KR20210004372A - Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation - Google Patents

Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation Download PDF

Info

Publication number
KR20210004372A
KR20210004372A KR1020190080703A KR20190080703A KR20210004372A KR 20210004372 A KR20210004372 A KR 20210004372A KR 1020190080703 A KR1020190080703 A KR 1020190080703A KR 20190080703 A KR20190080703 A KR 20190080703A KR 20210004372 A KR20210004372 A KR 20210004372A
Authority
KR
South Korea
Prior art keywords
graphene
porous structure
augitive
sponge
auxetic
Prior art date
Application number
KR1020190080703A
Other languages
Korean (ko)
Other versions
KR102325853B1 (en
Inventor
오일권
오정환
김지석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020190080703A priority Critical patent/KR102325853B1/en
Publication of KR20210004372A publication Critical patent/KR20210004372A/en
Application granted granted Critical
Publication of KR102325853B1 publication Critical patent/KR102325853B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention relates to a three-dimensional auxetic porous structure based on two-dimensional corrugated graphene and a method for manufacturing the same. The graphene-based auxetic porous structure is obtained by forming auxetic polymer sponge through the tri-axial hot compressing of porous polymer sponge, and dipping the thus prepared auxetic polymer sponge in a graphene oxide solution, followed by drying, so that the inner part of the auxetic polymer sponge may be coated with a graphene oxide layer. The graphene-based auxetic porous structure has a structure characterized by a negative Poisson′s ratio, high porosity, high surface area and improved mechanical properties, and thus can be used as a vibration-, noise- and impact-absorbing material.

Description

소음·진동 및 충격 흡수를 위한 그래핀 기반 오그제틱 다공성 구조체 및 그 제조방법{Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation}Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation for noise, vibration, and shock absorption

본 발명은 소음·진동 및 충격 흡수를 위한 그래핀 기반 오그제틱 다공성 구조체 및 그 제조방법 및 그 제조방법에 관한 것으로, 더욱 상세하게는 주름진 산화된 그래핀 층이 음의 포아송비를 갖는 것을 특징으로 하는 오그제틱 다공성 구조체 내부에 형성되어 있는 소음·진동 및 충격 흡수를 위한 그래핀 기반 다공성 구조체 및 그 제조방법에 관한 것이다.The present invention relates to a graphene-based augitive porous structure for absorbing noise, vibration and shock, and a method of manufacturing the same, and a method of manufacturing the same, and more particularly, a corrugated oxidized graphene layer having a negative Poisson's ratio. The present invention relates to a graphene-based porous structure for absorbing noise, vibration, and shock formed inside an augitive porous structure and a method of manufacturing the same.

일반적으로 그래핀은 탄소원자로 이루어진 탄소 동소체 중 하나이다. 일반적으로 그래핀은 탄소의 sp2 혼성으로 이루어진 2차원 단일시트(two-dimensional single sheet)를 일컫는다. 그래핀은 종래의 다른 나노 첨가제(Na-MMT, LDH, CNT, CNF, EG 등) 와 비교하여 넓은 표면적을 가지며 기계적 강도, 열적 그리고 전기적 특성이 매우 우수하고, 유연성과 투명성을 가진다는 장점을 가진다. 따라서 현재 그래핀을 고분자 수지에 충전시켜 전도성 및 기계적 강도가 우수한 고성능의 기능성 고분자 복합재료를 개발하고자 하는 연구가 활발히 진행되고 있다(Polymer Science and Technology Vol. 22, No. 5, October 2011).In general, graphene is one of the carbon allotropes composed of carbon atoms. In general, graphene refers to a two-dimensional single sheet made of a sp2 hybrid of carbon. Graphene has a large surface area compared to other conventional nano additives (Na-MMT, LDH, CNT, CNF, EG, etc.), has excellent mechanical strength, thermal and electrical properties, and has the advantage of having flexibility and transparency. . Therefore, research is being actively conducted to develop a high-performance functional polymer composite material with excellent conductivity and mechanical strength by filling graphene in a polymer resin (Polymer Science and Technology Vol. 22, No. 5, October 2011).

다공성 구조체(porous structure)는 주로 소음 및 진동을 감쇠시키는 소재로써 사용된다. 이 다공성 구조체의 셀 사이즈나 모양에 따라 진동 감쇠 성질이 다르게 나타난다. 다공성 구조체 중 음의 포아송비를 가지는 오그제틱 다공성 구조체를 이용할 경우, 일반적인 원형의 유닛셀(unit cell) 구조가 꼬여지고 불규칙적인 모양으로 와이어가 굽혀지게 된다. 이에 따라 음의 포아송비를 특징으로 하는 구조가 형성되고, 인장 압축 변형 동안 충격 에너지의 효과적인 국소 압축 강화 효과로 충격 및 진동 감쇠 성질이 향상된다. 이로 인해 오그제틱 다공성 구조체의 실제적인 공학적 응용에 대한 연구가 대두되고 있다. (ACS Appl. Mater. Interfaces, Vol. 10, No. 26, May 2018).The porous structure is mainly used as a material for damping noise and vibration. The vibration damping properties differ depending on the cell size or shape of this porous structure. In the case of using an augitive porous structure having a negative Poisson's ratio among the porous structures, the general circular unit cell structure is twisted and the wire is bent in an irregular shape. Accordingly, a structure characterized by a negative Poisson's ratio is formed, and shock and vibration damping properties are improved by an effective local compression strengthening effect of impact energy during tensile compression deformation. For this reason, research on practical engineering applications of the augitive porous structure is emerging. (ACS Appl. Mater. Interfaces, Vol. 10, No. 26, May 2018).

오그제틱 구조는 실제적인 공학적 응용 및 사용에 제한이 되어왔으며, 피할 수 없게 기계적인 성능이 감소되는 다공성 구조를 가지고 있었다. 그러나 물질이 음의 프아송비를 가지게 되면 물리적 및 기계적 거동이 반대로 되는 경향을 띤다. 즉, 축 방향으로 압축할 때에 측 방향으로도 압축이 되기 때문에 등방성으로 높은 압축성을 가진 물질이 될 수 있다. 이와 같은 오그제틱 특성은 압축부위의 밀도증가로 인해 국부적인 강화효과를 나타냄으로써 다양한 응용분야에서 우수한 특성으로 활용될 수 있다.The augitive structure has been limited in practical engineering applications and uses, and has a porous structure that inevitably reduces mechanical performance. However, when a material has a negative Poisson's ratio, its physical and mechanical behavior tends to be reversed. That is, when compressing in the axial direction, it is also compressed in the lateral direction, so that it can be a material with isotropic and high compressibility. Such augmentative properties can be used as excellent properties in various applications by showing a local reinforcement effect due to an increase in the density of the compressed area.

그러나 다공성 구조체를 만드는 종래의 제조공정은 비용이 많이 들고 소량만 생산할 수 있는 생산공정이며, 재료들이 기계적으로 비강성이며, 기공 크기 및 기능을 정확하게 제어하기 어렵다는 한계를 가지고 있다.However, the conventional manufacturing process for making a porous structure is a manufacturing process that is expensive and can only be produced in a small amount, and the materials are mechanically non-rigid, and it is difficult to accurately control the pore size and function.

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 2D 주름진 산화그래핀(2D wrinkled graphene oxide sheets)이 랩핑된 음의 푸아송 비의 성질을 갖는 3D 오그제틱 폼(3D auxetic foam)을 최초로 개발하였으며, 폴리우레탄폼에 3축 열압축 과정으로 오그제틱 성질을 부여하고, 오그제틱 다공성 구조체 내부에 산화그래핀층이 형성된 음의 포아송 비의 성질을 가진 그래핀 기반 다공성 구조체는 높은 다공도, 표면적, 기계적 특성을 가짐과 동시에 흡진재, 흡음재, 소음·진동 감쇠 및 충격 흡수성의 특징을 가질 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.Accordingly, as a result of the inventors' diligent efforts to solve the above problem, the first 3D auxetic foam having a property of negative Poisson's ratio wrapped with 2D wrinkled graphene oxide sheets Developed, and has a negative Poisson's ratio that gives augetic properties to polyurethane foam through a 3-axis thermal compression process, and a graphene oxide layer formed inside the augetic porous structure. It was confirmed that the graphene-based porous structure has high porosity, surface area, and mechanical properties, and at the same time has characteristics of absorbing material, sound-absorbing material, noise/vibration attenuation, and shock absorption, and the present invention was completed.

본 발명의 목적은 음의 포아송비를 특징으로 하는 구조, 높은 다공도, 높은 표면적 및 향상된 기계적 특성을 가지고 흡진재, 흡음재 및 충격흡수재로 사용 가능한 그래핀 기반 다공성 구조체 및 그 제조방법을 제공하는데 있다.It is an object of the present invention to provide a graphene-based porous structure that has a structure characterized by a negative Poisson's ratio, a high porosity, a high surface area, and improved mechanical properties, and can be used as an absorbing material, a sound absorbing material, and an impact absorbing material, and a method of manufacturing the same.

본 발명의 다른 목적은 상기 그래핀 기반 다공성 구조체의 흡진재, 흡음재 또는 충격흡수재와 같은 용도를 제공하는데 있다.Another object of the present invention is to provide a use of the graphene-based porous structure as an absorbent material, a sound absorbing material, or an impact absorbing material.

상기 목적을 달성하기 위하여, 본 발명은 (a) 다공성 폴리머 스펀지를 3축 열압축시켜 오그제틱 폴리머 스펀지를 제조하는 단계; 및 (b) 상기 제조된 오그제틱 폴리머 스펀지를 산화 그래핀 용액에 침지시키고 건조시켜 상기 오그제틱 폴리머 스펀지 내부에 산화그래핀 층을 코팅시키는 단계를 포함하는 그래핀 기반 오그제틱 다공성 구조체의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of: (a) triaxial thermal compression of a porous polymer sponge to prepare an augitive polymer sponge; And (b) immersing the prepared augmented polymer sponge in a graphene oxide solution and drying it to coat a graphene oxide layer inside the augitive polymer sponge. to provide.

본 발명은 또한, 상기 방법에 의해 제조되고, 푸아송비가 -0.0 ~ -0.5인 것을 특징으로 하는 그래핀 기반 오그제틱 다공성 구조체를 제공한다.The present invention also provides a graphene-based augitive porous structure, which is manufactured by the above method and has a Poisson ratio of -0.0 to -0.5.

본 발명은 또한, 상기 그래핀 기반 오그제틱 다공성 구조체를 포함하는 흡진재, 흡음재 또는 진동감쇠재를 제공한다.The present invention also provides a damping material, a sound absorbing material or a vibration damping material including the graphene-based augetic porous structure.

본 발명에 따른 그래핀 기반 오그제틱 다공성 구조체는 높은 다공도, 높은 표면적 및 향상된 기계적 특성을 가지고 있어, 흡진재, 흡음재 및 충격흡수재로 사용할 수 있다. 특히, 본 발명에 따른 산화그래핀 층이 형성된 오그제틱 스펀지 기술은 각종 흡음 및 흡진시설을 요구로 하는 회의실, 일반 건물, 호텔, 실험실, 각종 기계장치, 엔진룸 등 다양한 분야에 적용이 가능하며, 설치 비용이 저렴하고 재활용이 가능하다는 점 등의 장점으로 활용 범위가 넓고, 활용성이 우수하다.The graphene-based augitive porous structure according to the present invention has high porosity, high surface area, and improved mechanical properties, and thus can be used as an absorbent material, a sound absorbing material, and an impact absorbing material. In particular, the augitive sponge technology in which the graphene oxide layer is formed according to the present invention can be applied to various fields such as conference rooms, general buildings, hotels, laboratories, various machinery and engine rooms that require various sound absorption and absorption facilities. Due to its advantages such as low installation cost and recyclability, it has a wide range of applications and excellent utility.

도 1은 본 발명에 따른 그래핀 기반 오그제틱 다공성 구조체의 전자현미경(SEM) 사진이다. (a)는 폴리우레탄 폼, (b)는 오그제틱 폴리우레탄 폼, (c)는 산화그래핀이 코팅된 오그제틱 폴리우레탄 폼을 나타낸다.
도 2는 본 발명에 따른 그래핀 기반 오그제틱 다공성 구조체(10% 압축, 20% 압축)의 SEM 사진이다.
도 3은 본 발명에 따른 그래핀 기반 오그제틱 다공성 구조체 스펀지의 압축시험 결과로, 도 3a는 일반 폴리우레탄 폼의 압축 변형 양상을 도시한 도면이고, 도 3b는 오그제틱 폴리우레탄 폼의 압축 변형 양상을 도시한 도면이고, 도 3c는 압축시험 결과인 변형률-응력(strain-stress)의 그래프이다.
도 4는 본 발명에 따른 그래핀 기반 오그제틱 다공성 구조체의 저속 충돌 시험의 결과로, 도 4(a)는 변위-힘(displacement-force)의 그래프이고, (b)는 시간-힘(time-force)의 그래프이다.
도 5는 본 발명에 의한 그래핀 기반 오그제틱 다공성 구조체 스펀지의 포아송비를 측정한 결과이다.
도 6은 본 발명에 의한 그래핀 기반 오그제틱 다공성 구조체 스펀지의 진동감쇠 성능을 측정한 결과이다.
도 7은 본 발명에 의한 그래핀 기반 오그제틱 다공성 구조체 스펀지의 진동감쇠 성능을 측정한 장치를 도시한 도면이다.
도 8은 본 발명에 의한 그래핀 기반 오그제틱 다공성 구조체 스펀지의 흡음 성능을 측정한 결과이다.
1 is an electron microscope (SEM) photograph of a graphene-based augetic porous structure according to the present invention. (a) represents a polyurethane foam, (b) represents an augitive polyurethane foam, and (c) represents an augitive polyurethane foam coated with graphene oxide.
2 is a SEM photograph of a graphene-based augitive porous structure (10% compression, 20% compression) according to the present invention.
3 is a compression test result of a graphene-based augitive porous structure sponge according to the present invention, and FIG. 3A is a view showing a compression deformation aspect of a general polyurethane foam, and FIG. 3B is a compression deformation aspect of an augitive polyurethane foam 3C is a graph of strain-stress, which is a result of a compression test.
4 is a result of a low-velocity impact test of the graphene-based augitive porous structure according to the present invention, FIG. 4 (a) is a graph of displacement-force, and (b) is a time-force (time- force).
5 is a result of measuring the Poisson's ratio of the graphene-based augitive porous structure sponge according to the present invention.
Figure 6 is a result of measuring the vibration damping performance of the graphene-based augetic porous structure sponge according to the present invention.
7 is a diagram showing a device for measuring the vibration damping performance of the graphene-based augitive porous structure sponge according to the present invention.
8 is a result of measuring the sound absorption performance of the graphene-based augetic porous structure sponge according to the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by an expert skilled in the art to which the present invention belongs. In general, the nomenclature used in this specification is well known and commonly used in the art.

본 발명에서는 폴리우레탄폼에 3축 열압축 과정으로 오그제틱 성질을 부여하고, 오그제틱 다공성 구조체 내부에 산화그래핀층이 형성된 그래핀 기반 다공성 구조체는 높은 다공도, 표면적, 기계적 특성을 가짐과 동시에 흡진재, 흡음재 및 충격 흡수성의 특징을 가질 수 있다는 것을 확인하였다.In the present invention, the polyurethane foam is provided with augitive properties through a 3-axis thermal compression process, and the graphene-based porous structure in which the graphene oxide layer is formed inside the augetic porous structure has high porosity, surface area, and mechanical properties, and at the same time , It was confirmed that it can have the characteristics of a sound absorbing material and shock absorption.

따라서, 본 발명은 일 관점에서, (a) 다공성 폴리머 스펀지를 3축 열압축시켜 오그제틱 폴리머 스펀지를 제조하는 단계; 및 (b) 상기 제조된 오그제틱 폴리머 스펀지를 산화 그래핀 용액에 침지시키고 건조시켜 상기 오그제틱 폴리머 스펀지 내부에 산화그래핀 층을 코팅시키는 단계를 포함하는 그래핀 기반 오그제틱 다공성 구조체의 제조방법에 관한 것이다.Therefore, in one aspect, the present invention comprises the steps of: (a) triaxial thermal compression of a porous polymer sponge to prepare an augitive polymer sponge; And (b) immersing the prepared augitive polymer sponge in a graphene oxide solution and drying it to coat a graphene oxide layer inside the augitive polymer sponge. About.

본 발명은 다른 관점에서 상기 방법에 의해 제조되고, 푸아송비가 -0.0 ~ -0.5인 것을 특징으로 하는 그래핀 기반 오그제틱 다공성 구조체에 관한 것이다.In another aspect, the present invention relates to a graphene-based augitive porous structure, which is manufactured by the above method and has a Poisson's ratio of -0.0 to -0.5.

본 발명은 2D 주름진 산화그래핀(2D wrinkled graphene oxide sheets)이 랩핑된 3D 오그제틱 폼(3D auxetic foam)을 최초로 개발한 것이다. 본 발명에 의한 음의 포아송 비의 성질을 가진 3D 탄소 미세구조의 실제적인 엔지니어링 적용으로 진동 감쇠 및 충격 흡수에 사용될 수 있다.The present invention is the first to develop a 3D auxetic foam wrapped with 2D wrinkled graphene oxide sheets. The practical engineering application of the 3D carbon microstructure having the property of negative Poisson's ratio according to the present invention can be used for vibration damping and shock absorption.

따라서 그래핀산화물로 둘러 싸인 폴리머 폼의 3차원 헤테로구조(3D heterogeneous structure of graphene oxide-wrapped auxetic foam)는 (음의 포아송비를 갖는 2차원 주름진 그래핀옥사이드 구조 및 음의 포아송비를 갖는 3차원 오그제틱 폼의 효과적인 시너지 효과로) 강한 압축력을 견딜 수 있는 향상된 기계적 성질을 제공하고, 에너지 흡수를 현저하게 증가시킨다.Therefore, the 3D heterogeneous structure of graphene oxide-wrapped auxetic foam (3D heterogeneous structure of graphene oxide-wrapped auxetic foam) is (2D corrugated graphene oxide structure with negative Poisson's ratio and 3D with negative Poisson's ratio). The effective synergistic effect of the augitive foam provides improved mechanical properties capable of withstanding strong compressive forces, and significantly increases energy absorption.

본 발명에서는 산화된 그래핀 제조, 오그제틱 형상화, 오그제틱 폴리머 스펀지에 산화그래핀 층 형성의 순서로 진행된다. 먼저 Hummers method (Daniela C. Macrcano et al., ACS nano 2010, 4(8), 4806-4814.)를 변형하여 산화된 그래핀을 준비한다. 준비된 폴리우레탄 스펀지를 3축 열압축하여 오그제틱 성질을 부여한다. 오그제틱 성질이 부여된 폴리우레탄 스펀지 등 폴리머 스펀지를 일정 농도의 산화그래핀 용액에 담근 후, 건조시켜 산화그래핀 층을 형성하여 오그제틱 산화그래핀 스펀지를 제조한다.In the present invention, oxidized graphene is prepared, an augetic shape is formed, and a graphene oxide layer is formed on the augitive polymer sponge in the sequence. First, oxidized graphene is prepared by modifying the Hummers method (Daniela C. Macrcano et al., ACS nano 2010, 4(8), 4806-4814.). The prepared polyurethane sponge is subjected to 3-axis thermal compression to impart augmentative properties. After immersing a polymer sponge, such as a polyurethane sponge with an augitive nature, in a certain concentration of graphene oxide solution, it is dried to form a graphene oxide layer to prepare an augitive graphene oxide sponge.

본 발명의 일 실시예에 따라 오그제틱 폴리머 스펀지는 다음과 같이 제조된다. 시판되는 폴리우레탄 발포체를 초순수 증류수(D.I. Water) 및 에탄올로 세척하고 오븐에서 건조시킨다. 그 다음, 폴리우레탄 발포체를 프레임 상자 안에 넣고 핫프레스기에서 150℃로 약 1시간 동안 가열한다. 깨끗한 오그제틱 폴리우레탄 폼을 목적에 맞게 잘라 사용한다.According to an embodiment of the present invention, the augitive polymer sponge is prepared as follows. Commercially available polyurethane foam is washed with ultrapure distilled water (D.I. Water) and ethanol and dried in an oven. Then, the polyurethane foam is placed in a frame box and heated at 150° C. for about 1 hour in a hot press. Cut clean augitive polyurethane foam according to the purpose and use it.

또한, 상기 3축 열압축은 하기와 같이 진행된다.In addition, the three-axis thermal compression proceeds as follows.

10x10x4 cm3의 샘플의 경우에 핫프레스 장비에 넣기 전에 샘플보다 작은 몰드에 샘플을 넣는다. 이 때, 몰드는 샘플 크기가 8x8x2 cm3가 되도록 겉에 테두리만 있는 몰드이다. 그 후 핫프레스 장비로 위에서 누르면 샘플이 몰드 안에서 압축된다. 그리고 장비의 온도를 150℃ 올려서 1시간 정도 두면 폴리우레탄의 소프트닝 온도가 되어 연약해지면서 구조가 변형된다.For samples of 10x10x4 cm 3 , place the sample in a mold smaller than the sample before placing it in the hot press equipment. At this time, the mold is a mold with only an outer edge so that the sample size is 8x8x2 cm 3 . The sample is then compressed in the mold when pressed from above with a hot press machine. And if the temperature of the equipment is raised to 150℃ and left for about 1 hour, the softening temperature of polyurethane becomes soft and the structure is deformed.

본 발명에 있어서, 상기 다공성 폴리머 스펀지는 폴리우레탄 스펀지, 폴리에스터 스펀지, 폴리에틸렌 스펀지, 비닐 아세테이트 스펀지로 구성된 군에서 1종 이상 선택될 수 있으며, 바람직하게는 폴리우레탄 스펀지를 사용하나, 이에 한정되는 것은 아니다.In the present invention, the porous polymer sponge may be selected from the group consisting of a polyurethane sponge, a polyester sponge, a polyethylene sponge, and a vinyl acetate sponge, and preferably a polyurethane sponge, but is limited thereto. no.

제1항에 있어서, 상기 (a) 단계는 100~300℃의 온도의 조건하에서 열압축시킬 수 있다. 발명의 일 실시예에 따라 예를 들면, 샘플의 크기가 10cm x 10cm x 4cm인 경우에, 길이 방향으로 20% 혹은 10%의 압축률로 압축틀에 넣어, 8cm x 8cm x 2cm 의 최종결과물이 나올 수 있다.The method of claim 1, wherein the step (a) may be thermally compressed under conditions of a temperature of 100 to 300°C. According to an embodiment of the invention, for example, when the size of the sample is 10cm x 10cm x 4cm, put it in a compression mold at a compression rate of 20% or 10% in the longitudinal direction, and a final result of 8cm x 8cm x 2cm will be produced. I can.

상기 (a) 단계는 핫프레싱 또는 프레임 장비를 이용할 수 있다.In the step (a), hot pressing or framing equipment may be used.

상기와 같이, 본 발명에 의한 그래핀 기반의 오그제틱 다공성 구조체는 기존의 셀룰러 구조(cellular structure)에서는 볼 수 없었던 새로운 반-오픈셀(semi-open cell)이면서 산화그래핀(graphene oxide) 기반의 음의 푸아송 비의 특성을 갖는 셀룰러 마이크로구조(cellular microstructure)라고 할 수 있다.As described above, the graphene-based augitive porous structure according to the present invention is a new semi-open cell that was not seen in the existing cellular structure, and graphene oxide-based It can be said to be a cellular microstructure with a negative Poisson's ratio.

본 발명은 큰 공극을 갖는 폴리머 폼을 3축열압축 방법(원래 길이의 10% 압축, 20% 압축으로 구분)으로 음의 포아송을 가지는 오그제틱 구조를 3차원(three-dimensional)으로 구현한다. 그 후 산소 작용기 oxygen-functional group)를 포함하는 산화그래핀으로 구조적 강화(코팅)를 진행한다. 이 구조적 강화로 인해 3차원의 오그제틱 구조체에 2차원의 평면 그래핀옥사이드 층을 생성한다. 상기 본원발명에 의한 구조체의 SEM 이미지는 도 2에 나타내었다. 20% G-A-PUF, 10% G-A-PUF의 SEM 이미지를 보면 쭈굴쭈글한 산화그래핀의 표면을 볼 수 있는데, 이는 기존에 보고된 문헌에 의하면 음의 포아송 비의 특징을 가지는 2차원 평면으로 볼 수 있다. (Advanced Materials, Vol.27, No. 8, February 2015) 즉, 구조적으로 음의 포아송비 특징을 가진 폴리머 폼에 의한 3차원 오그제틱 구조과 산화그래핀에 의한 2차원 음의 포아송을 가진 코팅층을 갖는다는 것이 본원 발명의 특징이라고 할 수 있다.In the present invention, a polymer foam having large voids is three-dimensionally implemented by a three-dimensional thermal compression method (divided by 10% compression and 20% compression of the original length) to have a negative Poisson. Thereafter, structural strengthening (coating) is performed with graphene oxide containing an oxygen-functional group). Due to this structural reinforcement, a two-dimensional planar graphene oxide layer is created on a three-dimensional augetic structure. The SEM image of the structure according to the present invention is shown in FIG. 2. If you look at the SEM images of 20% GA-PUF and 10% GA-PUF, you can see the wrinkled graphene oxide surface, which is seen as a two-dimensional plane with negative Poisson ratio characteristics according to the previously reported literature. I can. (Advanced Materials, Vol.27, No. 8, February 2015) In other words, it has a three-dimensional augitive structure made of polymer foam with structurally negative Poisson's ratio and a coating layer with two-dimensional negative Poisson made of graphene oxide. It can be said that it is a feature of the present invention.

또한 기술 사업화 관점에서도 중소·중견 업체에서 단 시간에 제품을 신속하게 대량생산 가능한 합성방법을 적용하여, 3축 열압축 방법과 휴머스 방법(Hummer's method, Daniela C. Macrcano et al., ACS nano 2010, 4(8), 4806-4814)으로 제작된 큰 입자를 갖는 산화그래핀 코팅을 한다.In addition, from the standpoint of technological commercialization, a synthesis method that allows small and mid-sized companies to rapidly mass-produce products in a short time was applied, and the 3-axis thermal compression method and the Hummer's method (Hummer's method, Daniela C. Macrcano et al., ACS nano 2010) were applied. , 4(8), 4806-4814) and coated with graphene oxide with large particles.

본 발명에서는 상기 제조방법에 의해 제조된 그래핀 기반 오그제틱 다공성 구조체가 기존 다공성 구조체에 비해 높은 다공도, 표면적, 기계적 특성을 가짐과 동시에 흡진, 흡음, 충격흡수의 특징을 가져 흡진재, 흡음재 또는 충격흡수재로 새로운 공학적 응용이 가능하다는 것을 확인하였다.In the present invention, the graphene-based augmented porous structure manufactured by the above manufacturing method has higher porosity, surface area, and mechanical properties than the existing porous structure, and at the same time has the characteristics of absorption, sound absorption, and shock absorption. It was confirmed that a new engineering application is possible as an absorbent material.

따라서, 본 발명의 또 다른 관점에서 상기 그래핀 기반 오그제틱 다공성 구조체를 포함하는 흡진재, 흡음재 또는 충격흡수재에 관한 것이다.Accordingly, in another aspect of the present invention, the present invention relates to an absorbent material, a sound absorbing material, or an impact absorbing material including the graphene-based augitive porous structure.

물질의 포아송 비의 측정은 이미 널리 알려진 축변형률(axial strain)에 횡변형률(transverse strain)을 나누어 음의 값을 취한 것으로 한다(수학식 1 참조). 일반적인 물질들은 양의 포아송의 비를 갖는다. 따라서 일반적인 물질은 축 방향으로 인장 시 횡 방향으로 줄어들고, 축 방향으로 압축 시 횡 방향으로 늘어난다. 물질을 인장시키며 카메라를 이용해 시편을 촬영하고, 인장된 정도를 포토샵CS6를 이용하여 포아송 비를 측정하였다. 음의 포아송 비를 가지는 경우, 물질을 축 방향으로 인장 시 횡 방향으로 늘어나게 되며, 반대로 축 방향으로 압축 시 횡 방향으로 줄어드는 특성을 보인다.The measurement of the Poisson's ratio of a material is to take a negative value by dividing the transverse strain by the axial strain, which is well known (see Equation 1). Common materials have a positive Poisson ratio. Therefore, general materials shrink in the transverse direction when tensioned in the axial direction, and stretch in the transverse direction when compressed in the axial direction. The material was stretched and the specimen was photographed using a camera, and the degree of tension was measured by using Photoshop CS6 to measure the Poisson's ratio. In the case of negative Poisson's ratio, when the material is stretched in the axial direction, it is stretched in the transverse direction, and when compressed in the axial direction, it is reduced in the transverse direction.

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.

[실시예][Example]

제조예 1: 오그제틱 다공성 구조체의 제조Preparation Example 1: Preparation of augetic porous structure

폴리우레탄 발포체(PUF)를 초순수 증류수(D.I. Water) 및 에탄올로 세척하고 오븐에서 건조시켰다. 그 다음, 폴리우레탄 발포체를 프레임 상자 안에 넣고 150℃의 프레스기에서 1시간 동안 가열하였다. 오그제틱 폴리우레탄 폼을 목적에 맞게 잘라 사용하였다.The polyurethane foam (PUF) was washed with ultrapure distilled water (D.I. Water) and ethanol and dried in an oven. Then, the polyurethane foam was placed in a frame box and heated in a press machine at 150° C. for 1 hour. The augitive polyurethane foam was cut to suit the purpose and used.

GO 용액을 주위 온도에서 3시간 동안 교반하여 균일한 혼합물을 수득하였다. 그 다음, 생성된 혼합물을 오그제틱 폼이 있는 접시에 붓고, 50℃에서 12시간 동안 건조시켰다.The GO solution was stirred at ambient temperature for 3 hours to obtain a homogeneous mixture. Then, the resulting mixture was poured into a dish with an augitive foam, and dried at 50° C. for 12 hours.

도 1의 SEM으로 본 발명의 결과물을 확인하였다. 도 1(a)는 폴리우레탄 폼, 도 1(b)는 오그제틱 폴리우레탄 폼, 도 1(c)는 산화그래핀이 코팅된 오그제틱 폴리우레탄 폼을 보여준다.The result of the present invention was confirmed by the SEM of FIG. 1. 1(a) shows a polyurethane foam, FIG. 1(b) shows an augitive polyurethane foam, and FIG. 1(c) shows an augitive polyurethane foam coated with graphene oxide.

도 2는 본 발명에 따른 그래핀 기반 오그제틱 다공성 구조체(10% 압축, 20% 압축)의 SEM 사진이다(10% A-PUF, 20% A-PUF, 10% G-A-PUF, 20% G-A-PUF).2 is a SEM photograph of a graphene-based augitive porous structure (10% compression, 20% compression) according to the present invention (10% A-PUF, 20% A-PUF, 10% GA-PUF, 20% GA- PUF).

20% G-A-PUF, 10% G-A-PUF의 SEM 이미지를 보면 쭈굴쭈글한 산화그래핀의 표면을 볼 수 있으며, 이는 음의 포아송 비의 특징을 가지는 2차원 평면으로 볼 수 있다.If you look at the SEM images of 20% G-A-PUF and 10% G-A-PUF, you can see the wrinkled graphene oxide surface, which can be seen as a two-dimensional plane with negative Poisson ratio characteristics.

실시예 1: 오그제틱 다공성 구조체의 압축 시험Example 1: Compression test of augetic porous structure

도 3(a)는 일반적인 폴리머 폼의 압축시 변형된 도면으로 일반적인 폼은 양의 포아송비를 가지므로 종방향 압축시 횡방향으로는 팽창한다. 그러나 도 3(b)에 나타낸 바와 같이, 음의 포아송비를 가지는 오그제틱 폼은 종방향으로 압축시, 횡방향으로도 압축한다.Fig. 3(a) is a diagram that is deformed during compression of a general polymer foam. Since a general foam has a positive Poisson's ratio, it expands in the transverse direction during vertical compression. However, as shown in Fig. 3(b), when compressed in the vertical direction, the augitive foam having a negative Poisson's ratio is also compressed in the horizontal direction.

도 3(c)는 50% 스트레인일 때 응력값을 도시한 그래프로, 주름진 그래핀옥사이드가 코팅된 오그제틱 폼이 60kPa로 가장 높으며, 탄성(elasticity)이 상당히 향상된 것을 알 수 있다.3(c) is a graph showing the stress value at 50% strain, and it can be seen that the corrugated graphene oxide-coated augetic foam is the highest at 60 kPa, and the elasticity is considerably improved.

기존 폴리우레탄 폼은 양의 푸아송 비(0.46)를 갖지만, 본 발명에 의한 오그제틱 폼은 음의 푸아송 비(-0.45)를 갖는데, 이러한 독특한 구조적 성질로 인해 압축시험에서 50% 스트레인일 때, 도 3(c)에 나타낸 바와 같이, 응력은 기존 폴리우레탄은 5.3kPa이고 GO-wrapped auxetic foam은 60.67kPa로 매우 큰 압축력도 견딘다. 즉, 오그제틱 구조를 갖는 제품보다 주름진 산화그래핀 층이 오그제틱 구조를 감싼 제품이 월등하게 높은 압축력도 견디게 된다.Existing polyurethane foam has a positive Poisson ratio (0.46), but the augitive foam according to the present invention has a negative Poisson ratio (-0.45). Due to this unique structural property, when 50% strain in the compression test , As shown in Fig. 3(c), the stress is 5.3kPa for the existing polyurethane and 60.67kPa for the GO-wrapped auxetic foam, which withstands a very large compressive force. In other words, a product in which the corrugated graphene oxide layer wraps the augetic structure than a product having an aggetic structure can withstand a significantly higher compressive force.

그러므로, 향후 높은 변형률을 견디는 혹독한 환경에 적용할 때 본 발명을 사용할 수 있다. 본 발명은 구조체의 제어를 통해서 푸아송 비라는 물리적 특성을 제어할 수 있는 기술을 포함하고 있다. 또한 산화그래핀의 강성 강화 효과를 가지면서도 유연성을 지속적으로 가지는 독특한 성질을 보여준다. 적용하고자 하는 목표에 따라 물질의 푸아송 비를 조절하고, 생산 비용 등이 저렴하여 상업화에도 매우 유리하다.Therefore, the present invention can be used when applied to a harsh environment that endures high strain rates in the future. The present invention includes a technology capable of controlling a physical property called Poisson's ratio through control of a structure. In addition, it has a unique property of continuing flexibility while having the effect of strengthening the rigidity of graphene oxide. It is very advantageous for commercialization as it adjusts the Poisson's ratio of the material according to the target to be applied and the production cost is low.

실시예 2: 오그제틱 다공성 구조체의 충격흡수율 측정Example 2: Measurement of the impact absorption rate of the augitive porous structure

제조된 오그제틱 다공성 구조체의 충격흡수율은 저속충돌시험을 통하여 측정하였다.The shock absorption rate of the prepared augitive porous structure was measured through a low-speed impact test.

저속충격시험은 충격흡수재로서의 성능을 테스트하기 위해 CEAST 9350 (Instron)를 이용하여 수행하였다. 충격시험을 위해 길이와 너비가 60.0mm인 샌드위치 패널을 준비하였다. 코어(샘플) 두께는 모든 샘플에서 20 mm 였고 1T의 두께를 갖는 Al 플레이트를 샘플의 상단과 하단 모두에 배치하여 샌드위치 구조로 실험하였다. 2.13kg의 임팩터(impactor) 를 샘플의 40cm 위에 위치시킨 후 실험하였으며, 1.4m/s로 떨어뜨렸다.The low-speed impact test was performed using CEAST 9350 (Instron) to test the performance as an impact absorbing material. A sandwich panel with a length and width of 60.0 mm was prepared for the impact test. The core (sample) thickness was 20 mm in all samples, and an Al plate having a thickness of 1T was placed on both the top and bottom of the sample to experiment with a sandwich structure. After placing an impactor of 2.13 kg on 40 cm of the sample, it was tested and dropped to 1.4 m/s.

레이저 변위 센서(Keyence, LK-031)와 NI-PXI 데이터 수집 장치(NI PXI 1042Q, PXI 6252 보드)를 사용하여 Al 판의 함몰 깊이를 측정하였다.A laser displacement sensor (Keyence, LK-031) and an NI-PXI data acquisition device (NI PXI 1042Q, PXI 6252 board) were used to measure the depression depth of the Al plate.

도 4(a)는 변위-힘(displacement-force)의 그래프이고, 도 4(b)는 시간-힘(time-force)의 그래프이다. 여기서 폴리우레탄 폼(PUF), 10% 압축된 오그제틱 폼(10% A-PUF), 20% 압축된 오그제틱 폼(20% A-PUF), 10% 압축된 산화그래핀이 코팅된 오그제틱 폼(10% G-A-PUF), 20% 압축된 산화그래핀-오그제틱 폼(20% G-A-PUF)를 의미한다.Fig. 4(a) is a graph of displacement-force, and Fig. 4(b) is a graph of time-force. Here, polyurethane foam (PUF), 10% compressed augetic foam (10% A-PUF), 20% compressed augetic foam (20% A-PUF), 10% compressed graphene oxide coated augetic Foam (10% GA-PUF), 20% compressed graphene oxide-organic foam (20% GA-PUF).

충격흡수용으로 사용되고 있는 종래의 폴리우레탄 폼은 내구성과 충격흡수율이 낮다는 단점이 있다. 그런데, 본원발명은 이와 같은 단점을 극복하였다는 것을 도 4의 저속충돌시험 결과를 통하여 확인할 수 있다. 폴리우레탄은 9.62초, 산화그래핀이 코팅된 오그제틱 폼(GO-wrapped auxetic foam)은 18.21초의 충격시간을 보였다. 이는 기존 충격흡수 폼 대비 2배 이상 충격흡수 시간이 늘어난 것으로 매우 높은 에너지 흡수능력을 보여준다. 또한 저속충돌시험에서 사용된 Al 판이 포함된 샌드위치 구조에서, 충격을 받은 맨 위 Al 판의 덴트 깊이(dent depth)는 폴리우레탄 폼은 0.6mm, 산화그래핀이 코팅된 오그제틱 폼(GO-wrapped auxetic foam)은 0.15mm로 본원발명의 코어가 충격흡수에 매우 뛰어남을 알 수 있다. 이에 따라 향상된 물리적 성질로 내구성이 높아지고, 쉽게 재단이 가능하여 다목적성을 가지며 기계설비, 건축 구조물, 공공시설, 교통수단 등에 이르기까지 다양한 응용분야에 대한 가능성을 확인할 수 있다.The conventional polyurethane foam used for shock absorption has the disadvantage of low durability and low shock absorption. However, it can be confirmed through the results of the low-speed impact test of FIG. 4 that the present invention overcomes such a disadvantage. Polyurethane showed an impact time of 9.62 seconds, and graphene oxide coated auxetic foam of 18.21 seconds. This shows a very high energy absorption capacity, as the shock absorption time has been increased by more than two times compared to the existing shock absorption foam. In addition, in the sandwich structure including the Al plate used in the low-speed impact test, the dent depth of the top Al plate affected by the impact was 0.6 mm, the polyurethane foam was 0.6 mm, and the graphene oxide-coated augitive foam (GO-wrapped). auxetic foam) is 0.15mm, and it can be seen that the core of the present invention is very excellent in shock absorption. Accordingly, durability is increased due to improved physical properties, and it has versatility because it can be easily cut, and it is possible to confirm the possibility of various application fields ranging from mechanical facilities, building structures, public facilities, and transportation means.

실시예 3: 오그제틱 다공성 구조체의 포아송비 측정Example 3: Measurement of Poisson's ratio of augitive porous structure

포아송비를 측정하는 실험을 위해 80mm 길이(80 mm x 20 mm x 20 mm)의 샘플을 Zaber console을 이용하여 2mm/s의 속력으로 균일하게 샘플을 잡아당겼다.For an experiment measuring Poisson's ratio, a sample of 80 mm length (80 mm x 20 mm x 20 mm) was uniformly pulled at a speed of 2 mm/s using a Zaber console.

도 5(a) 및 도 5(b)는 폴리우레탄 폼과 GO-wrapped auxetic foam(G-A-PUF)의 포아송 비를 측정하는 사진이다. 도 5(c)는 포아송비 측정 결과를 도시한 그래프이다.5(a) and 5(b) are photographs of measuring Poisson's ratio of polyurethane foam and GO-wrapped auxetic foam (G-A-PUF). 5(c) is a graph showing the Poisson's ratio measurement result.

도 5(a)의 폴리우레탄 폼의 경우, 축 방향으로 인장하중이 가해져 길이가 늘어날 때, 측면방향의 길이는 줄어들어, 약 0.46의 양의 포아송 값을 보여주었다. 그리고 주축방향으로 원래 길이의 약 20% 잡아 댕겼을 때, 20% A-PUF는 약 -0.5, 10% A-PUF는 약 -0.3 의 음의 포아송 값을 보여주었다.In the case of the polyurethane foam of FIG. 5(a), when a tensile load is applied in the axial direction and the length increases, the length in the lateral direction decreases, showing a positive Poisson value of about 0.46. And when pulling about 20% of the original length in the direction of the main axis, 20% A-PUF showed a negative Poisson value of about -0.5, and 10% A-PUF was about -0.3.

산화그래핀 레이어가 코팅된 샘플의 경우, 20%의 세로변형(longitudinal strain)으로 인장할 때, 20% G-A-PUF는 -0.45, 10% G-A-PUF는 -0.3으로 다소 낮아진 푸와송비를 갖는다. 이는 그래핀 레이어로 인해 강성이 증가하고, 꼬여진 폴리우레탄 와이어들이 그래핀 판에 의해 덮어져 연결되었기 때문이다. 모든 오그제틱 구조를 갖는 샘플들은 주축방향의 스트레인(strain) 비율이 늘어남에 따라 포아송비가 낮아지는데, 이는 구조적 제약으로 인해 인장강도에 따라 오그제틱 특성이 달라짐을 알 수 있다.In the case of a sample coated with a graphene oxide layer, when tensile with a longitudinal strain of 20%, 20% GA-PUF has a Poisson's ratio, which is -0.45 and 10% GA-PUF is -0.3. . This is because the stiffness increases due to the graphene layer, and the twisted polyurethane wires are covered and connected by the graphene plate. As the strain ratio in the main axis direction increases, the Poisson's ratio decreases in all samples having augmentative structure, which can be seen that the augmentative properties vary depending on the tensile strength due to structural constraints.

실시예 4: 오그제틱 다공성 구조체의 진동 감쇠 성능 측정Example 4: Measurement of vibration damping performance of an augitive porous structure

도 7에 도시된 바와 같은 장치를 이용하여 진동 감쇠 성능을 측정하였다.The vibration damping performance was measured using the apparatus as shown in FIG. 7.

산화그래핀이 코팅된 오그제틱 스펀지는 진동감쇠재로서도 매우 우수한 성능을 보인다. 캔틸레버 빔에 진동감쇠재를 부착하여 임팩트 해머로 주파수응답함수를 보면, 기존 폴리우레탄 제진재에 비해 밀도가 증가하여 고유진동수가 낮아졌다. 또한 주름진 산화그래핀 층의 효과로 최대진폭 또한 다소 감소된 것을 알 수 있다.The graphene-oxide coated augetic sponge shows very excellent performance as a vibration damping material. When the vibration damping material is attached to the cantilever beam and the frequency response function is viewed with an impact hammer, the density is increased compared to the existing polyurethane damping material and the natural frequency is lowered. In addition, it can be seen that the maximum amplitude is also somewhat reduced due to the effect of the corrugated graphene oxide layer.

도 6(a)는 FRF(Frequency response function, 주파수 응답 함수) 결과이고, 도 6(b)는 (a)의 결과 중 1차 공진주파수 확대한 결과를 도시한 그래프이다.FIG. 6(a) is a result of a frequency response function (FRF), and FIG. 6(b) is a graph showing a result of expanding the first resonant frequency among the results of (a).

Inertance = Accelerance = Acceleration/ForceInertance = Accelerance = Acceleration/Force

주파수 응답 함수 중 인어턴스(Inertance)는 운동을 가속도로 나타낸 것이다.Among the frequency response functions, inertance represents the motion as acceleration.

도 6(d)에서 감쇠비(damping ratio)를 비교해보면, 폴리우레탄 감쇠재는 2.34%, GO-wrapped auxetic foam은 4.89%로 에너지소산능력도 매우 향상된 것을 알 수 있다. 상기 수치는 기존 감쇠재를 대체할 수 있는 수준에 해당된다.Comparing the damping ratio in FIG. 6(d), it can be seen that the polyurethane damping material is 2.34%, and the GO-wrapped auxetic foam is 4.89%, indicating that the energy dissipation capacity is also very improved. The above figure corresponds to a level that can replace the existing damping material.

감쇠비에 대해서는 폴리우레탄 폼은 2.34%, 10% A-PUF는 3.19%, 10% G-A-PUF는 4.16%, 20% A-PUF는 4.25%, 20% G-A-PUF는 4.89%을 나타내었다. 압축률이 10->20% 높아져서 밀도가 증가하거나, 산화그래핀 코팅층이 구속된 댐핑층(constrained damping layer) 효과로 작용하여 진동감쇠비가 높아졌다.Regarding the damping ratio, polyurethane foam was 2.34%, 10% A-PUF was 3.19%, 10% G-A-PUF was 4.16%, 20% A-PUF was 4.25%, and 20% G-A-PUF was 4.89%. The compression ratio increased by 10->20% to increase the density, or the graphene oxide coating layer acted as a constrained damping layer, resulting in a higher vibration damping ratio.

실시예 5: 오그제틱 다공성 구조체의 흡음 성능 측정Example 5: Measurement of sound-absorbing performance of an augitive porous structure

도 8에서는 샘플들(PUF, 10% A-PUF, 10% G-A-PUF, 20% A-PUF, 20% G-A-PUF)를 Bruel & Kjaer의 임피던스 튜브(type 4206)로 흡음계수를 측정하였다. 흡음계수가 1에 가까울수록 흡음성능이 뛰어난 것을 의미한다. 15mm의 두께의 샘플들의 흡음계수를 비교해보면, 저주파대역에서부터 오그제틱 흡음재의 흡음성능이 폴리우레탄 폼 보다 월등히 뛰어났다. 특히, 2kHz 주파수에서의 20% G-A-PUF의 흡음계수는 0.984로 임피던스 튜브 내에서 소리의 98.4%를 재료가 흡수한 것이다.In FIG. 8, samples (PUF, 10% A-PUF, 10% G-A-PUF, 20% A-PUF, 20% G-A-PUF) were measured for sound absorption coefficients by Bruel & Kjaer's impedance tube (type 4206). The closer the sound absorption coefficient is to 1, the better the sound absorption performance. Comparing the sound absorption coefficients of the samples with a thickness of 15 mm, the sound absorption performance of the augitive sound absorbing material from the low frequency band was far superior to that of the polyurethane foam. In particular, the sound absorption coefficient of 20% G-A-PUF at 2 kHz frequency is 0.984, which is the material absorbing 98.4% of the sound in the impedance tube.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it will be apparent to those of ordinary skill in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the claims and their equivalents.

110: 임팩트 해머 포인트(Impact hammer point)
120: 캔틸레버 빔(cantilever beam)
130: 스펀지 댐퍼 패트(sponge damper pad)
140: FFT 분석기(FFT analyzer)
150: 휴대용 컴퓨터(laptop)
110: impact hammer point
120: cantilever beam
130: sponge damper pad
140: FFT analyzer
150: portable computer (laptop)

Claims (8)

다음 단계를 포함하는 그래핀 기반 오그제틱 다공성 구조체의 제조방법:
(a) 다공성 폴리머 스펀지를 3축 열압축시켜 오그제틱 폴리머 스펀지를 제조하는 단계; 및
(b) 상기 제조된 오그제틱 폴리머 스펀지를 산화 그래핀 용액에 침지시키고 건조시켜 상기 오그제틱 폴리머 스펀지 내부에 산화그래핀 층을 코팅시키는 단계.
A method of manufacturing a graphene-based augitive porous structure comprising the following steps:
(a) triaxial thermal compression of the porous polymer sponge to prepare an augitive polymer sponge; And
(b) immersing the prepared augitive polymer sponge in a graphene oxide solution and drying it to coat a graphene oxide layer inside the augitive polymer sponge.
제1항에 있어서, 상기 다공성 폴리머 스펀지는 폴리우레탄 스펀지, 폴리에스터 스펀지, 폴리에틸렌 스펀지, 비닐 아세테이트 스펀지로 구성된 군에서 1종 이상 선택되는 것을 특징으로 하는 그래핀 기반 오그제틱 다공성 구조체의 제조방법.
The method of claim 1, wherein the porous polymer sponge is selected from the group consisting of a polyurethane sponge, a polyester sponge, a polyethylene sponge, and a vinyl acetate sponge.
제1항에 있어서, 상기 (a) 단계는 100~300℃의 온도에서 열압축시키는 것을 특징으로 하는 그래핀 기반 오그제틱 다공성 구조체의 제조방법.
The method of claim 1, wherein the step (a) is thermally compressed at a temperature of 100 to 300°C.
제1항에 있어서, 상기 (a) 단계는 핫프레싱 또는 프레임 장비를 이용하는 것을 특징으로 하는 그래핀 기반 오그제틱 다공성 구조체의 제조방법.
The method of claim 1, wherein the step (a) uses hot pressing or frame equipment.
제1항 내지 제4항의 방법에 의해 제조되고, 푸아송비가 -0.0 ~ -0,5인 것을 특징으로 하는 그래핀 기반 오그제틱 다공성 구조체.
It is prepared by the method of claim 1 to claim 4, characterized in that the Poisson's ratio is -0.0 to -0,5 Graphene-based augmented porous structure.
제5항의 그래핀 기반 오그제틱 다공성 구조체를 포함하는 흡진재.
An absorbent material comprising the graphene-based augetic porous structure of claim 5.
제5항의 그래핀 기반 오그제틱 다공성 구조체를 포함하는 흡음재.
A sound-absorbing material comprising the graphene-based augetic porous structure of claim 5.
제5항의 그래핀 기반 오그제틱 다공성 구조체를 포함하는 진동감쇠재.
Vibration damping material comprising the graphene-based augetic porous structure of claim 5.
KR1020190080703A 2019-07-04 2019-07-04 Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation KR102325853B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190080703A KR102325853B1 (en) 2019-07-04 2019-07-04 Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190080703A KR102325853B1 (en) 2019-07-04 2019-07-04 Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation

Publications (2)

Publication Number Publication Date
KR20210004372A true KR20210004372A (en) 2021-01-13
KR102325853B1 KR102325853B1 (en) 2021-11-12

Family

ID=74142772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190080703A KR102325853B1 (en) 2019-07-04 2019-07-04 Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation

Country Status (1)

Country Link
KR (1) KR102325853B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685845A (en) * 2022-03-03 2022-07-01 中国科学院宁波材料技术与工程研究所 Conductive auxetic open-cell foam composite material and preparation method and application thereof
CN115259145A (en) * 2022-07-29 2022-11-01 武汉汉烯科技有限公司 Preparation method of high-conductivity macroscopic graphene assembly film close to lower limit of Poisson ratio
KR20220155476A (en) 2021-05-13 2022-11-23 경희대학교 산학협력단 Optimal nanomaterial impregnation structure for improving sound absorption coefficient of porous sound absorbing materials
WO2023074923A1 (en) * 2021-10-25 2023-05-04 한국생산기술연구원 Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same
KR102603035B1 (en) * 2023-06-23 2023-11-15 김민수 AI-based virtual chatbot operating system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160029928A (en) * 2014-09-05 2016-03-16 현대중공업 주식회사 Composition for damping material and damping material using the composition
KR20170067525A (en) * 2015-12-08 2017-06-16 삼성중공업 주식회사 Sponge having multi-pored structure and manufacturing method for the same
KR20180031968A (en) * 2016-09-21 2018-03-29 한국과학기술연구원 Composites having properties of high-heat radiation, high-flexibility and high-strenghth, and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160029928A (en) * 2014-09-05 2016-03-16 현대중공업 주식회사 Composition for damping material and damping material using the composition
KR20170067525A (en) * 2015-12-08 2017-06-16 삼성중공업 주식회사 Sponge having multi-pored structure and manufacturing method for the same
KR20180031968A (en) * 2016-09-21 2018-03-29 한국과학기술연구원 Composites having properties of high-heat radiation, high-flexibility and high-strenghth, and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Zhaohe Dai et al. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson‘s Ratio. Scientific Reports. 2016.09.09., Volume 6, Number 32989, Page 1-9. 사본 1부.* *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220155476A (en) 2021-05-13 2022-11-23 경희대학교 산학협력단 Optimal nanomaterial impregnation structure for improving sound absorption coefficient of porous sound absorbing materials
WO2023074923A1 (en) * 2021-10-25 2023-05-04 한국생산기술연구원 Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same
KR20230059853A (en) * 2021-10-25 2023-05-04 한국생산기술연구원 Robot spindle adapter for high rigidity and vibration damping and machine tool robot including the same
CN114685845A (en) * 2022-03-03 2022-07-01 中国科学院宁波材料技术与工程研究所 Conductive auxetic open-cell foam composite material and preparation method and application thereof
CN115259145A (en) * 2022-07-29 2022-11-01 武汉汉烯科技有限公司 Preparation method of high-conductivity macroscopic graphene assembly film close to lower limit of Poisson ratio
KR102603035B1 (en) * 2023-06-23 2023-11-15 김민수 AI-based virtual chatbot operating system

Also Published As

Publication number Publication date
KR102325853B1 (en) 2021-11-12

Similar Documents

Publication Publication Date Title
KR102325853B1 (en) Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation
Lee et al. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide
Oh et al. Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation
Nine et al. Graphene oxide‐based lamella network for enhanced sound absorption
Scarpa et al. Dynamic properties of high structural integrity auxetic open cell foam
Zhao et al. Membrane acoustic metamaterial absorbers with magnetic negative stiffness
Wu et al. Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites as excellent sound absorber
Jiang et al. Phononic glass: A robust acoustic-absorption material
Liu et al. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption
CN106328115B (en) Sound insulation room artificial material based on fractal structure
Huang et al. Pressure-sensitive carbon black/graphene nanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensional polydopamine-modified polyurethane sponge
CN107405858B (en) Vacuum insulation panel
Huang et al. Vibroacoustic behavior and noise control of flax fiber-reinforced polypropylene composites
KR20200078247A (en) Porous Structure-based Graphene Foam and Method of Preparing the Same
Cai et al. Sound absorption by acoustic microlattice with optimized pore configuration
CN109003598A (en) Sheet-type acoustic metamaterial sound insulation room structure
Reddy et al. Highly compressible behavior of polymer mediated three-dimensional network of graphene foam
Zainulabidin et al. Optimum sound absorption by materials fraction combination
Qi et al. Highly efficient acoustic absorber designed by backing cavity-like and filled-microperforated plate-like structure
Gai et al. Experimental study on sound absorbing property of spatial absorber of non-woven fabric with micro-perforated plate-like structure
Tang et al. Facile dip-coating method to prepare micro-perforated fabric acoustic absorber
Kim et al. Multi‐Purpose Auxetic Foam with Honeycomb Concave Micropattern for Sound and Shock Energy Absorbers
Kassim Experimental study of sound absorption properties of reinforced polyster by some natural materials
Schwan et al. Novel superflexible resorcinol–formaldehyde aerogels and combining of them with aramid honeycombs
Subramonian et al. Acoustics and forming of novel polyolefin blend foams

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant