KR20210009147A - A method of manufacturing optical sensor using quantum dot and the optical sensor - Google Patents

A method of manufacturing optical sensor using quantum dot and the optical sensor Download PDF

Info

Publication number
KR20210009147A
KR20210009147A KR1020190085773A KR20190085773A KR20210009147A KR 20210009147 A KR20210009147 A KR 20210009147A KR 1020190085773 A KR1020190085773 A KR 1020190085773A KR 20190085773 A KR20190085773 A KR 20190085773A KR 20210009147 A KR20210009147 A KR 20210009147A
Authority
KR
South Korea
Prior art keywords
optical sensor
quantum dots
thin film
cdse
quantum dot
Prior art date
Application number
KR1020190085773A
Other languages
Korean (ko)
Other versions
KR102664336B1 (en
Inventor
한광준
김명길
김재현
박성규
Original Assignee
현대자동차주식회사
중앙대학교 산학협력단
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 중앙대학교 산학협력단, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190085773A priority Critical patent/KR102664336B1/en
Publication of KR20210009147A publication Critical patent/KR20210009147A/en
Application granted granted Critical
Publication of KR102664336B1 publication Critical patent/KR102664336B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The present invention relates to a method of manufacturing an optical sensor using a quantum dot, which includes the steps of: coating a quantum dot on a thin film transistor; irradiating ultraviolet (UV) light to a partial region to be patterned on the thin film transistor coated with the quantum dots; and rinsing after curing a UV-irradiated partial area. According to the present invention, optical and electrical properties are excellent through ligand substitution, and fine patterning is possible.

Description

양자점을 이용한 광센서 제조 방법 및 그 제조 방법에 의해 제조되는 광센서{A METHOD OF MANUFACTURING OPTICAL SENSOR USING QUANTUM DOT AND THE OPTICAL SENSOR}A method of manufacturing an optical sensor using quantum dots, and an optical sensor manufactured by the manufacturing method {A METHOD OF MANUFACTURING OPTICAL SENSOR USING QUANTUM DOT AND THE OPTICAL SENSOR}

본 발명은 광센서 제조 방법에 관한 것으로서, 특히 양자점을 이용한 광센서 및 제조 방법에 관한 것이다.The present invention relates to an optical sensor manufacturing method, in particular, to an optical sensor and manufacturing method using quantum dots.

물질의 크기가 수 내지 수십 나노미터(nm) 단위로 줄어들 경우 전기적, 광학적 성질이 크게 변화하게 되는데, 이러한 반도체 나노 입자를 양자점(Quantum dot)이라 한다.When the size of a material is reduced to several to tens of nanometers (nm), the electrical and optical properties change greatly. Such semiconductor nanoparticles are referred to as quantum dots.

양자점은 무기물질로서 고온에서 안정성이 떨어지는 유기물질에 비해 전기적으로 고온 안정성을 가지며, 전기적/광학적/기계적 특성이 우수하다.Quantum dots are inorganic materials and have electrical high-temperature stability compared to organic materials that are less stable at high temperatures, and have excellent electrical/optical/mechanical properties.

또한, 소재별로 빛의 파장에 따른 흡수율이 달라 선택적 파장 관리에 유리하기 때문에 광센서를 위한 산화물 반도체에 양자점을 이용한 기술이 최근 계속적으로 개발되고 있다.In addition, since the absorption rate according to the wavelength of light is different for each material, it is advantageous for selective wavelength management, so a technology using quantum dots for an oxide semiconductor for an optical sensor has been continuously developed in recent years.

도 1은 산화물 반도체로서 박막 트랜지스터 소자(TFT, 10)의 일 예를 도시한 것이며, 도 2는 도 1의 박막 트랜지스터 소자를 포함하는 단위 광센서(20)의 일 예를 도시한 것으로서, 기판(11), 게이트 전극(12), 게이트 절연층(13), 채널층(14), 소스/드레인 전극(15, 16)을 포함한다.FIG. 1 shows an example of a thin film transistor device (TFT) 10 as an oxide semiconductor, and FIG. 2 shows an example of a unit optical sensor 20 including the thin film transistor device of FIG. 11), a gate electrode 12, a gate insulating layer 13, a channel layer 14, and source/drain electrodes 15 and 16.

기판(11)은 실리콘 웨이퍼, 유리, 폴리이미드 등의 다양한 재질일 수 있다.The substrate 11 may be made of various materials such as silicon wafer, glass, and polyimide.

게이트 전극(12)은 기판 상에 형성되며, 금, 크롬 등의 금속으로 형성될 수 있다.The gate electrode 12 is formed on the substrate, and may be formed of a metal such as gold or chromium.

게이트 전극(12) 상에 형성된 게이트 절연층(13)은 실리콘 산화막, 알루미늄 산화막으로 형성될 수 있다.The gate insulating layer 13 formed on the gate electrode 12 may be formed of a silicon oxide film or an aluminum oxide film.

그리고, 게이트 절연층(13) 상에 형성된 채널층(14)은 인듐-갈륨-징크-옥사이드(IGZO) 등의 금속 산화물로 형성될 수 있다.In addition, the channel layer 14 formed on the gate insulating layer 13 may be formed of a metal oxide such as indium-gallium-zinc-oxide (IGZO).

다음, 소스/드레인 전극(15, 16)은 알루미늄, 금 등의 금속 외에 IZO, ITO 등 고전도성 산화물로 형성될 수 있다.Next, the source/drain electrodes 15 and 16 may be formed of highly conductive oxides such as IZO and ITO in addition to metals such as aluminum and gold.

양자점을 이용하는 박막 트랜지스터 소자는 이와 같은 산화물 반도체 박막 트랜지스터 상에 미세 패터닝된 양자점 박막(QD)을 형성하여 구성된다.A thin film transistor device using quantum dots is constructed by forming a finely patterned quantum dot thin film (QD) on such an oxide semiconductor thin film transistor.

도 3a는 박막 트랜지스터 소자의 양자점 박막 부분을 나타낸 것이며, A 부분을 확대 도시한 것이 도 3b이다.FIG. 3A shows a portion of a quantum dot thin film of a thin film transistor device, and FIG. 3B is an enlarged view of a portion A.

도시와 같이 양자점은 표면에 리간드를 가지고 있어, 양자점 간의 연결을 형성한다.As shown in the figure, quantum dots have a ligand on the surface, forming a connection between the quantum dots.

기존에는 EDT(EthanEdiThiol), 올레산(Oleic acid), 티오시안산(SCN-) 등을 리간드로서 사용하였으나, 그 전기적 성능이 부족하며 미세 패턴 구현이 어려운 점이 있다.Previously, EDT (EthanEdiThiol), oleic acid (Oleic acid), thiocyanate (SCN -), but may use such as a ligand, out of its electrical performance, and is difficult to implement a fine pattern dots.

