KR20210008215A - metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof - Google Patents

metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof Download PDF

Info

Publication number
KR20210008215A
KR20210008215A KR1020190083788A KR20190083788A KR20210008215A KR 20210008215 A KR20210008215 A KR 20210008215A KR 1020190083788 A KR1020190083788 A KR 1020190083788A KR 20190083788 A KR20190083788 A KR 20190083788A KR 20210008215 A KR20210008215 A KR 20210008215A
Authority
KR
South Korea
Prior art keywords
silica support
pore structure
mesoporous silica
dimensional pore
regular
Prior art date
Application number
KR1020190083788A
Other languages
Korean (ko)
Other versions
KR102224575B1 (en
Inventor
조병기
이영민
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Priority to KR1020190083788A priority Critical patent/KR102224575B1/en
Publication of KR20210008215A publication Critical patent/KR20210008215A/en
Application granted granted Critical
Publication of KR102224575B1 publication Critical patent/KR102224575B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/023
    • B01J35/1019
    • B01J35/1061
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention relates to a mesoporous silica support having an ordered three-dimensional pore structure, a method for preparing a composite including a metallic nanoparticle immobilized on a surface inside and outside the same, and a metallic nanoparticle immobilized on a mesoporous silica support having a three-dimensional pore structure prepared thereby. The method comprises: (a) introducing a multi-amine group onto a surface of a mesoporous silica support having an ordered three-dimensional pore structure; (b) introducing metal ions by contact of an active metal precursor with the mesoporous silica support having an ordered three-dimensional pore structure on which the multi-amine group is immobilized; and (c) reducing the adsorbed metal ions to form metal nanoparticles. A process is simplified and a surface area is increased by using a silica support having a three-dimensional shape, and thus can be applied as a heterogeneous catalyst.

Description

규칙적인 3차원 기공구조의 메조다공성 실리카 지지체상에 고정된 금속 나노입자 및 이의 제조방법{metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof}Metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof}

규칙적인(ordered) 3차원 기공구조의 메조다공성 실리카 지지체 표면에 다중아민기를 고정화하는 단계; 상기 다중아민기가 고정화된 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체를 활성금속 전구체와 접촉시켜 금속 이온을 도입하는 단계; 및 상기 흡착된 금속 이온을 환원시켜 금속 나노입자를 형성하는 단계를 포함하는 것인, 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면에 에 고정된 금속 나노입자를 포함하는 복합체의 제조방법 및 이에 따라 제조된 복합체에 관한 것이다.Immobilizing multiple amine groups on the surface of the mesoporous silica support having an ordered three-dimensional pore structure; Introducing metal ions by contacting the mesoporous silica support having a regular three-dimensional pore structure in which the multiamine groups are immobilized with an active metal precursor; And comprising the step of forming metal nanoparticles by reducing the adsorbed metal ions, comprising a mesoporous silica support having a regular three-dimensional pore structure and metal nanoparticles fixed to the inner and outer surfaces of the pores It relates to a method of manufacturing a composite and a composite produced thereby.

메조포러스 실리카 물질의 경우 넓은 표면적 및 기공의 규칙성의 구조적 장점으로 인하여, 촉매 담체로의 응용 측면에서 유리한 면이 있다. In the case of a mesoporous silica material, due to the structural advantages of a large surface area and regular pores, there is an advantage in the aspect of application as a catalyst carrier.

메조다공성 실리카 물질은 세공 표면에 많은 실란올 (Si-OH) 그룹이 존재한다. 따라서 유기 기능기를 가지는 알콕시 실란((R'O)3Si(CH2)nR, R'= methyl or ethyl, R=N, O, S, P 또는 C 등의 원자를 포함하는 지방족 탄화수소 사슬이나 고리모양 지방족 그룹, 방향족 그룹 또는 이들의 유도체)을 화학반응을 통하여 개질 할 수 있다. 이러한 개질된 나노 세공 실리카 물질은 규칙적인 세공 배열과 균일한 세공크기 그리고 높은 표면적을 가지고 거대분자의 흡착, 효소흡착, 금속이온 흡착, 촉매반응, 센서, 약물전달, 나노물질 제조 등에 매우 높은 응용 가능성을 가진다.Mesoporous silica material has many silanol (Si-OH) groups on the pore surface. Therefore, an alkoxy silane having an organic functional group ((R'O) 3 Si(CH 2 ) n R, R'= methyl or ethyl, R=N, O, S, P, or an aliphatic hydrocarbon chain containing an atom such as C Cyclic aliphatic groups, aromatic groups or derivatives thereof) can be modified through chemical reactions. These modified nanoporous silica materials have a regular pore arrangement, uniform pore size, and high surface area, and have very high potential for application in macromolecular adsorption, enzyme adsorption, metal ion adsorption, catalysis, sensors, drug delivery, nanomaterial manufacturing, etc. Have.

실리카 지지체에 물리적으로 흡착시키는 원리는 정전기적인 인력과 수소 결합 실리카의 등전점(isoelectric point)은 pH 2이고 2보다 더 큰 환경에서 실리카는 (-)를 띤다. 따라서 금속 이온과 정전기적 인력에 의해 물리적으로 흡착이 일어나고 고정화 될 수 있다. 금속 촉매 지지체 상에서 합금 나노입자를 제조하는 방법은 최근에 발표된 강한 정전기 흡착법(strong electrostatic adsorption; SEA)이 유일하다. SEA 방법은 전하를 띠는 금속 전구체들을 반대 전하를 갖는 산화물이나 탄소표면에 흡착시킨 후, 건조, 환원 공정을 거쳐 지지체 위에서 단일 금속 또는 이중 금속 나노입자를 제조하는 방법이다. The principle of physical adsorption on the silica support is that the isoelectric point of electrostatic attraction and hydrogen-bonded silica is pH 2, and in an environment greater than 2, silica has negative (-). Therefore, it can be physically adsorbed and immobilized by metal ions and electrostatic attraction. The only method for producing alloy nanoparticles on a metal catalyst support is a recently published strong electrostatic adsorption (SEA). The SEA method is a method of producing single metal or double metal nanoparticles on a support after adsorbing charged metal precursors onto an oxide or carbon surface having an opposite charge, followed by drying and reduction processes.

금속 전구체와 반대 전하를 지지체 표면에 도입하기 위해서, 본 방법(SEA)은 pH를 신중히 조절해야하는데, 금속마다 흡착 효율 최대치를 나타내는 pH 값이 다르기 때문에, 금속별로 조사해야하는 과정이 필요한 문제가 있다. 또한, 본 방법을 통해 조사한 바에 따르면, 대부분의 금속 전구체들이 높은 pH에서 흡착이 최대치를 갖는데, 이 같은 염기성 조건에서는 실리카 지지체가 녹아나오는 치명적인 단점이 초래될 수 있다. 또한, 현재까지 SEA 방법은 메소다공성 실리카 지지체를 사용한 바가 없다. In order to introduce a charge opposite to that of the metal precursor to the surface of the support, the method (SEA) needs to carefully adjust the pH, but since the pH value representing the maximum adsorption efficiency is different for each metal, there is a problem that a process to be investigated for each metal is required. In addition, as investigated through the present method, most metal precursors have a maximum adsorption value at a high pH, but in such basic conditions, a fatal disadvantage of melting the silica support may be caused. In addition, so far, the SEA method has not used a mesoporous silica support.

