KR20210010025A - Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same - Google Patents

Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20210010025A
KR20210010025A KR1020190087337A KR20190087337A KR20210010025A KR 20210010025 A KR20210010025 A KR 20210010025A KR 1020190087337 A KR1020190087337 A KR 1020190087337A KR 20190087337 A KR20190087337 A KR 20190087337A KR 20210010025 A KR20210010025 A KR 20210010025A
Authority
KR
South Korea
Prior art keywords
sulfur
positive electrode
vanadium oxide
secondary battery
lithium secondary
Prior art date
Application number
KR1020190087337A
Other languages
Korean (ko)
Inventor
김의태
최장욱
손권남
김현진
Original Assignee
주식회사 엘지화학
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 서울대학교산학협력단 filed Critical 주식회사 엘지화학
Priority to KR1020190087337A priority Critical patent/KR20210010025A/en
Publication of KR20210010025A publication Critical patent/KR20210010025A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a vanadium oxide-sulfur composite, to a positive electrode, and to a lithium secondary battery comprising the same. More specifically, the electrode comprising the vanadium oxide-sulfur composite as an active material has excellent binding power, exhibits high loading characteristics, and can improve the energy density of the lithium secondary battery. In addition, the vanadium oxide-sulfur composite comprises: vanadium oxide; and sulfur.

Description

바나듐산화물-황 복합체, 이를 포함하는 양극 및 리튬 이차전지 {VANADIUM OXIDE-SULFUR COMPOSITE, POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery including the same {VANADIUM OXIDE-SULFUR COMPOSITE, POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}

본 발명은 리튬 이차전지의 양극재로 적용 가능한 바나듐산화물-황 복합체, 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다.The present invention relates to a vanadium oxide-sulfur composite applicable as a positive electrode material of a lithium secondary battery, a positive electrode including the same, and a lithium secondary battery.

최근 전자 기기 분야와 전기 자동차 분야의 급속한 발전에 따라 이차 전지의 수요가 증가하고 있다. 특히, 휴대용 전자 기기의 소형화 및 경량화 추세에 따라, 그에 부응할 수 있는 고 에너지 밀도를 갖는 이차전지에 대한 요구가 커지고 있다.Recently, the demand for secondary batteries is increasing with the rapid development of the electronic device field and the electric vehicle field. In particular, according to the trend of miniaturization and weight reduction of portable electronic devices, there is a growing demand for a secondary battery having a high energy density that can meet the trend.

이차 전지 중 리튬-황 이차전지는 황-황 결합을 갖는 황계 화합물을 양극 활물질로 사용하고, 리튬과 같은 알칼리 금속 또는 리튬 이온과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 이차 전지이다. 구체적으로, 환원 반응인 방전시 황-황 결합이 끊어지면서 황의 산화수가 감소하고, 산화 반응인 충전시 황의 산화수가 증가하면서 황-황 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장하고 생성한다.Among secondary batteries, a lithium-sulfur secondary battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium or a carbon-based material in which metal ions such as lithium ions are inserted and deintercalated, or an alloy with lithium It is a secondary battery that uses silicon or tin to form a negative electrode active material. Specifically, electrical energy is stored by using an oxidation-reduction reaction in which sulfur-sulfur bonds are cut off during discharge, which is a reduction reaction, and the oxidation number of sulfur decreases. And create it.

특히, 리튬-황 이차전지에 양극 활물질로 사용되는 황은 이론 에너지 밀도가 1675 mAh/g으로, 기존의 리튬 이차전지에 사용되는 양극 활물질에 비해 5배 정도 높은 이론 에너지 밀도를 가지고 있어 고출력, 고 에너지 밀도의 발현이 가능한 전지이다. 이에 더해서 황은 값이 저렴하고 매장량이 풍부해 수급이 용이하며 환경친화적이라는 이점 때문에 휴대용 전자 기기뿐만 아니라 전기 자동차와 같은 중대형 장치의 에너지원으로 주목 받고 있다.In particular, sulfur, which is used as a positive electrode active material in lithium-sulfur secondary batteries, has a theoretical energy density of 1675 mAh/g, and has a theoretical energy density that is 5 times higher than that of the positive electrode active material used in conventional lithium secondary batteries. It is a battery capable of expressing the density. In addition, sulfur is attracting attention as an energy source for mid- to large-sized devices such as electric vehicles as well as portable electronic devices because of its low cost, rich reserves, easy supply, and environmental friendliness.

그러나, 황은 전도성이 없으므로, 다공성 탄소소재와 황-탄소 복합체를 구성하여 전기화학적 양극 활물질로 적용하고 있다. 이와 같이 양극 활물질로 적용된 황-탄소 복합체는 도선과 황-탄소 복합체 내의 탄소를 통하여 전달되는 전자와, 음극으로부터 전해액을 통하여 전달되는 리튬 이온에 의하여, 황(S)은 Li2S가 되며 리튬을 환원시킨다.However, since sulfur has no conductivity, a porous carbon material and a sulfur-carbon composite are formed and applied as an electrochemical positive electrode active material. In the sulfur-carbon composite applied as a positive electrode active material as described above, sulfur (S) becomes Li 2 S due to electrons transferred through the carbon in the lead wire and the sulfur-carbon composite, and lithium ions transferred through the electrolyte from the negative electrode. Reduce.

자연상태의 황은 S8형태의 고리 모양으로 존재하는데, 전지의 방전과 함께 Li2S가 되는 과정에서 Li2S8, Li2S6, Li2S4 등의 형태를 거치고, 이들 물질은 전해액에 잘 용해되므로, 이러한 리튬-폴리설파이드는 전해액에 용해되어 음극으로 이동하여 수명 감소(셔틀 효과)를 초래하는 문제가 있다. Sulfur in its natural state exists in the form of an S 8 ring, and in the process of becoming Li 2 S with the discharge of the battery, Li 2 S 8 , Li 2 S 6 , Li 2 S 4 After passing through the form of the like, and these materials are well soluble in the electrolyte, there is a problem that such lithium-polysulfide is dissolved in the electrolyte and moves to the negative electrode, resulting in a reduction in life (shuttle effect).

이와 같은 문제를 개선하기 위하여, 종래 황-탄소 복합체 대신 바나듐산화물-황 복합체를 양극 활물질로 적용하는 기술이 개발되고 있다.In order to improve this problem, a technique of applying a vanadium oxide-sulfur composite as a positive electrode active material instead of a conventional sulfur-carbon composite has been developed.

유럽공개특허 제3244472호 및 중국공개특허 제105322131호는 모두 바나듐산화물-황 복합체를 리튬 이차전지의 양극 활물질로 적용할 수 있음을 개시하고 있으나, V2O5를 바나듐산화물로 포함하는 상기 바나듐산화물-황 복합체를 양극 활물질로 적용할 경우, 집전체와 양극 간의 결착력이 좋지 않아, 양극 내 활물질 함량을 증가시키는데 한계가 있다. European Patent Publication No. 3244472 and Chinese Patent Publication No. 105322131 both disclose that a vanadium oxide-sulfur composite can be applied as a cathode active material for a lithium secondary battery, but the vanadium oxide containing V 2 O 5 as vanadium oxide. -When the sulfur composite is applied as a positive electrode active material, the binding force between the current collector and the positive electrode is not good, so there is a limit to increasing the content of the active material in the positive electrode.

이에, 높은 에너지 밀도를 갖는 리튬-황 이차전지의 제조를 위해 필수적인 고 황 함량 전극을 제조할 수 있는 물성을 가지는 바나듐산화물-복합체 개발이 필요하다.Accordingly, there is a need to develop a vanadium oxide-composite having physical properties capable of manufacturing a high sulfur content electrode, which is essential for manufacturing a lithium-sulfur secondary battery having a high energy density.

유럽공개특허 제3244472호European Patent Publication No. 3244472 중국공개특허 제105322131호Chinese Patent Publication No. 105322131

이에 본 발명자들은, 바나듐산화물로서 V6O13과 황을 혼합하여 바나듐산화물-황 복합체를 제조하였으며, 상기 바나듐산화물-황 복합체를 양극 활물질로서 사용하여 알루미늄 집전체에 양극 활물질층을 형성할 경우, 상기 알루미늄 집전체와 양극 활물질층 간의 결착력이 높고, 상기 양극 활물질층의 밀도를 증가시키는 것이 가능하여, 리튬 이차전지의 에너지 밀도를 향상시킬 수 있다는 것을 확인하였다.Accordingly, the present inventors prepared a vanadium oxide-sulfur composite by mixing V 6 O 13 and sulfur as a vanadium oxide, and when forming a positive electrode active material layer on an aluminum current collector by using the vanadium oxide-sulfur composite as a positive electrode active material, It was confirmed that the binding force between the aluminum current collector and the positive electrode active material layer was high, and it was possible to increase the density of the positive electrode active material layer, thereby improving the energy density of the lithium secondary battery.

따라서, 본 발명의 목적은 전극의 결착력을 개선하여 얇은 두께의 전극 형성이 가능한 바나듐산화물-황 복합체를 제공하는 것이다.Accordingly, an object of the present invention is to provide a vanadium oxide-sulfur composite capable of forming an electrode having a thin thickness by improving the binding force of the electrode.

본 발명의 다른 목적은 상기 바나듐산화물-황 복합체를 포함하는 양극을 제공하는 것이다.Another object of the present invention is to provide a positive electrode including the vanadium oxide-sulfur composite.

본 발명의 또 다른 목적은 상기 바나듐산화물-황 복합체를 포함하는 리튬 이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery including the vanadium oxide-sulfur composite.

상기 목적을 달성하기 위해, 본 발명은, 하기 화학식 1로 표시되는 바나듐산화물 및 황을 포함하는, 바나듐산화물-황 복합체를 제공한다:In order to achieve the above object, the present invention provides a vanadium oxide-sulfur complex comprising vanadium oxide and sulfur represented by the following Formula 1:

[화학식 1][Formula 1]

VnO2n +1 V n O 2n +1

상기 화학식 1에서, n은 3 내지 10의 정수이다.In Formula 1, n is an integer of 3 to 10.

본 발명은 또한, 집전체; 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층;을 포함하며, 상기 양극 활물질층은 상기 바나듐산화물-황 복합체를 포함하는. 리튬 이차전지용 양극을 제공한다.The present invention also includes a current collector; And a positive electrode active material layer formed on at least one surface of the current collector, wherein the positive electrode active material layer comprises the vanadium oxide-sulfur composite. It provides a positive electrode for a lithium secondary battery.

본 발명은 또한, 을 포함하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery comprising a.

본 발명에 따른 바나듐산화물-황 복합체는 집전체와의 결착력이 우수하므로, 상기 바나듐산화물-황 복합체를 이용하여 고로딩의 전극을 제조가 가능하다.Since the vanadium oxide-sulfur composite according to the present invention has excellent binding power to the current collector, it is possible to manufacture a high loading electrode using the vanadium oxide-sulfur composite.

또한, 상기 바나듐산화물-황 복합체를 양극재로 포함하는 고로딩 전극을 포함하는 리튬 이차전지는 에너지 밀도가 향상된 효과를 나타낼 수 있다.In addition, a lithium secondary battery including a high loading electrode including the vanadium oxide-sulfur composite as a cathode material may exhibit an effect of improving energy density.

도 1은 실시예 1에서 사용된 바나듐산화물(V6O13)의 SEM 사진이다.
도 2는 실시예 1에서 제조된 바나듐산화물-황 복합체(V6O13/S)의 SEM 사진이다.
도 3은 실시예 2, 비교예 2 및 비교예 5에서 각각 제조된 양극 표면 및 측면의 SEM 사진이다.
도 4는 실시예 2, 비교예 2 및 비교예 5에서 각각 제조된 양극에 대하여 결착력 실험 결과이다.
도 5a 및 도 5b는 각각 실시예 3, 비교예 3 및 비교예 6에서 각각 제조된 리튬-황 이차전지에 대한 첫 사이클 프로파일 및 사이클 데이터에 대한 그래프이다.
1 is a SEM photograph of vanadium oxide (V 6 O 13 ) used in Example 1.
2 is a SEM photograph of the vanadium oxide-sulfur composite (V 6 O 13 /S) prepared in Example 1.
3 is a SEM photograph of the surface and side surfaces of anodes prepared in Example 2, Comparative Example 2, and Comparative Example 5, respectively.
4 is a result of a binding force test for the positive electrode prepared in Example 2, Comparative Example 2, and Comparative Example 5, respectively.
5A and 5B are graphs of a first cycle profile and cycle data for lithium-sulfur secondary batteries each prepared in Example 3, Comparative Example 3, and Comparative Example 6, respectively.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

바나듐산화물-탄소 복합체Vanadium oxide-carbon complex

본 발명은 바나듐산화물 및 황을 포함하는, 바나듐산화물-황 복합체에 관한 것이다.The present invention relates to a vanadium oxide-sulfur complex comprising vanadium oxide and sulfur.

본 발명에 있어서, 상기 바나듐산화물은 하기 화학식 1로 표시되는 것일 수 있으나, 황과의 강한 물리적 결착을 야기하는 다가 양이온 성질을 가진 것이라면 이에 제한되는 것은 아니다: In the present invention, the vanadium oxide may be represented by the following Formula 1, but is not limited thereto as long as it has a polycationic property that causes strong physical binding with sulfur:

[화학식 1][Formula 1]

VnO2n+1 V n O 2n+1

상기 화학식 1에서, n은 3 내지 10의 정수이다.In Formula 1, n is an integer of 3 to 10.

바람직하게는, 상기 바나듐산화물은 V3O7, V4O9및 V6O13로 이루어진 군에서 선택되는 1종 이상일 수 있다.Preferably, the vanadium oxide may be at least one selected from the group consisting of V 3 O 7 , V 4 O 9 and V 6 O 13 .

또한, 상기 바나듐산화물은 상기 바나듐산화물-황 복합체 전체 중량을 기준으로 20 내지 40 중량%, 바람직하게는 20 내지 35 중량%, 보다 바람직하게는 20 내지 30 중량%일 수 있다. 상기 바나듐산화물의 함량이 20 중량% 미만이면 황 및 집전체와의 결착력이 저하될 수 있고, 40 중량% 초과이면 전지 성능이 저하될 수 있다. In addition, the vanadium oxide may be 20 to 40% by weight, preferably 20 to 35% by weight, more preferably 20 to 30% by weight based on the total weight of the vanadium oxide-sulfur composite. If the content of the vanadium oxide is less than 20% by weight, the bonding strength with sulfur and the current collector may be reduced, and if it is more than 40% by weight, the battery performance may be reduced.

본 발명에 있어서, 상기 황은 황(S8), Li2Sn(n≥1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x는 2.5 내지 50인 정수, n≥2]로 이루어진 군에서 선택되는 1종 이상일 수 있다. In the present invention, the sulfur is sulfur (S 8 ), Li 2 S n (n≥1), an organic sulfur compound and a carbon-sulfur polymer [(C 2 S x ) n , x is an integer of 2.5 to 50, n≥ 2] may be one or more selected from the group consisting of.

상기 황은 상기 바나듐산화물-황 복합체 전체 중량을 기준으로 60 내지 80 중량%, 바람직하게는 65 내지 80 중량%, 보다 바람직하게는 70 내지 80 중량%로 포함될 수 있다. 상기 황의 함량이 60 중량% 미만이면 전지 내 황 함량이 줄어들어 전지 용량이 과도하게 감소하고, 80 중량% 초과이면 양극 내 전기 전도도가 과도하게 감소하여 저항이 증가할 수 있다.The sulfur may be included in an amount of 60 to 80% by weight, preferably 65 to 80% by weight, more preferably 70 to 80% by weight, based on the total weight of the vanadium oxide-sulfur composite. If the sulfur content is less than 60% by weight, the sulfur content in the battery decreases and the battery capacity is excessively reduced. If it is more than 80% by weight, the electrical conductivity in the positive electrode is excessively decreased, and the resistance may increase.

바나듐산화물-황 복합체의 제조방법Method for preparing vanadium oxide-sulfur composite

본 발명은 또한, 바나듐산화물-황 복합체는 바나듐산화물과 황을 물리적으로 혼합하여 제조될 수 있다.In the present invention, the vanadium oxide-sulfur composite may be prepared by physically mixing vanadium oxide and sulfur.

본 발명에서 사용된 바나듐산화물은 황과의 강한 물리적 결착을 야기하는 다가 양이온 성질을 가지므로, 물리적 혼합만으로도 복합체를 형성할 수 있다. Since the vanadium oxide used in the present invention has a polyvalent cation property that causes strong physical binding with sulfur, a complex can be formed only by physical mixing.

상기 제조방법에서 사용된 바나듐산화물과 황의 구체예 및 제조된 복합체 내에서 함량은 전술한 바와 같다.Specific examples of the vanadium oxide and sulfur used in the preparation method and the content in the prepared composite are as described above.

리튬 이차전지용 양극Positive electrode for lithium secondary battery

본 발명은 또한, 전술한 바와 같은 바나듐산화물-황 복합체를 포함하는 리튬 이차전지용 양극에 관한 것이다. 이때, 상기 바나듐산화물-황 복합체는 바람직하게는 양극 활물질로 포함될 수 있다. The present invention also relates to a positive electrode for a lithium secondary battery comprising a vanadium oxide-sulfur composite as described above. In this case, the vanadium oxide-sulfur composite may preferably be included as a positive electrode active material.

상기 리튬 이차전지용 양극은 집전체; 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층;을 포함할 수 있다.The positive electrode for the lithium secondary battery includes a current collector; And a positive active material layer formed on at least one surface of the current collector.

상기 집전체와 양극 활물질층 사이의 결착력은 30 내지 300 kgf/m 이며, 상기 양극에서 황의 로딩량은 양극 두께 100 ㎛ 당 4.0 내지 10.0 mg/㎠ 일 수 있다. 이와 같은 높은 결착력과 로딩량은, 상기 양극 활물질에 포함된 바나듐산화물-황 복합체에 기인한 것이다. 또한, 리튬 이차전지용 양극의 높은 결착력과 로딩량으로 인하여, 리튬 이차전지의 에너지 밀도가 향상될 수 있다. The binding force between the current collector and the positive electrode active material layer may be 30 to 300 kgf/m, and the loading amount of sulfur in the positive electrode may be 4.0 to 10.0 mg/cm 2 per 100 μm thickness of the positive electrode. Such high binding force and loading amount is due to the vanadium oxide-sulfur composite contained in the positive electrode active material. In addition, due to the high binding force and loading amount of the positive electrode for a lithium secondary battery, the energy density of the lithium secondary battery may be improved.

본 발명에 있어서, 상기 집전체는 양극 집전체로서, 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.In the present invention, the current collector is a positive electrode current collector, and the positive electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium , Calcined carbon, or a surface-treated aluminum or stainless steel surface with carbon, nickel, titanium, silver or the like may be used. In this case, the positive electrode current collector may be in various forms such as a film, sheet, foil, net, porous material, foam, non-woven fabric having fine irregularities formed on the surface so as to increase adhesion to the positive electrode active material.

본 발명에 있어서, 상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함할 수 있으며, 추가로 충진제, 기타 첨가제 등을 포함할 수 있다. In the present invention, the positive electrode active material layer may include a positive electrode active material, a binder, and a conductive material, and may further include a filler, other additives, and the like.

상기 양극 활물질로는 전술한 바와 같은 바나듐산화물-황 복합체를 포함할 수 있다.The positive active material may include a vanadium oxide-sulfur composite as described above.

또한, 추가로 상기 양극 활물질로는 리튬 함유 전이금속 산화물이 바사용될 수도 있으며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - yCoyO2, LiCo1 - yMnyO2, LiNi1 - yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 - zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다. 또한, 이러한 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.In addition, a lithium-containing transition metal oxide may be used as the positive electrode active material, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li(Ni a Co b Mn c )O 2 (0 <a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi 1 - y Co y O 2 , LiCo 1 - y Mn y O 2 , LiNi 1 - y Mn y O 2 (O≤y<1), Li(Ni a Co b Mn c )O 4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn 2 - z Ni z O 4, LiMn 2 - z Co z O 4 (0 <z <2), LiCoPO may be used any one or a mixture of two or more of these four and is selected from the group consisting of LiFePO 4. In addition, in addition to these oxides, sulfide, selenide, and halide may be used.

또한, 상기 바인더로는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 하이드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.In addition, as the binder, polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.

또는, 상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.Alternatively, the conductive material is used to further improve the conductivity of the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.

상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is selectively used as a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical changes to the battery, and examples thereof include olefin-based polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber are used.

리튬 이차전지Lithium secondary battery

본 발명은 또한, 전술한 바와 같은 바나듐산화물-황 복합체를 포함하는 리튬 이차전지에 관한 것이다. The present invention also relates to a lithium secondary battery comprising the vanadium oxide-sulfur composite as described above.

본 발명에 따른 리튬 이차전지는 양극, 음극, 이들 사이에 개재된 분리막 및 전해질을 포함할 수 있다.The lithium secondary battery according to the present invention may include a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween.

본 발명에 있어서, 상기 양극은 전술한 바와 같은 바나듐산화물-황 복합체를 포함하는 양극일 수 있다.In the present invention, the anode may be an anode including the vanadium oxide-sulfur composite as described above.

본 발명에 있어서, 상기 리튬 이차전지의 음극은 음극 집전체 및 상기 음극 집전체 상에 형성된 음극 활물질을 갖는 음극 활물질층을 포함할 수 있다. In the present invention, the negative electrode of the lithium secondary battery may include a negative electrode current collector and a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector.

상기 음극 활물질로는 리튬 금속 혹은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 이때 음극은 결착제를 포함할 수 있으며, 결착제로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.As the negative active material, lithium metal or a carbon material through which lithium ions can be occluded and released may be used, such as silicon or tin. Preferably, a carbon material may be used, and both low crystalline carbon and high crystalline carbon may be used as the carbon material. As low crystalline carbon, soft carbon and hard carbon are typical, and high crystalline carbon is natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber (mesophase pitch based carbon fiber), meso-carbon microbeads, mesophase pitches, and high-temperature calcined carbons such as petroleum or coal tar pitch derived cokes are typical. At this time, the negative electrode may include a binder, and as the binder, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, Various types of binder polymers, such as polymethylmethacrylate, may be used.

또한, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.In addition, the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode current collector, like the positive electrode current collector, may be used in various forms such as a film, sheet, foil, net, porous body, foam, nonwoven fabric having fine irregularities on the surface thereof.

이때, 상기 음극 활물질층은 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.In this case, the negative active material layer may further include a binder resin, a conductive material, a filler, and other additives.

상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 하이드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder resin is used for bonding of an electrode active material and a conductive material and bonding to a current collector. Examples of such binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.

상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The conductive material is used to further improve the conductivity of the electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.

상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is selectively used as a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical changes to the battery, and examples thereof include olefin-based polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber are used.

본 발명에 있어서, 상기 분리막은 다공성 기재로 이루어질 수 있으며, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.In the present invention, the separator may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate commonly used in an electrochemical device, for example, a polyolefin-based porous membrane or a nonwoven fabric. It can be used, but is not particularly limited thereto.

상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.Examples of the polyolefin-based porous membrane include polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, respectively, or a mixture of them. There is one membrane.

상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌 테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌 테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르 (polyester), 폴리아세탈 (polyacetal), 폴리아미드 (polyamide), 폴리카보네이트 (polycarbonate), 폴리이미드 (polyimide), 폴리에테르에테르케톤 (polyetheretherketone), 폴리에테르설폰 (polyethersulfone), 폴리페닐렌 옥사이드 (polyphenyleneoxide), 폴리페닐렌 설파이드 (polyphenylenesulfide) 및 폴리에틸렌 나프탈렌 (polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포를 들 수 있다. 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.As the nonwoven fabric, in addition to the polyolefin nonwoven fabric, for example, polyethylene terephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate ), polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, and polyethylenenaphthalene, respectively, alone or Nonwoven fabrics formed of polymers obtained by mixing them are exemplified. The structure of the nonwoven fabric may be a spunbond nonwoven fabric composed of long fibers or a melt blown nonwoven fabric.

상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 ㎛ 내지 100 ㎛, 또는 5 ㎛ 내지 50 ㎛이다.The thickness of the porous substrate is not particularly limited, but is 1 µm to 100 µm, or 5 µm to 50 µm.

다공성 기재에 존재하는 기공의 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001㎛ 내지 50㎛ 및 10% 내지 95%일 수 있다.The size and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 μm to 50 μm and 10% to 95%, respectively.

본 발명에 있어서, 상기 전해액은 비수 전해액일 수 있으며, 상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들 것 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염은 LiFSI, LiPF6, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬 및 4-페닐 붕산 리튬으로 이루어진 군에서 선택되는 1종 이상일 수 있다.In the present invention, the electrolyte may be a nonaqueous electrolyte, and the electrolyte salt contained in the nonaqueous electrolyte is a lithium salt. The lithium salts may be used without limitation, those commonly used in an electrolyte solution for a lithium secondary battery. For example, the lithium salt is LiFSI, LiPF 6 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, it may be one or more selected from the group consisting of lithium chloroborane and lithium 4-phenyl borate.

전술한 비수 전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 슬러리인 카보네이트 화합물을 포함할 수 있다.As organic solvents included in the above-described non-aqueous electrolyte, those commonly used in electrolytes for lithium secondary batteries can be used without limitation, and for example, ethers, esters, amides, linear carbonates, cyclic carbonates, etc. can be used alone or in two or more types. It can be mixed and used. Among them, representatively, a cyclic carbonate, a linear carbonate, or a carbonate compound that is a slurry thereof may be included.

상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리가 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, Any one selected from the group consisting of 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and halides thereof, or two or more of these slurries. These halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.

또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. 특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.In addition, a specific example of the linear carbonate compound is any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or Two or more of these slurries may be representatively used, but are not limited thereto. In particular, among the carbonate-based organic solvents, ethylene carbonate and propylene carbonate, which are cyclic carbonates, are organic solvents of high viscosity and have high dielectric constants, so that lithium salts in the electrolyte can be more easily dissociated. If a low viscosity, low dielectric constant linear carbonate is mixed in an appropriate ratio and used, an electrolyte solution having a higher electrical conductivity can be prepared.

또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, as the ether of the organic solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or two or more types of slurry may be used. , But is not limited thereto.

또한, 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, Any one selected from the group consisting of σ-valerolactone and ε-caprolactone, or two or more types of slurry may be used, but is not limited thereto.

상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.The injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device, depending on the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.

본 발명에 따른 리튬 이차전지는, 일반적인 공정인 권취(winding) 이외에도 분리막와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.In the lithium secondary battery according to the present invention, in addition to winding, which is a general process, lamination and stacking and folding processes of a separator and an electrode are possible.

그리고, 상기 전지케이스의 형상은 특별히 제한되지 않으며, 원통형, 적층형, 각형, 파우치(pouch)형 또는 코인(coin)형 등 다양한 형상으로 할 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.In addition, the shape of the battery case is not particularly limited, and may be in various shapes such as a cylindrical shape, a stacked type, a square shape, a pouch type, or a coin type. The structure and manufacturing method of these batteries are well known in this field, and thus detailed descriptions are omitted.

또한, 상기 리튬 이차전지는 사용하는 양극/음극 재질에 따라 리튬-황 이차전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하다.In addition, the lithium secondary battery can be classified into various batteries, such as lithium-sulfur secondary batteries, lithium-air batteries, lithium-oxide batteries, and lithium all-solid batteries, depending on the material of the positive electrode/cathode used.

본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.The present invention also provides a battery module including the lithium secondary battery as a unit cell.

상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.

상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.

리튬-황 이차전지Lithium-sulfur secondary battery

본 발명에 따른 바나듐산화물-황 복합체는 리튬 이차전지 중에서도, 리튬-황 이차전지의 양극에 적용할 수 있다. The vanadium oxide-sulfur composite according to the present invention can be applied to a positive electrode of a lithium-sulfur secondary battery, among lithium secondary batteries.

이때, 상기 리튬-황 이차전지는 양극 활물질로서 상기 바나듐산화물-황 복합체를 포함하는 전지일 수 있다. In this case, the lithium-sulfur secondary battery may be a battery including the vanadium oxide-sulfur composite as a positive electrode active material.

상기 바나듐산화물-황 복합체는 집전체와의 결착력이 좋아, 고밀도의 양극 활물질층을 형성할 수 있으므로, 이에 따라, 전지 에너지 밀도를 향상시킬 수 있다.The vanadium oxide-sulfur composite has good binding power to the current collector and can form a high-density positive electrode active material layer, thereby improving battery energy density.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid the understanding of the present invention, but the following examples are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that changes and modifications fall within the scope of the appended claims.

실시예 1: 바나듐산화물-황 복합체 제조 (VExample 1: Preparation of vanadium oxide-sulfur composite (V 66 OO 1313 /S)/S)

바나듐산화물(V6O13) 30 중량% 및 황(S) 분말 70 중량%를 물리적으로 혼합하여, 바나듐산화물-황 복합체(V6O13/S)를 제조하였다.By physically mixing 30% by weight of vanadium oxide (V 6 O 13 ) and 70% by weight of sulfur (S) powder, a vanadium oxide-sulfur composite (V 6 O 13 /S) was prepared.

실시예 2: 양극 제조Example 2: Preparation of positive electrode

양극 활물질로서 실시예 1에서 제조된 바나듐산화물-황 복합체(V6O13/S), 도전재로서 카본블랙, 바인더로서 폴리비닐리덴플로라이드(PVDF)를 75:15:10의 중량비로 혼합한 혼합물 0.2g을 용매인 NMP(N-Methyl-2-pyrrolidone) 1100 μL에 분산시켜 양극 슬러리를 제조하였다.The vanadium oxide-sulfur composite (V 6 O 13 /S) prepared in Example 1 as a positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed in a weight ratio of 75:15:10. 0.2 g of the mixture was dispersed in 1100 μL of NMP (N-Methyl-2-pyrrolidone) as a solvent to prepare a positive electrode slurry.

닥터 블레이드를 이용하여, 상기 양극 슬러리를 Al 호일(두께: 20 ㎛, 무께 0.00635 g)에 700㎛ 두께로 코팅하고 건조시켜 양극을 제조하였다.Using a doctor blade, the positive electrode slurry was coated on an Al foil (thickness: 20 µm, thickness 0.00635 g) to a thickness of 700 µm and dried to prepare a positive electrode.

실시예 3: 리튬-황 이차전지 제조Example 3: Preparation of lithium-sulfur secondary battery

음극으로서 50 ㎛ 두께의 리튬 호일, 상기 실시예 2에서 제조된 양극, 전해액은 용매로서 DOL/DME(1:1, v/v)을 사용하고, 1M LiTFSI와 0.2 M의 LiNO3를 포함하는 조성으로 하여 제조된 전해액 및 폴리올레핀 분리막을 사용하여 코인셀 형태(CR2032)의 리튬-황 이차전지를 제조하였다. 이때, DOL은 디옥솔란, DME은 디메톡시에탄을 의미한다.A 50 μm-thick lithium foil as a negative electrode, the positive electrode prepared in Example 2, the electrolyte was DOL/DME (1:1, v/v) as a solvent, and a composition containing 1 M LiTFSI and 0.2 M LiNO 3 A coin cell type (CR2032) lithium-sulfur secondary battery was manufactured using the prepared electrolyte and a polyolefin separator. At this time, DOL means dioxolane and DME means dimethoxyethane.

비교예 1: 탄소-황 복합체 제조 (C/S)Comparative Example 1: Preparation of carbon-sulfur composite (C/S)

바나듐산화물(V6O13) 대신 활성탄소(actovated carbon, YP-50, Kuraray Co.)를 사용한 것을 제외하고, 실시예 1과 동일한 방식으로 실시하여, 탄소-황 복합체를 제조하였다.Except for using activated carbon (actovated carbon, YP-50, Kuraray Co.) instead of vanadium oxide (V 6 O 13 ), a carbon-sulfur composite was prepared in the same manner as in Example 1.

비교예 2: 양극 제조 Comparative Example 2: Preparation of positive electrode

실시예 1의 바나듐산화물-황 복합체(V6O13/S) 대신 비교예 1의 탄소-황 복합체(C/S)를 사용한 것을 제외하고, 실시예 2와 동일한 방식으로 양극을 제조하였다.A positive electrode was manufactured in the same manner as in Example 2, except that the carbon-sulfur composite (C/S) of Comparative Example 1 was used instead of the vanadium oxide-sulfur composite (V 6 O 13 /S) of Example 1.

비교예Comparative example 3: 리튬-황 이차전지 3: lithium-sulfur secondary battery

실시예 2에서 제조된 양극 대신 비교예 2에서 제조된 양극을 사용한 것을 제외하고, 실시예 3과 동일한 방식으로 리튬-황 이차전지를 제조하였다.A lithium-sulfur secondary battery was manufactured in the same manner as in Example 3, except that the positive electrode prepared in Comparative Example 2 was used instead of the positive electrode prepared in Example 2.

비교예 4: 바나듐산화물-황 복합체 제조 (VComparative Example 4: Preparation of vanadium oxide-sulfur composite (V 22 OO 55 /S)/S)

바나듐산화물로서 V6O13 대신 V2O5를 사용한 것을 제외하고, 실시예 1과 동일한 방식으로 실시하여, 탄소-황 복합체를 제조하였다.Except for using V 2 O 5 instead of V 6 O 13 as a vanadium oxide, a carbon-sulfur composite was prepared in the same manner as in Example 1.

비교예 5: 양극 제조 Comparative Example 5: Preparation of positive electrode

실시예 1의 바나듐산화물-황 복합체(V6O13/S) 대신 비교예 4의 바나듐산화물-황 복합체(V2O5/S)를 사용한 것을 제외하고, 실시예 2와 동일한 방식으로 양극을 제조하였다.Except for using the vanadium oxide-sulfur composite (V 2 O 5 /S) of Comparative Example 4 instead of the vanadium oxide-sulfur composite (V 6 O 13 /S) of Example 1, the positive electrode was used in the same manner as in Example 2 Was prepared.

비교예 6: 리튬-황 이차전지Comparative Example 6: Lithium-sulfur secondary battery

실시예 2에서 제조된 양극 대신 비교예 5에서 제조된 양극을 사용한 것을 제외하고, 실시예 3와 동일한 방식으로 리튬-황 이차전지를 제조하였다.A lithium-sulfur secondary battery was manufactured in the same manner as in Example 3, except that the positive electrode prepared in Comparative Example 5 was used instead of the positive electrode prepared in Example 2.

실험예Experimental example 1: 양극 로딩량 측정 1: Measurement of anode loading

실시예 2, 비교예 2 및 비교예 5에서 각각 제조된 양극에 대하여 양극 활물질 로딩량, 황 로딩량 및 전극 두께를 아래와 같은 방법으로 측정하여, 그 결과를 하기 표 1에 기재하였다. For the positive electrodes prepared in Example 2, Comparative Example 2, and Comparative Example 5, the positive electrode active material loading amount, sulfur loading amount, and electrode thickness were measured in the following manner, and the results are shown in Table 1 below.

상기 양극 활물질 로딩량은 양극의 무게에서 집전체 무게만큼 빼서 계산하였다.The positive active material loading amount was calculated by subtracting the weight of the current collector from the weight of the positive electrode.

상기 황 로딩량은 상기 양극 활물질의 로딩량에서 황 함량을 곱하여 계산하였다.The sulfur loading amount was calculated by multiplying the sulfur content by the loading amount of the positive electrode active material.

상기 양극의 두께는 접촉식 전극두께측정기(Hitach)로 측정하였다.The thickness of the anode was measured with a contact electrode thickness meter (Hitach).

비교예 2Comparative Example 2 비교예 5Comparative Example 5 실시예 2Example 2 양극 활물질 로딩량(active loading, mg/㎠)Positive electrode active material loading (active loading, mg/㎠) 4.204.20 4.534.53 5.165.16 황 로딩량(Sulfur loading, mg/㎠)Sulfur loading (mg/㎠) 2.942.94 3.173.17 3.613.61 양극 두께(Thickness, ㎛)Anode thickness (Thickness, ㎛) 108108 98.098.0 81.081.0 비율(양극 두께: 황 로딩량)Ratio (anode thickness: sulfur loading) 1:0.02721:0.0272 1:0.03241:0.0324 1:0.04461:0.0446

그 결과, 상기 표 1에 나타난 바와 같이, 실시예 2의 경우 양극 두께 대비 황 로딩량이 가장 높은 것을 알 수 있다.As a result, as shown in Table 1, in the case of Example 2, it can be seen that the sulfur loading amount compared to the anode thickness is the highest.

실험예 2: 바나듐산화물-황 복합체 (VExperimental Example 2: Vanadium oxide-sulfur complex (V 66 OO 1313 /S) 및 양극 관찰 /S) and anode observation

실시예 1에서 사용된 바나듐산화물(V6O13) 및 이를 이용하여 바나듐산화물-황 복합체 (V6O13/S) 관찰 하였다. SEM 기기(FE-SEM, JEOL JSM07600F)를 이용하여 관찰하였다.The vanadium oxide (V 6 O 13 ) used in Example 1 and the vanadium oxide-sulfur composite (V 6 O 13 /S) were observed using the same. It was observed using a SEM instrument (FE-SEM, JEOL JSM07600F).

도 1은 실시예 1에서 사용된 바나듐산화물(V6O13)의 SEM 사진이다. 1 is a SEM photograph of vanadium oxide (V 6 O 13 ) used in Example 1.

도 1을 참조하면, 100 내지 200 nm 의 나노 스케일 수준의 파티클이 응집되어 있는 것을 알 수 있다. 상기 나노 스케일 수준의 파티클 형태로 인하여, 상기 바나듐산화물의 비표면적이 증가되어, 전극 접착력이 향상되고, 결과적으로 전지 성능을 향상시킬 수 있다.Referring to FIG. 1, it can be seen that particles at the nanoscale level of 100 to 200 nm are aggregated. Due to the particle shape at the nanoscale level, the specific surface area of the vanadium oxide is increased, thereby improving electrode adhesion, and consequently improving battery performance.

도 2는 실시예 1에서 제조된 바나듐산화물-황 복합체(V6O13/S)의 SEM 사진이다. 2 is a SEM photograph of the vanadium oxide-sulfur composite (V 6 O 13 /S) prepared in Example 1.

도 2를 참조하면, 바나듐산화물-황 복합체(V6O13/S)는 마이크론(micron) 수준의 황 입자와 바나듐산화물(V6O13)이 혼합되어 있어, 고밀도의 전극이 구성이 가능함을 알 수 있다.2, the vanadium oxide-sulfur composite (V 6 O 13 /S) is a mixture of micron-level sulfur particles and vanadium oxide (V 6 O 13 ), so that a high-density electrode can be configured. Able to know.

도 3은 실시예 2, 비교예 2 및 비교예 5에서 각각 제조된 양극 표면 및 측면의 SEM 사진이다. 3 is a SEM photograph of the surface and side surfaces of anodes prepared in Example 2, Comparative Example 2, and Comparative Example 5, respectively.

도 3을 참조하면, 실시예 1 양극의 밀도가 가장 높으면서도 두께가 얇은 것을 알 수 있다.Referring to FIG. 3, it can be seen that the thickness of the anode of Example 1 is the highest and the thickness is thin.

실험예 3: 양극 결착력 테스트Experimental Example 3: Anode binding force test

실시예 2, 비교예 2 및 비교예 5에서 각각 제조된 양극에 대하여 결착력 테스트를 실시하였다.A binding force test was performed on the positive electrodes prepared in Example 2, Comparative Example 2, and Comparative Example 5, respectively.

상기 결착력은 Peel tester(인스트론)를 사용하여 측정하였다. 상기 Peel tester는 전극에 접착테이프를 부착한 뒤, 당겨서 떨어져 나갈때의 힘을 측정하는 장치이다.The binding force was measured using a Peel tester (Instron). The Peel tester is a device that measures the force when an adhesive tape is attached to an electrode and then pulled away.

도 4는 실시예 2, 비교예 2 및 비교예 5에서 각각 제조된 양극에 대하여 결착력 실험 결과이다.4 is a result of a binding force test for the positive electrode prepared in Example 2, Comparative Example 2, and Comparative Example 5, respectively.

도 4를 참조하면, 알루미늄 집전체와 양극 슬러리의 결착력은 실시예 2(V6O13/S)는 30 ~ 300 kgf/m, 비교예 2(V2O5/S)는 20 ~ 50 kgf/m, 비교예 5(activated carbon, YP-50, C/S)는 10 ~ 20 kgf/m 수준을 나타내는 것을 알 수 있다.4, the binding force of the aluminum current collector and the positive electrode slurry is 30 to 300 kgf/m in Example 2 (V 6 O 13 /S), and 20 to 50 kgf in Comparative Example 2 (V 2 O 5 /S). It can be seen that /m, Comparative Example 5 (activated carbon, YP-50, C/S) represents a level of 10 to 20 kgf/m.

이는 3D 나노 내지 마이크로 구조를 가지는 V6O13과 황의 높은 유도 쌍극자 힘에 기인한 것으로, V2O5(3D 마이크로-벌크) 및 C(activated carbon, 0D)와는 구조적 차이를 가진다. This is due to the high induced dipole force of V 6 O 13 and sulfur having a 3D nano or micro structure, and has a structural difference from V 2 O 5 (3D micro-bulk) and C (activated carbon, 0D).

또한, 양극 슬러리 제조 시 기공률과 관련 된 밀도 측면에서 볼 시 V6O13/S (3.91 g/㎤) > V2O5/S (3.357 g/㎤) > C/S (2.2 g/㎤) 의 수치를 보인다. In addition, in terms of the density related to the porosity when preparing the cathode slurry, V 6 O 13 /S (3.91 g/cm 3)> V 2 O 5 /S (3.357 g/cm 3)> C/S (2.2 g/cm 3) Shows the shame.

이와 반대로 기공률 및 양극 슬러리 제조시 용매 흡수율은 V6O13/S < V2O5/S < C/S 이며, 동일한 두께의 양극 슬러리 코팅 후 건조시 갈라짐현상이 V6O13/S 에서 가장 적게 발생하며 각 비교군과 두께당 황의 면적당 로딩이 가장 효율적이므로 에너지 밀도 및 하이로딩에 유리함을 알 수 있다.In contrast, the porosity and the positive electrode slurry prepared during the solvent absorption is V 6 O 13 / S <V 2 O 5 / S < a C / S, and then the positive electrode slurry was coated with the same thickness when dry cracking phenomenon is V 6 O best at 13 / S It can be seen that it is advantageous for energy density and high-loading because it occurs less and the loading per area of sulfur per thickness and each comparative group is most efficient.

실험예 4: 리튬-황 이차전지의 성능 개선 효과 분석Experimental Example 4: Analysis of the performance improvement effect of lithium-sulfur secondary battery

실시예 3, 비교예 3 및 비교예 6에서 각각 제조된 리튬-황 이차전지에 대하여, 상온에서 충/방전을 반복하여 충방전 테스트를 진행하였으며, 첫 방전은 0.5C로 진행한 이후 0.2C/0.2C로 충/방전을 계속 반복하였다. 이를 통해 첫 방전시 용량-전압 그래프를 얻어 초기방전 성능을 평가하였으며, 사이클 반복에 따른 용량변화 그래프를 얻어 고율성능(0.2C/0.2C)을 평가하였다.For the lithium-sulfur secondary batteries prepared in Example 3, Comparative Example 3, and Comparative Example 6, respectively, charging/discharging was repeatedly performed at room temperature to conduct a charge/discharge test, and the first discharge was performed at 0.5C and then 0.2C/ Charging/discharging was continuously repeated at 0.2C. Through this, a capacity-voltage graph was obtained at the first discharge to evaluate the initial discharge performance, and a graph of capacity change according to cycle repetition was obtained to evaluate high rate performance (0.2C/0.2C).

도 5a 및 도 5b는 각각 실시예 3, 비교예 3 및 비교예 6에서 각각 제조된 리튬-황 이차전지에 대한 첫 사이클 프로파일 및 사이클 데이터에 대한 그래프이다.5A and 5B are graphs of a first cycle profile and cycle data for lithium-sulfur secondary batteries each prepared in Example 3, Comparative Example 3, and Comparative Example 6, respectively.