양자점에 흡수된 빛은 전자홀쌍을 생성하며 홀은 양자점 내에 트랩되고 전자만 선택적으로 산화물 반도체로 이동한다. 이동하는 전자의 수에 따라 전류와 빛 감도가 증가하는데, 전자가 이동하는 정도는 양자점 표면 리간드에 따라 변화할 수 있다.Light absorbed by the quantum dot creates a pair of electron holes, the holes are trapped in the quantum dot, and only electrons selectively move to the oxide semiconductor. Current and light sensitivity increase according to the number of moving electrons, and the degree to which the electrons move can vary depending on the quantum dot surface ligand.

기존의 올레산 리간드의 경우는 그 길이가 긴 알킬체인의 절연특성으로 인해 전자의 이동을 방해하는 특성을 갖는다. 즉, 양자점 박막 형성시 Electron mobility가 떨어진다. 따라서, 이동하는 전자의 수가 충분하지 못해 그 전달효율이 떨어져서 충분한 감도를 보이지 못한다. 결국 기존 산화물 반도체보다 더 적은 빛 반응성을 가진다.In the case of the existing oleic acid ligand, due to the insulating property of the long alkyl chain, it has the property of hindering the movement of electrons. That is, when the quantum dot thin film is formed, electron mobility decreases. Therefore, the number of moving electrons is not sufficient and the transfer efficiency is deteriorated, so that sufficient sensitivity is not shown. Consequently, it has less light reactivity than conventional oxide semiconductors.

그리고, 티오시안산 리간드(SCCN-)의 경우 짧고 전도성을 가지는 특성으로 인해 전자의 이동을 가능하게 하여 기존 산화물 반도체 대비 우수한 광반응성을 갖지만 양자점 표면 트랩을 제어하지 못하여 광/전기적 특성이 저하되는 문제가 있다.And thiocyanate ligands (SCCN -) of the case is short due to the characteristic having a conductivity to enable the transfer of electrons problem that the conventional oxide semiconductor contrast mothayeo has the high light reactivity to control the quantum dot surface trap optical / electrical properties decrease There is.

이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.The matters described in the background art are provided to help understanding the background of the invention, and may include matters other than the prior art already known to those of ordinary skill in the field to which this technology belongs.

한국등록특허공보 제10-1663140호Korean Patent Registration No. 10-1663140 한국공개특허공보 제10-2017-0000828호Korean Patent Application Publication No. 10-2017-0000828

본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 리간드 치환을 통해 광학적, 전기적 특성이 뛰어나며, 미세 패터닝이 가능한 양자점을 이용한 광센서 제조 방법 및 광센서를 제공하는 데 그 목적이 있다.The present invention has been conceived to solve the above-described problems, and an object of the present invention is to provide an optical sensor manufacturing method and an optical sensor using quantum dots that are excellent in optical and electrical properties through ligand substitution, and capable of fine patterning.

본 발명의 일 관점에 의한 양자점을 이용한 광센서 제조 방법은, 박막 트랜지스터 상에 양자점(Quantum Dot)을 코팅하는 단계, 상기 양자점이 코팅된 박막 트랜지스터 상에 패터닝(patterning)할 부분 영역에 대해 자외선(UV)을 조사하는 단계 및 상기 자외선이 조사된 부분 영역의 경화 후 린싱(rinsing)하는 단계를 포함한다.According to an aspect of the present invention, a method of manufacturing a photosensor using quantum dots includes coating a quantum dot on a thin film transistor, and ultraviolet rays for partial regions to be patterned on the thin film transistor coated with the quantum dots. UV) irradiation and rinsing after curing the partial region irradiated with UV rays.

그리고, 상기 양자점은 금속 칼코겐 리간드 (Sn2S6 4-) 로 치환된 양자점인 것을 특징으로 한다.In addition, the quantum dot is characterized in that the quantum dot substituted with a metal chalcogen ligand (Sn 2 S 6 4- ).

또한, 상기 박막 트랜지스터는 기판 상에 게이트 전극, 게이트 절연층, 채널층 및 소스, 드레인 전극이 적층 형성된 일 단위가 복수로 형성된 것을 특징으로 한다.In addition, the thin film transistor is characterized in that a plurality of units in which a gate electrode, a gate insulating layer, a channel layer, and source and drain electrodes are stacked on a substrate are formed.

나아가, 상기 양자점을 코팅하는 단계, 상기 자외선을 조사하는 단계 및 상기 린싱하는 단계는 상기 박막 트랜지스터의 일 단위마다 순차적으로 반복 수행되는 것을 특징으로 한다.Further, the step of coating the quantum dots, the step of irradiating the ultraviolet rays, and the step of rinsing are sequentially repeated for each unit of the thin film transistor.

여기서, 상기 양자점은 납 설파이드(Pbs) IR, 카드뮴 셀레나이드(CdSe) Red, 카드뮴 셀레나이드(CdSe) Green 및 카드뮴 셀레나이드(CdSe) Blue를 포함하는 것을 특징으로 한다.Here, the quantum dot is characterized by including lead sulfide (Pbs) IR, cadmium selenide (CdSe) Red, cadmium selenide (CdSe) Green, and cadmium selenide (CdSe) Blue.

그리고, 상기 납 설파이드(Pbs) IR, 카드뮴 셀레나이드(CdSe) Red, 카드뮴 셀레나이드(CdSe) Green 및 카드뮴 셀레나이드(CdSe) Blue 양자점을 포함하는 일 단위의 광센서를 복수로 어레이 배열하는 것을 특징으로 한다.The lead sulfide (Pbs) IR, cadmium selenide (CdSe) Red, cadmium selenide (CdSe) Green, and cadmium selenide (CdSe) Blue quantum dots are arranged in a plurality of arrays. To do.

다음으로, 본 발명의 일 관점에 의한 광센서는 위의 방법에 의해 제조될 수 있다. 그리고, 박막 트랜지스터 상에 금속 칼코겐 리간드 (Sn2S6 4-) 로 치환된 양자점(Quantum Dot) 박막이 형성된 것을 특징으로 한다.Next, the optical sensor according to an aspect of the present invention can be manufactured by the above method. In addition, a quantum dot thin film substituted with a metal chalcogen ligand (Sn 2 S 6 4 - ) is formed on the thin film transistor.

그리고, 상기 박막 트랜지스터는 기판 상에 게이트 전극, 게이트 절연층, 채널층 및 소스, 드레인 전극이 적층 형성된 일 단위가 복수로 형성된 것을 특징으로 한다.In addition, the thin film transistor is characterized in that a plurality of units of a gate electrode, a gate insulating layer, a channel layer, and a source and drain electrode are stacked on a substrate.

또한, 상기 양자점은 납 설파이드(Pbs) IR, 카드뮴 셀레나이드(CdSe) Red, 카드뮴 셀레나이드(CdSe) Green 및 카드뮴 셀레나이드(CdSe) Blue를 포함하는 것을 특징으로 한다.In addition, the quantum dots are characterized by comprising lead sulfide (Pbs) IR, cadmium selenide (CdSe) Red, cadmium selenide (CdSe) Green, and cadmium selenide (CdSe) Blue.

본 발명의 양자점을 이용한 광센서 제조 방법 및 광센서에 의하면, 금속 칼코겐 리간드(Sn2S6 4-)를 이용하여 높은 전기 전도성과 광 민감도를 가지는 동시에 우수한 전기적 안정성을 갖는다.According to the optical sensor manufacturing method and optical sensor using quantum dots of the present invention, the metal chalcogen ligand (Sn 2 S 6 4 - ) has high electrical conductivity and light sensitivity and excellent electrical stability at the same time.

그리고, 미세패터닝이 가능하게 하여 광센서에 적용할 수 있게 한다.In addition, it enables fine patterning to be applied to an optical sensor.

또한, 종래의 양자점은 노출면 양자점 표면의 오염에 따른 소자 성능 열화가 발생할 수 있었는데 그 오염에 감광액(Photoresist) 가 큰 요인이었다.In addition, in the conventional quantum dots, deterioration in device performance may occur due to contamination of the surface of the exposed quantum dots, and the photoresist was a major factor in the contamination.

그러나, 본 발명에서는 감광액을 사용하지 않기 때문에, 유기물질에 의한 오염 문제를 해소하였고, 소자 열화를 막을 수 있다.However, in the present invention, since the photoresist is not used, the problem of contamination by organic materials is solved, and device deterioration can be prevented.

또한 감광액 미사용으로 제조공정 단순화, 제조비용 절감 등의 효과도 있으며, 기존의 잉크젯 프린팅, 전사 패터닝 방법 등과 비교하여 대면적에서 균일하고 높은 대량 생산성, 파인 패터닝이 가능하다.In addition, since the photoresist is not used, there is also an effect of simplifying the manufacturing process and reducing manufacturing cost. Compared to conventional inkjet printing and transfer patterning methods, uniform and high mass productivity and fine patterning are possible in a large area.

도 1은 산화물 반도체로서 박막 트랜지스터 소자(TFT)의 일 예를 도시한 것이며, 도 2는 도 1의 박막 트랜지스터 소자를 포함하는 단위 광센서의 일 예를 도시한 것이다.
도 3a는 박막 트랜지스터 소자의 양자점 박막 부분을 나타낸 것이며, 도 3b는 도 3a의 A 부분을 확대 도시한 것이다.
도 4는 본 발명의 금속 칼코겐 리간드에 의한 양자점 적용시의 특성을 나타낸 것이다.
도 5는 리간드 종류별 게이트 전압에 따른 I-V 특성 curve이다.
도 6은내지 도 9는 본 발명에 의한 양자점을 이용한 광센서의 제조 과정을 순차적으로 도시한 것이다.
도 10 및 도 11은 SEM으로 확인되는 본 발명에 의해 미세 패터닝한 결과이다.
도 12는 본 발명의 단위 광센서가 적용된 광센서 어레이의 일 예이다.
도 13은 도 12의 트랜지스터의 파장대별 감응도를 나타낸 것이다.
도 14a는 광대역 파장 동시감지 광센서 회로를 나타낸 것이며, 도 14b는 적외선-가시광선 선택적 감지 동작원리를 나타낸 것이다.
도 15는 출력되는 전류에 따른 색상 구간을 나타낸 것이다.
FIG. 1 illustrates an example of a thin film transistor device (TFT) as an oxide semiconductor, and FIG. 2 illustrates an example of a unit optical sensor including the thin film transistor device of FIG. 1.
3A is a diagram illustrating a portion of a quantum dot thin film of a thin film transistor device, and FIG. 3B is an enlarged view of portion A of FIG.
Figure 4 shows the characteristics of the application of the quantum dot by the metal chalcogen ligand of the present invention.
5 is an IV characteristic curve according to the gate voltage of each ligand type.
6 to 9 are sequentially showing the manufacturing process of the optical sensor using the quantum dot according to the present invention.
10 and 11 are results of fine patterning by the present invention confirmed by SEM.
12 is an example of an optical sensor array to which the optical unit sensor of the present invention is applied.
13 shows the sensitivity of the transistor of FIG. 12 for each wavelength band.
14A shows a broadband wavelength simultaneous detection optical sensor circuit, and FIG. 14B shows an operation principle for selective detection of infrared-visible light.
15 shows a color section according to an output current.

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, operational advantages of the present invention, and objects achieved by the implementation of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.

본 발명의 바람직한 실시 예를 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지의 기술이나 반복적인 설명은 그 설명을 줄이거나 생략하기로 한다.In describing a preferred embodiment of the present invention, known techniques or repetitive descriptions that may unnecessarily obscure the subject matter of the present invention will be reduced or omitted.

도 4는 본 발명의 금속 칼코겐 리간드에 의한 양자점 적용시의 특성을 나타낸 것이고, 도 5는 리간드 종류별 게이트 전압에 따른 I-V 특성 curve이며, 도 6은내지 도 9는 본 발명에 의한 양자점을 이용한 박막 트랜지스터 소자의 제조 과정을 순차적으로 도시한 것이다.FIG. 4 shows the characteristics of the quantum dots applied by the metal chalcogen ligand of the present invention, FIG. 5 is an IV characteristic curve according to the gate voltage for each ligand type, and FIGS. 6 to 9 are thin films using quantum dots according to the present invention. The manufacturing process of the transistor device is sequentially shown.

이하, 도 4 내지 도 9를 참조하여 본 발명의 일 실시예에 의한 양자점을 이용한 광센서 제조 방법 및 광센서를 설명하기로 한다.Hereinafter, a method of manufacturing an optical sensor using quantum dots and an optical sensor according to an embodiment of the present invention will be described with reference to FIGS. 4 to 9.

본 발명은 기판(11), 게이트 전극(12), 게이트 절연층(13), 채널층(14), 소스/드레인 전극(15, 16)을 포함하는 박막 트랜지스터(TFT) 상에 미세 패터닝된 양자점 박막을 형성하는 방법 및 그에 의한 광센서에 관한 것이다.The present invention is a quantum dot finely patterned on a thin film transistor (TFT) including a substrate 11, a gate electrode 12, a gate insulating layer 13, a channel layer 14, and source/drain electrodes 15 and 16 It relates to a method for forming a thin film and an optical sensor thereby.

기판(11)은 실리콘 웨이퍼, 유리, 폴리이미드 등의 다양한 재질일 수 있다.The substrate 11 may be made of various materials such as silicon wafer, glass, and polyimide.

게이트 전극(12)은 기판 상에 형성되며, 금, 크롬 등의 금속으로 형성될 수 있다.The gate electrode 12 is formed on the substrate, and may be formed of a metal such as gold or chromium.

게이트 전극(12) 상에 형성된 게이트 절연층(13)은 실리콘 산화막, 알루미늄 산화막으로 형성될 수 있다.The gate insulating layer 13 formed on the gate electrode 12 may be formed of a silicon oxide film or an aluminum oxide film.

그리고, 게이트 절연층(13) 상에 형성된 채널층(14)은 인듐-갈륨-징크-옥사이드(IGZO) 등의 금속 산화물로 형성될 수 있다.In addition, the channel layer 14 formed on the gate insulating layer 13 may be formed of a metal oxide such as indium-gallium-zinc-oxide (IGZO).

다음, 소스/드레인 전극(15, 16)은 알루미늄, 금 등의 금속 외에 IZO, ITO 등 고전도성 산화물로 형성될 수 있다.Next, the source/drain electrodes 15 and 16 may be formed of highly conductive oxides such as IZO and ITO in addition to metals such as aluminum and gold.

이를 광센서에 적용하면 각 픽셀은 상면에 형성하는 양자점 박막의 크기에 따라 광학 밴드갭이 변화하여 흡수 파장(색상)이 달라지기 때문에, 다양한 파장의 빛(가시광선~적외선)을 선택적으로 흡수가 가능하다.When this is applied to an optical sensor, the optical band gap changes according to the size of the quantum dot thin film formed on the upper surface of each pixel, and the absorption wavelength (color) changes, so that it is possible to selectively absorb light of various wavelengths (visible light to infrared light). It is possible.

본 발명에서 사용한 양자점은 다음과 같다.Quantum dots used in the present invention are as follows.

1) 납 설파이드 (PbS, 9~10㎚) : IR 적외선 1) Lead sulfide (PbS, 9~10㎚): IR infrared

2) 카드뮴 셀레나이드 (CdSe, 7~8㎚) : Red 2) Cadmium selenide (CdSe, 7~8㎚): Red

3) 카드뮴 셀레나이드 (CdSe, 5~6㎚) : Green 3) Cadmium selenide (CdSe, 5~6㎚): Green

4) 카드뮴 설파이드 (CdS, 3~4㎚) : Blue 4) Cadmium sulfide (CdS, 3~4㎚): Blue

기존 리간드에 의하면 전기적 성능이 부족하고 미세 패턴 구현이 어려웠는데 반해, 본 발명에서는 금속 칼코겐 리간드(Sn2S6 4-)를 이용하여 전기적 특성을 보다 개선시키고, 미세 패터닝이 가능하여 광센서 제조가 가능하게 한다.According to the existing ligands, electrical performance was insufficient and it was difficult to implement a fine pattern, whereas in the present invention, the electrical properties were further improved by using a metal chalcogen ligand (Sn 2 S 6 4 - ) and fine patterning was possible, thereby manufacturing an optical sensor. Makes it possible.

즉, 본 발명의 금속 칼코겐 리간드(Sn2S6 4-)는 짧고 전도성을 가지는 특성 뿐만 아니라 양자점 표면의 트랩 문제까지 해결하여 기존 양자점/산화물 광센서 대비 우수한 광/전기적 특성을 가진다. 본 발명에서는 기존의 리간드를 금속 칼코겐 리간드 (Sn2S6 4-)으로 치환하여 양자점 박막의 밀도를 증가시켰고, 높은 전기 전도성과 광 민감도를 가지는 동시에 우수한 전기적 안정성을 확보하였다.That is, the metal chalcogen ligand (Sn 2 S 6 4- ) of the present invention has excellent optical/electrical properties compared to the conventional quantum dot/oxide optical sensor by solving not only the short and conductive properties, but also the problem of trapping the surface of the quantum dot. In the present invention, the density of the quantum dot thin film was increased by replacing the existing ligand with a metal chalcogen ligand (Sn 2 S 6 4 - ), and at the same time secured excellent electrical stability while having high electrical conductivity and light sensitivity.

리간드 치환은 양자점이 가지고 있는 올레산 리간드를 다른 리간드로 바꾸는(치환하는) 것을 말한다. 세부적인 공정은 다음과 같다.Ligand substitution refers to replacing (substituting) an oleic acid ligand possessed by a quantum dot with another ligand. The detailed process is as follows.

(CH3NH3)4Sn2S6 프리커서를 이메틸 일산화황과 에탄올아민 혼합용액에 녹이고 헥산에 분산되어있는 올레산 기반 양자점과 섞는다.Dissolve the (CH3NH3)4Sn2S6 precursor in a mixed solution of dimethyl sulfur monoxide and ethanolamine, and mix it with oleic acid-based quantum dots dispersed in hexane.

3시간 후 투명한 헥산층을 버리고 남은 양자점 용액을 다시 새 헥산과 섞고 분리된 헥산층을 버리는 과정을 2-3번 반복한다.After 3 hours, the transparent hexane layer was discarded, the remaining quantum dot solution was mixed with fresh hexane, and the separated hexane layer was discarded and the process was repeated 2-3 times.

그 후, 리간드 치환된 양자점 용액을 아세토니트릴 용액과 섞고 원심분리하여 분리된 투명한 용액층을 버리고 남은 양자점을 일산화황과 에탄올아민 혼합용액에 녹인다. 모든 리간드 치환 과정은 질소분위기의 글로브박스 내에서 진행한다.Thereafter, the ligand-substituted quantum dot solution is mixed with an acetonitrile solution, centrifuged to discard the separated transparent solution layer, and the remaining quantum dots are dissolved in a sulfur monoxide and ethanolamine mixed solution. All ligand substitution processes are carried out in a glovebox in a nitrogen atmosphere.

종래의 Sn2S6리간드는, 하이드라진 [N2H5]4을 용매로 사용하여 합성을 하고, 종래의 리간드의 최종 합성물은 [N2H5]4Sn2S6이다.The conventional Sn 2 S 6 ligand is synthesized using hydrazine [N2H5]4 as a solvent, and the final compound of the conventional ligand is [N2H5]4Sn2S6.

하이드라진은 유독성을 가지고 있어, 산업용으로 사용하는 것이 불가능하다.Hydrazine is toxic, making it impossible to use it for industrial purposes.

그에 반해, 본 발명에서의 Sn2S6 리간드는 수용액을 용매로 하여 메틸암모늄[CH3NH3]4을 사용하여 합성하고, 최종 리간드 합성물은 [CH3NH3]4Sn2S6 리간드로서 친환경적으로 산업적용 가능성이 높다.In contrast, the Sn 2 S 6 ligand in the present invention is synthesized using methyl ammonium [CH 3 NH 3 ] 4 using an aqueous solution as a solvent, and the final ligand compound is [CH 3 NH 3 ] 4 Sn 2 S 6 ligand, which is environmentally friendly and industrial. It is highly applicable.

도 4는 본 발명의 금속 칼코겐 리간드에 의한 양자점 적용시의 특성을 나타낸 것이으로서, 도시와 같이 본 발명의 금속 칼코겐 리간드 기반 양자점/산화물 광센서의 경우,4 is a view showing the characteristics of the quantum dots applied to the metal chalcogen ligand of the present invention, as shown in the case of the metal chalcogen ligand-based quantum dot / oxide optical sensor of the present invention,

Photo sensitivity(감도) 8.3x103 A/W 이상,Photo sensitivity 8.3x103 A/W or higher,

Photodetectivity(검출능) 4.2x1017 Jones 이상,Photodetectivity 4.2x1017 Jones or higher,

Dynamic range(동적 영역) 180 dB 이상,Dynamic range 180 dB or more,

External quantum efficiencies (EQEs) 19700 % 이상의 광센서 특성을 가진다.External quantum efficiencies (EQEs) More than 19700% optical sensor characteristics.

그리고, 금속칼코겐화합물을 리간드로 사용시 티오시안산 리간드를 사용했을 때보다 현저히 성능이 향상된 것을 확인할 수 있다.In addition, it can be seen that when the metal chalcogen compound is used as a ligand, the performance is significantly improved compared to when a thiocyanic acid ligand is used.

참고로 각 파라미터는 아래 수학식에 의해 산출될 수 있다.For reference, each parameter may be calculated by the following equation.

Photosensitivity = Iph/PPhotosensitivity = I ph / P

Photodetectivity = (AΔf)1/2/NEP (SNR 과 유사개념)Photodetectivity = (AΔf) 1/2 /NEP (similar concept to SNR)

Dynamic range = (20 log (Ilight/Idark))Dynamic range = (20 log (I light /I dark ))

EQE = (Jph/q) / (P/hv)EQE = (J ph /q) / (P/hv)

수학식에서 Iph는 광전류이고, Ilight/Idark 는 광전류와 암전류와의 비, Jph는 광전류 밀도, q는 전하량, P는 입사 레이저 파워 밀도(빛의세기)이다.In the equation, I ph is the photocurrent, I light /I dark is the ratio of the photocurrent to the dark current, J ph is the photocurrent density, q is the amount of charge, and P is the incident laser power density (light intensity).

그리고, 검출능(Detectivity)은 단위 대역폭, 단위 입력 광 파워당 S/N 비, A는 빛이 입사되는 광센서의 면적, Δf는 스펙트럼 대역폭, NEP (Noise Equivalent Power)는 잡음 등가 파워)이다.In addition, the detection capability is a unit bandwidth, S/N ratio per unit input light power, A is the area of the optical sensor to which light is incident, Δf is the spectral bandwidth, and NEP (Noise Equivalent Power) is the noise equivalent power).

그리고, 동적 영역 (Dynamic Range)은 최대신호 진폭과 노이즈로서, 드리프트가 허용되는 최소신호 진폭의 비를 데시벨(dB) 로 측정한 것이며, EQE(External Quantum Efficiency)는 물질 중에서 빛을 양자화 한 광자(photon) 또는 전자(electron)가 다른 에너지의 광자 또는 전자로 변환되는 비율이다.The dynamic range is the maximum signal amplitude and noise, which is the ratio of the minimum signal amplitude to which drift is allowed, measured in decibels (dB), and the EQE (External Quantum Efficiency) is a photon ( The rate at which photons or electrons are converted into photons or electrons of different energy.

도 5는 리간드 종류별 게이트 전압에 따른 I-V 특성 curve이다.5 is an I-V characteristic curve according to a gate voltage for each ligand type.

이를 참조하면, Olecic acid 의 경우 양자점이 없는 산화물 반도체와 특성 곡선이 차이가 거의 없다. 오히려 역전압 구간에서 기존 산화물 반도체보다 더 적은 전류값을 보여준다.Referring to this, in the case of Olecic acid, there is little difference in the characteristic curve from the oxide semiconductor without quantum dots. Rather, it shows a smaller current value than the conventional oxide semiconductor in the reverse voltage section.

그리고, 티오시안산 리간드를 사용할 경우 역전압 구간에서 전류의 증가를 보이나, 금속칼코겐산화물 리간드를 사용할 때보다, 그 크기가 크지 않다.In addition, when the thiocyanic acid ligand is used, the current increases in the reverse voltage section, but the size is not larger than when the metal chalcogen oxide ligand is used.

Dynamic range = (20 log (Ilight/Idark))가 증가하기 위해서는 Dark current 대비 Light current 의 비가 증가하여야 하는데 Gate 역전압이 증가함에 따라서, 그 비율이 현저하게 작아진다.In order to increase the dynamic range = (20 log (I light /I dark )), the ratio of the light current to the dark current must increase. As the gate reverse voltage increases, the ratio decreases significantly.

그러나, 금속칼코겐산화물 리간드를 사용할 경우, 역전압 증가에 따른 전류 감소율이 크지 않아, 넓은 Dynamic range 구간을 가질 수 있다.However, when the metal chalcogen oxide ligand is used, the current reduction rate according to the increase in the reverse voltage is not large, and thus a wide dynamic range section can be obtained.

무엇보다도, 기존의 EDT, SCN-, Oleic acid 을 사용할 경우 미세패터닝이 불가능하였다. 그러나, 본 발명은 기존 양자점을 이용한 광센서의 경우 미세 패터닝이 불가능하였던 것을 본 발명의 리간드 치환 및 패터닝 방법에 의해 미세 패터닝이 가능하게 한다.First of all, fine patterning was not possible when using the existing EDT, SCN-, and Oleic acid. However, the present invention enables fine patterning by the ligand substitution and patterning method of the present invention, which was impossible in the case of an optical sensor using a conventional quantum dot.

종래의 패터닝 방법은 잉크젯 프린팅 방법과 포토리소그래피 방법이 사용되었는데, 1) 잉크젯 프린팅 방법의 경우, Fine patterning 의 한계 및 노즐 막힘 등의 관리 문제, 과도한 제조 비용 등이 문제였으며, 2) 포토리소그래피를 사용할 경우, 감광액(Photo-Resist) 사용에 의한 양자점의 오염, 현상공정(Developing or stripping) 공정시 솔벤트에 의한 양자점 오염 문제가 있어, 패턴 구현이 불가능 하였다.Conventional patterning methods used the inkjet printing method and the photolithography method.1) In the case of the inkjet printing method, limitations of fine patterning, management problems such as nozzle clogging, and excessive manufacturing costs were problems, and 2) photolithography was used. In this case, there was a problem of contamination of the quantum dots by the use of a photoresist (Photo-Resist) and contamination of the quantum dots by a solvent during the developing or stripping process, and thus the pattern was not possible.

본 발명의 금속 칼코겐 리간드 (Sn2S6 4-) 로 치환된 양자점의 경우, 별도의 감광액을 필요로 하지 않는다.In the case of a quantum dot substituted with a metal chalcogen ligand (Sn 2 S 6 4- ) of the present invention, a separate photoresist is not required.

도 6에 도시된 바와 같이, 4개의 박막 트랜지스터를 포함하는 단위 광센서(20)에 Pbs IR 양자점을 코팅한 후, UV 조사시 UV 조사된 영역만 선택적으로 박막 형태로 경화되어, 현상 공정 없이 린싱(Rinsing) 만으로도 UV 조사된 영역만 남게 되어 미세 패턴을 구현할 수가 있다.As shown in FIG. 6, after coating Pbs IR quantum dots on the unit optical sensor 20 including four thin film transistors, only the UV-irradiated area is selectively cured in a thin film form during UV irradiation, and rinsed without a development process. Even with (Rinsing), only the UV-irradiated area remains, so it is possible to implement a fine pattern.

즉, 본 발명은 [CH3NH3]4Sn2S6 리간드를 사용하여 UV(350-150nm 사이) 조사에 의한 경화가 가능함을 검증하였으며, 그 결과 UV를 조사하면 Sn2S6 4-리간드는 SnS2 쉘로 경화되고 나머지는 석출된다.That is, the present invention verified that curing by UV (between 350-150nm) irradiation is possible using [CH 3 NH 3 ] 4 Sn 2 S 6 ligand, and as a result, when irradiated with UV, Sn 2 S 6 4- ligand Is hardened into SnS 2 shell and the rest precipitated.

린싱액으로서 이메틸일산화황/에탄올아민 혼합용액을 사용하며, 세정시 미경화 부분과 석출된 S와 Sn 이 씻겨나간다.A mixed solution of dimethyl sulfur monoxide/ethanolamine is used as the rinsing solution, and the uncured part and precipitated S and Sn are washed away during washing.

따라서 Photoresist 없이 UV 조사와 세정만으로 미세패터닝 구현이 가능하게 한다.Therefore, it is possible to implement fine patterning only by UV irradiation and cleaning without photoresist.

나아가, 도 7, 도 8, 도 9와 같이 순차적으로 CdSe Red 양자점, CdSe Green 양자점, CdSe Blue 양자점을 코팅한 후 UV 조사에 의해 미세 패턴을 형성시킨다.Further, as shown in FIGS. 7, 8 and 9, a fine pattern is formed by UV irradiation after sequentially coating CdSe Red quantum dots, CdSe Green quantum dots, and CdSe Blue quantum dots.

따라서, 종래의 기술로는 획득할 수 없는 고집적도의 풀칼라 (UV, visible, IR) 다중 파장 선택적 감지가 가능하다.Accordingly, it is possible to selectively sense a high-integration full-color (UV, visible, IR) multiple wavelength that cannot be obtained with conventional techniques.

더불어 PR 사용을 배제하여 제조비 절감, 저온공정 가능, 기판 선택의 유연성 등의 부가 효과를 가질 수 있다.In addition, by excluding the use of PR, additional effects such as reduction in manufacturing cost, low-temperature processing, and flexibility in substrate selection can be obtained.

도 10 및 도 11은 감광액을 사용하지 않고 포토리소그래피 공정을 이용하여 양자점을 미세 패터닝 한 결과이다.10 and 11 are results of fine patterning of quantum dots using a photolithography process without using a photoresist.

미세 패터닝 된 양자점의 광학 현미경 사진과 SEM(Scanning Electron Microscope) 사진을 예시하였다. Optical micrographs and SEM (Scanning Electron Microscope) photographs of finely patterned quantum dots are illustrated.

도 12는 본 발명의 단위 광센서가 적용된 광센서 어레이(30)의 일 예이다. 도 3(a)에서 B 부분을 확대 도시한 것이 도 12(b)이다.12 is an example of an optical sensor array 30 to which the optical unit sensor of the present invention is applied. Fig. 12(b) is an enlarged view of part B in Fig. 3(a).

이는 앞서 기술한 양자점 리간드 치환 기술과, 미세패터닝 기술을 이용하여, 2D array 형태로 제작한 결과이다.This is the result of fabrication in a 2D array form using the previously described quantum dot ligand substitution technology and fine patterning technology.

한 개의 픽셀(B) 내에 파장별 4개의 양자점을 가진 트랜지스터들(T1~T4, 20)로 적분 회로를 구현하였고, 양자점이 없는 산화물 트랜지스터 2개(T5, T6)로 신호 증폭 회로(21)를 구현하였다.An integrating circuit was implemented with transistors (T1 to T4, 20) having four quantum dots per wavelength in one pixel (B), and a signal amplifying circuit 21 was implemented with two oxide transistors (T5, T6) without quantum dots. Implemented.

적분회로에 포함된 4개의 양자점-산화물 트랜지스터들과 증폭회로에 포함된 산화막 트랜지스터의 파장대별 감응도는 도 13과 같다.The sensitivity of the four quantum dot-oxide transistors included in the integrating circuit and the oxide layer transistor included in the amplifying circuit for each wavelength band is shown in FIG. 13.

1) T1 PbS 양자점-산화물 광 트랜지스터는 IR 파장(1310 nm) 이하의 모두 파장대 빛에 감응한다.1) The T1 PbS quantum dot-oxide phototransistor is sensitive to light in all wavelength bands below the IR wavelength (1310 nm).

2) T2 CdSe 7~8㎚ 양자점-산화물 광 트랜지스터는 Red 파장(638 nm) 이하의 파장대 빛에 감응한다.2) The T2 CdSe 7~8nm quantum dot-oxide phototransistor is sensitive to light in the wavelength band below the Red wavelength (638 nm).

3) T3 CdSe 5~6㎚ 양자점-산화물 광 트랜지스터는 Green 파장(520 nm) 이하의 파장대 빛에 감응한다.3) The T3 CdSe 5~6nm quantum dot-oxide phototransistor is sensitive to light in the wavelength band below the Green wavelength (520 nm).

4) T4 CdS 양자점-산화물 광 트랜지스터는 Blue 파장(405 nm) 이하의 파장대 빛에 감응한다.4) The T4 CdS quantum dot-oxide phototransistor is sensitive to light in the wavelength band below the blue wavelength (405 nm).

5) 증폭회로에 포함된 산화막 트랜지스터는 오직 자외선 파장 대역의 빛에만 감응한다.5) The oxide film transistor included in the amplification circuit only senses light in the ultraviolet wavelength band.

도 14a는 광대역 파장 동시감지 광센서 회로를 나타낸 것이며, 도 14b는 적외선-가시광선 선택적 감지 동작원리를 나타낸 것이다.14A shows a broadband wavelength simultaneous detection optical sensor circuit, and FIG. 14B shows an operation principle for selective detection of infrared-visible light.

적분회로의 원리는 다음과 같다.The principle of the integral circuit is as follows.

도시의 적분 행렬에 따라, 1) IR 빛이 조사시, IR 에 유일하게 반응할 수 있는 T1 이 On 상태가 되며, 이를 도시의 적분행렬에 따라 IR 로 판단한다.According to the city's integral matrix, 1) When IR light is irradiated, T1, which can only respond to IR, turns on, and it is determined as IR according to the city's integral matrix.

2) Red 빛이 조사시, Red 에 반응하는 T1과 T2 가 On 상태가 되며, 이를 그림12 적분행렬에 따라 Red 로 판단한다.2) When red light is irradiated, T1 and T2 reacting to red are turned on, which is judged as red according to the integration matrix in Figure 12.

3) Green 빛이 조사시, Green 에 반응하는 T1,T2,T3 가 On 상태가 되며, 이를 그림12 적분행렬에 따라 Green 으로 판단한다.3) When green light is irradiated, T1, T2, and T3 reacting to green are turned on, which is judged as green according to the integration matrix in Figure 12.

4) Blue 빛이 조사시, Blue 에 반응하는 T1,T2,T3,T4 가 모두 On 상태가 되며, 이를 그림12 적분행렬에 따라 Blue 로 판단한다.4) When blue light is irradiated, all of T1, T2, T3, and T4 reacting to blue are turned on, and this is judged as blue according to the integration matrix in Figure 12.

신호 증폭 회로는 원하는 신호만을 증폭하여 노이즈에 대한 취약점을 해결한다. 광이 감지되는 경우, T1~T4 양자점-산화물 광 트랜지스터의 채널 전도도가 증가하고 (저항 저하), 적분회로와 직렬로 연결된 T5 산화막 트랜지스터로 인하여, 적분회로와 T5 사이의 노드 전압(=T6의 게이트 전압)이 상승한다.The signal amplification circuit solves the vulnerability to noise by amplifying only the desired signal. When light is detected, the channel conductivity of the T1~T4 quantum dot-oxide phototransistor increases (resistance decrease), and the node voltage between the integrating circuit and T5 (= T6 gate) due to the T5 oxide film transistor connected in series with the integrating circuit. Voltage) rises.

노드는 T6 산화막 트랜지스터의 게이트 전극과 직접 연결되어 있으므로, 전압의 변화에 따라 T6의 출력전류 Iout가 변화한다.Since the node is directly connected to the gate electrode of the T6 oxide film transistor, the output current I out of T6 changes according to the voltage change.

따라서, T1~T4 의 On/Off 에 따라 출력되는 Iout 이 달라지기 때문에 한 개의 전류값으로 색상의 판별이 가능하다.Therefore, since the output I out is different according to the On/Off of T1 to T4, it is possible to discriminate the color with one current value.

이와 같이 출력되는 전류에 따른 색상 구간은 도 15와 같다. The color section according to the current output as described above is shown in FIG. 15.

이상과 같은 본 발명은 예시된 도면을 참조하여 설명되었지만, 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형될 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이며, 본 발명의 권리범위는 첨부된 특허청구범위에 기초하여 해석되어야 할 것이다.Although the present invention as described above has been described with reference to the illustrated drawings, it is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have Therefore, such modifications or variations will have to belong to the claims of the present invention, and the scope of the present invention should be interpreted based on the appended claims.

10 : TFT 소자
20 : 단위 광센서
30 : 광센서 어레이
10: TFT element
20: unit light sensor
30: optical sensor array

Claims (10)

박막 트랜지스터 상에 양자점(Quantum Dot)을 코팅하는 단계;
상기 양자점이 코팅된 박막 트랜지스터 상에 패터닝(patterning)할 부분 영역에 대해 자외선(UV)을 조사하는 단계; 및
상기 자외선이 조사된 부분 영역의 경화 후 린싱(rinsing)하는 단계를 포함하는,
양자점을 이용한 광센서 제조 방법.
Coating a quantum dot on the thin film transistor;
Irradiating ultraviolet (UV) light to a partial region to be patterned on the thin film transistor coated with the quantum dots; And
Including the step of rinsing after curing the partial region irradiated with ultraviolet rays,
Optical sensor manufacturing method using quantum dots.
청구항 1에 있어서,
상기 양자점은 금속 칼코겐 리간드 (Sn2S6 4-) 로 치환된 양자점인 것을 특징으로 하는,
양자점을 이용한 광센서 제조 방법.
The method according to claim 1,
The quantum dot is characterized in that the quantum dot substituted with a metal chalcogen ligand (Sn 2 S 6 4- ),
Optical sensor manufacturing method using quantum dots.
청구항 2에 있어서,
상기 박막 트랜지스터는 기판 상에 게이트 전극, 게이트 절연층, 채널층 및 소스, 드레인 전극이 적층 형성된 일 단위가 복수로 형성된 것을 특징으로 하는,
양자점을 이용한 광센서 제조 방법.
The method according to claim 2,
The thin film transistor is characterized in that a plurality of units of a gate electrode, a gate insulating layer, a channel layer, and source and drain electrodes are stacked on a substrate,
Optical sensor manufacturing method using quantum dots.
청구항 3에 있어서,
상기 양자점을 코팅하는 단계, 상기 자외선을 조사하는 단계 및 상기 린싱하는 단계는 상기 박막 트랜지스터의 일 단위마다 순차적으로 반복 수행되는 것을 특징으로 하는,
양자점을 이용한 광센서 제조 방법.
The method of claim 3,
The step of coating the quantum dots, the step of irradiating the ultraviolet rays, and the step of rinsing are sequentially repeated for each unit of the thin film transistor,
Optical sensor manufacturing method using quantum dots.
청구항 4에 있어서,
상기 양자점은 납 설파이드(Pbs) IR, 카드뮴 셀레나이드(CdSe) Red, 카드뮴 셀레나이드(CdSe) Green 및 카드뮴 셀레나이드(CdSe) Blue를 포함하는 것을 특징으로 하는,
양자점을 이용한 광센서 제조 방법.
The method of claim 4,
The quantum dots include lead sulfide (Pbs) IR, cadmium selenide (CdSe) Red, cadmium selenide (CdSe) Green, and cadmium selenide (CdSe) Blue,
Optical sensor manufacturing method using quantum dots.
청구항 5에 있어서,
상기 납 설파이드(Pbs) IR, 카드뮴 셀레나이드(CdSe) Red, 카드뮴 셀레나이드(CdSe) Green 및 카드뮴 셀레나이드(CdSe) Blue 양자점을 포함하는 일 단위의 광센서를 복수로 어레이 배열하는 것을 특징으로 하는,
양자점을 이용한 광센서 제조 방법.
The method of claim 5,
The lead sulfide (Pbs) IR, cadmium selenide (CdSe) Red, cadmium selenide (CdSe) Green, and cadmium selenide (CdSe) Blue quantum dots, characterized in that a plurality of arrays of optical sensors of one unit including ,
Optical sensor manufacturing method using quantum dots.
청구항 1 내지 청구항 6 중 어느 한 항의 제조 방법에 의해 제조되는 광센서.An optical sensor manufactured by the manufacturing method of any one of claims 1 to 6. 박막 트랜지스터 상에 금속 칼코겐 리간드 (Sn2S6 4-) 로 치환된 양자점(Quantum Dot) 박막이 형성된 것을 특징으로 하는 광센서.An optical sensor, characterized in that a quantum dot thin film substituted with a metal chalcogen ligand (Sn 2 S 6 4- ) is formed on the thin film transistor. 청구항 8에 있어서,
상기 박막 트랜지스터는 기판 상에 게이트 전극, 게이트 절연층, 채널층 및 소스, 드레인 전극이 적층 형성된 일 단위가 복수로 형성된 것을 특징으로 하는 광센서.
The method of claim 8,
The thin film transistor is an optical sensor, characterized in that a plurality of units are formed on a substrate in which a gate electrode, a gate insulating layer, a channel layer, and source and drain electrodes are stacked.
청구항 9에 있어서,
상기 양자점은 납 설파이드(Pbs) IR, 카드뮴 셀레나이드(CdSe) Red, 카드뮴 셀레나이드(CdSe) Green 및 카드뮴 셀레나이드(CdSe) Blue를 포함하는 것을 특징으로 하는 광센서.
The method of claim 9,
The quantum dot optical sensor comprising lead sulfide (Pbs) IR, cadmium selenide (CdSe) Red, cadmium selenide (CdSe) Green, and cadmium selenide (CdSe) Blue.
KR1020190085773A 2019-07-16 2019-07-16 A method of manufacturing optical sensor using quantum dot and the optical sensor KR102664336B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190085773A KR102664336B1 (en) 2019-07-16 2019-07-16 A method of manufacturing optical sensor using quantum dot and the optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190085773A KR102664336B1 (en) 2019-07-16 2019-07-16 A method of manufacturing optical sensor using quantum dot and the optical sensor

Publications (2)

Publication Number Publication Date
KR20210009147A true KR20210009147A (en) 2021-01-26
KR102664336B1 KR102664336B1 (en) 2024-05-09

Family

ID=74310174

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190085773A KR102664336B1 (en) 2019-07-16 2019-07-16 A method of manufacturing optical sensor using quantum dot and the optical sensor

Country Status (1)

Country Link
KR (1) KR102664336B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864735A (en) * 2022-05-11 2022-08-05 中南大学 Preparation method of photoelectric transistor based on femtosecond laser and transistor array
KR20230008335A (en) * 2021-07-07 2023-01-16 중앙대학교 산학협력단 Phototransistor device, photo sensing device and method of manufacturing the same
KR20230130840A (en) * 2022-03-04 2023-09-12 중앙대학교 산학협력단 Photo-transistor and method of manufacturing the same
KR20240026839A (en) 2022-08-22 2024-02-29 고려대학교 산학협력단 III-V quantum dot comprising two different ligands, manufacturing method of environmently-friendly solvent-based ink using III-V quantum dot comprising two different ligands, and photoelectric devices fabricated using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254229B2 (en) * 2006-07-28 2013-08-07 サンディスク コーポレイション Methods and devices for forming nanostructure monolayers and devices comprising said monolayers
KR20150072888A (en) * 2013-12-20 2015-06-30 한국과학기술연구원 Quantum dot sensitized metal oxide phototransistor and manufacturing process thereof
KR101663140B1 (en) 2015-06-19 2016-10-07 경희대학교 산학협력단 Highly transparent visible-light photodetector and manufacturing method to fabricate highly transparent visible-light photodetector using quantum dots
KR20170000828A (en) 2016-12-23 2017-01-03 경희대학교 산학협력단 Highly transparent visible-light photodetector and manufacturing method to fabricate highly transparent visible-light photodetector using nanoparticles
KR20180008099A (en) * 2016-07-15 2018-01-24 주식회사 엘지화학 Phototransistor using quantum dot
KR20180018996A (en) * 2016-08-10 2018-02-22 중앙대학교 산학협력단 Multi sensor array including low temperature sintering oxide and semiconductor nano particle and method thereof
KR101973021B1 (en) * 2017-11-28 2019-04-26 한국기계연구원 Quantum dot photo diode and photo sensor and solar cell including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254229B2 (en) * 2006-07-28 2013-08-07 サンディスク コーポレイション Methods and devices for forming nanostructure monolayers and devices comprising said monolayers
KR20150072888A (en) * 2013-12-20 2015-06-30 한국과학기술연구원 Quantum dot sensitized metal oxide phototransistor and manufacturing process thereof
KR101663140B1 (en) 2015-06-19 2016-10-07 경희대학교 산학협력단 Highly transparent visible-light photodetector and manufacturing method to fabricate highly transparent visible-light photodetector using quantum dots
KR20180008099A (en) * 2016-07-15 2018-01-24 주식회사 엘지화학 Phototransistor using quantum dot
KR20180018996A (en) * 2016-08-10 2018-02-22 중앙대학교 산학협력단 Multi sensor array including low temperature sintering oxide and semiconductor nano particle and method thereof
KR20170000828A (en) 2016-12-23 2017-01-03 경희대학교 산학협력단 Highly transparent visible-light photodetector and manufacturing method to fabricate highly transparent visible-light photodetector using nanoparticles
KR101973021B1 (en) * 2017-11-28 2019-04-26 한국기계연구원 Quantum dot photo diode and photo sensor and solar cell including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jin, Ho, et al. "SnS44-, SbS43-, and AsS33- metal chalcogenide surface ligands: couplings to quantum dots, ~" Journal of the American Chemical Society 137.43 (2015): 13827-13835.(2015.10.19.)* *
Kang, Han-Lim, et al. "Spatial light patterning of full color quantum dot displays enabled by locally controlled surface tailoring." Advanced Optical Materials 6.9 (2018): 1701335.(2018.03.07.)* *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008335A (en) * 2021-07-07 2023-01-16 중앙대학교 산학협력단 Phototransistor device, photo sensing device and method of manufacturing the same
KR20230130840A (en) * 2022-03-04 2023-09-12 중앙대학교 산학협력단 Photo-transistor and method of manufacturing the same
CN114864735A (en) * 2022-05-11 2022-08-05 中南大学 Preparation method of photoelectric transistor based on femtosecond laser and transistor array
CN114864735B (en) * 2022-05-11 2024-03-15 中南大学 Photo transistor preparation method based on femtosecond laser and transistor array
KR20240026839A (en) 2022-08-22 2024-02-29 고려대학교 산학협력단 III-V quantum dot comprising two different ligands, manufacturing method of environmently-friendly solvent-based ink using III-V quantum dot comprising two different ligands, and photoelectric devices fabricated using the same

Also Published As

Publication number Publication date
KR102664336B1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
KR102664336B1 (en) A method of manufacturing optical sensor using quantum dot and the optical sensor
Pierre et al. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors
JP6113372B1 (en) Electromagnetic wave detector
US9024295B2 (en) Nanowire photodetector and image sensor with internal gain
JP6574182B2 (en) Infrared photodetector stable in air from inorganic semiconductors made from solution
US8598567B2 (en) Color-selective quantum dot photodetectors
Yu et al. High Performances for Solution‐Pocessed 0D–0D Heterojunction Phototransistors
JP6642769B1 (en) Manufacturing method of electronic device using graphene
CN110392933B (en) Electromagnetic wave detector, electromagnetic wave detector array, and electromagnetic wave detection method
Lu et al. Recent progress on perovskite photodetectors for narrowband detection
Shekhar et al. Hybrid image sensor of small molecule organic photodiode on CMOS–Integration and characterization
EP3618115A1 (en) Imaging device based on colloidal quantum dots
Gréboval et al. HgTe nanocrystal-based photodiode for extended short-wave infrared sensing with optimized electron extraction and injection
Gegevičius et al. High‐Speed, Sensitive Planar Perovskite Photodetector Based on Interdigitated Pt and Au Electrodes
Allen et al. 66‐4: invited paper: graphene enhanced QD image sensor technology
IL229741A (en) Sensor device, production method and detection device
CN110709991B (en) Method for producing monolithic sensor devices from layered structures
US8586400B2 (en) Fabricating method of organic photodetector
An et al. Engineered current path of vertical organic phototransistors for smart optoelectronic applications
KR102625675B1 (en) Phototransistor device, photo sensing device and method of manufacturing the same
KR102665458B1 (en) Photo-transistor and method of manufacturing the same
TWI783805B (en) Optoelectronic semiconductor structure
KR20190067208A (en) Microstructured organic sensor component and method of manufacturing the same
Purohit et al. Solution Processed Active Materials for Pixel Sensor Element and Integrated Circuits
US11777050B2 (en) Optical sensor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right