염기 조건에서 정전기적 흡착법에 의한 실리카 지지체와 금속 전구체와의 흡착 평형 상수(K)가 104 이하이다. 즉, 대부분 실리카 지지체 상에서, 단일층으로 흡착이 가능하지만, 금속 이온과 아민 리간드의 배위결합보다는 약한 힘에 해당된다. 이러한 이유로, 흡착 후 건조 공정이 필수적으로 동반되며, 환원 공정은 기체인 수소가스를 이용하는 문제가 있다. The adsorption equilibrium constant (K) between the silica support and the metal precursor by the electrostatic adsorption method under basic conditions is 10 4 or less. That is, most of them can be adsorbed in a single layer on a silica support, but this corresponds to a weaker force than a coordination bond between a metal ion and an amine ligand. For this reason, a drying process is essentially accompanied after adsorption, and there is a problem of using hydrogen gas as a gas in the reduction process.

또한, 흡착 공정에서의 최대 효율을 얻기 위해, 높은 pH 조건에서 흡착을 수행해야하는데, 높은 염기 조건 (pH > 11)에서는 실리카 지지체가 녹아나오는 안정성 문제가 있다.In addition, in order to obtain maximum efficiency in the adsorption process, adsorption must be performed under a high pH condition, but there is a stability problem in that the silica support melts under a high basic condition (pH> 11).

특허문헌 1 한국등록특허 제10-1926354호Patent Document 1 Korean Patent Registration No. 10-1926354 특허문헌 2 한국등록특허 제10-1812671호Patent Document 2 Korean Patent Registration No. 10-1812671

본 발명자는 공정의 간소화 및 종래 정전기적 흡착법의 문제를 해결하고자 예의 연구 노력한 결과, 실리카 지지체 표면을 다중아민기로 개질하여 배위결합을 통해 금속 이온을 도입함으로써 증가된 결합력을 토대로 pH 등의 조건에 무관하게 금속이온을 흡착할 수 있음을 확인하고 본 발명을 완성하였다.As a result of intensive research efforts to simplify the process and to solve the problems of the conventional electrostatic adsorption method, the present inventors are irrelevant to conditions such as pH based on increased bonding strength by introducing metal ions through coordination by modifying the surface of the silica support with a multiamine group. It was confirmed that metal ions can be adsorbed in a way, and the present invention was completed.

본 발명의 제조 공정이 염기조건 아닌 경우에도 수행될 수 있는 점, pH 최적화 과정이 제거되는 점, 건조공정이 별도로 필요하지 않아 공정이 간소화되면서도 규칙적인 3차원 기공구조로 높은 비표면적을 갖는 촉매를 생성할 수 있는바, 촉매로서 응용 범위를 넓히고자 한다. A catalyst having a high specific surface area with a regular three-dimensional pore structure while simplifying the process due to the fact that the production process of the present invention can be performed even when the production process is not basic conditions, the pH optimization process is eliminated, and a drying process is not required separately. As it can be produced, it is intended to broaden its application range as a catalyst.

본 발명의 제1양태는 (a) 규칙적인(ordered) 3차원 기공구조의 메조다공성 실리카 지지체 표면에 다중아민기를 도입하는 단계; (b) 상기 다중아민기가 고정화된 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체를 활성금속 전구체와 접촉시켜 금속 이온을 도입하는 단계; 및 (c) 상기 흡착된 금속 이온을 환원시켜 금속 나노입자를 형성하는 단계를 포함하는 것인, 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면에 고정된 금속 나노입자를 포함하는 복합체의 제조방법을 제공한다.A first aspect of the present invention comprises the steps of: (a) introducing multiple amine groups to the surface of the mesoporous silica support having an ordered three-dimensional pore structure; (b) introducing metal ions by contacting the mesoporous silica support having a regular three-dimensional pore structure in which the multiamine groups are immobilized with an active metal precursor; And (c) reducing the adsorbed metal ions to form metal nanoparticles, comprising a mesoporous silica support having a regular three-dimensional pore structure, and metal nanoparticles fixed to the inner and outer surfaces of the pores thereof. It provides a method for producing a composite containing.

본 발명의 제2양태는 제1양태의 제조방법에 의하여 제조된 것인, 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면 상에 고정된 금속 나노입자를 포함하는 복합체를 제공한다.A second aspect of the present invention is a composite comprising a mesoporous silica support having a regular three-dimensional pore structure and metal nanoparticles fixed on the inner and outer surfaces of the pores, which are prepared by the manufacturing method of the first aspect. to provide.

본 발명의 제3양태는 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면 상에 고정된 금속 나노입자를 포함하는 복합체를 유효성분으로 포함하는 과산화수소 합성 반응용 촉매 조성물을 제공한다.A third aspect of the present invention provides a catalyst composition for hydrogen peroxide synthesis reaction comprising as an active ingredient a complex including a mesoporous silica support having a regular three-dimensional pore structure and metal nanoparticles fixed on the inner and outer surfaces of the pores do.

이하, 본 발명을 설명한다. Hereinafter, the present invention will be described.

본 발명의 제조 공정은 염기조건 아닌 경우에도 수행될 수 있고, pH 최적화 과정이 제거되며, 건조공정이 별도로 필요하지 않아 공정이 간소화되면서도 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체상에 고정된 금속 나노입자를 생성할 수 있어 활용성이 높은 촉매 및 제조공정으로서 본 발명을 완성하였다. The manufacturing process of the present invention can be carried out even in non-basic conditions, the pH optimization process is eliminated, and the drying process is not required, so the process is simplified and the metal fixed on the mesoporous silica support having a regular three-dimensional pore structure. The present invention has been completed as a catalyst and manufacturing process with high utility since it can generate nanoparticles.

본 발명은 실리카 지지체를 다중아민기로 표면개질하여 배위결합을 통해 1종 또는 2종 이상의 금속 이온을 흡착하는 새로운 방식인, (a) 규칙적인(ordered) 3차원 기공구조의 메조다공성 실리카 지지체 표면에 다중아민기를 도입하는 단계; (b) 상기 다중아민기가 고정화된 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체를 활성금속 전구체와 접촉시켜 금속 이온을 도입하는 단계; 및 (c) 상기 흡착된 금속 이온을 환원시켜 금속 나노입자를 형성하는 단계를 포함하는 것인, 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면에 고정된 금속 나노입자를 포함하는 복합체의 제조방법을 제공한다.The present invention is a novel method of adsorbing one or more metal ions through coordination by modifying the surface of a silica support with multiple amine groups, (a) on the surface of a mesoporous silica support having an ordered three-dimensional pore structure. Introducing a multiamine group; (b) introducing metal ions by contacting the mesoporous silica support having a regular three-dimensional pore structure in which the multiamine groups are immobilized with an active metal precursor; And (c) reducing the adsorbed metal ions to form metal nanoparticles, comprising a mesoporous silica support having a regular three-dimensional pore structure, and metal nanoparticles fixed to the inner and outer surfaces of the pores thereof. It provides a method for producing a composite containing.

상기 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체는 일반 실리카 지지체에 비해, 높은 비표면적을 갖고 있고, 구조적 특징으로 인해 금속 나노입자의 촉매 안정성에 기여할 수 있다.The mesoporous silica support having a regular three-dimensional pore structure has a higher specific surface area than that of a general silica support, and may contribute to catalytic stability of metal nanoparticles due to structural characteristics.