도 5a 및 도 5b를 참조하면, 실시예 3의 리튬-황 이차전지는 전지 성능이 비교예 3 및 비교예 6에 비해 상대적으로 우수한 것을 알 수 있다.5A and 5B, it can be seen that the lithium-sulfur secondary battery of Example 3 has relatively superior battery performance compared to Comparative Examples 3 and 6.

이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.In the above, although the present invention has been described by limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following description by those of ordinary skill in the art to which the present invention pertains. It goes without saying that various modifications and variations are possible within the equivalent range of the claims to be made.

Claims (8)

하기 화학식 1로 표시되는 바나듐산화물 및 황을 포함하는, 바나듐산화물-황 복합체:
[화학식 1]
VnO2n +1
상기 화학식 1에서, n은 3 내지 10의 정수이다.
A vanadium oxide-sulfur complex comprising vanadium oxide and sulfur represented by the following formula (1):
[Formula 1]
V n O 2n +1
In Formula 1, n is an integer of 3 to 10.
제1항에 있어서,
상기 바나듐산화물 20 내지 40 중량% 및 황 60 내지 80 중량%를 포함하는, 바나듐산화물-황 복합체.
The method of claim 1,
Containing 20 to 40% by weight of the vanadium oxide and 60 to 80% by weight of sulfur, vanadium oxide-sulfur composite.
제1항에 있어서,
상기 바나듐산화물은 V3O7, V4O9 및 V6O13로 이루어진 군에서 선택되는 1종 이상인, 바나듐산화물-황 복합체.
The method of claim 1,
The vanadium oxide is V 3 O 7 , V 4 O 9 And V 6 O 13 at least one selected from the group consisting of, vanadium oxide-sulfur complex.
집전체; 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층;을 포함하며,
상기 양극 활물질층은 제1항 내지 제3항 중 어느 한 항에 따른 바나듐산화물-황 복합체를 포함하는, 리튬 이차전지용 양극.
Current collector; And a positive electrode active material layer formed on at least one surface of the current collector,
The positive electrode active material layer comprises the vanadium oxide-sulfur composite according to any one of claims 1 to 3, wherein the positive electrode for a lithium secondary battery.
제4항에 있어서,
상기 집전체와 양극 활물질층 사이의 결착력은 30 내지 300 kgf/m 인, 리튬 이차전지용 양극.
The method of claim 4,
The binding force between the current collector and the positive active material layer is 30 to 300 kgf / m, the positive electrode for a lithium secondary battery.
제4항에 있어서,
상기 양극의 황 로딩량은 양극 두께 100 ㎛ 당 4.0 내지 10.0 mg/㎠인, 리튬 이차전지용 양극.
The method of claim 4,
The sulfur loading amount of the positive electrode is 4.0 to 10.0 mg/cm 2 per 100 μm of the positive electrode thickness, a positive electrode for a lithium secondary battery.
제4항의 양극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the positive electrode of claim 4. 제7항에 있어서,
상기 리튬 이차전지는 리튬-황 이차전지인, 리튬 이차전지

The method of claim 7,
The lithium secondary battery is a lithium-sulfur secondary battery, a lithium secondary battery

KR1020190087337A 2019-07-19 2019-07-19 Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same KR20210010025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190087337A KR20210010025A (en) 2019-07-19 2019-07-19 Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190087337A KR20210010025A (en) 2019-07-19 2019-07-19 Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
KR20210010025A true KR20210010025A (en) 2021-01-27

Family

ID=74238136

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190087337A KR20210010025A (en) 2019-07-19 2019-07-19 Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR20210010025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899433A (en) * 2022-05-11 2022-08-12 电子科技大学长三角研究院(湖州) Iron-doped vanadium dioxide catalyst, preparation method and application thereof in lithium-sulfur battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244472A (en) 1963-09-19 1966-04-05 Sankyo Kogyo Kk Small-sized movie cameras with a double track film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244472A (en) 1963-09-19 1966-04-05 Sankyo Kogyo Kk Small-sized movie cameras with a double track film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899433A (en) * 2022-05-11 2022-08-12 电子科技大学长三角研究院(湖州) Iron-doped vanadium dioxide catalyst, preparation method and application thereof in lithium-sulfur battery
CN114899433B (en) * 2022-05-11 2023-11-14 电子科技大学长三角研究院(湖州) Iron-doped vanadium dioxide catalyst, preparation method and application thereof in lithium-sulfur battery

Similar Documents

Publication Publication Date Title
CN110754009B (en) Lithium secondary battery
CN110785886B (en) Lithium secondary battery
KR101540618B1 (en) Electrode for Secondary Battery and Method of Preparing the Same
KR102161591B1 (en) Positive electrode for lithium secondary battery having improved capacity and safety and lithium secondary battery comprising the same
KR20130117718A (en) Multi layered electrode and the method of the same
US9853328B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery including the same
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR20200089182A (en) LITHIUM SECONDARY BATTERY COMPRISING Si-BASED COMPOUND WITH EXCELLENT ENERGY DENSITY
KR101588624B1 (en) Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
KR102617872B1 (en) Sulfur-carbon composite, method for preparing the same and lithium secondary battery comprising the same
KR20130116038A (en) Multi layered electrode and the method of the same
US20230135194A1 (en) Negative electrode and secondary battery comprising the same
KR20210032637A (en) Carbon-sulfurized polymer composite and lithium secondary battery comprising the same
EP3764440A1 (en) Sulfur-carbon composite and lithium secondary battery comprising same
KR20200126205A (en) Positive electrode slurry for lithium secondary battery, method for preparing the same, positive electrode and lithium secondary battery comprising the same
KR20200109861A (en) Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR20210010025A (en) Vanadium oxide-sulfur composite, positive electrode and lithium secondary battery comprising the same
KR102567964B1 (en) Lithium secondary battery
KR101580486B1 (en) Anode with Improved Wetting Properties and Lithium Secondary Battery Having the Same
KR20130116027A (en) The method for preparing electrodes and the electrodes prepared by using the same
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
KR20220109699A (en) Method for manufacturing secondary battery
KR20210011245A (en) Method for manufacturing secondary battery
KR102328262B1 (en) Sulfur-carbon composite, positive electrode and lithium secondary battery comprising the same
US12027704B2 (en) Sulfur-carbon composite and lithium secondary battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal