the same TECHNICAL FIELD

본 발명은 메탄 산화 촉매 재생 시스템 및 이를 포함하는 메탄 산화 반응 장치에 관한 것이다. The present invention relates to a methane oxidation catalyst regeneration system and a methane oxidation reaction apparatus including the same.

천연가스 연료는 기존 연료에 비하여 황산화물, 질소산화물, 미립자물질(PM: Particulate Matter) 등 대기오염물질의 배출량이 매우 적어 친환경 연료로 주목 받고 있다. 따라서 자동차나 선박 등에 있어서 천연가스를 연료로 하는 엔진의 사용이 증가하는 추세이다.Natural gas fuel is attracting attention as an eco-friendly fuel because it emits less air pollutants such as sulfur oxide, nitrogen oxide, and particulate matter (PM) compared to conventional fuels. Therefore, the use of engines using natural gas as fuel in automobiles and ships is increasing.

그런데, 이러한 천연가스는 메탄을 주성분으로 포함하는 것으로, 상기 메탄은 강력한 탄소-수소 결합을 갖고 있어서 상당히 안정한 상태로 존재하기 때문에, 엔진에서 완전히 소모되지 않고 배출될 경우 배기가스 온도 조건에서는 자연적으로 산화되지 않아 처리되지 않고 그대로 대기 중으로 배출된다.However, such natural gas contains methane as a main component, and since the methane has a strong carbon-hydrogen bond and exists in a fairly stable state, it is naturally oxidized under the exhaust gas temperature condition when discharged without being completely consumed by the engine. As it is not processed, it is discharged to the atmosphere as it is.

한편, 메탄은 동등한 양의 이산화탄소에 비해 28배 이상 지구 온난화 지수가 높은 강력한 온실가스에 해당하므로, 지구 온난화의 문제를 해결하기 위해서는 배기가스에서 배출되는 메탄의 양을 줄여야 한다. On the other hand, methane corresponds to a strong greenhouse gas with a global warming potential that is 28 times higher than that of an equivalent amount of carbon dioxide, and thus the amount of methane emitted from exhaust gas must be reduced to solve the problem of global warming.

따라서, 환경 오염에 주요한 원인으로 작용하는 내연기관 등의 배기가스를 효율적으로 정화하기 위하여, 특히 상기 배기가스에 다량으로 포함된 메탄을 효율적으로 제거하는 방법에 대한 다양한 연구가 진행 중에 있으며, 이러한 메탄을 산화시키는 데에 사용되는 촉매로서, 최근에는 귀금속을 알루미나 등의 산화물 담체에 담지한 것으로, 예를 들면, 팔라듐이나 백금을 알루미나에 담지한 촉매가 널리 알려지고 있다. Therefore, in order to efficiently purify exhaust gases such as internal combustion engines, which are a major cause of environmental pollution, various studies are being conducted on a method of efficiently removing methane contained in a large amount in the exhaust gas. Recently, as a catalyst used to oxidize a noble metal, a catalyst in which a noble metal is supported on an oxide carrier such as alumina, for example, palladium or platinum is supported on alumina is widely known.

특허문헌 1은 모노리스 기판 상에 배치된, 금속 산화물과 백금을 포함하는 배기가스 산화 촉매를 개시하나, 백금의 함량이 지나치게 높아 경제성이 낮고 메탄을 직접적으로 산화시킬 수 없는 한계가 있다. 특허문헌 2는 배기가스 정화용 촉매로 팔라듐(Pd)이 담지된 메조포러스 전이금속 복합 산화물을 개시하나, 메조포러스 전이금속 복합 산화물 제조 공정이 매우 복잡한 문제가 있다. 또한, 특허문헌 3은 코발트 산화물과 니켈 산화물을 포함하는 배기가스 정화용 촉매를 개시하나, 300 내지 400℃의 저온에서 촉매 활성이 낮은 문제가 있다. 이러한 종래의 기술들은 탄화수소 또는 일산화탄소를 산화시킬 수 있는 촉매로서 개발되었으며, 메탄을 산화 반응의 반응 물질로 특징하지 못하는 한계가 있다.Patent Document 1 discloses an exhaust gas oxidation catalyst comprising metal oxide and platinum disposed on a monolith substrate, but there is a limitation in that the content of platinum is too high, economical efficiency is low, and methane cannot be directly oxidized. Patent Document 2 discloses a mesoporous transition metal composite oxide on which palladium (Pd) is supported as a catalyst for purifying exhaust gas, but there is a problem in that the manufacturing process of the mesoporous transition metal composite oxide is very complicated. In addition, Patent Document 3 discloses a catalyst for purifying exhaust gas containing cobalt oxide and nickel oxide, but there is a problem of low catalytic activity at a low temperature of 300 to 400°C. These conventional techniques have been developed as catalysts capable of oxidizing hydrocarbons or carbon monoxide, and there is a limitation in that methane cannot be characterized as a reactant for oxidation reactions.

한편, 백금족 귀금속을 포함하는 촉매는 유입되는 배기가스 내에 존재하는 소량의 황 성분에도 활성이 저하된다. 촉매 활성이 저하되면 메탄 산화 반응의 유지 시간이 단축되어 촉매 교체 주기가 잦아지므로 원하는 시간만큼 메탄 산화 활성을 보장할 수 없는 문제가 있다. On the other hand, the catalyst containing a platinum group noble metal is deteriorated in activity even in a small amount of sulfur components present in the incoming exhaust gas. If the catalytic activity is lowered, the maintenance time of the methane oxidation reaction is shortened, so that the catalyst replacement cycle becomes frequent, so there is a problem that the methane oxidation activity cannot be guaranteed for a desired time.

이러한 촉매 수명 단축 문제를 해결하기 위한 일반적인 방법으로 메탄 산화 촉매를 필요 이상으로 투입하여 반응 활성이 유지되는 시간을 연장하는 방법이 있다. 그러나 메탄 산화 촉매의 주요 물질이 백금, 팔라듐 등의 귀금속인 점을 고려하면, 촉매를 필요 이상으로 투입하는 경우 발생하는 배기가스 양에 비례하여 막대한 비용이 발생하며, 대형 엔진에는 적용하기 어렵다.As a general method for solving the problem of shortening the life of the catalyst, there is a method of extending the time for maintaining the reaction activity by adding a methane oxidation catalyst more than necessary. However, considering that the main material of the methane oxidation catalyst is a noble metal such as platinum and palladium, enormous cost is incurred in proportion to the amount of exhaust gas generated when the catalyst is added more than necessary, and it is difficult to apply to large engines.

대한민국 등록특허 제10-1909303호Korean Patent Registration No. 10-1909303 대한민국 공개특허 제10-2016-0112179호Republic of Korea Patent Publication No. 10-2016-0112179 대한민국 등록특허 제10-1598390호Korean Patent Registration No. 10-1598390

본 발명은 종래 기술의 문제점을 해결하기 위해 제안된 것으로, 저온에서 메탄 산화 활성이 높은 메탄 산화 반응용 촉매로부터 황 산화물을 제거하기 위한 재생 시스템을 제공하는 것을 목적으로 한다. The present invention has been proposed to solve the problems of the prior art, and an object of the present invention is to provide a regeneration system for removing sulfur oxides from a catalyst for a methane oxidation reaction having high methane oxidation activity at a low temperature.

또한, 본 발명은 메탄 산화 반응용 촉매 재생 시스템을 포함하는 메탄 산화 반응 장치를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a methane oxidation reaction apparatus including a catalyst regeneration system for methane oxidation reaction.

본 발명의 일 실시 형태에 따르면, 저온 메탄 산화 반응용 촉매로부터 황 산화물을 제거하기 위한 촉매 재생 시스템에 있어서, 상기 황 산화물은 450 내지 600℃에서 촉매로부터 제거되는 촉매 재생 시스템이 제공된다. According to an embodiment of the present invention, there is provided a catalyst regeneration system for removing sulfur oxide from a catalyst for a low-temperature methane oxidation reaction, wherein the sulfur oxide is removed from the catalyst at 450 to 600°C.

본 발명의 다른 실시 형태에 따르면, 상기 촉매 재생 시스템을 포함하는 메탄 산화 반응 장치가 제공된다.According to another embodiment of the present invention, a methane oxidation reaction apparatus including the catalyst regeneration system is provided.

본 발명에서 제공하는 촉매 재생 시스템을 포함하는 경우 촉매 활성을 저하시키는 황 산화물을 메탄 산화 촉매로부터 제거함으로써 촉매의 수명을 연장시키고, 반응 시스템의 경제성을 확보할 수 있으며, 메탄 산화 반응기의 부피를 감소시킬 수 있다.In the case of including the catalyst regeneration system provided by the present invention, the life of the catalyst can be extended, the economical efficiency of the reaction system can be secured, and the volume of the methane oxidation reactor can be reduced by removing sulfur oxides that reduce catalyst activity from the methane oxidation catalyst I can make it.

도 1은 본 발명의 일 실시 형태에 따르는 메탄 산화 반응기가 터보 차저 전단에 설치된 경우 운영 방법을 나타낸 개략도이다.
도 2는 본 발명의 일 실시 형태에 따르는 메탄 산화 반응기가 터보 차저 후단에 설치된 경우 운영 방법을 나타낸 개략도이다.
도 3은 메탄 산화 반응용 촉매가 재생되는 시스템을 나타낸 개략도이다.
도 4 내지 도 6은 본 발명의 일 실시 형태에 따르는 조촉매를 포함하는 촉매와, 조촉매를 포함하지 않는 촉매의 온도에 따른 메탄 전환율을 나타낸 그래프이다. 도 5 및 도 6에서 괄호 안의 숫자는 전체 촉매 중량에 대한 촉매 및 조촉매의 함량을 의미한다.
도 7은 본 발명의 일 실시 형태에 따르는 마그네슘(Mg)을 포함하는 촉매의 온도에 따른 메탄 전환율을 나타낸 그래프이다. 도 7에서 괄호 안의 숫자는 전체 촉매 중량에 대한 촉매 및 조촉매의 함량을 의미한다.
도 8은 본 발명의 일 실시 형태에 따르는 바륨(Ba)를 포함하는 촉매의 온도에 따른 메탄 전환율을 나타낸 그래프이다.
도 9는 본 발명의 일 실시 형태에 따르는 조촉매를 포함하지 않는 촉매의 온도에 따른 메탄 전환율을 나타낸 그래프이다.
1 is a schematic diagram showing an operating method when a methane oxidation reactor according to an embodiment of the present invention is installed in front of a turbocharger.
2 is a schematic diagram showing an operating method when a methane oxidation reactor according to an embodiment of the present invention is installed at a rear end of a turbocharger.
3 is a schematic diagram showing a system in which the catalyst for methane oxidation reaction is regenerated.
4 to 6 are graphs showing methane conversion rates according to temperature of a catalyst including a cocatalyst and a catalyst not including a cocatalyst according to an embodiment of the present invention. In FIGS. 5 and 6, the numbers in parentheses mean the contents of the catalyst and the cocatalyst based on the total weight of the catalyst.
7 is a graph showing the methane conversion rate according to the temperature of the catalyst containing magnesium (Mg) according to an embodiment of the present invention. In FIG. 7, the numbers in parentheses mean the content of the catalyst and the cocatalyst based on the total weight of the catalyst.
8 is a graph showing the methane conversion rate according to the temperature of the catalyst containing barium (Ba) according to an embodiment of the present invention.
9 is a graph showing the methane conversion rate according to the temperature of a catalyst not including a cocatalyst according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명은 특히 선박 등에 사용되는 천연가스를 연료로 사용하는 엔진으로부터 발생하는 배기가스 내에 포함된 메탄을 산화시키는 저온 메탄 산화 반응용 촉매에 관한 것이다. The present invention particularly relates to a catalyst for a low-temperature methane oxidation reaction that oxidizes methane contained in exhaust gas generated from an engine using natural gas used as a fuel for ships and the like.

본 발명에서 제공하는 배기가스 정화용 촉매는, 백금족 귀금속에 비하여 상대적으로 자연계에 풍부하게 존재하여 가격이 저렴한 알칼리금속, 알칼리토금속, 전이금속, 전이후금속, 란타넘족 금속, 15족 원소 또는 이들의 산화물을 사용함으로써, 저렴한 비용으로 촉매를 제조할 수 있다. 뿐만 아니라, 배기가스 내에 포함된 메탄을 저온에서 높은 효율로 산화시킬 수 있어, 추후 관련된 기술 분야에서 높은 수요가 예상된다. The catalyst for purification of exhaust gas provided by the present invention is relatively abundant in nature compared to platinum group noble metals, and thus has an inexpensive alkali metal, alkaline earth metal, transition metal, post-transition metal, lanthanum group metal, group 15 element, or oxide thereof. By using, it is possible to manufacture a catalyst at low cost. In addition, since methane contained in exhaust gas can be oxidized with high efficiency at a low temperature, high demand is expected in the related technology field in the future.

본 발명의 일 실시 형태에 따르면, 저온 메탄 산화 반응용 촉매는 백금족 귀금속, 조촉매 및 지지체를 포함하며, 메탄 산화 반응식은 하기 식 (1)과 같다.According to an embodiment of the present invention, the catalyst for low-temperature methane oxidation reaction includes a platinum group noble metal, a cocatalyst, and a support, and the methane oxidation reaction formula is shown in Equation (1) below.

CH4 + O2 → CO2 + H2O 식 (1)CH 4 + O 2 → CO 2 + H 2 O Equation (1)

본 발명의 일 실시 형태에서, 백금족 귀금속은 식 (1)의 메탄 산화 반응을 촉진한다. 상기 백금족 귀금속으로는 팔라듐(Pd), 백금(Pt), 로듐(Rh) 및 루테늄(Ru)으로 이루어진 군으로부터 선택된 1종 이상의 금속이 사용될 수 있으나, 이에 한정되지 않는다. 바람직하게는 팔라듐(Pd)을 사용할 수 있다.In one embodiment of the present invention, the platinum group noble metal promotes the methane oxidation reaction of formula (1). As the platinum group noble metal, at least one metal selected from the group consisting of palladium (Pd), platinum (Pt), rhodium (Rh), and ruthenium (Ru) may be used, but is not limited thereto. Preferably, palladium (Pd) may be used.

종래의 메탄 산화 반응용 촉매의 경우, 백금족 귀금속이 촉매 총 중량을 기준으로 2 중량% 이상 포함된다. 그러나 메탄 산화 반응용 촉매가 본 발명의 조촉매를 포함하는 경우, 촉매 총 중량을 기준으로 백금족 귀금속은 0.1 내지 2 중량% 범위로 포함될 수 있다. 이와 같이 촉매 중 상대적으로 고가인 백금족 귀금속의 함량이 감소하면 메탄 산화 반응 촉매 비용을 절감할 수 있으므로 경제적이다. In the case of a conventional catalyst for methane oxidation reaction, a platinum group noble metal is contained in an amount of 2% by weight or more based on the total weight of the catalyst. However, when the catalyst for methane oxidation reaction includes the cocatalyst of the present invention, the platinum group noble metal may be included in the range of 0.1 to 2% by weight based on the total weight of the catalyst. As described above, if the content of the relatively expensive platinum group noble metal in the catalyst is reduced, it is economical because the cost of the methane oxidation reaction catalyst can be reduced.

상기 조촉매로는 알칼리금속, 알칼리토금속, 전이금속, 전이후금속, 란타넘족 금속, 15족 원소 또는 이들의 산화물로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있으며, 이에 한정되지 않는다. 상기 조촉매를 사용하는 경우 백금족 귀금속만 사용하는 경우에 비해 상대적으로 저렴한 비용으로 촉매를 제조할 수 있으며, 활성이 낮으므로 메탄을 낮은 온도에서 효율적으로 제거할 수 있다. As the cocatalyst, at least one selected from the group consisting of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, a lanthanum group metal, a Group 15 element, or an oxide thereof may be used, but is not limited thereto. When the cocatalyst is used, the catalyst can be prepared at a relatively low cost compared to the case of using only platinum group noble metals, and since the activity is low, methane can be efficiently removed at a low temperature.

바람직하게는 상기 조촉매는 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 망간(Mn), 코발트(Co), 니켈(Ni), 구리(Cu), 주석(Sn), 세륨(Ce), 인(P) 또는 이들의 산화물일 수 있으며, 더욱 바람직하게는 바륨(Ba), 마그네슘(Mg) 또는 이들의 산화물일 수 있다. 본 발명의 일 실시 형태에 따른 저온 메탄 산화 반응용 촉매에 있어서, 조촉매는 촉매 총 중량을 기준으로 0.5 내지 5 중량% 포함될 수 있다. Preferably, the cocatalyst is magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), tin (Sn). ), cerium (Ce), phosphorus (P) or an oxide thereof, more preferably barium (Ba), magnesium (Mg), or an oxide thereof. In the catalyst for low-temperature methane oxidation reaction according to an embodiment of the present invention, the cocatalyst may be included in an amount of 0.5 to 5% by weight based on the total weight of the catalyst.

본 발명의 일 실시 형태에 따르면, 지지체는 산화 알루미늄(Al2O3), Ce-Zr 및 Ce-Zr-Al으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되지 않으며, 바람직하게는 산화 알루미늄(Al2O3) 지지체 또는 Ce-Zr 지지체를 사용할 수 있다. 상기 지지체는 촉매 총 중량을 기준으로, 93 내지 99.4 중량% 포함될 수 있다. According to an embodiment of the present invention, the support may be at least one selected from the group consisting of aluminum oxide (Al 2 O 3 ), Ce-Zr and Ce-Zr-Al, but is not limited thereto, and preferably aluminum oxide (Al 2 O 3 ) It is possible to use a support or a Ce-Zr support. The support may be included in an amount of 93 to 99.4% by weight, based on the total weight of the catalyst.

한편, 본 발명의 일 실시 형태에 따른 촉매는 300 내지 400oC의 온도 범위에서 80% 이상의 메탄 산화 활성을 가질 수 있다. 이는 종래의 메탄 산화 반응용 촉매를 사용하는 경우와 비교하여, 동일 효율을 나타내는 메탄 산화 반응 온도가 약 100oC 이상 낮아진 것이다. Meanwhile, the catalyst according to an embodiment of the present invention may have a methane oxidation activity of 80% or more in a temperature range of 300 to 400 o C. Compared with the case of using a conventional catalyst for methane oxidation, the temperature of the methane oxidation reaction showing the same efficiency is lowered by about 100 o C or more.

본 발명의 일 실시 형태에 따른 촉매는 선박의 메탄 산화 반응기(103)에 구비된 것일 수 있다. 도 1 및 도 2를 참조하면, 메탄 산화 반응기(103)는 터보 차저(Turbo Charger, T/C)(107)의 전단에 설치되거나, 터보 차저(107)의 후단에 설치될 수 있다. The catalyst according to an embodiment of the present invention may be provided in the methane oxidation reactor 103 of a ship. 1 and 2, the methane oxidation reactor 103 may be installed at the front end of the turbo charger (T/C) 107 or at the rear end of the turbo charger 107.

천연가스 엔진(101)으로부터 배출된 배기가스는 메탄 산화 반응기(103)로 유입되고, 저온 메탄 산화 반응용 촉매 존재 하에서 메탄이 산화되어 이산화탄소와 물을 생성한다. 선박이 ECA(Emission Control Area, 배출통제지역)를 지나는 경우 메탄 산화 반응기(103)로부터 배출된 배기가스는 선택적 촉매 환원 반응기(109)로 유입되고, 선택적 촉매 환원 반응기(109) 내에서 촉매와 환원제의 반응을 통해 질소 산화물은 질소와 물로 환원된다. 이때 환원제는 환원제 저장 장치(113)로부터 공급될 수 있다. Exhaust gas discharged from the natural gas engine 101 flows into the methane oxidation reactor 103, and methane is oxidized in the presence of a low-temperature methane oxidation reaction catalyst to generate carbon dioxide and water. When the ship passes through the Emission Control Area (ECA), the exhaust gas discharged from the methane oxidation reactor 103 flows into the selective catalytic reduction reactor 109, and the catalyst and the reducing agent in the selective catalytic reduction reactor 109 Through the reaction of nitrogen oxides are reduced to nitrogen and water. In this case, the reducing agent may be supplied from the reducing agent storage device 113.

한편, 선박이 ECA 외의 지역을 지나는 경우 메탄 산화 반응기(103)로부터 배출된 배기가스는 선택적 촉매 환원 반응기 By-pass 배관(111)을 통해 배출된다. 선박이 ECA 외의 지역을 지나는 경우에는 선택적 촉매 환원 반응기(109)를 거치지 않는다. On the other hand, when the ship passes an area other than the ECA, the exhaust gas discharged from the methane oxidation reactor 103 is discharged through the selective catalytic reduction reactor by-pass pipe 111. When the ship passes through an area other than the ECA, it does not go through the selective catalytic reduction reactor 109.

본 발명의 다른 측면에 따르면, 저온 메탄 산화 반응용 촉매 재생 장치가 제공된다.According to another aspect of the present invention, an apparatus for regenerating a catalyst for a low temperature methane oxidation reaction is provided.

DF 엔진(101)은 디젤 또는 천연가스를 연료로서 사용할 수 있으며, 천연가스를 연료로 사용하는 경우에는 배기가스 내에 황 성분이 거의 존재하지 않는다. 그러나, 디젤을 연료로서 사용하는 경우에는 배기가스 내에 황 성분이 존재하며, 이외에도 메탄, 질소 산화물, 미립자물질(PM) 등이 존재하게 된다. 이러한 배기가스가 메탄 산화 반응기(103)로 유입되어 저온 메탄 산화 반응용 촉매 존재 하에서 메탄 산화 반응이 일어나며, 이때 상기 황 산화물이 촉매에 흡착되어 촉매의 활성을 저하시킨다. 따라서 배기가스 내 황 성분이 포함된 경우 촉매의 활성이 저하되는 것을 방지하기 위해 주기적으로 황 산화물을 제거하여 촉매를 재생함으로써 촉매 수명을 증가시킬 수 있다.The DF engine 101 can use diesel or natural gas as a fuel, and when using natural gas as a fuel, almost no sulfur component exists in the exhaust gas. However, when diesel is used as a fuel, a sulfur component is present in the exhaust gas, and in addition, methane, nitrogen oxides, particulate matter (PM), and the like are present. Such exhaust gas is introduced into the methane oxidation reactor 103 to cause a methane oxidation reaction in the presence of a low-temperature methane oxidation reaction catalyst, and at this time, the sulfur oxide is adsorbed to the catalyst to reduce the activity of the catalyst. Therefore, when the sulfur component in the exhaust gas is included, the catalyst life can be increased by periodically removing sulfur oxides to prevent deterioration in the activity of the catalyst and regenerating the catalyst.

저온 메탄 산화 반응용 촉매로부터 황 산화물을 제거하기 위해 촉매가 구비되어 있는 메탄 산화 반응기(103)의 온도를 450 내지 600℃의 온도로 가열할 수 있다. 촉매 재생 반응은 450 내지 600℃의 온도에서 산소 또는 수소를 촉매로 주입하여 일정 시간, 예를 들면 1시간 이상 퍼지(purge) 함으로써 진행되며, 촉매 표면에 흡착된 황 산화물이 제거된다. 이때 메탄 산화 반응기(103)의 온도가 450℃ 미만이면 촉매 재생 반응의 활성이 저하되고, 600℃를 초과하면 촉매가 열적으로 변성될 수 있으므로 바람직하지 않다. In order to remove sulfur oxides from the catalyst for the low-temperature methane oxidation reaction, the temperature of the methane oxidation reactor 103 equipped with the catalyst may be heated to a temperature of 450 to 600°C. The catalyst regeneration reaction proceeds by injecting oxygen or hydrogen into the catalyst at a temperature of 450 to 600° C. and purging for a certain period of time, for example, for 1 hour or longer, and sulfur oxide adsorbed on the catalyst surface is removed. At this time, if the temperature of the methane oxidation reactor 103 is less than 450° C., the activity of the catalyst regeneration reaction decreases, and if it exceeds 600° C., the catalyst may be thermally denatured, which is not preferable.

도 3을 참조하면, 메탄 산화 반응기 내에서 촉매가 재생되면 촉매에 흡착되어 있던 황 산화물이 제거되므로, 고농도의 황 산화물이 포함된 배기가스가 생성된다. 이러한 배기가스가 선택적 촉매 환원 반응기로 유입되면, 선택적 환원 촉매의 활성을 저하시킬 수 있으므로 바람직하지 않다. 따라서, 고농도의 황 산화물이 포함된 배기가스는 선택적 촉매 환원 반응기 By-pass 배관을 따라 외부로 배출된다.Referring to FIG. 3, when the catalyst is regenerated in the methane oxidation reactor, sulfur oxide adsorbed on the catalyst is removed, and thus exhaust gas containing a high concentration of sulfur oxide is generated. When such exhaust gas flows into the selective catalytic reduction reactor, the activity of the selective reduction catalyst may be reduced, which is not preferable. Accordingly, the exhaust gas containing a high concentration of sulfur oxide is discharged to the outside through the bypass pipe of the selective catalytic reduction reactor.

촉매 재생은 선박이 ECA 외의 지역을 지날 때 이루어진다. 터보 차저(107) 전단에 메탄 산화 반응기(103)가 설치된 경우 천연가스 엔진(101)으로부터 배출된 배기가스는 메탄 산화 반응기(103)로 유입되지 않고, 메탄 산화 반응기 By-pass 배관(105)을 따라 터보 차저(107)으로 이송된 후, 선택적 촉매 산화 반응기 By-pass 배관(111)을 따라 외부로 배출된다. 한편, 터보 차저(107) 후단에 메탄 산화 반응기(103)가 설치된 경우 천연가스 엔진(101)으로부터 배출된 배기가스는 터보 차저(107)를 거친 후, 메탄 산화 반응기 By-pass 배관(105)과 선택적 촉매 산화 반응기 By-pass 배관을 따라 이송되어 외부로 배출된다.Catalyst regeneration takes place when the vessel passes outside the ECA. When the methane oxidation reactor 103 is installed in front of the turbocharger 107, the exhaust gas discharged from the natural gas engine 101 does not flow into the methane oxidation reactor 103, and the methane oxidation reactor bypass pipe 105 is connected. Accordingly, after being transferred to the turbocharger 107, it is discharged to the outside along the bypass pipe 111 of the selective catalytic oxidation reactor. Meanwhile, when the methane oxidation reactor 103 is installed at the rear end of the turbocharger 107, the exhaust gas discharged from the natural gas engine 101 passes through the turbocharger 107, and then the methane oxidation reactor bypass pipe 105 and the It is transported along the bypass pipe of the selective catalytic oxidation reactor and discharged to the outside.

실시예Example

이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.Hereinafter, an embodiment of the present invention will be described in detail. The following examples are only for understanding the present invention, and do not limit the present invention.

(1) 실시예 1(1) Example 1

산화 알루미늄 지지체 상에, 전체 촉매 중량에 대하여 팔라듐(Pd) 1 중량%, 조촉매로서 마그네슘(Mg), 바륨(Ba), 코발트(Co), 니켈(Ni), 세륨(Ce), 구리(Cu), 망간(Mn)을 각각 1.5 중량%로 포함하는 메탄 산화 반응용 촉매를 제조하였다. 제조된 메탄 산화 반응용 촉매 존재 하에서 메탄 산화 반응을 수행하고, 그 결과를 도 4에 나타내었다. On the aluminum oxide support, palladium (Pd) 1% by weight based on the total weight of the catalyst, magnesium (Mg), barium (Ba), cobalt (Co), nickel (Ni), cerium (Ce), copper (Cu) as a cocatalyst ), manganese (Mn) was prepared for a methane oxidation reaction containing 1.5% by weight, respectively. The methane oxidation reaction was performed in the presence of the prepared catalyst for methane oxidation reaction, and the results are shown in FIG. 4.

(2) 실시예 2(2) Example 2

산화 알루미늄 지지체 상에, 전체 촉매 중량에 대하여 팔라듐(Pd) 1 중량%, 조촉매로서 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 인(P), 주석(Sn)을 각각 1 중량%로 포함하는 메탄 산화 반응용 촉매를 제조하였다. 제조된 메탄 산화 반응용 촉매 존재 하에서 메탄 산화 반응을 수행하고, 그 결과를 도 5 및 도 6에 나타내었다.On the aluminum oxide support, palladium (Pd) 1% by weight based on the total catalyst weight, magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), phosphorus (P), tin (Sn) as cocatalysts ) To prepare a catalyst for methane oxidation reaction each containing 1% by weight. The methane oxidation reaction was performed in the presence of the prepared catalyst for methane oxidation reaction, and the results are shown in FIGS. 5 and 6.

(3) 실시예 3(3) Example 3

산화 알루미늄 지지체 상에, 전체 촉매 중량에 대하여 팔라듐(Pd) 1 중량%, 조촉매로서 마그네슘(Mg)을 각각 0.5 중량%, 1 중량%, 2 중량%로 포함하는 메탄 산화 반응용 촉매를 제조하였다. 제조된 메탄 산화 반응용 촉매 존재 하에서 메탄 산화 반응을 수행하고, 그 결과를 도 7에 나타내었다.On the aluminum oxide support, a catalyst for methane oxidation reaction was prepared comprising 1% by weight of palladium (Pd) and 0.5% by weight, 1% by weight, and 2% by weight of magnesium (Mg) as a cocatalyst based on the total weight of the catalyst. . The methane oxidation reaction was performed in the presence of the prepared catalyst for methane oxidation reaction, and the results are shown in FIG. 7.

(4) 실시예 4(4) Example 4

산화 알루미늄 지지체 상에, 전체 촉매 중량에 대하여 팔라듐(Pd) 1.5 중량%, 조촉매로서 바륨(Ba)을 각각 0.5 중량%, 1 중량%, 2 중량%, 5 중량%로 포함하는 메탄 산화 반응용 촉매를 제조하였다. 제조된 메탄 산화 반응용 촉매 존재 하에서 메탄 산화 반응을 수행하고, 그 결과를 도 8에 나타내었다.For methane oxidation reactions containing 1.5% by weight of palladium (Pd) and 0.5% by weight, 1% by weight, 2% by weight, and 5% by weight of barium (Ba) as a cocatalyst, respectively, on an aluminum oxide support The catalyst was prepared. The methane oxidation reaction was performed in the presence of the prepared catalyst for methane oxidation reaction, and the results are shown in FIG. 8.

(5) 비교예(5) Comparative example

산화 알루미늄 지지체, Ce-Zr 지지체 및 Ce-Zr-Al 지지체 상에, 전체 촉매 중량에 대하여 팔라듐(Pd)을 2 중량%로 포함하는 메탄 산화 반응용 촉매를 제조하였다. 제조된 메탄 산화 반응용 촉매 존재 하에서 메탄 산화 반응을 수행하고, 그 결과를 도 9에 나타내었다.On the aluminum oxide support, the Ce-Zr support, and the Ce-Zr-Al support, a catalyst for methane oxidation reaction containing 2% by weight of palladium (Pd) based on the total weight of the catalyst was prepared. The methane oxidation reaction was performed in the presence of the prepared catalyst for methane oxidation reaction, and the results are shown in FIG. 9.

(6) 메탄 전환율 측정 결과(6) methane conversion rate measurement result

메탄 전환율 측정 결과, 본 발명의 조촉매를 포함하는 메탄 산화 반응용 촉매의 경우 300~400℃의 온도 범위에서 80% 이상의 메탄이 이산화탄소와 물로 전환되는 것을 확인하였다. As a result of measuring the methane conversion rate, it was confirmed that in the case of the catalyst for methane oxidation reaction including the cocatalyst of the present invention, 80% or more of methane was converted into carbon dioxide and water in the temperature range of 300 to 400°C.

특히 조촉매로서 바륨 또는 마그네슘을 사용한 경우, 300~400℃의 온도 범위에서 메탄 전환율이 더욱 우수함을 알 수 있다. 이는 상대적으로 고함량의 팔라듐 촉매를 포함하는 비교예의 촉매와 비교하여 적어도 유사하거나 뛰어난 메탄 산화 효과를 나타내는 것으로, 비교예의 촉매보다 훨씬 경제적이다.In particular, in the case of using barium or magnesium as a cocatalyst, it can be seen that the methane conversion rate is more excellent in the temperature range of 300 to 400°C. This exhibits at least similar or superior methane oxidation effect compared to the catalyst of Comparative Example containing a relatively high content of palladium catalyst, and is much more economical than the catalyst of Comparative Example.

본 발명은 상술한 설명에 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서 본 발명을 여러 가지 형태로 변경하여 실시할 수 있을 것이며, 그러한 변경 실시는 본 발명의 기술적 범위에 포함될 것이다.The present invention is not limited to the above description, and those of ordinary skill in the technical field to which the present invention pertains may implement the present invention by modifying it in various forms within the scope not departing from the spirit of the present invention. It will be possible, and implementation of such changes will be included in the technical scope of the present invention.

101 천연가스 엔진
103 메탄 산화 반응기
105 메탄 산화 반응기 By-pass 배관
107 터보 차저(Turbo Charger)
109 선택적 촉매 환원 반응기
111 선택적 촉매 환원 반응기 By-pass 배관
113 환원제 저장 장치
101 natural gas engine
103 methane oxidation reactor
105 Methane Oxidation Reactor By-pass Piping
107 Turbo Charger
109 selective catalytic reduction reactor
111 Selective Catalytic Reduction Reactor By-pass Piping
113 Reductant storage device

Claims (10)

저온 메탄 산화 반응용 촉매로부터 황 산화물을 제거하기 위한 촉매 재생 시스템에 있어서,
상기 황 산화물은 450 내지 600℃에서 촉매로부터 제거되는 촉매 재생 시스템.
In a catalyst regeneration system for removing sulfur oxides from a catalyst for a low temperature methane oxidation reaction,
The sulfur oxide is removed from the catalyst at 450 to 600 ℃ catalyst regeneration system.
제1항에 있어서,
촉매로부터 제거된 황 산화물을 포함하는 배기가스는 선택적 촉매 환원 반응기 By-pass 배관을 통해 외부로 배출되는 것을 특징으로 하는 메탄 산화 반응용 촉매 재생 시스템.
The method of claim 1,
Exhaust gas including sulfur oxides removed from the catalyst is discharged to the outside through a bypass pipe of the selective catalytic reduction reactor.
제1항에 있어서,
촉매 재생 시, 천연가스 엔진으로부터 배출된 배기가스는 메탄 산화 반응기 By-pass 배관 및 선택적 촉매 산화 반응기 By-pass 배관을 통해 외부로 배출되는 것을 특징으로 하는 메탄 산화 반응용 촉매 재생 시스템.
The method of claim 1,
During catalyst regeneration, the exhaust gas discharged from the natural gas engine is discharged to the outside through a methane oxidation reactor bypass pipe and a selective catalytic oxidation reactor bypass pipe.
제1항에 있어서,
저온 메탄 산화 반응용 촉매는 백금족 귀금속, 조촉매 및 지지체를 포함하고,
상기 조촉매는 알칼리금속, 알칼리토금속, 전이금속, 전이후금속, 란타넘족 금속, 15족 원소 및 이들의 산화물로 이루어진 군으로부터 선택되는 1종 이상인 촉매 재생 시스템.
The method of claim 1,
The catalyst for the low temperature methane oxidation reaction includes a platinum group noble metal, a cocatalyst and a support,
The catalyst regeneration system wherein the cocatalyst is at least one selected from the group consisting of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, a lanthanum group metal, a Group 15 element, and an oxide thereof.
제4항에 있어서,
조촉매는 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 망간(Mn), 코발트(Co), 니켈(Ni), 구리(Cu), 주석(Sn), 세륨(Ce), 인(P) 및 이들의 산화물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 촉매 재생 시스템.
The method of claim 4,
Cocatalysts are magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), tin (Sn), cerium ( Ce), phosphorus (P), and catalyst regeneration system, characterized in that at least one selected from the group consisting of oxides thereof.
제4항에 있어서,
조촉매는 바륨(Ba), 마그네슘(Mg) 및 이들의 산화물로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 촉매 재생 시스템.
The method of claim 4,
The catalyst regeneration system, characterized in that the cocatalyst is at least one selected from the group consisting of barium (Ba), magnesium (Mg) and oxides thereof.
제4항에 있어서,
백금족 귀금속은 팔라듐(Pd), 백금(Pt), 로듐(Rh) 및 루테늄(Ru)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 촉매 재생 시스템.
The method of claim 4,
The platinum group noble metal is one or more selected from the group consisting of palladium (Pd), platinum (Pt), rhodium (Rh), and ruthenium (Ru).
제1항에 있어서,
지지체는 산화 알루미늄(Al2O3), Ce-Zr 및 Ce-Zr-Al으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 촉매 재생 시스템.
The method of claim 1,
Catalyst regeneration system, characterized in that the support is at least one selected from the group consisting of aluminum oxide (Al 2 O 3 ), Ce-Zr and Ce-Zr-Al.
제1항에 있어서,
촉매 총 중량을 기준으로, 백금족 귀금속 0.1 내지 2 중량%, 조촉매 0.5 내지 5 중량%, 및 지지체 93 내지 99.4 중량%를 포함하는 촉매 재생 시스템.
The method of claim 1,
A catalyst regeneration system comprising 0.1 to 2% by weight of a platinum group noble metal, 0.5 to 5% by weight of a cocatalyst, and 93 to 99.4% by weight of a support based on the total weight of the catalyst.
제1항 내지 제9항 중 어느 한 항의 촉매 재생 시스템을 포함하는 메탄 산화 반응 장치.
A methane oxidation reaction apparatus comprising the catalyst regeneration system of any one of claims 1 to 9.
KR1020190092681A 2019-07-30 2019-07-30 Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same KR102305781B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190092681A KR102305781B1 (en) 2019-07-30 2019-07-30 Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190092681A KR102305781B1 (en) 2019-07-30 2019-07-30 Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same

Publications (2)

Publication Number Publication Date
KR20210014510A true KR20210014510A (en) 2021-02-09
KR102305781B1 KR102305781B1 (en) 2021-09-30

Family

ID=74559030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190092681A KR102305781B1 (en) 2019-07-30 2019-07-30 Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same

Country Status (1)

Country Link
KR (1) KR102305781B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958136A (en) * 2021-03-04 2021-06-15 中国科学院上海高等研究院 Modified nitrogen-carbon material supported atomic-level non-noble metal catalyst, preparation and application

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044268A (en) * 2007-10-31 2009-05-07 에스케이에너지 주식회사 A catalyst for treating exhaust gas of natural gas vehicles
KR101535938B1 (en) * 2015-02-25 2015-07-10 광성(주) SCR System Including Bypass System By GPS
KR20150145352A (en) * 2014-06-18 2015-12-30 현대중공업 주식회사 Exhaust gas purification catalyst and method for preparing the same
KR20160112179A (en) 2015-03-18 2016-09-28 현대중공업 주식회사 Purification Catalyst for Natural Gas Engine Exhaust
KR20170075148A (en) * 2015-12-23 2017-07-03 희성촉매 주식회사 A catalyst for purifying exhaust gas from combustions systems using CNG as fuel
KR101800676B1 (en) * 2017-08-31 2017-12-20 한국기계연구원 Methane oxidation catalyst and method for oxidation of methane using a catalyst
KR101909303B1 (en) 2010-12-21 2018-10-17 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Apparatus for treating exhaust gas of lean burn internal combustion engine comprising oxidation catalyst and method for recovering the oxidation activity of an oxidation catalyst
KR20190002867A (en) * 2017-06-30 2019-01-09 에이치에스디엔진 주식회사 Selective catalyst reduction system
KR20190002869A (en) * 2017-06-30 2019-01-09 에이치에스디엔진 주식회사 Selective catalyst reduction system
US10184374B2 (en) * 2017-02-21 2019-01-22 Umicore Ag & Co. Kg Apparatus and method for desulfation of a catalyst used in a lean burn methane source fueled combustion system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044268A (en) * 2007-10-31 2009-05-07 에스케이에너지 주식회사 A catalyst for treating exhaust gas of natural gas vehicles
KR101909303B1 (en) 2010-12-21 2018-10-17 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Apparatus for treating exhaust gas of lean burn internal combustion engine comprising oxidation catalyst and method for recovering the oxidation activity of an oxidation catalyst
KR20150145352A (en) * 2014-06-18 2015-12-30 현대중공업 주식회사 Exhaust gas purification catalyst and method for preparing the same
KR101598390B1 (en) 2014-06-18 2016-03-02 현대중공업 주식회사 Exhaust gas purification catalyst and method for preparing the same
KR101535938B1 (en) * 2015-02-25 2015-07-10 광성(주) SCR System Including Bypass System By GPS
KR20160112179A (en) 2015-03-18 2016-09-28 현대중공업 주식회사 Purification Catalyst for Natural Gas Engine Exhaust
KR20170075148A (en) * 2015-12-23 2017-07-03 희성촉매 주식회사 A catalyst for purifying exhaust gas from combustions systems using CNG as fuel
US10184374B2 (en) * 2017-02-21 2019-01-22 Umicore Ag & Co. Kg Apparatus and method for desulfation of a catalyst used in a lean burn methane source fueled combustion system
KR20190002867A (en) * 2017-06-30 2019-01-09 에이치에스디엔진 주식회사 Selective catalyst reduction system
KR20190002869A (en) * 2017-06-30 2019-01-09 에이치에스디엔진 주식회사 Selective catalyst reduction system
KR101800676B1 (en) * 2017-08-31 2017-12-20 한국기계연구원 Methane oxidation catalyst and method for oxidation of methane using a catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958136A (en) * 2021-03-04 2021-06-15 中国科学院上海高等研究院 Modified nitrogen-carbon material supported atomic-level non-noble metal catalyst, preparation and application

Also Published As

Publication number Publication date
KR102305781B1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP3981915B2 (en) Exhaust gas purification system
JP6205153B2 (en) On-site regeneration method of denitration catalyst in exhaust gas purification system
JP2010511493A (en) Multi-bed selective catalytic reduction system and method for reducing nitrogen oxide emissions
JP2009165904A (en) Exhaust gas purifier
KR102390017B1 (en) Catalyst for methane oxidation reaction at low temperature
JP2013072308A (en) Exhaust emission control device for internal combustion engine
KR20110023158A (en) Exhaust system
KR102305781B1 (en) Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same
KR20160133560A (en) Exhaust gas purification system, catalyst and exhaust gas purification method
JP4704964B2 (en) NOx purification system and NOx purification method
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP5094199B2 (en) Exhaust gas purification device
JP3560147B2 (en) Exhaust gas purification system
JP4371242B2 (en) Exhaust gas purification system
JP2007132355A (en) Exhaust gas purification system
JP2002349248A (en) Nitrogen oxide in diesel engine exhaust gas removing method and device
KR102223431B1 (en) Ir-based catalyst improved in nox reduction performance by the hydrogen gas and oxygen gas treatment, nox reduction apparatus and reduction method improved in performance by treatment of hydrogen gas and oxygen gas
KR102243898B1 (en) IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT, NOx REDUCTION APPARATUS AND REDUCTION METHOD USING IR-BASED CATALYST IMPROVED IN NOx REDUCTION PERFORMANCE BY H2 TREATMENT
JP2000117058A (en) Decreasing method of the discharge quantity of nitrogen oxides in stoichiometric excess medium by oxidizing agent
JP2001179100A (en) Hydrogen producing catalyst, exhaust gas cleaning catalyst and exhaust gas cleaning method
JP4553763B2 (en) Exhaust gas purification method and purification apparatus
KR102243907B1 (en) Ir-based catalyst improved in nox reduction performance by the carbon monoxide and hydrogen gas treatment, nox reduction apparatus and reduction method improved in performance by treatment of carbon monoxide and hydrogen gas
KR101637259B1 (en) Oxidation catalyst
KR20080101451A (en) Purifying device for exhaust gas of internal combusition engine
JP2010184171A (en) Catalyst and method for purification of exhaust gas

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right