상기 기공구조는 실린더 또는 자이로이드 형태를 가질 수 있으나, 이에 제한되지 않는다. 예컨대, 상기 기공 구조는 수열합성 반응에 의한 다른 메소다공성 실리카 지지체 제조시 사용되는 BuOH와 HCl의 몰비를 달리함으로써 조절할 수 있다.The pore structure may have a cylinder or gyroid shape, but is not limited thereto. For example, the pore structure can be controlled by varying the molar ratio of BuOH and HCl used in the preparation of other mesoporous silica supports by hydrothermal synthesis.

상기 실린더 구조를 갖는 상기 실리카 지지체 제조는 구조유도제 : 실리카 전구체: BuOH : HCl : 물을 1: 65~75 : 65~75 : 380~400 : 10,000~13,000 의 몰 비율로 사용하는 수열합성법에 의해 준비될 수 있다.Preparation of the silica support having the cylinder structure is prepared by a hydrothermal synthesis method using a structure inducing agent: silica precursor: BuOH: HCl: water in a molar ratio of 1: 65 to 75: 65 to 75: 380 to 400: 10,000 to 13,000 Can be.

상기 자이로이드 구조를 갖는 상기 실리카 지지체 제조는 구도유도제 : 실리카 전구체: BuOH : HCl : 물의 혼합 몰비가 1: 65~75 : 90~100 : 80~90 : 10,000~13,000 의 몰 비율로 사용하는 수열합성법에 의해 준비될 수 있다. The preparation of the silica support having the gyroid structure is a hydrothermal synthesis method in which the mixing molar ratio of the old guiding agent: silica precursor: BuOH: HCl: water is 1: 65 to 75: 90 to 100: 80 to 90: 10,000 to 13,000. Can be prepared by

상기 수열합성은 액상합성법의 하나로 고온, 고압 하에서 물 또는 수용액을 이용하여 물질을 합성하는 과정을 총칭하여 말한다. 즉, 고온의 수용액과 높은 압력 하에서 미네랄의 용해도에 의존하는 단결정 합성방법으로 직접 용융이 어려울 때 많이 쓰이는 합성방법이다. 예컨대, 본 발명은 용액이 들어있는 테프론 용기를 수열 반응기로 옮긴 후, 110 내지 150

Figure pat00001
보다 구체적으로 120 내지 140
Figure pat00002
에서 12 내지 48시간동안 가열하는 것일 수 있으나, 이에 제한되지 않는다. The hydrothermal synthesis is one of the liquid phase synthesis methods and collectively refers to a process of synthesizing a substance using water or an aqueous solution under high temperature and high pressure. In other words, it is a single crystal synthesis method that relies on the solubility of minerals under a high temperature aqueous solution and high pressure, and is a synthesis method commonly used when direct melting is difficult. For example, in the present invention, after transferring the Teflon container containing the solution to a hydrothermal reactor, 110 to 150
Figure pat00001
More specifically 120 to 140
Figure pat00002
It may be heated for 12 to 48 hours at, but is not limited thereto.

상기 구조유도제(structure directing agent)는 친수성 및 소수성 블록을 갖는 블록공중합체일 수 있다. 본 발명의 제조방법에서 구조유도제로 사용가능한 물질은 폴리에틸렌옥사이드-블록-폴리스타이렌 블록공중합체(poly(ethylene oxide)-bpoly(styrene)), 폴리에틸렌옥사이드-블록-폴리메틸메타크리레이트 블록공중합체(poly(ethylene oxide)-bpoly(methyl methacrylate)), 폴리아이소프렌-블록-폴리에틸렌옥사이드 블록공중합체(poly(isoprene)-bpoly(ethylene oxide)), 폴리아이소프렌-블록-폴레스타이렌-블록-폴리에틸렌옥사이드 블록공중합체(polye(isoprene)-b-poly(styrene)-b-poly(ethylene oxide); P123), 및 플루로닉(pluronic)계 상용 블록공중합체(Polyoxypropylenepolyoxyethylene Block Copolymer; F127)로 이루어진 군에서 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.The structure directing agent may be a block copolymer having hydrophilic and hydrophobic blocks. Materials that can be used as structure inducing agents in the manufacturing method of the present invention are polyethylene oxide-block-polystyrene block copolymer (poly(ethylene oxide)-bpoly(styrene)), polyethylene oxide-block-polymethylmethacrylate block copolymer (poly(ethylene oxide)-bpoly(styrene)). (ethylene oxide)-bpoly(methyl methacrylate)), polyisoprene-block-polyethylene oxide block copolymer (poly(isoprene)-bpoly(ethylene oxide)), polyisoprene-block-polystyrene-block-polyethylene oxide block copolymer Polye (isoprene)-b-poly(styrene)-b-poly(ethylene oxide); P123), and pluronic-based commercial block copolymers (Polyoxypropylenepolyoxyethylene Block Copolymer; F127) selected from the group consisting of It may be one or more, but is not limited thereto.

예컨대, 실린더 또는 자이로이드 형태의 규칙적인 3차원 기공구조의 실리카 지지체 제조에는 폴리아이소프렌-블록-폴레스타이렌-블록-폴리에틸렌옥사이드 (P123) 블록공중합체가 사용될 수 있다.For example, a polyisoprene-block-polestyrene-block-polyethylene oxide (P123) block copolymer may be used to prepare a silica support having a regular three-dimensional pore structure in the form of a cylinder or a gyroid.

상기 실리카 전구체는 테트라메틸오르토실리케이트, 테트라에틸오르토실리케이트, 테트라프로필오르토실리케이트, 테트라부틸오르토실리케이트로 이루어진 군에서 선택되는 하나 이상일 수 있다. 예컨대, 테트라에틸오르토실리케이트(Tetraethyl orthosilicate; TEOS)가 사용될 수 있으나, 이에 제한되지 않는다.The silica precursor may be at least one selected from the group consisting of tetramethyl orthosilicate, tetraethylorthosilicate, tetrapropyl orthosilicate, and tetrabutyl orthosilicate. For example, tetraethyl orthosilicate (TEOS) may be used, but is not limited thereto.

상기 다중아민기는 실리카 지지체 표면개질에 사용되는 것으로 배위결합이 가능한 킬레이트제일 수 있다. 종래 정전기적 흡착 방법에 의하면 대부분의 금속 전구체들이 높은 pH에서 흡착이 최대치를 갖는데, 염기 조건에서 실리카 지지체와 금속 전구체와의 흡착 평형 상수 (K)가 104이하이다. 이는 금속 이온과 아민 리간드의 배위결합보다는 약한 힘에 해당된다. 본 발명은 정전기적 흡착법보다 강한 결합인 배위결합으로 금속을 실리카 지지체 이의 기공 내부 및 외부 표면에 도입할 수 있다. 예컨대, 두자리 리간드인 에틸렌 다이아민(Ethylene diamine; EDA)이 사용될 수 있으나 이에 제한되지 않는다. 보다 구체적으로, EDA의 도입을 위해 N-(3-(트라이메톡실릴)프로필)에틸렌다이아민(N-[3-(Trimethoxysilyl)propyl]ethylenediamine; PEDA), 실리카 지지체 및 톨루엔 용매를 혼합할 수 있다.The polyamine group may be a chelating agent capable of coordinating bonds as used for surface modification of a silica support. According to the conventional electrostatic adsorption method, most metal precursors have a maximum adsorption value at a high pH, and the adsorption equilibrium constant (K) between the silica support and the metal precursor is 10 4 or less under basic conditions. This corresponds to a weaker force than a coordination bond between a metal ion and an amine ligand. In the present invention, a metal can be introduced into the inner and outer surfaces of the pores of the silica support through coordination bonding, which is a stronger bond than the electrostatic adsorption method. For example, ethylene diamine (EDA), which is a bidentate ligand, may be used, but is not limited thereto. More specifically, for the introduction of EDA, N-(3-(trimethoxysilyl)propyl)ethylenediamine (N-[3-(Trimethoxysilyl)propyl]ethylenediamine; PEDA), a silica support, and a toluene solvent may be mixed. .

상기 활성금속은 1종 금속 또는 2종 이상의 금속 합금일 수 있다. 종래의 정전기적 흡착법은 금속 전구체와 반대 전하를 지지체 표면에 도입하기 위해 pH를 신중히 조절해야하는데, 이는 금속마다 흡착 효율 최대치를 나타내는 pH값이 다르기 때문이다. 따라서, 상기 방법에 의하면 특히 2종 이상의 금속을 실리카 지지체에 도입하는 것이 어려운 문제가 있었다. 본 발명은 실리카 지지체 표면에 다중아민기 도입하여 배위결합으로 금속 전구체들을 포함하도록 하여 별도의 pH 조절이 필요하지 않음을 확인함으로써 종래의 문제를 해결하였다. 예컨대, Pd 1종 금속 나노입자 또는 Pd/Pt의 합금 나노입자일 수 있으나, 이에 제한되지 않는다. 보다 구체적으로 Pd 및 Pt 합금의 경우, Pt만 사용되는 경우 Pt가 산화되면 기체상이 되어 고정화가 어려운 문제가 있어, Pd와 합금을 통해 Pt의 안정성이 향상되어 촉매 수명을 늘릴 수 있다. Pd-Pt 이종 금속 나노입자의 경우, 촉매의 안정도 향상 및 촉매의 재활용 능력을 향상시킬 수 있다. 특히, 안정성이 상대적으로 떨어지는 Pt를 Pd와 합금을 만들면, Pt의 안정성이 향상되어 촉매 수명을 늘릴 수 있다. The active metal may be one metal or two or more metal alloys. In the conventional electrostatic adsorption method, the pH must be carefully adjusted to introduce a charge opposite to that of the metal precursor to the surface of the support, because the pH value representing the maximum adsorption efficiency is different for each metal. Therefore, according to the above method, it is particularly difficult to introduce two or more kinds of metals into the silica support. The present invention solves the conventional problem by confirming that a separate pH adjustment is not required by introducing a multiamine group to the surface of a silica support to include metal precursors through coordination bonds. For example, it may be a Pd type 1 metal nanoparticle or an alloy nanoparticle of Pd/Pt, but is not limited thereto. More specifically, in the case of Pd and Pt alloys, when only Pt is used, when Pt is oxidized, there is a problem that it becomes a gaseous phase, making it difficult to immobilize, and the stability of Pt is improved through the alloy with Pd, thereby extending the catalyst life. In the case of Pd-Pt dissimilar metal nanoparticles, it is possible to improve the stability of the catalyst and improve the recyclability of the catalyst. In particular, if Pt, which has relatively low stability, is alloyed with Pd, the stability of Pt is improved and the catalyst life can be extended.

상기 (b)단계는 염기성 조건이 아닌 수용액 조건에서 수행될 수 있다. The step (b) may be performed in an aqueous solution condition other than a basic condition.

종래 정전기적 흡착법이 염기성 조건에서 수행되어야 함으로서 실리카 지지체 안정성이 감소되는 문제가 있었으나, 본 발명은 그러한 문제를 해결할 수 있다. 또한, 상기 (b)단계 이후, 별도의 건조공정이 필요하지 않다. 이는 종래 정전기적 흡착법의 경우 금속 나노입자의 실리카 지지체상의 흡착력이 약한 결과로 필요했으나, 배위결합에 의한 흡착력 증가로 별도 건조공정 없이 수행될 수 있다. 나노 금속 입자의 실리카 지지체내의 흡착여부는 도 3에서 보는 바와 같이, 실리카 지지체를 넣기 전, 230 내지 300 nm에서 나타나는 흡수 시그널이 실리카 지지체 넣은 후에 사라지는 것을 통해 확인 할 수 있다. 이는 Pt-Pd가 실리카 지지체 표면에 위치한 다이아민기를 갖는 킬레이트와 안정한 배위결합을 통해 복합체를 형성하였기 때문이다.Although there has been a problem in that the stability of the silica support is reduced because the conventional electrostatic adsorption method must be performed under basic conditions, the present invention can solve such a problem. In addition, after step (b), a separate drying process is not required. In the case of the conventional electrostatic adsorption method, the adsorption power of the metal nanoparticles on the silica support was weak, and this was necessary, but it can be performed without a separate drying process due to an increase in adsorption power due to coordination bonding. Whether or not the nano-metal particles are adsorbed in the silica support can be confirmed through the absorption signal appearing at 230 to 300 nm, before the silica support is added, disappears after the silica support is placed, as shown in FIG. 3. This is because Pt-Pd forms a complex through a stable coordination bond with a chelate having a diamine group located on the surface of the silica support.

본 발명은 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면 상에 고정된 금속 나노입자를 포함하는 복합체를 제공한다. 상기 금속은 1종 금속 또는 2종 이상의 합금일 수 있다.The present invention provides a composite including a mesoporous silica support having a regular three-dimensional pore structure and metal nanoparticles fixed on the inner and outer surfaces of the pores. The metal may be one metal or two or more alloys.

상기 규칙적인 3차원 기공구조의 실리카 지지체의 비표면적은 300 m2/g 이상이고, 기공크기는 5.5 내지 7.5 nm인 것일 수 있으나, 이에 제한되지 않는다. 예컨대, 비표면적 수치가 300 m2/g 이상이며, 기공 사이즈가 5.6 내지 7.1 nm인 것이 포함될 수 있다.The specific surface area of the silica support having the regular three-dimensional pore structure may be 300 m 2 /g or more, and the pore size may be 5.5 to 7.5 nm, but is not limited thereto. For example, those having a specific surface area value of 300 m 2 /g or more and a pore size of 5.6 to 7.1 nm may be included.

상기 금속 나노의 크기는 3 nm 이하 인 것이 포함될 수 있으나, 이에 제한되지 않는다. 예컨대, 금속 나노입자의 크기는 2 nm 이하일 수 있다. The metal nano may have a size of 3 nm or less, but is not limited thereto. For example, the size of the metal nanoparticles may be 2 nm or less.

상기 제조된 복합체는 산소환원반응과 관련된 촉매반응, 디젤 산화 촉매반응 과산화수소 합성 촉매반응 등에 적용될 수 있으나 이에 제한되지 않는다. 본 발명은 구체적인 일 예시로 실시예 4에서 자이로이드 구조 실리카 지지체 상에 고정된 Pd 나노입자의 과산화수소 합성 촉매반응을 확인하였다.The prepared composite may be applied to a catalytic reaction related to an oxygen reduction reaction, a diesel oxidation catalytic reaction, a hydrogen peroxide synthesis catalytic reaction, etc., but is not limited thereto. The present invention confirmed the catalytic reaction of hydrogen peroxide synthesis of Pd nanoparticles fixed on a gyroid-structured silica support in Example 4 as a specific example.

본 발명의 제조방법은 메조다공성 실리카 지지체에 합금 나노입자가 담지된 복합체를 제조함에 있어서 지지체의 표면을 다중아민기로 개질하여 증가된 결합력을 토대로 pH 등의 조건에 무관하게 금속이온을 흡착할 수 있으므로 3 nm 이하의 합금 나노입자를 제조할 수 있다.The manufacturing method of the present invention can adsorb metal ions irrespective of conditions such as pH based on increased bonding strength by modifying the surface of the support with a multiamine group in preparing a composite in which alloy nanoparticles are supported on a mesoporous silica support. Alloy nanoparticles of 3 nm or less can be prepared.

도 1은 금속 나노입자 전구체인 금속이온이 실리카 지지체 내에 도입 여부를 자외선 흡수 분광법을 통해 확인할 수 있는 그래프이다.
도 2는 실린더 실리카 지지체 내에서 제조한 Pd-Pt 합금 나노입자의 전자현미경 및 EDX (Energy Dispersive X-ray spectroscopy) 사진이다.
도 3은 자이로이드 실리카 지지체 내에서 제조한 Pd-Pt 합금 나노입자의 전자현미경 및 EDX 사진이다.
1 is a graph for confirming whether or not metal ions, which are metal nanoparticle precursors, are introduced into a silica support through ultraviolet absorption spectroscopy.
2 is an electron microscope and EDX (Energy Dispersive X-ray spectroscopy) photographs of Pd-Pt alloy nanoparticles prepared in a cylindrical silica support.
3 is an electron microscope and EDX photograph of Pd-Pt alloy nanoparticles prepared in a gyroid silica support.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention more specifically, and the scope of the present invention is not limited to these examples.

제조예 1. 3차원 기공구조의 메조다공성 실리카 지지체의 제조Preparation Example 1. Preparation of a mesoporous silica support having a three-dimensional pore structure

1.1 실린더 구조를 갖는 메조다공성 실리카 지지체1.1 Mesoporous silica support with cylinder structure

구조유도제로 폴리에틸렌글라이콜-폴리프로필렌글라이콜-폴리에틸렌글라이콜 블록공중합체인 P123를 사용하였으며, 이의 반응물은 P123/ TEOS/ BuOH/ HCl/ H2O = 0.017/ 1.2/ 1.21/ 6.66/ 195 의 몰비로 사용하여 실린더 구조를 갖는 갖는 메조다공성 실리카 지지체를 제조하였다.P123, a polyethylene glycol-polypropylene glycol-polyethylene glycol block copolymer, was used as a structure inducing agent, and its reaction product was P123/ TEOS/ BuOH/ HCl/ H 2 O = 0.017/ 1.2/ 1.21/ 6.66/ 195 Having a cylinder structure using the molar ratio of A mesoporous silica support was prepared.

구체적으로, 테프론 반응기에, 5 g의 P123, 179 g의 물, 35.23 g의 35 무게질량비를 갖는 염산을 넣고, 1.5시간 동안 상온에서 교반하였다. 이후, 4.51 g의 BuOH를 첨가한 후, 용액이 투명해질 때까지, 상온에서 교반하였다. 그 다음, 12.68 g의 테트라메틸오르쏘실리케이트(Tetraethylorthosilicate; TEOS)를 첨가하고, 상온에서 혼합용액을 24시간 동안 교반하였다. 이후, 용액이 들어있는 테프론 보틀을 수열반응기로 옮긴 후, 130

Figure pat00003
에서 24시간 동안 가열하였다. 수열반응 후, 여과하여 흰색의 고체를 얻어, 100
Figure pat00004
에서 12시간 동안 테프론 페트리디쉬 상에서 건조하였다. 메조크기의 기공을 만들기 위해, 수득한 시료를 100
Figure pat00005
에서 1시간, 분당 1
Figure pat00006
의 속도로 450
Figure pat00007
까지 가열하고, 450
Figure pat00008
에서 3시간 더 가열을 진행하여, 유기물을 제거하였다.Specifically, in a Teflon reactor, 5 g of P123, 179 g of water, and 35.23 g of hydrochloric acid having a weight mass ratio of 35 were added, followed by stirring at room temperature for 1.5 hours. Thereafter, 4.51 g of BuOH was added, followed by stirring at room temperature until the solution became transparent. Then, 12.68 g of tetramethylorthosilicate (TEOS) was added, and the mixed solution was stirred at room temperature for 24 hours. Thereafter, the Teflon bottle containing the solution was transferred to a hydrothermal reactor, and then 130
Figure pat00003
Heated at for 24 hours. After the hydrothermal reaction, it was filtered to obtain a white solid, 100
Figure pat00004
It was dried on a Teflon Petri dish for 12 hours. In order to make meso-sized pores, 100
Figure pat00005
At 1 hour, 1 per minute
Figure pat00006
At a speed of 450
Figure pat00007
Heated up to 450
Figure pat00008
The heating was further performed for 3 hours to remove organic matter.

1.2 자이로이드 구조를 갖는 메조다공성 실리카 지지체1.2 Mesoporous silica support with gyroid structure

구조유도제로 폴리에틸렌글라이콜-폴리프로필렌글라이콜-폴리에틸렌글라이콜 블록공중합체인 P123를 사용하였으며, 이의 반응물은 P123/ TEOS/ BuOH/ HCl/ H2O = 0.017/ 1.2/ 1.61/ 1.46/ 195 의 몰비로 사용하여 자이로이드 구조를 갖는 갖는 메조다공성 실리카 지지체를 제조하였다. BuOH와 HCl의 몰비만 다를 뿐, 제조예 1.1과 동일한 방법으로 합성을 진행하였다.P123, a polyethylene glycol-polypropylene glycol-polyethylene glycol block copolymer, was used as the structure inducing agent, and the reaction product thereof was P123/ TEOS/ BuOH/ HCl/ H 2 O = 0.017/ 1.2/ 1.61/ 1.46/ 195 Having a gyroid structure using the molar ratio of A mesoporous silica support was prepared. Only the molar ratio of BuOH and HCl was different, and the synthesis was carried out in the same manner as in Preparation Example 1.1.

실시예 1. 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 표면에 다이아민기를 고정화Example 1. Immobilization of diamine groups on the surface of a mesoporous silica support having a regular three-dimensional pore structure

N-(3-(트라이메톡실릴)프로필)에틸렌다이아민(N-(3-(trimethoxysilyl)propyl)ethylenediamine; PEDA)과 상기 제조예에 따라 준비한 실리카 지지체를 톨루엔 용매 하에서 18시간 동안 반응시켜, 에틸렌 다이아민 그룹을 실리카 표면에 도입하였다. 상기 반응은 실리카 대한 PEDA의 질량비 (PEDA/SiO2)를 0.4로 조절하여 진행하였다. N-(3-(trimethoxysilyl)propyl)ethylenediamine (N-(3-(trimethoxysilyl)propyl)ethylenediamine; PEDA) and the silica support prepared according to the above Preparation Example were reacted for 18 hours in a toluene solvent, ethylene Diamine groups were introduced on the silica surface. The reaction was carried out by adjusting the mass ratio of PEDA to silica (PEDA/SiO 2 ) to 0.4.

실시예 2. 다이아민기가 고정화된 3차원 기공구조의 메조다공성 실리카 지지체에 활성금속 이온의 도입Example 2. Introduction of active metal ions into a mesoporous silica support having a three-dimensional pore structure in which a diamine group is immobilized

수용액에 용해 가능한 Pd, Pt 전구체로, 각각 PdCl4 2-와 PtCl6 2- 를 선택하여 금속 이온 도입 공정에 사용하였다. 구체적으로, PtCl6 2- 시약으로는 K2PtCl6를 사용하였으며, PdCl4 2- 수용액은 PdCl2와 NaCl를 1:2의 몰비로 수용액 상에서 섞어 제조하였다. As Pd and Pt precursors soluble in aqueous solution, PdCl 4 2- and PtCl 6 2- were selected, respectively, and used in the metal ion introduction process. Specifically, of PtCl 6 2- K 2 PtCl 6 was used as a reagent, and the PdCl 4 2- aqueous solution was prepared by mixing PdCl 2 and NaCl in an aqueous solution at a molar ratio of 1:2.

상기와 같이 준비한 PdCl4 2- 수용액과 PtCl6 2- 수용액을 1:1로 혼합한 용액에 상기 실시예 1에 따라 제조한 메조다공성 실리카 지지체를 침지시켜 금속 이온을 흡착시켰다. Metal ions were adsorbed by immersing the mesoporous silica support prepared according to Example 1 in a 1:1 mixture of PdCl 4 2- aqueous solution and PtCl 6 2- aqueous solution prepared as described above.

금속 이온들의 지지체내로의 도입 여부를 자외선 흡수분광법(도 1)을 통해 확인하였고, 그 결과를 도 1에 나타내었다. 실리카 지지체를 넣기 전, 230~300 nm에서 나타나는 흡수 시그널이 실리카 지지체 넣은 후에 사라졌다. 이는 Pd 및 Pt가 실리카 표면에 위치한 에틸렌 다이아민 그룹과 안정한 배위결합을 통한 복합체를 형성하였음을 나타내는 것이다. Whether the metal ions were introduced into the support was confirmed through ultraviolet absorption spectroscopy (FIG. 1), and the results are shown in FIG. Before the silica support was added, the absorption signal appearing at 230 to 300 nm disappeared after the silica support was placed. This indicates that Pd and Pt formed a complex through a stable coordination bond with an ethylene diamine group located on the silica surface.

실시예 3. 3차원 메조다공성 실리카 지지체에 도입된 활성금속 이온의 환원에 의한 금속 나노입자의 형성Example 3. Formation of metal nanoparticles by reduction of active metal ions introduced into three-dimensional mesoporous silica support

상기 실시예 2의 반응 혼합액을 원심분리하여 수용액을 제거하고, 환원제인 NaBH4 수용액을 첨가하여 환원 반응을 수행하여, 실리카 지지체상에서 Pd-Pt 합금 나노입자를 형성하였다. The reaction mixture of Example 2 was centrifuged to remove the aqueous solution, and a reduction reaction was performed by adding an aqueous solution of NaBH 4 as a reducing agent to form Pd-Pt alloy nanoparticles on a silica support.

또한, 상기 실시예 1 내지 3에 의해 합금 나노입자를 실리카 지지체 이의 기공 내부 및 외부 표면에 도입한 복합체에 대한 투과전자현미경 이미지를 얻어 형성된 금속 입자들이 기공 내부 및 외부 표면에서 존재함을 확인하였다(도 2 및 도 3). 이때 합성된 합금 나노입자들의 크기는 2 nm 이하로 나타났고, 실리카 지지체의 높은 비표면적에 의해 금속 입자 도입시 실리카 지지체에 분산이 현저히 우수하게 나타남을 확인하였다. 나아가 ICP-AES (inductively-coupled plasma atomic emission spectrometer) 질량분석법을 통해 제조된 복합체 시료에 포함되어 있는 Pd와 Pt의 함량 (질량%)을 구한 결과, Pd는 2.65%, Pt는 4.6% 정도였으며, 이를 몰수로 변환하면, 넣어준 1:1 몰수와 동일한 비율을 잘 유지하고 있는 것으로 나타났다. 투과전자현미경 이미지를 에너지분산 엑스선 분광법(Energy-Dispersive X-ray spectroscopy; EDX)을 통해 원소 분석한 결과와 비교하여, Pd와 Pt 금속이 동일 위치에서 발견됨을 확인하였으며, 이는 Pd-Pt 합금 나노입자가 이의 기공 내부 및 외부 표면에서 성공적으로 제조되었음을 확인하였다(도 2 및 도 3). In addition, by obtaining a transmission electron microscope image of the composite in which the alloy nanoparticles were introduced into the pores inside and outside the pores of the silica support according to Examples 1 to 3, it was confirmed that the formed metal particles exist on the inside and outside the pores ( 2 and 3). At this time, the size of the synthesized alloy nanoparticles was 2 nm or less, and it was confirmed that the dispersion in the silica support was remarkably excellent when the metal particles were introduced due to the high specific surface area of the silica support. Furthermore, as a result of obtaining the content (mass%) of Pd and Pt contained in the composite sample prepared through ICP-AES (inductively-coupled plasma atomic emission spectrometer) mass spectrometry, Pd was 2.65% and Pt was 4.6%, Converting this to the number of moles, it was found that the ratio equal to the number of 1:1 moles entered was well maintained. By comparing the transmission electron microscope image with the result of elemental analysis through Energy-Dispersive X-ray spectroscopy (EDX), it was confirmed that Pd and Pt metal were found at the same location, which is Pd-Pt alloy nanoparticles. It was confirmed that was successfully manufactured on the inner and outer surfaces of its pores (FIGS. 2 and 3 ).

실시예 4. 메조다공성 자이로이드 구조 실리카 지지체에 도입된 Pd 나노입자의 과산화수소 합성 촉매 반응Example 4. Catalytic reaction of hydrogen peroxide synthesis of Pd nanoparticles introduced on a mesoporous gyroid structure silica support

상기 실시예 1 내지 3에 의해 Pd 나노입자를 자이로이드 구조 실리카 지지체 기공 내부 및 외부 표면에 도입한 중량비 0.5%인 복합체를 불균일 촉매로 사용하여 과산화수소 합성 반응을 수행하였다. 촉매 반응전에, 상기 촉매 내에 존재하는 유기물을 제거하기위해, 산소 존재하에서 500℃에서 2시간동안 처리하였고, 이후, 10% 수소 분위기에서 150℃, 1시간동안 처리하여, Pd 환원과정을 거쳤다. 과산화수소 합성 반응에 사용된 Pd 촉매 사용에 따른 생성량을 조사하여 그 결과를 표 1에 나타내었다.Hydrogen peroxide synthesis reaction was performed using a composite having a weight ratio of 0.5% in which Pd nanoparticles were introduced into the pores of the gyroid structure silica support according to Examples 1 to 3 as a heterogeneous catalyst. Before the catalytic reaction, in order to remove organic substances present in the catalyst, it was treated at 500° C. for 2 hours in the presence of oxygen, and then treated at 150° C. for 1 hour in a 10% hydrogen atmosphere, followed by Pd reduction. The production amount according to the use of the Pd catalyst used in the hydrogen peroxide synthesis reaction was investigated, and the results are shown in Table 1.

촉매
(Pd 중량%)
catalyst
(Pd wt%)
조건Condition Pd 질량
(mg)
Pd mass
(mg)
H2
전환율(%)
H 2
Conversion rate (%)
H2O2 선택성
(%)
H 2 O 2 selectivity
(%)
H2O2 생성량
(mmol/gpdh)
H 2 O 2 production amount
(mmol/g pd h)
0.5
(0.599)
0.5
(0.599)
500℃
2시간
500℃
2 hours
0.150.15 19.7519.75 59.2859.28 5882.7175882.717
0.30.3 23.8423.84 58.0658.06 3537.3273537.327 0.50.5 26.6126.61 26.1726.17 1047.191047.19

실험예 1. 특성 분석Experimental Example 1. Characterization

상기 제조예 1.1 및 1.2 에서 제조된 규칙적인 3차원 구조를 갖는 메조다공성 실리카 지지체를 질소 흡착 실험을 통해 분석한 결과, 둘 모두에서 비표면적 수치는 300 m2/g이상이며, 기공 사이즈는 5.6~7.1 nm로 나타났다. 나아가 실시예 1 내지 3으로 제조된 이중 금속 나노입자를 포함한 실리카 지지체의 구조들은 엑스선 산란법을 이용하여 구조 분석하고, 그 결과를 도 2 및 3에 나타내었다. 도 2 및 3에 나타난 바와 같이, 합금 금속 입자 형성 이후에도 지지체 자체의 실린더 및 자이로이드 구조가 유지됨을 확인하였다.As a result of analyzing the mesoporous silica support having a regular three-dimensional structure prepared in Preparation Examples 1.1 and 1.2 through a nitrogen adsorption experiment, the specific surface area value in both was 300 m 2 /g or more, and the pore size was 5.6 to It appeared to be 7.1 nm. Further, the structures of the silica support including the double metal nanoparticles prepared in Examples 1 to 3 were structurally analyzed using an X-ray scattering method, and the results are shown in FIGS. 2 and 3. As shown in FIGS. 2 and 3, it was confirmed that the cylinder and gyroid structure of the support itself were maintained even after the alloy metal particles were formed.

Claims (15)

(a) 규칙적인(ordered) 3차원 기공구조의 메조다공성 실리카 지지체 표면에 다중아민기를 도입하는 단계;
(b) 상기 다중아민기가 고정화된 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체를 활성금속 전구체와 접촉시켜 금속 이온을 도입하는 단계; 및
(c) 상기 흡착된 금속 이온을 환원시켜 금속 나노입자를 형성하는 단계를 포함하는 것인, 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면에 고정된 금속 나노입자를 포함하는 복합체의 제조방법.
(a) introducing multiple amine groups to the surface of the mesoporous silica support having an ordered three-dimensional pore structure;
(b) introducing metal ions by contacting the mesoporous silica support having a regular three-dimensional pore structure in which the multiamine groups are immobilized with an active metal precursor; And
(c) comprising the step of reducing the adsorbed metal ions to form metal nanoparticles, comprising a mesoporous silica support having a regular three-dimensional pore structure, and metal nanoparticles fixed to the inner and outer surfaces of the pores Method for producing a composite.
제1항에 있어서, 상기 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 구조는 실린더 또는 자이로이드 형태의 기공을 갖는 것인, 복합체의 제조방법.
The method of claim 1, wherein the mesoporous silica support structure having a regular three-dimensional pore structure has pores in the form of a cylinder or a gyroid.
제1항에 있어서, 상기 규칙적인 3차원 기공 구조의 메조다공성 실리카 지지체는 구조유도제(structure directing agent), 실리카 지지체, BuOH, HCl 및 물을 이용한 수열합성에 의해 준비된 것인, 복합체의 제조방법.
The method of claim 1, wherein the mesoporous silica support having a regular three-dimensional pore structure is prepared by hydrothermal synthesis using a structure directing agent, a silica support, BuOH, HCl, and water.
제3항에 있어서, 상기 규칙적인 3차원 기공 구조의 메조다공성 실리카 지지체는 구도유도제 : 실리카 전구체 : BuOH : HCl : 물을 1 : 65~75 : 65~75 : 380~400 : 10,000~13,000 또는 1 : 65~75 : 90~100 : 80~90 : 10,000~13,000의 몰비율로 사용하여 준비된 것인, 복합체의 제조방법.
The method of claim 3, wherein the mesoporous silica support having a regular three-dimensional pore structure is a composition inducing agent: silica precursor: BuOH: HCl: water 1: 65 to 75: 65 to 75: 380 to 400: 10,000 to 13,000 or 1 : 65 to 75: 90 to 100: 80 to 90: It is prepared using a molar ratio of 10,000 to 13,000, a method for producing a composite.
제1항에 있어서, 상기 (a)단계의 다중아민기는 단일 분자 내에 C1-3 알킬렌으로 이격되어 위치한 2개 이상의 아민기를 포함하는 알콕시실란 유도체와 반응시킴으로써 공유결합에 의해 실리카 표면에 도입되는 것인, 복합체의 제조방법.
The method of claim 1, wherein the polyamine group in step (a) is introduced into the silica surface by covalent bond by reacting with an alkoxysilane derivative containing two or more amine groups spaced apart from C 1-3 alkylene in a single molecule. That is, a method for producing a composite.
제1항에 있어서, 상기 (a)단계는 규칙적인 3차원 기공 구조의 메조다공성 실리카 지지체를 N-(3-(트라이메톡실릴)프로필)에틸렌다이아민(N-(3-(trimethoxysilyl)propyl)ethylenediamine; PEDA)을 용해시킨 용액에 침지시켜 수행하는 것인, 복합체의 제조방법.
The method of claim 1, wherein in step (a), the mesoporous silica support having a regular three-dimensional pore structure is N-(3-(trimethoxysilyl)propyl)ethylenediamine (N-(3-(trimethoxysilyl)propyl). To be carried out by immersing in a solution in which ethylenediamine; PEDA) is dissolved, the method of manufacturing a composite.
제1항에 있어서, 상기 활성금속은 팔라듐(Pd), 백금(Pt) 또는 이들의 합금인 것인, 복합체의 제조방법.
The method of claim 1, wherein the active metal is palladium (Pd), platinum (Pt), or an alloy thereof.
제1항에 있어서, 상기 (b)단계에서 다중아민기와 금속 이온이 배위 결합하는 것인, 복합체의 제조방법.The method of claim 1, wherein in the step (b), the multiamine group and the metal ion are coordinated. 제1항에 있어서, 상기 (b)단계는 염기 조건을 필요로 하지 않는 것이 특징인, 복합체의 제조방법.
The method of claim 1, wherein the step (b) does not require a basic condition.
제1항에 있어서, 상기 (b)단계 이후 건조공정이 없는 것이 특징인, 복합체의 제조방법.
The method of claim 1, wherein there is no drying process after step (b).
제1항 내지 제10항 중 어느 한 항의 제조방법에 의하여 제조된 것인, 규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면 상에 고정된 금속 나노입자를 포함하는 복합체.
A composite comprising a mesoporous silica support having a regular three-dimensional pore structure and metal nanoparticles fixed on the inner and outer surfaces of the pores, which are prepared by the manufacturing method of any one of claims 1 to 10.
제11항에 있어서, 상기 실리카 지지체는 300 m2/g 이상의 비표면적을 갖는 것인, 복합체.
The composite of claim 11, wherein the silica support has a specific surface area of 300 m 2 /g or more.
제11항에 있어서, 상기 실리카 지지체는 평균 5.5 내지 7.5 nm 기공 크기를 갖는 것인, 복합체.
The composite of claim 11, wherein the silica support has an average pore size of 5.5 to 7.5 nm.
제11항에 있어서, 상기 나노입자는 평균 직경 3 nm 이하의 크기를 갖는 것인, 복합체.
The composite of claim 11, wherein the nanoparticles have an average diameter of 3 nm or less.
규칙적인 3차원 기공구조의 메조다공성 실리카 지지체 및 이의 기공 내부 및 외부 표면 상에 고정된 금속 나노입자를 포함하는 복합체를 유효성분으로 포함하는 과산화수소 합성 반응용 촉매 조성물.







A catalyst composition for hydrogen peroxide synthesis reaction comprising as an active ingredient a composite including a mesoporous silica support having a regular three-dimensional pore structure and metal nanoparticles fixed on the inner and outer surfaces of the pores.







KR1020190083788A 2019-07-11 2019-07-11 metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof KR102224575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190083788A KR102224575B1 (en) 2019-07-11 2019-07-11 metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190083788A KR102224575B1 (en) 2019-07-11 2019-07-11 metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof

Publications (2)

Publication Number Publication Date
KR20210008215A true KR20210008215A (en) 2021-01-21
KR102224575B1 KR102224575B1 (en) 2021-03-09

Family

ID=74237633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190083788A KR102224575B1 (en) 2019-07-11 2019-07-11 metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof

Country Status (1)

Country Link
KR (1) KR102224575B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037204A (en) * 2010-10-11 2012-04-19 에스케이이노베이션 주식회사 Palladium catalyst supported on heteropolyacid incorporated into mesoporous silica, preparation method thereof, and preparation method of hydrogen peroxide using said catalyst
KR20120103544A (en) * 2009-07-01 2012-09-19 셰브런 유.에스.에이.인크. Hydroprocessing catalyst and method of making the same
KR101812671B1 (en) 2015-08-26 2017-12-27 한국과학기술원 Palladium-platinum-silver alloy nanoplate and method for manufacturing the same
KR20180041794A (en) * 2016-10-14 2018-04-25 한국에너지기술연구원 Formic acid dehydrogenation catalysts supported by 3-dimensional interconnected mesoporous silica, preparation method thereof
KR101868904B1 (en) * 2017-07-11 2018-06-19 포항공과대학교 산학협력단 MESOPOROUS IRON OXIDE COMPLEX COMPRISING Pt ATOM AND METHOD FOR PREPARING THE SAME
KR101926354B1 (en) 2017-05-19 2018-12-07 한국과학기술원 Single atomic platinum catalysts for direct formic acid fuel cell and a method for preparing thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103544A (en) * 2009-07-01 2012-09-19 셰브런 유.에스.에이.인크. Hydroprocessing catalyst and method of making the same
KR20120037204A (en) * 2010-10-11 2012-04-19 에스케이이노베이션 주식회사 Palladium catalyst supported on heteropolyacid incorporated into mesoporous silica, preparation method thereof, and preparation method of hydrogen peroxide using said catalyst
KR101812671B1 (en) 2015-08-26 2017-12-27 한국과학기술원 Palladium-platinum-silver alloy nanoplate and method for manufacturing the same
KR20180041794A (en) * 2016-10-14 2018-04-25 한국에너지기술연구원 Formic acid dehydrogenation catalysts supported by 3-dimensional interconnected mesoporous silica, preparation method thereof
KR101926354B1 (en) 2017-05-19 2018-12-07 한국과학기술원 Single atomic platinum catalysts for direct formic acid fuel cell and a method for preparing thereof
KR101868904B1 (en) * 2017-07-11 2018-06-19 포항공과대학교 산학협력단 MESOPOROUS IRON OXIDE COMPLEX COMPRISING Pt ATOM AND METHOD FOR PREPARING THE SAME

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL CHEM ENG VOL 27 NO 3 313-318 *
BULL KOREAN CHEM SOC 2005 VOL 26 NO 11 1653-1668 *

Also Published As

Publication number Publication date
KR102224575B1 (en) 2021-03-09

Similar Documents

Publication Publication Date Title
Costa et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review
Maity et al. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing
Qu et al. Effective controlled release of captopril by silylation of mesoporous MCM‐41
Zhu et al. Metal–organic framework composites
EP2542343B1 (en) High surface area fibrous silica nanoparticles
US10464811B2 (en) Method of forming a particulate porous metal oxide or metalloid oxide
EP2365997B1 (en) A process for preparing silica microparticles
Das et al. A facile approach to fabricate halloysite/metal nanocomposites with preformed and in situ synthesized metal nanoparticles: a comparative study of their enhanced catalytic activity
US20110257006A1 (en) Method for preparing a structured porous material comprising nanoparticles of metal 0 imbedded in the walls thereof
Saad et al. Triazole/triazine-functionalized mesoporous silica as a hybrid material support for palladium nanocatalyst
Subhan et al. Fabrication of 3-D confined spaces with Au NPs: Superior dispersion and catalytic activity
Odrozek et al. Amine-stabilized small gold nanoparticles supported on AlSBA-15 as effective catalysts for aerobic glucose oxidation
Zhang et al. In-situ synthesis of metal-organic framework embedded in ordered mesoporous silica functionalized with carboxyl groups for 4-nitrophenol to 4-aminophenol
Hu et al. Enhanced catalytic nitrophenol reduction via highly porous hollow silica nanospheres stabilized Au nanoclusters
JP2012187565A (en) Core-shell type catalyst and method for producing the same
KR102224575B1 (en) metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof
Luo et al. Gold‐Loaded Mesoporous Organosilica‐Silica Core‐Shell Nanoparticles as Catalytic Nanoreactors
CN104797528A (en) Superficially porous hybrid monoliths with ordered pores and methods of making|and using same
Pérez-Quintanilla et al. Synthesis and characterization of novel mesoporous silicas of the MSU-X family for environmental applications
KR101263918B1 (en) Supported metal catalyst and method for selective catalytic conversion of cellulose to sorbitol in the presence of the catalyst
KR20200033021A (en) Preparation of mesoporous hollow silica microspheres containing thiol group by one-pot synthesis method
Rahman et al. Synthesis and characterization of functionalized Se-MCM-41 a new drug carrier mesopore composite
JP2016150880A (en) Silica-containing hollow particle and manufacturing method thereof, and catalyst and adsorbent containing silica-containing hollow particle
Yu et al. Yolk–shell smart Pickering nanoreactors for base-free one-pot cascade Knoevenagel-hydrogenation with high catalytic efficiency in water
Klapdohr et al. Incorporation of Chromium Carbenes in a Silica Matrix by Sol‐Gel Processing: Application to Aminolysis of Alkoxycarbene Complexes

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant