KR20210012588A - Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도 - Google Patents

Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도 Download PDF

Info

Publication number
KR20210012588A
KR20210012588A KR1020190090580A KR20190090580A KR20210012588A KR 20210012588 A KR20210012588 A KR 20210012588A KR 1020190090580 A KR1020190090580 A KR 1020190090580A KR 20190090580 A KR20190090580 A KR 20190090580A KR 20210012588 A KR20210012588 A KR 20210012588A
Authority
KR
South Korea
Prior art keywords
formula
tlr
composition
tlr9
compound
Prior art date
Application number
KR1020190090580A
Other languages
English (en)
Inventor
최상돈
무하마드 하세브
파트라 마헤시
최양선
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to KR1020190090580A priority Critical patent/KR20210012588A/ko
Priority to US17/630,043 priority patent/US20220259155A1/en
Priority to EP20847286.0A priority patent/EP4006013A4/en
Priority to PCT/KR2020/009732 priority patent/WO2021020807A1/ko
Publication of KR20210012588A publication Critical patent/KR20210012588A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/88Nitrogen atoms, e.g. allantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41681,3-Diazoles having a nitrogen attached in position 2, e.g. clonidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4174Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 톨-유사 수용체(TLR) 신호전달 경로를 억제하는 소분자 화합물에 관한 것으로, 더욱 상세하게는 특정 화학식으로 표시되는 구조를 갖는 화합물과 이를 포함하는 TLR 억제용 조성물 및 상기 TLR 억제용 조성물을 포함하는 자가면역질환 또는 염증성질환의 예방 또는 치료용 조성물에 관한 것이다. 본 발명에서는 TLR7- 및 TLR9-매개 신호전달 경로를 억제하는 TLR 억제 화합물 TIC10 및 이의 유도체 TIC10-7를 확인하였으며, 상기 새로운 화합물들은 NF-κB 및 MAPK 관련 전염증 유전자 발현 및 활성화를 방해함으로써, TNF-α의 분비를 차단하므로, 핵산 감지 TLR의 과다활성과 관련된 전신홍반루프스, 건선 및 건선성 관절염과 같은 수많은 자가면역질환의 치료제로서 유용하게 활용될 수 있다.

Description

TLR7 및 TLR9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도{Novel Small molecule Compound Inhibiting TLR7 and TLR9 Signaling Pathways and Uses Thereof}
본 발명은 톨-유사 수용체(Toll-like receptor, TLR) 신호전달 경로를 억제하는 소분자 화합물에 관한 것으로, 더욱 상세하게는 특정 화학식으로 표시되는 화합물과 이를 포함하는 TLR 억제용 조성물 및 상기 TLR 억제용 조성물을 포함하는 자가면역질환 또는 염증성질환의 예방 또는 치료용 조성물에 관한 것이다.
톨-유사 수용체 7(Toll-like receptor 7, TLR7)과 TLR9는 세포의 엔도솜 구역에 분리된 필수적인 선천성 면역 수용체의 활성화된 형태이다. 상기 수용체들은 바이러스/박테리아 기원의 핵산 단편을 인식하고 MyD88(Myeloid differentiation primary response 88)-의존성 신호전달 캐스케이드를 통해 염증을 조율한다(Barbalat R, et al . (2011) Annu Rev Immunol 29:185-214). 바이러스성 단일가닥 RNA(ssRNA)에 의한 TLR7의 자극 또는 단일가닥 CpG 모티프 함유 DNA(CpG-DNA)에 의한 TLR9의 자극은 다양한 세포 유형, 특히 수지상 세포, 자연 살해 세포, 대식세포, B 세포 및 T 세포를 활성화시킨다. 활성화된 세포 집단은 종양 괴사 인자-α(tumor necrosis factor-α, TNF-α), 인터루킨-6(interleukin-6, IL-6)와 같은 몇몇 전염증성 사이토카인 및 I 형 인터페론(type I interferons, IFNs; IFN-α/β), IFN-γ와 같은 항바이러스성 사이토카인을 즉각적으로 분비한다(Lester SN & Li K (2014) J Mol Biol 426(6):1246-1264).
엔도솜 TLR은 진화학적으로 세포 내 국소화(intracellular localization)를 위해 프로그램 되어있으며, 순환성 또는 내인성 핵산의 자가 인식(spontaneous recognition)을 회피한다(Barton GM, Kagan JC, & Medzhitov R (2006) Nat Immunol 7(1):49-56). 그럼에도 불구하고, 이러한 수용체는 특정 병원성 또는 유전적 조건하에서 숙주의 핵산에 의해 활성화되어, 전신홍반루프스와 같은 질병의 발병을 유도하는 자가항체를 형성한다. 비메틸화된 CpG DNA는 포유류의 게놈에서 거의 발생하지 않는다. 그러나, TLR9은 몇몇 포유류의 DNA-유도성 염증성질환에 가담한다(Barrat FJ, et al . (2005) J Exp Med 202(8):1131-1139). 이러한 상황은 자가항체의 발현을 유도하는 숙주 분자에 대한 면역 반응을 일으켜 조직의 손상을 발생시킨다. SLE 환자의 혈청은 효소로부터 핵산을 보호하고, 세포로의 진입을 용이하게 만드는 항체, 높은 이동성 그룹 박스 1 단백질(high mobility group box 1 protein), 리보핵 단백질(ribonuclear proteins) 등에 결합된 핵산을 포함한다. 면역글로불린 γ FC 지역 수용체 IIa(immunoglobulin γ Fc region receptor IIa)로 불리는 세포 표면 수용체는 항체 결합 자가-DNA/RNA의 흡수를 매개하는 것으로 알려져 있다(Lau CM, et al. (2005) J Exp Med 202(9):1171-1177). 자가면역 복합체의 핵산은 최종적으로 엔도솜 TLR을 활성화시키므로 I 형 IFN의 생산을 상향조절한다(Krieg AM & Vollmer J (2007) Immunol Rev 220:251-269).
내복소체 구역(endolysosomal compartment)의 핵산 운반물(nucleic acid cargo)은 TLR을 자극할 수 있으며, 자가면역 항체 생성을 위해 면역체계를 준비시킨다. 자가 반응성 항체의 생성과 면역 복합체 형성의 증가는 SLE, 쇼그랜 증후군(Sjogren’s syndrome) 및 다른 다양한 발병의 특징이다. 또한, TLR7 및 TLR9-매개 과면역 반응(hyperimmune response)은 간 손상, 폐 감염 및 숙주에서의 이식편 거부 반응에 기여할 수 있다(Calcaterra C, et al . (2008) J Immunol 181(9):6132-6139). 보고된 엔도솜 TLR의 길항제 중에서, Pfizer(NCT00547014)에 의해 개발된 올리고뉴클레오티드 기반의 분자와 단일 저분자량 화합물인 CPG52364만이 임상 시험에 들어갔다(Balak DM, et al . (2017) Clin Immunol 174:63-72). 그러나, 합성 올리고뉴클레오타이드는 주사를 통한 투여, 높은 합성 비용 및 불확실한 면역원성(immunogenicity)과 같은 몇 가지 문제를 가지고 있다(Hanagata N (2012) Int J Nanomedicine 7:2181-2195).
이에 본 발명자들은 항염증제 미래 약물 후보로서, 경구투여용 저분자량 TLR7 및 TLR9 이중 억제제를 개발하고자 예의 노력한 결과, TLR 저해 화합물 10(TLR inhibitory compound 10, TIC10; 2-methoxy-6-({[5-(4-methoxyphenyl)-1-methyl-1H-imidazol-2-yl]amino}methyl)phenol)으로 명명된 TLR7/TLR9를 억제하는 1차 선도물질(primary lead)을 동정했으며, 그의 유도체 TIC10-7(5-(2H-1,3-benzodioxol-5-yl)-N-[(2,4-dimethoxyphenyl)methyl]-1-methyl-1H-imidazol-2-amine)은 TLR9 및 TLR7을 모두 억제하며 세포 기반 생물학적 분석에서 동등한 효과를 나타냄을 확인하였다. 구체적으로, 화합물 TIC10-7은 TLR7 및 TLR9-매개 TNF-α의 분비를 억제하고, 전구체 TIC10에 비해 더 큰 효능을 갖는 것을 확인하였으며, NF-κB 및 MAPK 관련 전염증 유전자 발현의 억제를 통해 리간드 저해 작용이 일어나는 것을 확인하고, 본 발명을 완성하였다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
본 발명의 목적은 TLR 억제 기능이 있는 소분자 화합물 및 이를 포함하는 TLR(Toll-like receptor) 억제용 조성물을 제공하는 데 있다.
본 발명의 다른 목적은 상기 TLR 억제용 조성물을 포함하는 자가면역질환의 예방 또는 치료용 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 TLR 억제용 조성물을 포함하는 염증성질환의 예방 또는 치료용 조성물을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염을 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
R1 내지 R5는 각각 독립적으로 수소원자, 직쇄형 또는 분지쇄형 알킬, 아미노, 히드록시, 할로겐, 니트릴기, 니트로기, 시클로알킬, 할로알킬, 알릴, 알콕시, 알킬카보닐, 사이클로알킬카보닐, 아릴카보닐, 알킬아릴카보닐, 알콕시카보닐, 시클로알콕시, 치환 또는 비치환된 아릴, 헤테로아릴, 헤테로사이클로알킬, 아릴옥시, 알콕시헤테로아릴, 헤테로아릴옥시알킬, 알킬헤테로아릴, 알킬아릴, 아릴알킬, 알킬헤테로아릴, 알킬에스테르, 알킬아미드 또는 아크릴이고,
여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 알릴은 C2-30, 아릴은 C6-30이고, 헤테로아릴 및 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
본 발명은 또한, 상기 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 TLR(Toll-like receptor) 억제용 조성물을 제공한다.
본 발명은 또한, 상기 TLR(Toll-like receptor) 억제용 조성물을 포함하는 자가면역질환의 예방 또는 치료용 조성물을 제공한다.
본 발명은 또한, 상기 TLR(Toll-like receptor) 억제용 조성물을 포함하는 염증성질환의 예방 또는 치료용 조성물을 제공한다.
본 발명에서는 컴퓨터-보조 약물 개발 원리를 사용하여 in vitro에서 TLR7- 및 TLR9-매개 신호전달 경로를 억제하는 TLR 억제 화합물인 TIC10(C19H21N3O3) 및 이의 유도체 TIC10-7(C20H21N3O4)를 확인하였다. 상기 새로운 화합물들은 NF-κB 및 MAPK 관련 전염증 유전자 발현 및 활성화를 방해함으로써, TNF-α의 분비를 차단하므로, 핵산 감지 TLR의 과다활성과 관련된 전신홍반루프스(systemic lupus erythematosus, SLE), 건선(psoriasis) 및 건선성 관절염과 같은 수많은 자가면역질환의 치료제로서 유용하게 활용될 수 있다.
도 1은 1차 선도물질을 동정하기 위한 컴퓨터 작업흐름을 나타낸 것으로, 진회색 박스는 후속 단계로 진행된 리간드의 수를 나타내며, 약물 분자구조(pharmacophore) 스크리닝으로부터 생성된 리간드는 분리곤란성(separate rigid) 및 알맞은 도킹 유도를 위해 입력되었다.
도 2는 분자 도킹(molecular docking)을 위해 고려된 TLR9 모델의 리간드 결합 부위를 나타낸 것으로,
도 2A는 TLR7의 소분자 결합 부위에 상응하는 TLR9의 부위 I(Site I), 도 2B는 5’-xCx DNA 모티프(motif)를 인식하는 Site Ia, 도 2c는 CpG DNA가 결합하는 TLR9의 Site II를 나타낸 것이다. Chain A는 초록색, Chain B는 파란색으로 표시하였으며, 결합 부위에 대한 자세한 구조는 각 패널의 오른쪽에 확대하여 도시하였다.
도 3은 TLR7/TLR9 길항제 동정을 위한 최초 세포 기반 스크리닝을 나타낸 것으로,
도 3A는 쥐 대식 세포주 RAW 264.7에서 높은 스코어를 기록한 16개의 가상 hit에 대한 세포독성 분석 결과로, 세포를 각 리간드 10 또는 50μM로 24시간 처리하고 세포 생존율을 MTT 분석으로 모니터링하였다. 3번의 독립적인 실험결과의 평균 ±SEM을 two-tailed paired Student’s t-test로 계산하였으며(*p<0.05, **p<0.01, ***p<0.001), 유의한 세포독성을 나타내는 리간드는 빨간색으로 표시하였다. 도 3B는 세포독성을 나타내지 않는 8개의 선택된 화합물의 잠재적 작용제 활성의 시험결과를 나타낸 것으로, 세포를 화합물 단독으로 24시간 자극하거나, 1시간 동안 전처리 후 TLR9 작용제 ODN2395(0.5μM)로 4시간 동안 자극하였으며, 마우스 TNF-α의 분비를 ELISA를 통해 측정하였다. 도 3C는 TLR9 활성화에 대한 리간드의 억제 효과를 나타낸 것이며, 도 3D는 TLR7 활성화에 대한 리간드의 억제 효과를 나타낸 것이다. 세포를 1시간 동안 리간드로 전처리하고 TLR9 특이적 작용제인 ODN2395(0.5μM) 또는 TLR7 특이적 작용제인 imiquimod(3.61μM)로 4시간 동안 자극하였으며, TNF-α 분비는 ELISA로 측정하였다. 3번의 독립적인 실험결과의 평균 ± SEM을 two-tailed paired Student’s t-test로 계산하였다(*p<0.05, **p<0.01, ***p<0.001).
도 4는 TLR7 및 TLR9 활성화에 대한 TIC10 및 TIC10-7의 상대적인 억제 효과를 나타낸 것으로,
도 4A는 TLR9 활성화에 대한 리간드의 억제 효과, 도 4B는 TLR7 활성화에 대한 리간드의 억제 효과를 나타낸 것이다. RAW 264.7 세포는 10 또는 50μM의 TIC10 또는 선택된 유도체로 1시간 동안 전처리되었으며, 그 뒤 TLR9 작용제인 ODN2395 또는 TLR7 작용제인 imiquimod로 4시간 동안 자극되었고, TNF-α의 분비 수준은 ELISA로 측정하였다. 도 4C는 TIC10 및 TIC10-7에 의한 TLR9-매개 TNF-α 분비 억제를 %로 나타낸 것이며, 도 4D는 TIC10 및 TIC10-7에 의한 TLR7-매개 TNF-α 분비 억제를 %로 나타낸 것으로, 두 번의 독립적인 실험으로부터 사이토카인 분비 값의 평균을 구하고 0%를 음성 대조군(미처리), 100%를 양성 대조군(작용제 단독)으로 하여 표준화하였으며, IC50 값은 four-parametric robust regression method를 이용하여 계산하였다. 도 4E는 1차 선도물질 TIC10의 2D 화학 구조를 나타낸 것이며, 도 4F는 강력한 TIC-유사체(analog) TIC10-7의 2D 화학 구조를 나타낸 것이다.
도 5는 세포 기반 분석에서 동정된 활성 리간드의 2차 구조를 나타낸 것으로,
도 5A는 TLR9 저해 능력을 가진 예비적 hit로서 동정된 TIC10 및 TLR7과 TLR9의 강력한 이중 억제제로 동정된 유도체 TIC10-7 등을 나타낸 것이며, 도 5B는 활성 리간드(TIC10 및 그 유도체)의 SMILES, IUPAC name 및 분자량을 나타낸 것이다.
도 6은 TIC10-7의 수용체 특이성 및 신호전달 경로 억제 효과를 나타낸 것이다.
도 6A 내지 도 6G는 톨-유사 수용체 패밀리 구성원(Toll-like receptor (TLR) family member)에 대한 TIC10-7의 억제효과를 나타낸 것으로, RAW 264.7 세포를 대조군(-), DMSO(0.25%) 및 TIC10-7(10 또는 20μM)으로 1시간 동안 전처리하고, 4시간 동안 각각 TLR1/2(Pam3CSK), TLR2/6(FSL-1), TLR4(LPS), TLR7(Imiquimod), TLR9(ODN2395)에 선택적인 작용제로 자극하였으며 TLR3(poly I:C) 선택적 작용제만 예외적으로 24시간동안 자극했다. TNF-α의 분비 수준은 ELISA로 측정하였다. TLR8에 국한되어, 인간 단구 세포주(THP-1)가 이용되었다. THP-1 세포를 phorbol 12-myristate 13-acetate(PMA)와 48시간 동안 분화시킨 후 TIC10-7을 1시간 동안 처리한 다음 TLR8 작용제인 TL8-506을 4시간 동안 처리하였다. 인간 TNF-α 분비는 ELISA로 측정하였다. 도 6H는 1시간 동안 TIC10-7로 처리 후, NF-κB(nuclear factor k-light-chain-enhancer of activated B cells)의 p65 서브유닛 인산화(p-p65) 및 MAPKs(mitogen-activated protein kinases: extracellular-signal-regulated kinase(p-ERK), p38-MAPK(p-p38) 및 c-Jun N-terminal kinase(p-JNK)) 인산화의 감소를 나타내는 웨스턴 블랏 결과를 나타낸 것으로, RAW 264.7 세포를 TIC10-7(20μM)의 존재 또는 부재 조건에서 15 또는 30분 동안 TLR9 작용제인 ODN2395로 자극시켰으며, 전체 단백질 추출 및 면역블랏팅은 각각의 단백질에 대한 1차 및 2차 항체를 사용하여 수행하였다.
도 7은 TLR7 및 TLR9의 리간드 결합 공동(cavities)과 TIC10-7의 상호작용을 나타낸 것으로,
도 7A는 TLR7 세포외 도메인의 소분자 결합 공동에서 TIC10-7의 결합 모드를 나타낸 것이며, 리간드의 약 5Å 주위의 잔기와의 상세한 상호작용을 오른쪽 확대도에 도시하였다. 도 7B는 TIC10-7과 TLR9의 세포외 도메인의 유사 결합을 나타낸 것이며, 리간드의 약 5Å 주위에서 발생하는 상호작용을 오른쪽 확대도에 도시하였다. Chain A는 초록색, Chain B는 파란색으로 표시하였고, 리간드는 볼 및 막대(ball-and-stick)로 모델링하였다. B 사슬의 잔기는 별표(*)로 표시하였고, 수소결합은 점선으로 표시하였으며, 숫자는 Å 단위로 나타낸 거리를 의미한다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
면역 세포로부터의 전염증성 사이토카인 과다 분비는 전신홍반루프스 및 류마티스 관절염과 같은 염증성질환의 주요 원인이 된다. 수지상 세포 및 대식 세포의 엔도솜 지역(endosomal compartment)에 분리된 톨-유사 수용체 7(Toll-like receptor 7, TLR7) 및 TLR9는 주로 이러한 질병의 발병 및 증식과 관련이 있다. 따라서, 조절되지 않은 엔도솜 TLR에 대한 의약의 개발은 전신성 염증(systemic inflammation)을 억제하는데 필수적이다.
본 발명에서, 컴퓨터-보조 약물 개발 원리(computer-aided drug discovery principle)를 사용하여 TLR7 및 TLR9 신호전달 경로의 이중 억제를 나타내는 새로운 저분자량 화합물인 TLR 억제 화합물 10(TLR inhibitory compound 10, TIC10) 및 그 유도체(TIC10-7)를 도출하였다. 구체적으로, TIC10-7은 TLR7 및 TLR9-매개 TNF-α(tumor necrosis factor-α)의 분비를 농도 의존적으로 억제하였다. TIC10-7은 TLR3 또는 TLR8의 활성화를 약간 억제하였지만, 세포 표면 TLR(TLR1/2, TLR2/6 또는 TLR4)에는 영향을 미치지 않고 TLR7 및 TLR9에 대한 효과만을 나타냈다. 웨스턴 블랏 분석 결과, TIC10-7은 TLR9 작용제(ODN2395)에 의해 유도되는 NK-κB(nuclear factor κ-light-chain-enhancer)의 p65-서브유닛 및 MAPK(mitogen-activated protein kinases: extracellular-signal-regulated kinase(p-ERK), p38-MAPK(p-p38) 및 c-Jun N-terminal kinase(p-JNK))의 인산화를 하향조절하였다. 이러한 결과는 신규 리간드인 TIC10-7이 MAPK- 및 NF-κB-매개 전염증 유전자의 발현을 방해하는 엔도솜 TLR(TLR7 및 TLR9) 특이적인 이중 억제제임을 의미한다.
따라서, 본 발명은 일 관점에서, 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염에 관한 것이다.
[화학식 1]
Figure pat00002
상기 화학식 1에서, R1 내지 R5는 각각 독립적으로 수소원자, 직쇄형 또는 분지쇄형 알킬, 아미노, 히드록시, 할로겐, 니트릴기, 니트로기, 시클로알킬, 할로알킬, 알릴, 알콕시, 알킬카보닐, 사이클로알킬카보닐, 아릴카보닐, 알킬아릴카보닐, 알콕시카보닐, 시클로알콕시, 치환 또는 비치환된 아릴, 헤테로아릴, 헤테로사이클로알킬, 아릴옥시, 알콕시헤테로아릴, 헤테로아릴옥시알킬, 알킬헤테로아릴, 알킬아릴, 아릴알킬, 알킬헤테로아릴, 알킬에스테르, 알킬아미드 또는 아크릴이고, 여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 알릴은 C2-30, 아릴은 C6-30이고, 헤테로아릴 및 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
본 발명에 있어서, 상기 알킬 또는 알콕시는 바람직하게는 C1-12, 더욱 바람직하게는 C1-6, 가장 바람직하게는 C1-4인 것을 특징으로 할 수 있다.
본 명세서에서 용어 “C1-30 알킬”은 1 내지 30개의 탄소 원자를 갖는, 오직 탄소와 수소 원자로만 이루어진 1가 선형 또는 분지형 포화된 탄화수소 잔기를 의미한다. 이러한 알킬 기의 예로는 메틸, 에틸, 프로필, 아이소프로필, 부틸, 아이소부틸, 2급-부틸, 3급-부틸 등을 포함하나 이에 한정되는 것은 아니다. “분지형 알킬”의 예는 아이소프로필, 아이소부틸, 3급-부틸 등이 있다.
용어 “C1-30 알콕시”는 화학식 -O-C1-30 알킬을 의미하며, 예를 들어 메톡시, 에톡시, 아이소프로폭시, 3급-부톡시 등을 포함하나 이에 한정되는 것은 아니다.
용어 “할로겐(또는 할로(halo))”의 구체적인 예로는 플루오르(F), 클로린(Cl), 브롬(Br) 및 요오드(I)를 들 수 있다.
용어 “C6-30 아릴(aryl)”은 공유 파이 전자계를 가지는 적어도 하나의 환을 포함하며, 예를 들어 모노사이클릭 또는 융합환 폴리사이클릭(즉, 탄소 원자들의 인접한 쌍들을 나눠가지는 링들)그룹을 포함한다. 즉, 본 명세서에서 아릴은 달리 정의하지 않는 한 페닐, 나프틸 등과 바이아릴을 포함할 수 있다. 본 발명의 일 실시예에서 아릴은 탄소수 6 내지 30의 방향족 고리를 지칭한다.
용어 “C3-30 사이클릭알킬(Cyclic alkyl)”은 5 내지 6개의 탄소 원자를 갖는, 오직 탄소와 수소 원자로만 이루어진 고리형의 포화된 탄화수소 잔기를 의미한다. 이러한 사이클릭알킬 기의 예로는 사이클로펜틸, 사이클로헥실 등을 포함하나 이에 한정되는 것은 아니다.
용어 “헤테로아릴”은 달리 정의하지 않는 한 N, O 및 S로 이루어진 그룹에서 선택된 1 내지 4개의 헤테로 원자를 포함하는 고리원자수 5 또는 6의 방향족 고리이거나, 또는 상기 헤테로아릴 고리가 벤젠 고리 또는 다른 헤테로아릴 고리에 융합된 2환식 고리를 지칭한다. 모노사이클릭 헤테로아릴의 예로는 티아졸릴, 옥사졸릴, 티오페닐, 퓨라닐, 피롤릴, 이미다졸릴, 이소옥사졸릴, 이소티아졸릴, 피라졸릴, 트리아졸릴, 트리아지닐, 티아디아졸릴, 테트라졸릴, 옥사디아졸릴, 피리디닐, 피리다지닐, 피리미디닐, 피라지닐 및 이와 유사한 그룹을 들 수 있으나, 이에 제한되는 것은 아니다. 비사이클릭 헤테로아릴의 예로는 인돌릴, 아자인돌릴, 인돌리닐, 벤조티오페닐, 벤조퓨라닐, 벤즈이미다졸릴, 벤조옥사졸릴, 벤즈이속사졸릴, 벤즈티아졸릴, 벤즈티아디아졸릴, 벤즈트리아졸릴, 퀴놀리닐, 이소퀴놀리닐, 퓨리닐, 퓨로피리디닐 및 이와 유사한 그룹을 들 수 있으나 이에 제한되는 것은 아니다.
용어 “헤테로사이클로알킬”은 탄소 원자 이외에 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 포함하는 고리원자수 5 내지 9의 포화되거나 부분적으로 불포화된 카보사이클릭 고리를 나타낸다. 예를 들어, 헤테로사이클릴은 아제티디닐, 피롤리디닐, 테트라하이드로푸라닐, 테트라하이드로-티에닐, 피라졸리디닐, 이미다졸리디닐, 옥사졸리디닐, 아이소옥사졸리디닐, 티아졸리디닐, 피페리디닐, 테트라하이드로피라닐, 테트라하이드로티오피라닐, 피페라지닐, 모르폴리닐, 티오모르폴리닐, 1,1-다이옥소-티오모르폴린-4-일, 아제파닐, 다이아제파닐, 호모피페라지닐, 옥사제파닐, 디하이드로인돌릴, 디하이드로푸릴, 디하이드로이미다졸리닐, 디하이드로옥사졸릴, 테트라하이드로피리디닐, 디하이드로피라닐, 디하이드로벤조퓨라닐, 벤조디옥솔릴, 또는 벤조디옥사닐이다.
본 발명에 있어서, 상기 R5는 하기 화학식 2의 구조로 표시되는 것을 특징으로 할 수 있다.
[화학식 2]
Figure pat00003
상기 화학식 2에서, R6 또는 R8은 각각 독립적으로 수소원자, 히드록시, 직쇄형 또는 분지쇄형 알킬, 사이클로알킬, 알콕시, 아릴 또는 할로겐이고; 또는 R6 내지 R8 중 어느 둘 이상이 서로 연결된 사이클로알킬 또는 헤테로사이클로알킬이며, 여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 아릴은 C6-30이고, 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
상기 알킬 또는 알콕시는 바람직하게는 C1-12, 더욱 바람직하게는 C1-6, 가장 바람직하게는 C1-4인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 R6 내지 R8 중 어느 둘이 연결되어 사이클로 구조를 이루는 경우, 나머지 하나는 수소원자인 것을 특징으로 할 수 있다.
상기 화학식 2에서 *은 백본 이미다졸 구조와 결합된 위치를 의미한다.
본 발명에 있어서, 상기 R5는 하기 화학식 3의 구조로 표시되는 것을 특징으로 할 수 있다.
[화학식 3]
Figure pat00004
상기 화학식 3에서,
X 또는 Y는 각각 독립적으로 산소(O), 황(S) 또는 질소(N)이다.
본 발명에 있어서, 상기 R1은 수소원자, 히드록시 또는 메톡시이고; R2는 수소원자 또는 메톡시이고; R3는 수소원자, 메톡시 또는 에톡시이고; R4는 수소원자 또는 메톡시이고; R5는 클로로페닐, 메톡시페닐, 에톡시페닐 또는 1,3-벤조디옥솔릴인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에서, 상기 R5는 p-클로로페닐, p-메톡시페닐, p-에톡시페닐 또는 1,3-벤조디옥솔릴인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 화합물은 하기 화학식 1-1 내지 화학식 1-6으로 구성된 군에서 선택되는 어느 하나의 화합물인 것을 특징으로 할 수 있다.
[화학식 1-1]
Figure pat00005
;
[화학식 1-2]
Figure pat00006
;
[화학식 1-3]
Figure pat00007
;
[화학식 1-4]
Figure pat00008
;
[화학식 1-5]
Figure pat00009
;
[화학식 1-6]
Figure pat00010
.
본 명세서에서, 상기 화학식 1-1의 화합물은 TIC10으로 명명되었으며, 화학식 1-2의 화합물은 TIC10-3, 화학식 1-3의 화합물은 TIC10-7, 화학식 1-4의 화합물은 TIC10-8, 화학식 1-5의 화합물은 TIC10-10, 화학식 1-6의 화합물은 TIC10-11로 명명되었다.
본 발명에 있어서, TLR 억제 효과를 나타내는 상기 화합물은 바람직하게는 화학식 1-1 또는 화학식 1-3으로 표시되는 구조를 갖는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명은 다른 관점에서, 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 TLR(Toll-like receptor) 억제용 조성물에 관한 것이다.
본 발명에서 용어, “억제”는 결핍, 부조화, 그 밖의 많은 원인에 의하여 생물 활동이나 신호활성이 저하되는 현상을 말하며, TLR의 활성을 부분적으로 또는 완전히 블로킹하거나, 감소시키거나, 방지하거나, 활성화를 지연시키거나, 불활성화 시키거나 또는 하향조절하는 것일 수 있다.
본 발명에 있어서, 용어 “억제제”는 임의의 메커니즘에 의하여, 수용체 또는 세포 내 매개체와 같은 다른 분자의 영향을 부분적으로 또는 완전히 저해하는 분자를 의미한다.
본 발명에 있어서, 상기 화학식 1로 표시되는 화합물은 TLR7, TLR9, TLR3 및 TLR8로 구성된 군에서 선택되는 어느 하나 이상의 TLR의 신호전달 경로를 억제하는 것을 특징으로 할 수 있다. 바람직하게는 TLR7 및/또는 TLR9의 신호전달 경로를 억제하는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 “TLR7, TLR9, TLR3 또는 TLR8의 신호전달 경로 억제”는 TLR7, TLR9, TLR3 또는 TLR8의 생물학적 활성을 직간접적으로, 또는 실질적으로 방해, 감소 또는 저해하는 것을 의미하며, 바람직하게는 TLR7, TLR9, TLR3 또는 TLR8 수용체에 결합하고, 이들의 활성을 중화시킴으로써 TLR7, TLR9, TLR3 또는 TLR8 신호전달 경로를 차단하여, NF-κB, MAPK의 활성을 억제하고, 염증성 사이토카인의 분비를 감소시키는 것을 의미한다.
본 발명에 있어서, 상기 화학식 1로 표시되는 화합물은 하기의 특징 중 어느 하나 이상을 포함하는 것을 특징으로 할 수 있다: TNF-α(tumor necrosis factor-α)의 분비 억제; NF-κB(nuclear factor k-light-chain-enhancer of activated B cells)의 활성화 억제; 및 MAPKs(mitogen-activated protein kinases)의 활성화 억제.
본 발명에서 용어, “TLR7”은 병원체 감염에 대한 감시자로서 기능하는 막관통(tranmembrane) 단백질 패밀리인 TLRs에 속하는 단백질로서, TLR7 유전자에 의해 코딩되는 단백질을 말하며, UNQ248/PRO285로 명명되기도 한다. 상기 TLR7은 RNA 바이러스의 ssRNA(단일가닥 RNA) 또는 합성 소분자인 imidazoquinoline, loxoribine, bropirimine을 인지하여 내재면역 시스템을 활성화시킨다.
본 발명에서 용어, “TLR9”는 병원체 감염에 대한 감시자로서 기능하는 막관통 단백질 패밀리인 TLRs에 속하는 단백질로서, TLR9 유전자에 의해 코딩되는 단백질을 말하며, CD289 또는 UNQ5798/PRO19605로 명명되기도 한다. 상기 TLR9는 세균이나 DNA 바이러스의 메틸화되지 않은 CpG DNA 조각(unmethylated CpG oligodeoxynucleotide DNA)을 인지하여 내재면역 시스템을 활성화시킨다.
본 발명에서 용어, “TLR3”은 병원체 감염에 대한 감시자로서 기능하는 막관통 단백질 패밀리인 TLRs에 속하는 단백질로서, TLR3 유전자에 의해 코딩되는 단백질을 말하며, CD283 또는 IIAE2로 명명되기도 한다. 상기 TLR3은 바이러스의 이중가닥 RNA(dsRNA) 및 poly I:C를 인지하기 때문에 내재면역 시스템의 활성화에 매우 중요하다.
본 발명에서 용어, “TLR8”은 병원체 감염에 대한 감시자로서 기능하는 막관통 단백질 패밀리인 TLRs에 속하는 단백질로서, TLR8 유전자에 의해 코딩되는 단백질을 말하며, CD288(cluster of differentiation 288) 또는 UNQ249/PRO286로 명명되기도 한다. 상기 TLR8은 단일가닥 바이러스 RNA, 식균작용에 의해 세포내부로 들어온 세균 RNA(phagocytized bacterial RNA), 또는 합성 소분자인 TL8에 의해 활성화된다.
신규한 화학 물질 또는 생물학적 제제를 이용한 TLR 특이적 억제는 수년 동안 전임상 또는 임상 환경에서 자가면역/염증, 일반적인 질병 및 생명에 위협을 주는 질병을 치료하는 데 도움이 되었다. 그러나, 대부분의 TLR은 다양한 외인성 및 내인성 리간드를 인식하고 중복된 신호전달 경로를 통하여 전염증성 사이토카인의 생성을 유발하므로(Kawasaki T & Kawai T (2014) Front Immunol 5:461), 단일 TLR의 특이적 억제는 다른 동종 TLR(cognate TLR)에 의해 개시된 동시 신호전달 캐스케이드(cascade)를 차단하는 데 있어 비효율적이게 된다. 바이러스성, 박테리아성 또는 호스트 유래의 핵산 절편에 대한 반응으로 TNF-α 또는 I 형 IFN 발현을 강하게 유도할 수 있는 엔도솜 TLR의 능력 때문에, 엔도솜 TLR(TLR7, TLR8 및 TLR9)은 일반적으로 SLE 및 RA와 같은 전신 염증성질환에 관련되어 있다. 따라서, 이러한 TLR의 부적절한 활성화에 대한 치료제의 개발은 큰 가능성을 가지고 있으며, 치열한 연구의 대상이 된다.
본 발명에서는, 대형 다중형태(multiconformational) 화학적 화합물 라이브러리의 in silico 가상 스크리닝을 통해 인간 TLR9 특이적 소분자 길항제를 동정하고자 하였다. 세포-기반 생물분석에서 고득점 가상 hit 세트를 실험적으로 검증한 결과, TIC10으로 명명된 화합물 하나가 TLR9의 더욱 강한 억제를 나타냈을 뿐 아니라, TLR7 매개 TNF-α 생성의 완만한 감소 또한 나타내었다. TIC10의 주요 스캐폴드 주위에 변형을 갖는 구조적 유도체의 추가적인 평가는 TIC10-7으로 명명된 유사체가 TLR7 및 TLR9 매개 사이토카인 분비를 농도-의존적 방식으로 크게 감소시켰음을 나타내었다. 상기 결과는 수용체의 공통 리간드 결합 포켓을 표적으로 하는 단일 치료용 작용제/길항제에 의해 다수의 엔도솜 TLR이 조절될 수 있다는 이전의 보고를 지지한다(Jurk M, Heil F, et al . (2002) Nat Immunol 3(6):499).
최근 몇 년 간 의약 개발 프로그램은 컴퓨터를 이용한 또는 구조-활성 관계적 접근법(structure-activity relationship approaches)을 통해 TLR9를 표적으로 해왔다. 그러나, 소분자 조절자(small molecule modulator)에 결합된 TLR 결정 구조를 알 수 없기 때문에 제한적이다. 컴퓨터를 이용한 의약 개발 원리는 수용체의 활성/결합 부위의 정확한 정의에 크게 의존하며, 실패하는 경우 도킹 결과의 해석이 매우 어려워진다. 상동성 모델링 또는 정량 구조-활성 관계 모델링(quantitative structure-activity relationship modeling, QSAR modeling)과 같은 대안적 접근법이 존재하지만, 이러한 접근법의 정확성은 여전히 논의 중이다(Sliwoski G, et al . (2014) Pharmacol Rev 66(1):334-395). 인간 TLR9의 구조가 아직 확인되지 않았기 때문에, 본 발명자들은 말의 TLR9 구조를 주형으로 하여 이를 기반으로 상동성 모델을 제작하였다. 두 개의 별도의 리간드 결합 부위를 정의하였다: site I은 TLR7의 소분자 결합 부위와 중첩되고, site II는 CpG DNA에 결합한다. 흥미롭게도, 예비적 hit(TIC10)는 site I이 결합 포켓으로 정의된 도킹 라운드에 속하며, 이의 강력한 유사체인 TIC10-7은 site I뿐만 아니라 TLR9의 5’-xCx DNA motif에 결합하는 site Ia(Ohto U, et al . (2018) Immunity 48(4):649-658 e644)와의 상호작용을 나타냈다. 최근 발견된 TLR8의 소분자 길항제는 site I에 더 가깝지만, site I과 구별되는 위치를 표적으로 하고, 수용체의 휴지상태(resting state)를 안정시키는 것으로 나타났다. 이와 마찬가지로, 이전 SAR 연구 결과는 작용제와 길항제 모두 유사 결합 부위에 경쟁하여 TLR7과 TLR8에 대한 면역 조절 효과를 발휘할 수 있음을 나타냈다(Salunke DB, et al . (2012) J Med Chem 55(18):8137-8151). 이러한 사실에 기초할 때, TIC10 또는 TIC10-7의 TLR7 또는 TLR9의 site I/Ia에 대한 결합은 매우 합리적인 것으로 보인다.
엔도솜 TLR을 표적으로 하는 소분자 작용제의 개발은 널리 알려져 있으나, 길항제에 대한 개발은 수용체 활성화 메커니즘에 대한 지식이 부족하여 제한적이다. 이전의 연구들은 리간드의 결합이 수용체의 이합체화(dimerization)에 필요함을 시사했다. 그러나 최근의 구조 데이터에 따르면, TLR1/TLR2 이형이합체(heterodimer) 또는 TLR3, TLR8 및 TLR9 동종이합체(homodimer)는 휴지 상태라고 불리는 사전 형성된 느슨한 다이머(loose dimer)로 존재한다. 리간드의 인식은 구조적 변화를 촉진하여, 세포질에서 고-친화성 수용체-접합체 복합체(high-affinity receptor-adaptor complex)의 형성을 촉진한다. 따라서, 알로스테릭 조절자(allosteric modulator)를 사용하여 휴지(또는 비활성) 상태를 안정화시키는 것은 TLR 패밀리 구성을 동시에 표적화하는 효율적인 전략일 수 있다. 알로스테릭 부위는 통상적인 작용제 결합 부위와 구별될 수 있지만, 작용제와 상호작용하는 억제제는 작용제 인식을 방해하고 어댑터 모집에 필요한 구조 변화를 방지할 수 있다. 직접적인 억제제 이외에도, 항말라리아 의약(chloroquine 및 hydroxychloroquine)과 같은 몇몇 imidazoquinoline은 대체 메커니즘을 통해 엔도솜 TLR의 활성화를 차단하는 것으로 알려져 있다(Kuznik A, et al. (2011) J Immunol 186(8):4794-4804). 이러한 의약은 매우 낮은 농도에서 CpG DNA, RNA 및 면역 복합체의 면역 자극 효과를 무디게 한다. 기계론적 연구(mechanistic study)에 따르면, chloroquine 및 hydroxychloroquine은 CpG DNA 또는 다른 핵산-면역 복합체에 대해 강한 친화성을 나타내어 TLR 결합 부위에 대한 그들의 가용성을 차단한다. 따라서, TLR7/TLR8/TLR9의 직접적 및 간접적 길항제는 모두 자가면역질환(예를 들어, SLE 및 RA) 치료에 큰 가능성을 가지고 있다.
요약하면, 본 발명에서는 컴퓨터를 이용한 의약 개발 접근법을 이용하여 TLR9 특이적 억제제인 TIC10 및 TLR7/TLR9의 강력한 이중 억제제인 TIC10-7을 동정하였으며, 세포기반 분석을 통해 TIC10-7이 NF-κB 및 MAPK의 활성화를 방해함으로써 RAW 264.7 세포에서 TNF-α의 발현을 방지한다는 것을 입증했다. 컴퓨터 모델링 및 문헌 증거에 따르면, 리간드는 TLR7의 site I 또는 TLR9 세포외 도메인의 site I/Ia에 높은 결합 가능성을 갖는다. 결과적으로, TIC10-7은 자가면역질환 모델에 대한 TLR7 및 TLR9의 생물학적 관련성을 이해하기 위한 신규한 화학적 프로브(probe)로 이용될 수 있으며, 치료적 개발을 위한 선도물질로서 역할을 할 수 있다.
본 발명의 일 실시예에 따르면, 본 발명에 따른 상기 화학식 1-1 또는 화학식 1-3의 화합물은 TLR7 및/또는 TLR9 신호전달 경로를 억제함으로써, NF-κB와 MAPKs의 활성화를 억제하는 효과가 우수하여, TLR7 또는 TLR9 신호전달 경로에 의해 발생하는 자가면역질환 및 염증성질환의 예방 또는 치료용 조성물로 유용하게 활용할 수 있다.
따라서, 본 발명은 또 다른 관점에서, 상기 TLR(Toll-like receptor) 억제용 조성물을 포함하는 자가면역질환의 예방 또는 치료용 조성물에 관한 것이다.
본 발명은 또 다른 관점에서, 상기 TLR(Toll-like receptor) 억제용 조성물을 포함하는 염증성질환의 예방 또는 치료용 조성물에 관한 것이다.
본 발명에서 용어, “자가면역질환”은 자기관용을 유도하거나 계속 유지하는데 있어서 문제가 발생하여 자기항원에 대한 면역반응이 일어나, 이로 인해 자신의 조직을 공격하는 현상이 발생하는 과정에 의해 발병되는 질환을 의미한다. 상기 자기관용이란 자기(self)를 구성하고 있는 항원물질에 대해서는 해롭게 반응하지 않는 면역학적 무반응성(immunologic unresponsiveness)을 말한다. 본 발명의 자가면역질환은 전신홍반루푸스, 건선, 건선성 관절염, 류마티스 관절염, 실험적 자가면역 관절염, 천식, 크론병, 다발성 경화증, 실험적 자가면역 뇌척수염, 중증 근무력증, 갑상선염, 실험적 형태의 포도막염, 하시모토 갑상선염, 원발성 점액수종, 갑상샘 중독증, 악성 빈혈, 자가면역 위축 위염, 애디슨 질환, 조기 폐경, 남성 불임증, 소아 당뇨병, 굿파스처 증후군, 보통 천포창, 유천포창, 교감성 안염, 수정체성 포도막염, 자가면역 용혈성 빈혈, 특발성 백혈구 감소, 원발성 담관 경화증, 만성 활동성 간염, 잠재성 간경변증, 궤양성 대장염, 쇼그렌 증후군, 경피증, 베게너 육아종증, 다발근육염, 피부근육염 및 원판상루푸스로 구성된 군에서 선택되는 것을 특징으로 하나, 이에 한정되는 것은 아니다.
본 발명에서 용어, “염증성질환”은 염증유발인자 또는 방사선조사 등 유해한 자극으로 인해 면역체계를 과도하게 항진시켜 대식세포와 같은 면역세포에서 분비되는 TNF-α, IL-1, IL-6, 프로스타글란딘(prostaglandin), 루코트리엔(leukotriene) 또는 NO와 같은 염증 유발물질(염증성 사이토카인)에 의해 유발되는 질환을 의미한다. 본 발명의 염증성질환은 인슐린-의존성 당뇨병, 습진, 알러지, 아토피성 피부염, 여드름, 아토피성 비염, 폐염증, 알레르기성 피부염, 만성 부비동염, 접촉성 피부염(contact dermatitis), 지루성 피부염(seborrheic dermatitis), 위염, 통풍, 통풍 관절염, 궤양, 만성 기관지염, 궤양성 대장염, 강직성 척추염(ankylosing spondylitis), 패혈증, 맥관염, 활액낭염, 측두 동맥염, 고형암, 알츠하이머병, 동맥경화증, 비만 및 바이러스 감염으로 구성된 군에서 선택되는 것을 특징으로 하나, 이에 한정되는 것은 아니다.
본 발명에 따른 자가면역질환 또는 염증성질환의 예방 또는 치료용 조성물은 약학적으로 유효한 양의 상기 화합물을 단독으로 포함하거나, 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 포함할 수 있다. 약학적으로 유효한 양이란 자가면역질환 또는 염증성질환의 증상을 예방, 개선 및 치료하기에 충분한 양을 말한다.
상기 “약학적으로 허용되는”이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 것을 의미한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.
또한, 본 발명의 예방 또는 치료용 조성물은 상기 화합물 또는 이의 약학적으로 허용 가능한 염과 함께 자가면역질환 또는 염증성질환 치료 효과를 갖는 공지의 유효성분을 1종 이상 포함할 수 있다.
본 발명의 예방 또는 치료용 조성물은 인간을 제외한 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다.
본 발명의 예방 또는 치료용 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있고, 자가면역질환 또는 염증성질환의 증상을 예방, 개선 또는 치료하는 효과를 가지는 공지의 화합물과 병행하여 투여할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1: 재료 및 방법
실시예 1-1: 세포주( cell lines ) 및 시료
쥐(murine) 대식세포주(RAW 264.7)는 한국세포주 은행(Korean Cell Line Bank, KCLB), 한국세포주연구재단(Korean Cell Line Research Foundation, KCLRF)으로부터 얻었다. 1% 페니실린/스트렙토마이신(1% penicillin/streptomycin; HyClone Laboratories, Inc.) 항생제 혼합물 및 10% 소 태아 혈청(fetal bovine serum, FBS; Thermo Fisher Scientific, Inc., Waltham, MA, USA)을 첨가한 DMEM(Dulbecco’s modified Eagle’s medium; HyClone Laboratories, Inc., San Angelo, Texas, USA) 배지에서 배양하였다. 인간 단구 세포주(human monocytic cell line, THP-1)는 한국 수원 아주 의과대학의 서창희 박사에게서 제공받았다. 세포를 RPMI 1640(HyClone Laboratories, Inc.)에서 배양하고 80nM phorbol 12-myristate 13-acetate(PMA; Sigma-Aldrich Co., St. Louis, MO, USA)를 48시간 동안 처리하여 대식세포로 분화시켰다. 모든 세포주는 가습 배양기(37℃, 5% CO2)에서 유지시켰고 배지는 밤새 배양한 후에 교체하였다.
TLR1/TLR2(Pam3CSK4), TLR2/TLR6(FSL-1), TLR3(Poly I:C), TLR7(imiquimod) 및 TLR8(TL8-506) 특이적 작용제(agonist)들은 InvivoGen Ltd.(Hong-Kong, China)로부터 구매하였고, TLR4-특이적 작용제(E. coli O111:B4 유래 LPS)는 Sigma-Aldrich, Inc.로부터 구매하였다. TLR9-특이적 자극을 위하여, 전장 포스포로티오에이트 백본 변형(full phosphorothioate backbone modification)을 갖는 class C CpG-ODN(ODN2395, 5’-TCG TCG TTT TCG GCG CGC GCC G-3’)을 합성하였다(Bioneer, Inc., Daejeon, Korea). 모든 TLR 작용제를 탈이온수에 용해시키고, TLR 활성화를 위해 배양 배지에 처리하였다. 테스트 화합물 또는 control 배지로 세포를 1시간 동안 처리한 후, 4시간 동안 TLR 작용제로 자극하였으며, poly(I:C)의 경우에는 24시간 자극하고, 사이토카인 분비를 모니터링하였다.
실시예 1-2: 세포 생존율( cell viability ) 분석
RAW 264.7 세포를 96-well cell culture plate에 2x104 cells/well의 밀도로 분주하고 밤새 안정시켰다. 세포를 24시간 동안 테스트 화합물 또는 음성 대조군(DMSO; dimethyl sulfoxide))으로 처리하였으며, 처리된 웰의 최종 DMSO 농도는 0.25%였다. 그 다음, 배지를 제거하고 MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, InvivoGen Ltd.) 용액 500μg/ml를 각 웰에 첨가하였다. 3시간 후, 용액을 DMSO(Biosesang Co. Ltd., Korea)로 대체하고 추가로 30분 배양하여 포르마잔 용해(formazan dissolution)를 완료하였다. 595nm 파장에서 마이크로플레이트 비색 리더(microplate colorimetric reader)로 흡광도를 측정하고, 세포 생존율을 결정하기 위해 대조군을 기준으로 표준화하였다. 모든 배양은 상기 기술한 것과 동일한 조건으로 수행되었다.
실시예 1-3: ELISA
RAW 264.7 또는 분화된 THP-1 세포주를 96-well culture plate에 2x104 cells/well의 밀도로 분주하였다. 세포를 테스트 화합물로 1시간 동안 처리한 다음, TLR 작용제로 4시간 동안 자극하였다. 상등액을 미리 코팅된 분석 플레이트에 옮기고 각각의 ELISA 키트(Invitrogen, Carlsbad, CA, USA)를 사용하여 마우스 및 인간 TNF-α의 분비 수준을 측정하였다. 모든 실험은 제조사의 지시에 따라 수행되었다. 마이크로플레이트 리더 분광광도계(microplate reader spectrophotometer, Molecular Devices, Inc., San Jose, CA, USA)로 흡광도를 측정하고, SoftMax Pro 5.3 software(Molecular Devices, Inc.)를 사용하여 표준 곡선으로부터 데이터를 보간(interpolated)하였다.
실시예 1-4: 면역블랏팅 ( Immunoblotting )
RAW 264.7 세포를 60mm 세포 배양 접시에 2x106 cells/dish의 밀도로 분주하고 테스트 화합물을 처리한 후, TLR 작용제를 처리하였다. 프로테아제(protease) 및 포스파타아제 억제 칵테일(phosphatase inhibitor cocktail, Thermo Fisher Scientific, Inc.)과 포유류 단백질 추출키트(mammalian protein extraction kit, M-PER; Thermo Fisher Scientific, Inc.)를 이용하여 세포 용해물을 수득하고, 비신코닌산 분석(bicinchoninic acid assay, Sigma-Aldrich, Co.)을 이용하여 단백질 수준을 정량하였다. 단백질 샘플을 SDS-PAGE로 분리하여 니트로셀룰로오스 막(GE healthcare, Inc., Chicago, IL, USA)으로 옮겼다. 상기 막은 phospho-JNK(Cell Signaling Technology, Inc., Danvers, MA, USA), phospho-ERK(Santa Cruz Biotechnology, Inc., Dallas, TX, USA), phospho-p38-MAPK(Cell Signaling Technology, Inc.), phospho-p65(Cell Signaling Technology, Inc.) 또는 β-actin(Santa Cruz Biotechnology, Inc.)에 대한 특이적 1차 항체와 함께 배양되었다. 단백질은 HRP-융합된 항-토끼 IgG 또는 항-마우스 IgG(Thermo Fisher Scientific, Inc.)를 통해 탐지되었다. 단백질 수준은 화학발광 기질(chemiluminescent substrate, SuperSignal™ West Pico PLUS, Thermo Fisher Scientific, Inc.) 및 발광 검출 시스템(luminescence detection system, Fusion Solo S, VILBER, France)에 의해 확인되었다.
실시예 1-5: 가상 스크리닝 라이브러리( virtual screening library ) 구축
다중형태 스크리닝 라이브러리(multiconformational screening library)는 ZINC 데이터베이스(druglike 및 leadlike)(Irwin JJ, et al . (2012) J Chem Inf Model 52(7):1757-1768) 및 다른 상업 공급 업체에서 얻은 화학적 구조를 결합하여 제조하였다(표 1). 리간드 라이브러리는 ZINC 데이터베이스에서 자유롭게 열람 가능하다(https :// zinc . docking . org /).
리간드 스크리닝을 위해 사용된 화학적 화합물 라이브러리
Compound library 화합물 수
ZINC druglike 14,480,911
ZINC leadlike 5,449,805
Enamine 3,006,354
ChemBridge 1,591,767
ChemDiv 1,960,042
Life Chemicals 500,011
Maybridge 72,257
총계 27,061,147
구조는 분자 작동 환경 소프트웨어(molecular operating environment(MOE) software)의 sdwash tool을 사용하여 정리되었다(Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2017). 즉, 연결되지 않은 염 분자(salt molecule)와 무기 금속 이온이 구조에서 제거되었다. 반응성 그룹을 지닌 리간드를 제거하고, 부서진 리간드의 가장 큰 단편을 라이브러리에 보관하였다. 명시적인 수소 원자가 추가되었고, pH 7.0에서 양성자화 상태가 조정되었다. 각 리간드에 대해 최대 10개의 토토머 상태(tautomeric states)가 열거되었고, 분자 내 결합이 적당한 길이로 조정되었다. 그 후, 화학적 라이브러리는 0.1의 root mean square gradient에 도달할 때까지 MMFF94x force field를 사용하여 에너지를 최소화하였다. 에너지를 최소화하기 전에 리간드의 부분 전하를 MMFF94x force field를 이용하여 계산하였다.
실시예 1-6: 분자 지문( molecular fingerprint )의 계산 및 유사성 검색
고유한 분자 지문이 bit-packed MACCS Structural Keys(FP:BIT_MACCS) scheme에 기초하여 스크리닝 라이브러리의 리간드에 할당되었다. TLR9 길항제의 선택된 세트와 적어도 60 내지 80%의 유사성을 갖는 화학구조를 확인하기 위해 MOE의 in-house support vector language(SVL) script가 사용되었다(표 2).
다중형태 화합물 라이브러리에 대한 fingerprint 기반 유사성 검색에 사용된 리간드의 목록
Inhibitor name Target Activity ( μM ) Reference
CHEMBL457704 TLR9 IC50 = 0.02 Lipford G, et al . (2008) Small Molecule Inhibitors of Tolllike Receptor 9. US7410975B2
CHEMBL515364 TLR9 IC50 = 0.03
CPG-52364 TLR9 IC50 = 0.0046 Watanabe M, et al . (2014) ACS Med Chem Lett 5(11):1235-1239
Compound 18 TLR9 IC50 = 0.013
T5669070 TLR9 IC50 = 0.0534 Zatsepin M, et al . (2016) J Chem Inf Model 56(9):1835-1846
T5581953 TLR9 IC50 = 0.201
T5570245 TLR9 IC50 = 0.815
T6683896 TLR9 IC50 = 0.896
T5428933 TLR9 IC50 = 0.962
TLR9; 리간드의 이름은 각각의 문헌/특허/데이터 베이스 식별목록에서 언급된 것으로 사용되었다.
유사성 검색은 Tanimoto Coefficient라 불리는 타니모토 유사성 측정 기준(Tanimoto similarity metric)을 사용하여 수행되었다. 유사성 측정 기준은 #AB / (#A + #B - #AB)의 식을 기반으로 한다. 여기서, A와 B는 두 개의 분자 지문이며, #은 각 지문의 feature 수를 나타낸다. 생성된 리간드는 추가 스크리닝을 위해 별도의 라이브러리에 보관하였다.
실시예 1-7: 수용체 구조의 구축
PDB로부터 말 TLR9(PDB ID: 3WPC) 및 원숭이 TLR7(PDB ID: 5GMF)의 결정 구조를 얻었다. 결합된 핵산을 포함하여 결정 구조에 존재하는 불필요한 리간드를 제거하였다. 인간 TLR7 및 TLR9의 3차 모델은 SWISS MODEL 웹서버에서 각각의 주형인 5GMF 및 3WPC를 이용하여 상동성 모델링(homology modeling)을 통해 구축하였다(Waterhouse A, et al . (2018) Nucleic Acids Res 46(W1):W296-W303). 얻어진 모델은 pH 7.0에서 양성자화 되었고, Amber12:EHT force field를 사용하여 0.01의 root mean square gradient에 도달할 때까지 에너지를 최소화하였다.
실시예 1-8: 리간드의 분자 도킹( molecular docking )
알려진 리간드(표 2)와 TLR9 사이의 가능한 상호작용은 분리된 분자 도킹(separate molecular dockings)을 통해 계산되었으며, TLR7의 소분자 결합 공동에 상응하는 site I(F343, Y345, S350, F375, F402, D534*, Y536*, G563*, G565*)(Zhang Z, et al . (2016) Immunity 45(4):737-748) 및 TLR9의 CpG DNA 결합 부위에 상응하는 site II(W47, F49, K51, S72, R74, H76, H77, W96, P99, S104, P105, M106, F108)(Ohto U, et al . (2015) Nature 520(7549):702-705)를 고려하였다. 도킹은 triangle matcher placement 방법과 London dG scoring function을 사용하여 수행되었다. 리간드 포즈(ligand pose)는 MMFF94x force field와 GBVI/WSA dG scoring function을 사용하여 다시 점수가 매겨졌다. 도킹 포즈(docked pose)는 그들의 결합 친화도, 즉 S-score에 기초하여 등급이 매겨졌다.
실시예 1-9: 약물 분자구조( Pharmacophore ) 모델 생성 및 리간드-기반 스크리닝
상기 표 2의 각 리간드에 대해 TLR9의 site I 또는 site II와의 상호작용 순위(best-ranking interactions)를 기반으로 상이한 pharmacophore 모델을 만들었다. Planar-Polar-Charged-Hydrophobic scheme을 사용하여 중요한 리간드 그룹 주위에 pharmacophore features를 생성시켰다. 그 다음, 각 리간드에 적용되는 필수적인 pharmacophore 제한을 만족하는 구조를 확인하기 위해 리간드-기반 가상 스크리닝을 수행하였다. 생성된 hit는 단일 라이브러리로 합쳐졌으며, 분자 도킹을 통해 구조-기반 가상 스크리닝되었다.
실시예 1-10: 구조 기반 가상 스크리닝( Structure - based virtual screening )
Pharmacophore 스크리닝으로 얻은 화합물 라이브러리의 가상 스크리닝은 TLR9의 site I 및 site II에서 각각 수행되었다. 스크리닝은 상기 분자 실시예 1-8에서 기술한 것과 동일한 파라미터를 사용하여 수행되었다. 도킹 계산 중, TLR9의 잔기는 단단하게(rigid) 유지되었지만, 리간드는 유연하게 유지되었다. 각 리간드마다 적어도 10개의 상이한 docked poses를 저장하고 S-score에 따라 순위를 매겼다. 각각의 도킹 라운드는 유도-적합 도킹 방법(induced-fit docking method)으로 반복되었으며, 리간드 및 수용체의 측쇄(side chains) 모두가 최상의 적합성을 갖도록 하기 위해 그들의 배좌(conformation)를 조절하였다. 경직 및 유도-적합 도킹 라운드로부터 얻어진 16개의 최고 스코어 일치 리간드(consensus ligands)가 TLR9 길항 활성의 실험적 검증을 위해 선정되었다.
실시예 1-11: 초기 선도물질( lead ) 로부터의 강력한 화학적 유도체 탐색
초기 선도물질의 구조적 유도체인 TIC10은 MolPort 데이터베이스로부터 얻어졌다. 총 100개의 리간드를 SDF 파일로 다운로드하여 MOE 소프트웨어를 사용하여 PDB 형식으로 변환하였다. 리간드를 세척하고 상기 초기 스크리닝 라이브러리(initial screening library)를 제조하는데 사용된 것과 동일한 프로토콜로 에너지를 최소화하였다. TIC10의 원래 결합 부위인 site I뿐 아니라 짧은 합성 DNA에 결합한다고 보고된 바 있는 추가 부위(site Ia: D259, Y345, R348, S350, A352, F375, R377, F402, D534*, Y536*, G565*, N567*)에서도 분자 도킹이 수행되었다. 유도체들은 상기 실시예 1-8에서 언급한 것과 동일한 도킹 파라미터를 이용하여 TLR9의 site I, site Ia 및 TLR7의 site I에 대한 잠재적 적합성에 기초하여 도킹되고, 순위가 매겨졌다. 그들의 길항적 작용의 실험적 검증을 위해 세가지 도킹에서 가장 높은 점수를 얻은 12개의 리간드를 선택하였다.
실시예 1-12: 통계 분석
통계분석은 Microsoft Excel software에서 two-tailed pair Student’s t-test를 이용하여 수행되었다. IC50의 계산은 GraphPad Prism program으로 수행되었다.
실시예 2: 가상 스크리닝( virtual screening ) 으로부터 강력한 선도물질 TIC10 동정
소분자 리간드의 결합된 TLR9의 실험 구조는 protein data bank(PDB)에서 이용할 수 없다. 원숭이 TLR7(PDB ID: 5GMF)의 결정 구조에 대한 인간 TLR9의 상동성 모델의 중첩은 두 수용체의 리간드 결합 부위가 서로 겹쳐 있음을 나타내었다. 처음에는 TLR9의 작은 분자 길항제를 동정하기 위해 TLR9 상동성 모델과 시중에서 구매 가능한 2700만개가 넘는 화학적 화합물의 라이브러리를 이용하여 컴퓨터를 보조 가상 스크리닝 작업흐름(computer-aided virtual screening workflow)을 수행했다(도 1 및 표 1). TLR9의 리간드 결합 포켓에 잠재적으로 알맞도록 여러 차례의 도킹을 통해 얻어낸 약 100개의 하이-랭킹 가상 히트(high-ranking virtual hits)를 면밀히 육안으로 검사한 뒤(도 2), 탑 스코어링된 16개의 일치 리간드(TIC1 내지 TIC16으로 명명)를 실험적으로 검증하여 이들의 억제 활성을 평가하였다.
선택된 화합물의 길항성을 실험하기 전에, MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 분석을 수행하여 쥐 대식세포주(murine macrophage cell line, RAW 264.7)에서 화합물의 세포독성을 모니터링하였다. 16개의 화합물 중 8개(TIC1, TIC3, TIC5, TIC9, TIC10, TIC12, TIC14 및 TIC16)는 50μM 농도에서 독성이 없거나 미미하게 독성을 갖는 것으로 나타났다(도 3A). 다른 리간드는 세포에 대한 독성이 커서 실험대상에서 제외하였다. 상기 8개(TIC1, TIC3, TIC5, TIC9, TIC10, TIC12, TIC14 및 TIC16)의 리간드와 함께 RAW 264.7 세포의 자극은 면역 신호전달 경로에서 가능한 작용적(agonistic) 역할을 의미하는 전염증성 사이토카인인 TNF-α의 발현을 유도하지 않았다(도 3B).
ELISA(enzyme-linked immunosorbent assay)를 통해 TLR7/TLR9에 대한 각 화합물에 길항적(antagonistic) 효과를 평가하기 위해, 상기 8개의 화합물로 전처리된 RAW 264.7 세포를 TLR7 특이적 작용제(imiquimod 3.61μM) 또는 TLR9 특이적 작용제(ODN2395, 0.5μM)로 자극하였다. 스크리닝된 화합물 중 오직 TIC10만이 50μM에서 TLR9-매개 TNF-α 분비를 유의하게 억제하는 것으로 나타났다(도 3C). TIC10은 50μM에서 또한 TLR7-매개 TNF-α 분비 또한 억제하였지만(도 3D), TLR9에서 관측된 것보다는 낮은 범위에서 억제하였다. 흥미롭게도, TIC1- 또는 TIC3-작용제의 공동처리는 작용제 단독에 비해서 사이토카인의 생산을 약간 증가시켰다(도 3C). 상기 두 리간드는 본질적으로 아무런 효과가 없었기 때문에(도 3B), 사이토카인의 상승은 공동처리에 의한 세포의 활성화(또는 비특이적인 세포 스트레스) 때문일 수 있다. 결과적으로, TLR7 및 TLR9 모두에 대한 억제 효능을 향상시키기 위한 추가 최적화를 위해 가장 적합한 선도물질로 TIC10을 선정하였다.
실시예 3: TLR7 TLR9의 신호전달에 더 큰 효능을 나타내는 TIC10 -7
상기 실시예 2에서 선정된 1차 선도물질 TIC10(C19H21N3O3)의 TLR7 및 TLR9-매개 신호전달 경로에 대한 이중 억제 효과 향상은 화합물의 구조적 변형을 통해 모색했다. MolPort 데이터 베이스(https://www.molport.com/shop/index)에서 TIC의 상업적으로 이용 가능한 유도체를 검색한 결과, TIC10의 부모 스캐폴드(parent scaffold)에 부착된 다양한 작용기를 갖는 100개의 별개 구조가 제안되었다. 상기 유도체들은 먼저 TIC10의 docked pose를 주형으로 하여 TLR7 및 TLR9의 리간드 결합 부위에 컴퓨터를 통해 도킹되었으며, 결합 친화도 스코어에 기초하여 순위를 매겼다. TIC10보다 우수한 점수를 얻은 상위 12개의 유도체(이하, TIC10-1 내지 TIC10-12로 명명)를 선택하여 ELISA를 통한 TLR7/TLR9 블로킹 능력을 평가했다.
초기 세포 생존율 분석 결과, TIC10-1, TIC10-2, TIC10-5, TIC10-6 및 TIC10-9는 세포독성을 나타내어 이후의 실험에서 제외하였다. TIC10을 포함하는 나머지 유도체를 RAW 264.7 세포에 투여하고, imiquimod 또는 ODN2395로 자극하였다. 3가지 유도체(TIC10-3, TIC10-7 및 TIC10-8)들은 TIC10과 비교하여 농도 의존적으로 개선된 억제능을 나타냈다(도 4A 및 4B). 활성 리간드(도 5) 중 TIC10-7은 두 농도 실험 모두(도 4A)에서 TLR9-매개 TNF-α 분비 수준이 유의미하게 감소(IC50 = 6.71μM)하였다(도 4C). 마찬가지로, TIC10-7은 다른 유도체(도 4B)들과 비교하여 TLR7-매개 TNF-α 분비를 더욱 많이 저해(IC50 = 6.79μM)하였으며(도 4D), 이는 TLR9에 대한 효과와 일치한다. 이를 종합하면, TIC10-7(C20H21N3O4)은 TLR7/TLR9 관련 신호 전달 경로의 효율적인 이중 억제제가 될 수 있음을 시사한다.
동종 TLR 신호전달 경로(cognate TLR-signaling pathway)에 대한 TIC10-7의 억제 효과를 확인하기 위해, RAW 264.7 세포를 리간드와 함께 배양한 후 상이한 TLR 작용제로 자극하였다. 사용한 TLR 작용제는 Pam3CSK4(TLR1/2), FSL-1(TLR2/6), lipopolysaccharide(LPS(TLR4)), poly I:C(TLR3) 및 TL8(TLR8)이다. ELISA로 TNF-α 분비 수준의 측정한 결과, 억제제는 표면 TLR(TLR1/2, TLR2/6 및 TLR4)-매개 사이토카인 생산에 영향을 미치지 않는 것으로 나타났다(도 6A 내지 6C). 그러나, 엔도솜 TLR(TLR3, TLR7 및 TLR9)-매개 TNF-α 분비는 완만히 감소하는 것으로 나타났으며, TLR8은 영향을 가장 적게 받았다(도 6D 내지 6G). 이는, 엔도솜 TLR이 하나의 음성 조절(negative regulation)이 생리학적 조건 하에서 다른 하나의 활성에 영향을 미칠 수 있는 시너지 효과를 발휘할 수 있을 것임을 시사한다.
일반적으로, TLR에 의한 MYD88의 모집은 전사 인자 NF-κB 및 세포 증식 인자 MAPK의 활성화를 유발한다. TIC10-7의 표적 신호전달 경로를 확인하기 위해, ODN2395 및 TIC10-7의 동시 처리조건에서 핵심 하류 분자(key downstream molecule)를 면역 블랏(immune blot)하였다. ODN2395 자극시, TIC10-7은 15분 및 30분에서 MAPK(JNK, p38-MAPK 및 ERK) 및 NF-κB의 p65 서브유닛의 인산화를 차단하였다(도 6H). 이는, 억제제가 전염증성 TNF-α의 생산을 유도하는 MYD88-의존성 신호전달 경로를 방해할 수 있음을 의미한다.
실시예 4: TLR7 TLR9에 대해 유사한 결합 모드(binding modes)를 나타내는 TIC10 -7 확인
초기 히트(initial hit) TIC10 및 이의 화학적 유도체는 엔도솜 TLR 조절자(modulator)에서 발견되는 중요한 스캐폴드 중 하나를 나타내는 중심 이미다졸 부위(central imidazole(1H-Imidazol-2-amine) moiety)(Yoo E, et al . (2013) Org Biomol Chem 11(38):6526-6545)를 함유한다(도 4E). TIC10-7은 central 1H-Imidazol-2-amine에 부착된 dimethoxyphenyl group과 함께 1,3-benzodioxole group을 포함하며(도 4F), 이는 TLR7과 TL9에 더욱 강한 억제 활성을 갖는 리간드를 제공할 수 있다. 컴퓨터 모델링은 도킹된 리간드가 TLR7의 소분자 결합 공동(small molecule binding cavity) 및 TLR9의 동일 부위를 점유하여, 유사한 바인딩 모드를 나타내는 것으로 나타냈다. 리간드의 약 5Å 주위의 잔기의 시각적 분석 결과, 분자간 상호작용은 수용체 결합 공동의 아미노산과 유사한 또는 상이한 아미노산과 모두 연관됨을 확인하였다(도 7).
Central imidazole moiety가 F408, Y356 및 L557* 잔기를 포함하는 소수성 접촉에 의해 안정화되는 점에서, TLR7과 TIC10-7의 상호작용은 R848(PDB ID: 5GMH)의 상호작용과 유사하다(도 7A). Y356 측쇄는 imidazole ring와 정렬되어 부분적인 π-스태킹 상호작용을 형성했다. Benzodioxole group의 산소 원자는 K410 및 K432의 측쇄 아미노 그룹과 수소결합을 형성했다. Dimethoxyphenyl group의 산소 원자는 T586*의 측쇄 하이드록실 그룹과의 근접 범위(~3.3Å) 정전기적 상호작용(electrostatic interaction)에 관여하여 수소결합의 가능성을 나타냈다. 또한, dimethoxyphenyl group의 벤젠 고리는 F349, F351, V381 및 F408 잔기에 의해 형성된 소수성 포켓(hydrophobic pocket)에 연결되었다. 이에 더하여, 몇몇 다른 극성 및 비극성 잔기는 반데르발스 상호작용(van der Waals interactions)을 통해 리간드를 안정화시킬 수 있었다.
TLR9에서, TIC10-7의 이미다졸 고리는 TLR7의 V381, F408 및 L557*(도 7A)에 상응하는 소수성 잔기 F375, F402 및 Y536* 사이에 적층되었다(도 7B). Benzodioxole group의 산소 원자와 TLR7의 Y356 및 L557*에 상응하는 S350 및 Y536*의 측쇄 하이드록실 그룹 사이에 2개의 수소결합이 형성되었다. Dimethoxyphenyl group은 Y345와 소수성 접촉을 형성하고, TLR9의 D259, H260 및 Q590과 정전기적 상호작용을 형성한다. 또한, 리간드를 중심으로 반경 5Å 이내에서 site Ia로부터 잔기 D259, Y356, R348, R377, G655*(도 2)가 발견되었으며, 정전기적 상호작용 및 반데르발스 상호작용을 통해 안정화를 돕는다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (16)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1]
    Figure pat00011

    상기 화학식 1에서,
    R1 내지 R5는 각각 독립적으로 수소원자, 직쇄형 또는 분지쇄형 알킬, 아미노, 히드록시, 할로겐, 니트릴기, 니트로기, 시클로알킬, 할로알킬, 알릴, 알콕시, 알킬카보닐, 사이클로알킬카보닐, 아릴카보닐, 알킬아릴카보닐, 알콕시카보닐, 시클로알콕시, 치환 또는 비치환된 아릴, 헤테로아릴, 헤테로사이클로알킬, 아릴옥시, 알콕시헤테로아릴, 헤테로아릴옥시알킬, 알킬헤테로아릴, 알킬아릴, 아릴알킬, 알킬헤테로아릴, 알킬에스테르, 알킬아미드 또는 아크릴이고,
    여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 알릴은 C2-30, 아릴은 C6-30이고, 헤테로아릴 및 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
  2. 제1항에 있어서, 상기 R5는 하기 화학식 2의 구조로 표시되는 것을 특징으로 하는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 2]
    Figure pat00012

    상기 화학식 2에서,
    R6 또는 R8은 각각 독립적으로 수소원자, 히드록시, 직쇄형 또는 분지쇄형 알킬, 사이클로알킬, 알콕시, 아릴 또는 할로겐이고; 또는
    R6 내지 R8 중 어느 둘 이상이 서로 연결된 사이클로알킬 또는 헤테로사이클로알킬이며,
    여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 아릴은 C6-30이고, 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
  3. 제2항에 있어서, 상기 R5는 하기 화학식 3의 구조로 표시되는 것을 특징으로 하는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 3]
    Figure pat00013

    상기 화학식 3에서,
    X 또는 Y는 각각 독립적으로 산소(O), 황(S) 또는 질소(N)이다.
  4. 제1항에 있어서, 상기 R1은 수소원자, 히드록시 또는 메톡시이고; R2는 수소원자 또는 메톡시이고; R3는 수소원자, 메톡시 또는 에톡시이고; R4는 수소원자 또는 메톡시이고; R5는 클로로페닐, 메톡시페닐, 에톡시페닐 또는 1,3-벤조디옥솔릴인 것을 특징으로 하는 화합물 또는 이의 약학적으로 허용 가능한 염.
  5. 제1항에 있어서, 상기 화합물은 하기 화학식 1-1 내지 화학식 1-6으로 구성된 군에서 선택되는 어느 하나의 화합물인 것을 특징으로 하는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1-1]
    Figure pat00014
    ;
    [화학식 1-2]
    Figure pat00015
    ;
    [화학식 1-3]
    Figure pat00016
    ;
    [화학식 1-4]
    Figure pat00017
    ;
    [화학식 1-5]
    Figure pat00018
    ;
    [화학식 1-6]
    Figure pat00019
    .
  6. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 TLR(Toll-like receptor) 억제용 조성물:
    [화학식 1]
    Figure pat00020

    상기 화학식 1에서,
    R1 내지 R5는 각각 독립적으로 수소원자, 직쇄형 또는 분지쇄형 알킬, 아미노, 히드록시, 할로겐, 니트릴기, 니트로기, 시클로알킬, 할로알킬, 알릴, 알콕시, 알킬카보닐, 사이클로알킬카보닐, 아릴카보닐, 알킬아릴카보닐, 알콕시카보닐, 시클로알콕시, 치환 또는 비치환된 아릴, 헤테로아릴, 헤테로사이클로알킬, 아릴옥시, 알콕시헤테로아릴, 헤테로아릴옥시알킬, 알킬헤테로아릴, 알킬아릴, 아릴알킬, 알킬헤테로아릴, 알킬에스테르, 알킬아미드 또는 아크릴이고,
    여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 알릴은 C2-30, 아릴은 C6-30이고, 헤테로아릴 및 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
  7. 제6항에 있어서, 상기 R5는 하기 화학식 2의 구조로 표시되는 것을 특징으로 하는 TLR 억제용 조성물:
    [화학식 2]
    Figure pat00021

    상기 화학식 2에서,
    R6 또는 R8은 각각 독립적으로 수소원자, 히드록시, 직쇄형 또는 분지쇄형 알킬, 사이클로알킬, 알콕시, 아릴 또는 할로겐이고; 또는
    R6 내지 R8 중 어느 둘 이상이 서로 연결된 사이클로알킬 또는 헤테로사이클로알킬이며,
    여기서, 알킬 또는 알콕시는 C1-30, 사이클로알킬은 C3-30, 아릴은 C6-30이고, 헤테로사이클로알킬은 불소(F), 산소(O), 황(S) 및 질소(N) 중에서 선택된 헤테로원자를 함유한다.
  8. 제7항에 있어서, 상기 R5는 하기 화학식 3의 구조로 표시되는 것을 특징으로 하는 TLR 억제용 조성물:
    [화학식 3]
    Figure pat00022

    상기 화학식 3에서,
    X 또는 Y는 각각 독립적으로 산소(O), 황(S) 또는 질소(N)이다.
  9. 제6항에 있어서, 상기 R1은 수소원자, 히드록시 또는 메톡시이고; R2는 수소원자 또는 메톡시이고; R3는 수소원자, 메톡시 또는 에톡시이고; R4는 수소원자 또는 메톡시이고; R5는 클로로페닐, 메톡시페닐, 에톡시페닐 또는 1,3-벤조디옥솔릴인 것을 특징으로 하는 TLR 억제용 조성물.
  10. 제6항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-6으로 구성된 군에서 선택되는 어느 하나의 화합물인 것을 특징으로 하는 TLR 억제용 조성물:
    [화학식 1-1]
    Figure pat00023
    ;
    [화학식 1-2]
    Figure pat00024
    ;
    [화학식 1-3]
    Figure pat00025
    ;
    [화학식 1-4]
    Figure pat00026
    ;
    [화학식 1-5]
    Figure pat00027
    ;
    [화학식 1-6]
    Figure pat00028
    .
  11. 제6항에 있어서, 상기 화학식 1로 표시되는 화합물은 TLR7, TLR9, TLR3 및 TLR8로 구성된 군에서 선택되는 어느 하나 이상의 TLR의 신호전달 경로를 억제하는 것을 특징으로 하는 TLR 억제용 조성물.
  12. 제6항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기의 특징 중 어느 하나 이상을 포함하는 것을 특징으로 하는 TLR 억제용 조성물:
    TNF-α(tumor necrosis factor-α)의 분비 억제;
    NF-κB(nuclear factor k-light-chain-enhancer of activated B cells)의 활성화 억제; 및
    MAPKs(mitogen-activated protein kinases)의 활성화 억제.
  13. 제6항의 TLR(Toll-like receptor) 억제용 조성물을 포함하는 자가면역질환의 예방 또는 치료용 조성물.
  14. 제13항에 있어서, 상기 자가면역질환은 전신홍반루푸스, 건선, 건선성 관절염, 류마티스 관절염, 실험적 자가면역 관절염, 천식, 크론병, 다발성 경화증, 실험적 자가면역 뇌척수염, 중증 근무력증, 갑상선염, 실험적 형태의 포도막염, 하시모토 갑상선염, 원발성 점액수종, 갑상샘 중독증, 악성 빈혈, 자가면역 위축 위염, 애디슨 질환, 조기 폐경, 남성 불임증, 소아 당뇨병, 굿파스처 증후군, 보통 천포창, 유천포창, 교감성 안염, 수정체성 포도막염, 자가면역 용혈성 빈혈, 특발성 백혈구 감소, 원발성 담관 경화증, 만성 활동성 간염, 잠재성 간경변증, 궤양성 대장염, 쇼그렌 증후군, 경피증, 베게너 육아종증, 다발근육염, 피부근육염 및 원판상루푸스로 구성된 군에서 선택되는 것을 특징으로 하는 자가면역질환의 예방 또는 치료용 조성물.
  15. 제6항의 TLR(Toll-like receptor) 억제용 조성물을 포함하는 염증성질환의 예방 또는 치료용 조성물.
  16. 제15항에 있어서, 상기 염증성질환은 인슐린-의존성 당뇨병, 습진, 알러지, 아토피성 피부염, 여드름, 아토피성 비염, 폐염증, 알레르기성 피부염, 만성 부비동염, 접촉성 피부염(contact dermatitis), 지루성 피부염(seborrheic dermatitis), 위염, 통풍, 통풍 관절염, 궤양, 만성 기관지염, 궤양성 대장염, 강직성 척추염(ankylosing spondylitis), 패혈증, 맥관염, 활액낭염, 측두 동맥염, 고형암, 알츠하이머병, 동맥경화증, 비만, 바이러스 감염 및 비알콜성 지방간염(nonalcoholic steatohepatitis)으로 구성된 군에서 선택되는 것을 특징으로 하는 염증성질환의 예방 또는 치료용 조성물.
KR1020190090580A 2019-07-26 2019-07-26 Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도 KR20210012588A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190090580A KR20210012588A (ko) 2019-07-26 2019-07-26 Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도
US17/630,043 US20220259155A1 (en) 2019-07-26 2020-07-23 Novel small molecule compound inhibiting signal transmission path of tlr7 and tlr9 and use thereof
EP20847286.0A EP4006013A4 (en) 2019-07-26 2020-07-23 Novel small molecule compound inhibiting signal transmission path of tlr7 and tlr9 and use thereof
PCT/KR2020/009732 WO2021020807A1 (ko) 2019-07-26 2020-07-23 Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190090580A KR20210012588A (ko) 2019-07-26 2019-07-26 Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도

Publications (1)

Publication Number Publication Date
KR20210012588A true KR20210012588A (ko) 2021-02-03

Family

ID=74228660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190090580A KR20210012588A (ko) 2019-07-26 2019-07-26 Tlr7 및 tlr9의 신호전달 경로를 억제하는 신규한 소분자 화합물 및 그 용도

Country Status (4)

Country Link
US (1) US20220259155A1 (ko)
EP (1) EP4006013A4 (ko)
KR (1) KR20210012588A (ko)
WO (1) WO2021020807A1 (ko)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787555B2 (en) * 2001-04-30 2004-09-07 The Procter & Gamble Company Triazole compounds useful in treating diseases associated with unwanted cytokine activity
US20060211752A1 (en) * 2004-03-16 2006-09-21 Kohn Leonard D Use of phenylmethimazoles, methimazole derivatives, and tautomeric cyclic thiones for the treatment of autoimmune/inflammatory diseases associated with toll-like receptor overexpression
CA2617788A1 (en) * 2005-08-04 2007-02-15 Apogee Biotechnology Corporation Sphingosine kinase inhibitors and methods of their use
WO2007058990A2 (en) * 2005-11-14 2007-05-24 Kemia, Inc. Therapy using cytokine inhibitors
JP2009524677A (ja) * 2006-01-25 2009-07-02 シンタ ファーマシューティカルズ コーポレーション 炎症および免疫関連使用用のチアゾールおよびチアジアゾール化合物
US20130143927A1 (en) * 2011-06-10 2013-06-06 Calcimedica, Inc. Compounds that modulate intracellular calcium
WO2019136147A1 (en) * 2018-01-03 2019-07-11 The Board Of Trustees Of The University Of Illinois Toll-like receptor signaling inhibitors
WO2019241641A2 (en) * 2018-06-14 2019-12-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cancer treatment methods
WO2019241631A1 (en) * 2018-06-14 2019-12-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compounds for treating hbv

Also Published As

Publication number Publication date
EP4006013A1 (en) 2022-06-01
US20220259155A1 (en) 2022-08-18
EP4006013A4 (en) 2023-06-28
WO2021020807A1 (ko) 2021-02-04

Similar Documents

Publication Publication Date Title
Cao et al. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence
Uzunova et al. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2
Guo et al. Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects
Arabyan et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis
Delre et al. Repurposing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease
Xu et al. Systemic in silico screening in drug discovery for coronavirus disease (COVID-19) with an online interactive web server
Yu et al. Design, synthesis, and biological evaluation of N-alkylated deoxynojirimycin (DNJ) derivatives for the treatment of dengue virus infection
Wu et al. Geraniol-mediated osteoarthritis improvement by down-regulating PI3K/Akt/NF-κB and MAPK signals: In vivo and in vitro studies
Yan et al. Blockade of Her2/neu binding to Hsp90 by emodin azide methyl anthraquinone derivative induces proteasomal degradation of Her2/neu
Chikhale et al. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis
Mao et al. MicroRNA‐155 inhibition up‐regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate‐treated osteoporotic mice
Islam et al. Comparative evaluation of authorized drugs for treating Covid‐19 patients
US20230346820A1 (en) Methods and compositions for the treatment of sars-cov-2
Najar et al. A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway
KR20230044446A (ko) 급성 호흡기 장애의 치료 방법
Ming et al. A novel arylbenzofuran induces cervical cancer cell apoptosis and G1/S arrest through ERK-mediated Cdk2/cyclin-A signaling pathway
Beura et al. Identification of potential human COX-2 inhibitors using computational modeling and molecular dynamics simulations
JP7393797B2 (ja) 高サイトカイン血症および重篤なインフルエンザの処置または予防のための方法および化合物
Hu et al. Discovery of potent and broad-spectrum pyrazolopyridine-containing antivirals against enteroviruses D68, A71, and coxsackievirus B3 by targeting the viral 2C protein
JP2020203947A (ja) Ns5a、ns5bまたはns3阻害剤を使用する、b型肝炎ウイルス感染症を処置するための方法
Oso et al. Molecular docking and ADMET prediction of natural compounds towards SARS Spike glycoprotein-human angiotensin-converting enzyme 2 and SARS-CoV-2 main protease
Samakkarnthai et al. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers
Drewry et al. Identification and utilization of a chemical probe to interrogate the roles of PIKfyve in the lifecycle of β-coronaviruses
Kharisma et al. Garcinoxanthones from Garcinia mangostana L. against sars-cov-2 infection and cytokine storm pathway inhibition: A viroinformatics study
Wang et al. Peimine inhibits variants of SARS‐CoV‐2 cell entry via blocking the interaction between viral spike protein and ACE2

Legal Events

Date Code Title Description
E902 Notification of reason for refusal