KR20200141950A - Propylene-ethylene random copolymer - Google Patents

Propylene-ethylene random copolymer Download PDF

Info

Publication number
KR20200141950A
KR20200141950A KR1020200070124A KR20200070124A KR20200141950A KR 20200141950 A KR20200141950 A KR 20200141950A KR 1020200070124 A KR1020200070124 A KR 1020200070124A KR 20200070124 A KR20200070124 A KR 20200070124A KR 20200141950 A KR20200141950 A KR 20200141950A
Authority
KR
South Korea
Prior art keywords
propylene
ethylene
random copolymer
room temperature
ethylene random
Prior art date
Application number
KR1020200070124A
Other languages
Korean (ko)
Other versions
KR102502159B1 (en
Inventor
김병석
이인선
김석환
이혜경
권동현
김세영
박희광
예지화
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021559021A priority Critical patent/JP7278653B2/en
Priority to CN202080023515.7A priority patent/CN113840845B/en
Priority to EP20822421.2A priority patent/EP3936542B1/en
Priority to US17/602,495 priority patent/US20220213303A1/en
Priority to PCT/KR2020/007547 priority patent/WO2020251264A1/en
Publication of KR20200141950A publication Critical patent/KR20200141950A/en
Application granted granted Critical
Publication of KR102502159B1 publication Critical patent/KR102502159B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a high-transparency propylene-ethylene random copolymer for injection, which has excellent processability while having low total volatile organic compound (TVOC) emissions, and has maximized the ethylene content.

Description

프로필렌-에틸렌 랜덤 공중합체 {PROPYLENE-ETHYLENE RANDOM COPOLYMER} Propylene-ethylene random copolymer {PROPYLENE-ETHYLENE RANDOM COPOLYMER}

본 발명은 프로필렌-에틸렌 랜덤 공중합체에 관한 것이다. The present invention relates to a propylene-ethylene random copolymer.

폴리프로필렌은 범용수지로 가공이 쉽고 가격 대비 물성이 우수하여 유리, 나무, 종이, 금속 등 전통적 소재를 대체하거나 다른 플라스틱, 심지어는 엔지니어링 플라스틱 영역까지 응용범위가 확대되고 있는 이용 범위가 매우 넓은 범용 수지이다. Polypropylene is a general-purpose resin, which is easy to process and has excellent physical properties for the price, replacing traditional materials such as glass, wood, paper, metal, or other plastics and even engineering plastics. to be.

최근에는 투명성이 요구되는 사출 성형품 제조를 위해, 프로필렌을 에틸렌 또는 부텐과 랜덤 공중합하는 방법이나 삼원 공중합하는 방법이 연구되고 있다. 그 중에서도 투명성을 위한 가장 큰 인자로는 에틸렌 함량이 높은 프로필렌일수록 효과적인 것으로 알려져 있다. 그러나, 랜덤 공중합된 폴리프로필렌은 기존의 호모 폴리프로필렌과 비교하여 중합체내 공단량체인 에틸렌의 함량이 증가함에 따라 결정성이 감소하고, 그 결과로서 강성과 충격강도의 균형(valancing)이 유지되지 않거나 공정 안정성을 확보하기 어렵다. Recently, in order to manufacture an injection molded article requiring transparency, a method of randomly copolymerizing propylene with ethylene or butene or a method of ternary copolymerization has been studied. Among them, it is known that propylene having a high ethylene content is more effective as the biggest factor for transparency. However, compared to the conventional homopolypropylene, the crystallinity of the randomly copolymerized polypropylene decreases as the content of ethylene, which is a comonomer in the polymer, increases, and as a result, the balance between stiffness and impact strength is not maintained. It is difficult to ensure process stability.

한편, 폴리프로필렌 중합용 촉매는 크게 지글러 나타계 촉매와 메탈로센계 촉매로 구분할 수 있는데, 지글러 나타계 촉매의 경우 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 특히, 지글러-나타 촉매(Z/N, ziegler-natta)의 존재 하에 투명성 확보를 위해 에틸렌과의 랜덤 공중합을 수행할 경우에는, 에틸렌의 중합성이 크게 높아 균일한 공중합이 아닌 불균일한 폴리머, 즉, 반복 구조가 아닌 프로필렌 폴리머 사이의 에틸렌 폴리머가 블록으로 생성된 폴리머가 형성되어 물성이 크게 저하될 뿐만 아니라 휘발성 유기 화합물 방출량(VOC)이 높은 문제가 있다. On the other hand, catalysts for polypropylene polymerization can be largely classified into Ziegler Natta catalysts and metallocene catalysts. Since Ziegler Natta catalysts are multi-site catalysts having multiple active points, It is characterized by a wide molecular weight distribution, and there is a problem in that there is a limitation in securing desired physical properties because the composition distribution of the comonomer is not uniform. In particular, in the case of performing random copolymerization with ethylene for securing transparency in the presence of a Ziegler-Natta catalyst (Z/N, ziegler-natta), the polymerizability of ethylene is large, so that it is not a homogeneous polymer. , There is a problem in that a polymer is formed in which the ethylene polymer is formed as a block between the propylene polymers, which is not a repeating structure, so that physical properties are greatly deteriorated and the volatile organic compound emission amount (VOC) is high.

반면, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁고, 공단량체의 조성 분포가 균일한 고분자의 제조가 가능하다. 또 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있다.On the other hand, metallocene catalysts consist of a combination of a main catalyst composed of a transition metal compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum. Such a catalyst is a homogeneous complex catalyst and is a single site catalyst. It is possible to prepare a polymer having a narrow molecular weight distribution and a uniform composition distribution of a comonomer according to a single active point characteristic. In addition, it is possible to change the stereoregularity, copolymerization properties, molecular weight, crystallinity, and the like of the polymer according to the modification of the ligand structure of the catalyst and the change of polymerization conditions.

특히, 최근 환경 관련 인식 변화로 많은 제품 군에 있어서 휘발성 유기 화합물(VOC)의 발생 감소를 추구함에 따라, 상용화된 다양한 폴리프로필렌의 경우 지글러-나타 촉매를 적용한 제품이 주류를 이루고 있긴 하지만, 식품 용기 등의 친환경 소재로서 최근 냄새가 적고 저용출 특성을 보이는 메탈로센 촉매를 적용한 폴리프로필렌 수지 제품으로의 전환이 가속화되고 있다. In particular, in the case of various commercialized polypropylenes, products with Ziegler-Natta catalysts are the mainstream, as they seek to reduce the occurrence of volatile organic compounds (VOC) in many product groups due to the recent change in environmental awareness. As an eco-friendly material such as, etc., the conversion to a polypropylene resin product with a metallocene catalyst having low odor and low dissolution characteristics is being accelerated.

그러나, 지금까지 알려진 메탈로센 촉매를 사용하여 폴리프로필렌을 제조할 경우, 지글러 나타계 촉매의 촉매 대비 융점이 낮아 공단량체인 에틸렌의 함량을 증가시키는 데 한계가 있으며, 이에 따라 사출 제품에서 결정화를 낮추며 고투명을 구현하기 어려운 점이 있다.However, in the case of producing polypropylene using a metallocene catalyst known so far, there is a limit to increasing the content of ethylene, which is a comonomer, because the melting point is lower than that of the Ziegler Natta catalyst. It is difficult to implement low and high transparency.

이에 메탈로센계 촉매를 이용하여, 총휘발성 유기 화합물 방출량(TVOC)이 낮을 뿐만 아니라 에틸렌 함량을 극대화하여 사출 제품에 유용한 고투명성 폴리프로필렌을 제조하는 방법의 개발이 요구된다.Accordingly, there is a need to develop a method for producing highly transparent polypropylene useful for injection products by maximizing ethylene content as well as low total volatile organic compound emission (TVOC) using a metallocene catalyst.

본 명세서는, 총휘발성 유기 화합물 방출량(TVOC)이 낮으며 높은 공단량체 함량을 이용한 고투명성 사출용 프로필렌-에틸렌 랜덤 공중합체를 제공하고자 한다. The present specification is to provide a high transparency injection propylene-ethylene random copolymer using a low total volatile organic compound emission (TVOC) and a high comonomer content.

본 발명은, 융점(Tm)이 125 ℃ 이상이고, 에틸렌의 함량이 4.0 중량% 이상이고, 결정화 온도(Tc)가 75 ℃ 이하이고, 용융지수(MI2.16, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 16 g/min 내지 22 g/min인, 프로필렌-에틸렌 랜덤 공중합체를 제공한다. In the present invention, the melting point (Tm) is 125 ℃ or more, the content of ethylene is 4.0% by weight or more, the crystallization temperature (Tc) is 75 ℃ or less, the melt index (MI 2.16 , 230 ℃, measured at a load of 2.16 kg) A melt index) of 16 g/min to 22 g/min provides a propylene-ethylene random copolymer.

상기 프로필렌-에틸렌 랜덤 공중합체는, 융점(Tm)이 125 ℃ 내지 150 ℃일 수 있고, 에틸렌의 함량이 4.0 중량% 내지 5.5 중량%일 수 있고, 결정화 온도(Tc)가 65 ℃ 내지 75 ℃일 수 있다. The propylene-ethylene random copolymer may have a melting point (Tm) of 125°C to 150°C, an ethylene content of 4.0% to 5.5% by weight, and a crystallization temperature (Tc) of 65°C to 75°C. I can.

그리고, 상기 프로필렌-에틸렌 랜덤 공중합체는, 자일렌 가용분(X.S, Xylene soluble)이 1.0 중량% 이하일 수 있다. In addition, the propylene-ethylene random copolymer may have a xylene soluble content (X.S, Xylene soluble) of 1.0% by weight or less.

또한, 상기 프로필렌-에틸렌 랜덤 공중합체는, ASTM 1003 방법에 따라 측정한 헤이즈(Haze)가 7.5% 이하일 수 있고, VDA 277 방법에 따라 측정한 총휘발성 유기 화합물 방출량(TVOC)가 70 ppm 이하일 수 있다. In addition, the propylene-ethylene random copolymer may have a haze of 7.5% or less measured according to the ASTM 1003 method, and a total volatile organic compound emission (TVOC) measured according to the VDA 277 method may be 70 ppm or less. .

한편, 상기 프로필렌-에틸렌 랜덤 공중합체는, 하기 화학식 1의 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 프로필렌 단량체와 에틸렌 공단량체를 공중합시킴으로써 제조되는 것일 수 있다.Meanwhile, the propylene-ethylene random copolymer may be prepared by copolymerizing a propylene monomer and an ethylene comonomer in the presence of a catalyst composition including a metallocene compound of Formula 1 below.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서, In Formula 1,

M은 4족 전이 금속이고, M is a Group 4 transition metal,

X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 원소이고, X 1 and X 2 are the same as or different from each other, and each independently a halogen element,

R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, 또는 C7-40 아릴알킬이고, R 1 and R 2 are the same as or different from each other, and each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, or C 7-40 arylalkyl,

R3 내지 R6는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬이고,R 3 to R 6 are the same as or different from each other, and each independently C 1-20 alkyl,

R7 은 치환되거나 비치환된 C6-20 아릴이고, R 7 is substituted or unsubstituted C 6-20 aryl,

R8 는 C1-20 알킬이다. R 8 is C 1-20 alkyl.

이 때, 상기 화학식 1에서, R1 및 R2는 각각 C1-8 직쇄 또는 분지쇄 알킬, 또는 C2-12 직쇄 또는 분지쇄 알콕시알킬일 수 있고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 헥실, 또는 t-부톡시헥실일 수 있다. At this time, in Formula 1, R 1 and R 2 may each be C 1-8 straight or branched chain alkyl, or C 2-12 straight or branched alkoxyalkyl, specifically methyl, ethyl, propyl, isopropyl , Butyl, isobutyl, t-butyl, hexyl, or t-butoxyhexyl.

그리고, 상기 화학식 1에서, R3 내지 R6는 각각 C1-6 직쇄 또는 분지쇄 알킬 또는 C1-3 직쇄 또는 분지쇄 알킬일 수 있고, 구체적으로 메틸, 에틸, 프로필, 또는 이소프로필, 이소프로필일 수 있고, 바람직하게는 메틸일 수 있다. And, in Formula 1, R 3 to R 6 may each be C 1-6 straight or branched chain alkyl or C 1-3 straight or branched chain alkyl, specifically methyl, ethyl, propyl, or isopropyl, iso It may be propyl, preferably methyl.

그리고, 상기 화학식 1에서, M은 지르코늄(Zr) 또는 하프늄(Hf)인 것이 바람직할 수 있다. In addition, in Formula 1, M may be preferably zirconium (Zr) or hafnium (Hf).

그리고, 상기 화학식 1에 있어서, R7은 페닐, C1-6 직쇄 또는 분지쇄 알킬이 치환된 페닐, 나프틸, 또는 C1-6 직쇄 또는 분지쇄 알킬이 치환된 나프틸일수 있으며, 구체적으로 상기 페닐 또는 나프틸은 수소 치환기 중 하나 또는 둘 이상이 각각 C1-6 직쇄 또는 분지쇄 알킬로 치환된 것일 수 있다. 일 예로, 상기 페닐 또는 나프틸은 수소 치환기 중 하나 또는 둘 이상이 각각 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸로 치환된 것일 수 있다. And, in Formula 1, R 7 may be phenyl, C 1-6 linear or branched alkyl substituted phenyl, naphthyl, or C 1-6 linear or branched alkyl substituted naphthyl, specifically The phenyl or naphthyl may be one in which one or two or more of the hydrogen substituents are each substituted with C 1-6 straight or branched chain alkyl. For example, the phenyl or naphthyl may be one in which one or two or more of the hydrogen substituents are each substituted with methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl.

그리고, 상기 화학식 1에서, R8은 C1-6 직쇄 또는 분지쇄 알킬 또는 C1-3 직쇄 또는 분지쇄 알킬일 수 있고, 구체적으로 메틸, 에틸, 또는 프로필일 수 있고, 바람직하게는 메틸일 수 있다. And, in Formula 1, R 8 may be C 1-6 straight or branched chain alkyl or C 1-3 straight or branched chain alkyl, specifically methyl, ethyl, or propyl, preferably methyl. I can.

그리고, 상기 화학식 1로 표시되는 메탈로센 화합물은, 구체적으로 예를 들어, 하기 화학식 1-1로 표시되는 것일 수 있다.In addition, the metallocene compound represented by Formula 1 may be specifically represented by Formula 1-1 below.

[화학식 1-1][Formula 1-1]

Figure pat00002
Figure pat00002

상기 화학식 1-1에서, M, X1, X2, R1, R2, R7은 화학식 1에서 정의한 바와 같다.In Formula 1-1, M, X 1 , X 2 , R 1 , R 2 , R 7 are as defined in Formula 1.

또한, 상기 화학식 1로 표시되는 메탈로센 화합물은, 구체적으로 예를 들어, 하기 구조식으로 표시되는 화합물들 중 어느 하나일 수 있다. 하기 구조식은 본 발명을 설명하기 위한 일 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.In addition, the metallocene compound represented by Chemical Formula 1 may be, for example, any one of compounds represented by the following structural formula. The following structural formula is only an example for explaining the present invention, but the present invention is not limited thereto.

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
.
Figure pat00007
.

본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. The terms used in the present specification are only used to describe exemplary embodiments, and are not intended to limit the present invention.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.

본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합을 설명하기 위한 것이며, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 이들의 조합 또는 부가 가능성을 배제하는 것은 아니다. In the present specification, terms such as "comprise", "include" or "have" are used to describe implemented features, numbers, steps, components, or combinations thereof, and one or more other features, numbers, and steps , Components, combinations or additions thereof are not excluded.

또한 본 명세서에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에” 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다. In addition, in the present specification, when each layer or element is referred to as being formed “on” or “on” each layer or element, it means that each layer or element is formed directly on each layer or element, or It means that a layer or element may be additionally formed between each layer, on the object, or on the substrate.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태로 한정하는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention will be described in detail below and exemplify specific embodiments, as various changes can be made and various forms can be obtained. However, this is not to limit the present invention to a specific form disclosed, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체는, 융점(Tm)이 125 ℃ 이상이고, 에틸렌의 함량이 4.0 중량% 이상이고, 결정화 온도(Tc)가 75 ℃ 이하이고, 용융지수(MI2.16, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 16 g/min 내지 22 g/min인 조건을 만족하는 것을 특징으로 한다. The propylene-ethylene random copolymer according to an embodiment of the present invention has a melting point (Tm) of 125°C or higher, an ethylene content of 4.0% by weight or more, a crystallization temperature (Tc) of 75°C or less, and a melt index ( It is characterized in that it satisfies the condition that the melt index measured at MI 2.16 , 230° C., and 2.16 kg load) is 16 g/min to 22 g/min.

지글러-나타 촉매로 제조되는 프로필렌 (공)중합체는 결정 특성 감소로 인해 강성이 크게 저하될 뿐만 아니라 휘발성 유기 화합물 방출량(VOC)이 높은 문제가 있다. 또한, 기존의 메탈로센 촉매를 사용하는 경우에도, 융점이 낮아 중합 공정에서 파울링 등이 발생하며 공단량체인 에틸렌의 함량을 증가시키는 데 한계가 있으므로, 에틸렌 함량을 증대시켜 고투명을 유지하며 사출 성형에 적합하도록 가공성을 개선할 필요가 있다.The propylene (co)polymer prepared with the Ziegler-Natta catalyst has a problem in that the stiffness is greatly reduced due to the decrease in crystal properties, and the volatile organic compound emission amount (VOC) is high. In addition, even when using an existing metallocene catalyst, the melting point is low, fouling occurs in the polymerization process, and there is a limit to increasing the content of ethylene, which is a comonomer, so that the ethylene content is increased to maintain high transparency and injection There is a need to improve workability to be suitable for molding.

이에, 본 발명에 따르면, 총휘발성 유기 화합물 방출량(TVOC)이 낮으며 높은 강성과 함께 가공성이 우수한 고투명성 사출용 프로필렌-에틸렌 랜덤 공중합체를 제공할 수 있다.Accordingly, according to the present invention, it is possible to provide a high transparency injection-use propylene-ethylene random copolymer having low total volatile organic compound emission (TVOC) and excellent workability with high rigidity.

특히, 본 발명은 랜덤 공중합된 폴리프로필렌 중 공단량체로 에틸렌을 포함하는 프로필렌-에틸렌 랜덤 공중합체를 제공하는 것으로, 공단량체로 에틸렌 대신에 부텐을 사용한 랜덤 공중합체나 에틸렌과 함께 부텐을 추가로 사용한 삼원 공중합체의 경우에는 헤이즈 값이 좋지 않아 본 발명과 같은 고투명성 사출용 수지로 적용하기에는 어려움이 있다. In particular, the present invention provides a propylene-ethylene random copolymer containing ethylene as a comonomer among randomly copolymerized polypropylene, a random copolymer using butene instead of ethylene as a comonomer or additionally using butene with ethylene. In the case of the terpolymer, the haze value is not good, so it is difficult to apply it as a highly transparent injection resin such as the present invention.

본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체는, 120 ℃ 이상의 융점(Tm)에서 에틸렌의 함량이 4.0 중량% 이상이 되는 것을 특징으로 한다. 특히, 상기 프로필렌-에틸렌 랜덤 공중합체는, 후술되는 바와 같은 신규 구조의 메탈로센 촉매를 사용하여 호모 폴리프로필렌의 수지에서 매우 높은 융점을 확보하고 에틸렌과 높은 공중합성을 구현할 수 있어, 이처럼 높은 에틸렌 함량에서도 높은 융점을 유지하는 것이라 할 수 있다. The propylene-ethylene random copolymer according to an embodiment of the present invention is characterized in that the content of ethylene is 4.0% by weight or more at a melting point (Tm) of 120° C. or higher. In particular, the propylene-ethylene random copolymer can secure a very high melting point in the resin of homopolypropylene and realize high copolymerization with ethylene by using a metallocene catalyst of a novel structure as described below, and thus high ethylene It can be said that it maintains a high melting point even in the content.

구체적으로, 본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체는, 융점(Tm)이 125 ℃ 이상 또는 125 ℃ 내지 150 ℃일 수 있다. 이와 같이 높은 융점을 가짐으로써 중합 공정에서 파울링 현상이 나타나지 않게 될 뿐만 아니라 우수한 가공성, 및 내열성을 나타낼 수 있다. 보다 구체적으로 상기 프로필렌-에틸렌 랜덤 공중합체는 융점(Tm)이 125.1 ℃ 이상 또는 125.1 ℃ 내지 150 ℃일 수 있다.Specifically, the propylene-ethylene random copolymer according to an embodiment of the present invention may have a melting point (Tm) of 125°C or higher or 125°C to 150°C. By having such a high melting point, not only does not cause fouling in the polymerization process, but also exhibits excellent processability and heat resistance. More specifically, the propylene-ethylene random copolymer may have a melting point (Tm) of 125.1 °C or higher or 125.1 °C to 150 °C.

또한, 상기 프로필렌-에틸렌 랜덤 공중합체는, 결정화 온도(Tc)가 75 ℃ 이하 또는 65 ℃ 내지 75 ℃일 수 있다. 이와 같이 낮은 결정화도 온도를 가짐으로써 결정화도를 낮추며 필름 등의 사출 제품에 적용시 낮은 헤이즈 값을 가지며 고투명도를 확보할 수 있다. 보다 구체적으로 상기 프로필렌-에틸렌 랜덤 공중합체는 결정화 온도(Tc)가 74.5 ℃ 이하 또는 65 ℃ 내지 74.5 ℃, 혹은 74 ℃ 이하 또는 68 ℃ 내지 74 ℃, 혹은 74 ℃ 이하 또는 70 ℃ 내지 73.8 ℃일 수 있다.In addition, the propylene-ethylene random copolymer may have a crystallization temperature (Tc) of 75 °C or less or 65 °C to 75 °C. By having such a low crystallinity temperature, the crystallinity is lowered, and when applied to injection products such as films, it has a low haze value and high transparency can be secured. More specifically, the propylene-ethylene random copolymer may have a crystallization temperature (Tc) of 74.5°C or less or 65°C to 74.5°C, or 74°C or less or 68°C to 74°C, or 74°C or less or 70°C to 73.8°C. have.

본 발명에 있어서 융점(Tm) 및 결정화온도(Tc)는 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 측정할 수 있다. 구체적으로, 온도를 상승시켜 폴리프로필렌중합체를 200 ℃까지 가열한 후 5 분 동안 그 온도에서 유지하고, 그 다음 30 ℃까지 내리고, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기에 해당하는 온도를 용융점(Tm)으로 한다. 이후에, 다시 온도를 30 ℃까지 내릴 때 곡선의 꼭대기를 결정화온도(Tc)로 한다. 이 때, 온도의 상승과 내림의 속도는 10 ℃/min이고, 융점(Tm) 및 결정화온도(Tc)는 두 번째 온도가 상승, 내림하는 구간에서 측정한 결과로 나타낸 것이다. In the present invention, the melting point (Tm) and the crystallization temperature (Tc) can be measured using a Differential Scanning Calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). Specifically, after heating the polypropylene polymer to 200 °C by increasing the temperature, it was maintained at that temperature for 5 minutes, then lowered to 30 °C, and the temperature was increased again to obtain a DSC (Differential Scanning Calorimeter, manufactured by TA) curve. The temperature corresponding to the top is the melting point (Tm). Thereafter, when the temperature is again lowered to 30° C., the top of the curve is taken as the crystallization temperature (Tc). At this time, the rate of rise and fall of the temperature is 10 °C/min, and the melting point (Tm) and crystallization temperature (Tc) are measured in a section where the second temperature rises and falls.

또한, 본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체는, 전술한 바와 같이 125 ℃ 이상의 융점(Tm)에서 에틸렌의 함량이 4.0 중량% 이상 또는 4.0 중량% 내지 5.5 중량%일 수 있다. 이와 같이 높은 융점을 유지하며 에틸렌 함량을 증대시킴에 따라 필름 등의 사출 제품에 적용시 낮은 헤이즈 값을 가지며 고투명도를 확보할 수 있다. 보다 구체적으로 상기 프로필렌-에틸렌 랜덤 공중합체는 에틸렌의 함량이 4.1 중량% 이상 또는 4.1 중량% 내지 5.5 중량%, 또는 4.2 중량% 이상 또는 4.2 중량% 내지 5.5 중량%일 수 있다.In addition, the propylene-ethylene random copolymer according to an embodiment of the present invention may have an ethylene content of 4.0 wt% or more or 4.0 wt% to 5.5 wt% at a melting point (Tm) of 125° C. or higher as described above. As such, it maintains a high melting point and increases the ethylene content, so that when applied to injection products such as films, it has a low haze value and high transparency can be secured. More specifically, the propylene-ethylene random copolymer may have an ethylene content of 4.1 wt% or more, 4.1 wt% to 5.5 wt%, or 4.2 wt% or more, or 4.2 wt% to 5.5 wt%.

종래 공단량체를 이용하여 프로필렌-에틸렌 랜덤 공중합체를 제조하는 경우, 이종의 공단량체가 주사슬 사이에 들어가 수지의 라멜라 구조를 변형시킴으로써, 융점(Tm)이 낮아지며 강성과 충격강도의 균형성(valancing)이 유지되지 않거나 공정 안정성을 확보하기 어려운 문제가 있었다. 이에 대해 본 발명에서는 후술되는 바와 같은 신규 구조의 메탈로센 촉매를 사용하여 호모 폴리프로필렌의 수지에서 매우 높은 융점을 확보하고 에틸렌과 높은 공중합성을 구현할 수 있어, 이처럼 높은 에틸렌 함량에서도 125 ℃ 이상의 높은 융점을 유지하는 개선된 물성 특성을 나타낼 수 있다. In the case of producing a propylene-ethylene random copolymer using a conventional comonomer, a different comonomer enters between the main chains and deforms the lamella structure of the resin, thereby lowering the melting point (Tm) and balancing the stiffness and impact strength (valancing). ) Was not maintained or there was a problem that it was difficult to secure process stability. On the other hand, in the present invention, by using a metallocene catalyst of a novel structure as described later, it is possible to secure a very high melting point in the resin of homopolypropylene and to realize high copolymerization with ethylene. It can exhibit improved physical properties that maintain the melting point.

본 발명에 있어서 프로필렌-에틸렌 랜덤 공중합체 내 공단량체인 에틸렌의 함량은, 미국재료시험학회규격 ASTM D 5576에 따라, 프로필렌-에틸렌 랜덤 공중합체의 필름 혹은 필름 형태 시편을 FT-IR 장비의 Magnetic holder에 고정시킨 후, IR 흡수 스펙트럼에서 시편 두께를 반영하는 4800 cm-1 내지 3500 cm-1 피크의 높이와 에틸렌 성분이 나타나는 710 cm-1 내지 760 cm-1의 면적을 각각 측정하고, 측정한 값을 Standard 샘플의 710 cm-1 내지 760 cm-1 피크의 면적을 4800 cm-1 내지 3500 cm-1 피크 높이로 나눈 값을 플롯(Plot)하여 구한 캘리브레이션(Calibration) 식에 대입하여 공단량체 함량을 계산할 수 있다. In the present invention, the content of ethylene, which is a comonomer in the propylene-ethylene random copolymer, is according to ASTM D 5576 of the American Society for Testing and Materials, and the film or film-type specimen of the propylene-ethylene random copolymer is used as a magnetic holder of the FT-IR equipment. After fixing at, the height of the peak of 4800 cm -1 to 3500 cm -1 reflecting the specimen thickness in the IR absorption spectrum and the area of 710 cm -1 to 760 cm -1 in which the ethylene component appears, respectively, were measured, and the measured values The comonomer content is calculated by substituting the value obtained by dividing the area of the 710 cm -1 to 760 cm -1 peak of the standard sample by the peak height of 4800 cm -1 to 3500 cm -1 to the calibration equation obtained by plotting Can be calculated.

한편, 본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체는, 미국재료시험학회규격 ASTM D 1238에 따라 230 ℃에서 2.16 kg 하중으로 측정한 용융지수(MI2.16)가 약 16 g/10min 내지 약 22 g/10min이다. 이와 같이 용융 지수의 범위를 최적화함으로써 사술 성형시 우수한 가공성을 유지하면서 고투명 제품을 얻을 수 있다. 보다 구체적으로, 상기 프로필렌-에틸렌 랜덤 공중합체는 용융지수(MI2.16)가 약 17 g/10min 내지 약 21 g/10min 또는 약 18 g/10min 내지 약 20 g/10min일 수 있다. 특히, 상기 프로필렌-에틸렌 랜덤 공중합체의 용융 지수(MI2.16)가 약 16 g/10min 미만인 경우에는 가공성이 떨어져 사출압이 증가하여 사출할 수 없으며, 약 22 g/10min를 초과하는 경우에는 점성이 떨어져 흘러내려 사출을 할 수 없기 때문에 사출용 수지로서 사용할 수 없게 된다. On the other hand, the propylene-ethylene random copolymer according to an embodiment of the present invention has a melt index (MI 2.16 ) of about 16 g/10min as measured with a load of 2.16 kg at 230°C according to ASTM D 1238 of the American Society for Testing and Materials. It is about 22 g/10min. By optimizing the range of the melt index in this way, it is possible to obtain a high-transparent product while maintaining excellent processability at the time of jux molding. More specifically, the propylene-ethylene random copolymer may have a melt index (MI 2.16 ) of about 17 g/10min to about 21 g/10min or about 18 g/10min to about 20 g/10min. In particular, when the melt index (MI 2.16 ) of the propylene-ethylene random copolymer is less than about 16 g/10min, the processability is poor and the injection pressure increases, so that injection cannot be performed, and when it exceeds about 22 g/10min, the viscosity is Because it falls off and cannot be injected, it cannot be used as an injection resin.

상기와 같이 본 발명의 프로필렌-에틸렌 랜덤 공중합체는 기존 지글러-나타 촉매 적용 폴리프로필렌 또는 종래 메탈로센 촉매 적용 폴리프로필렌과 달리 125 ℃ 이상의 융점(Tm)과 함께 4.0 중량% 이상의 높은 에틸렌 함량을 유지하고, 75 ℃ 이하의 낮은 결정화도 온도(Tc)와 용융지수(MI2.16, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)를 16 내지 22 g/min을 최적화하여, 중합 공정 및 사출 성형시에 우수한 가공성을 확보하면서, 총휘발성 유기 화합물 방출량(TVOC)이 낮으며 높은 강성과 함께 높은 투명도를 나타낼 수 있다. As described above, the propylene-ethylene random copolymer of the present invention maintains a high ethylene content of 4.0% by weight or more with a melting point (Tm) of 125° C. or higher, unlike the conventional Ziegler-Natta catalyst applied polypropylene or the conventional metallocene catalyst applied polypropylene. And, by optimizing a low crystallinity temperature (Tc) of 75 ℃ or less and a melt index (MI 2.16 , 230 ℃, melt index measured at 2.16 kg load) from 16 to 22 g/min, excellent in polymerization process and injection molding While securing processability, total volatile organic compound emission (TVOC) is low, and high stiffness and high transparency can be exhibited.

일예로, 본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체는, 자일렌 가용분(X.S, Xylene soluble)이 약 1.0 중량% 이하, 또는 약 0.85 중량% 이하, 또는 약 0.7 중량% 이하일 수 있다. 이와 같이 낮은 자일렌 용해분은 전체 공중합체 내 atactic 성분의 함량을 나타내는 값으로, 이의 함량이 낮을수록 프로필렌-에틸렌 랜덤 공중합체의 sticky 정도가 낮다는 것을 의미한다. 이것은 메탈로센 촉매를 이용한 중합에서 확보할 수 있는 장점이다. 본 발명에 따른 프로필렌-에틸렌 랜덤 공중합체는 자일렌 용해분 함량이 낮아 가공 및 히트 실링 과정에서 공정 불량이 발생할 가능성이 극히 낮은 특징을 갖는다. As an example, the propylene-ethylene random copolymer according to an embodiment of the present invention may have a xylene soluble component (XS, Xylene soluble) of about 1.0% by weight or less, or about 0.85% by weight or less, or about 0.7% by weight or less. have. This low xylene dissolution is a value indicating the content of the atactic component in the entire copolymer, and the lower the content, the lower the degree of sticky of the propylene-ethylene random copolymer. This is an advantage that can be secured in polymerization using a metallocene catalyst. The propylene-ethylene random copolymer according to the present invention has an extremely low probability of causing process defects during processing and heat sealing due to a low content of xylene dissolved matter.

또한, 프로필렌-에틸렌 랜덤 공중합체는, 미국재료시험학회규격 ASTM 1003 방법에 따라 측정한 헤이즈(Haze)가 약 7.5% 이하, 또는 약 7.3% 이하, 약 7.2% 이하로 높은 투명도를 나타낼 수 있다. In addition, the propylene-ethylene random copolymer may exhibit high transparency as a haze of about 7.5% or less, or about 7.3% or less, or about 7.2% or less, as measured according to ASTM 1003 method of the American Society for Testing and Materials.

또한, 프로필렌-에틸렌 랜덤 공중합체는, VDA 277 방법에 따라 측정한 총휘발성 유기 화합물 방출량(TVOC)가 약 70 ppm 이하, 또는 약 65 ppm 이하, 약 60 ppm 이하일 수 있다. 이와 같이 낮은 총휘발성 유기 화합물 방출량(TVOC)를 가짐으로써 식품 용기 등으로 사용되는 투명 사출용 프로필렌-에틸렌 랜덤 공중합체로 친환경성을 확보할 수 있다. In addition, the propylene-ethylene random copolymer may have a total volatile organic compound emission amount (TVOC) of about 70 ppm or less, or about 65 ppm or less, or about 60 ppm or less, as measured according to the VDA 277 method. By having such a low total volatile organic compound emission (TVOC), it is possible to secure eco-friendliness with a propylene-ethylene random copolymer for transparent injection used as a food container.

상기와 같이 본 발명의 프로필렌-에틸렌 랜덤 공중합체는 기존 지글러-나타 촉매 적용 폴리프로필렌 또는 종래 메탈로센 촉매 적용 폴리프로필렌 보다 우수한 공정 안정성 및 가공성과 함께 높은 강성과 우수한 투명도를 확보할 수 있다. As described above, the propylene-ethylene random copolymer of the present invention can secure high rigidity and excellent transparency, as well as superior process stability and processability than conventional Ziegler-Natta catalyst applied polypropylene or conventional metallocene catalyst applied polypropylene.

상기와 같은 물성 및 구성적 특징을 갖는 발명의 일 구현예에 따른 프로필렌랜덤 공중합체는, 촉매 활성 성분으로 하기 화학식 1의 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 프로필렌 단량체와 에틸렌 공단량체를 랜덤 공중합시키는 단계를 포함하는 제조방법에 의해 제조될 수 있다. The propylene random copolymer according to an embodiment of the present invention having the above physical properties and constitutional characteristics is a propylene monomer and an ethylene comonomer in the presence of a catalyst composition comprising a metallocene compound of Formula 1 as a catalytic active component. It can be prepared by a manufacturing method comprising the step of randomly copolymerizing.

[화학식 1][Formula 1]

Figure pat00008
Figure pat00008

상기 화학식 1에서, In Formula 1,

M은 4족 전이 금속이고, M is a Group 4 transition metal,

X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 원소이고, X 1 and X 2 are the same as or different from each other, and each independently a halogen element,

R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, 또는 C7-40 아릴알킬이고, R 1 and R 2 are the same as or different from each other, and each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, or C 7-40 arylalkyl,

R3 내지 R6는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬이고,R 3 to R 6 are the same as or different from each other, and each independently C 1-20 alkyl,

R7 은 치환되거나 비치환된 C6-20 아릴이고, R 7 is substituted or unsubstituted C 6-20 aryl,

R8 는 C1-20 알킬이다. R 8 is C 1-20 alkyl.

한편, 본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다. Meanwhile, in the present specification, the following terms may be defined as follows unless there is a specific limitation.

할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br), 또는 요오드(I)일 수 있다.The halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).

탄소수 1 내지 20(C1-20)의 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬은 탄소수 1 내지 20의 직쇄 알킬; 탄소수 1 내지 15의 직쇄 알킬; 탄소수 1 내지 5의 직쇄 알킬; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬일 수 있다. 일예로, 상기 탄소수 1 내지 20(C1-20)의 알킬은 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkyl having 1 to 20 carbon atoms (C 1-20 ) may be linear, branched or cyclic alkyl. Specifically, the alkyl having 1 to 20 carbon atoms is a linear alkyl having 1 to 20 carbon atoms; Straight chain alkyl having 1 to 15 carbon atoms; Straight chain alkyl having 1 to 5 carbon atoms; Branched or cyclic alkyl having 3 to 20 carbon atoms; Branched or cyclic alkyl having 3 to 15 carbon atoms; Or it may be a branched chain or cyclic alkyl having 3 to 10 carbon atoms. For example, the alkyl having 1 to 20 carbon atoms (C 1-20 ) is methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl , Cyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.

탄소수 2 내지 20(C2-20)의 알케닐로는 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkenyl having 2 to 20 carbon atoms (C 2-20 ) includes linear or branched alkenyl, and specifically allyl, allyl, ethenyl, propenyl, butenyl, pentenyl, etc. It is not limited only.

탄소수 1 내지 20(C1-20)의 알콕시로는 메톡시기, 에톡시, 이소프로폭시, n-부톡시, tert-부톡시, 페닐옥시, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Examples of alkoxy having 1 to 20 carbon atoms (C 1-20 ) include methoxy group, ethoxy, isopropoxy, n-butoxy, tert-butoxy, phenyloxy, and cyclohexyloxy groups, but are limited thereto. It does not become.

탄소수 2 내지 20(C2-20)의 알콕시알킬기는 상술한 알킬의 1개 이상의 수소가 알콕시로 치환된 작용기이며, 구체적으로 메톡시메틸, 메톡시에틸, 에톡시메틸, iso-프로폭시메틸, iso-프로폭시에틸, iso-프로폭시프로필, iso-프로폭시헥실, tert-부톡시메틸, tert-부톡시에틸, tert-부톡시프로필, tert-부톡시헥실 등의 알콕시알킬; 또는 페녹시헥실 등의 아릴옥시알킬을 들 수 있으나, 이에만 한정되는 것은 아니다.The alkoxyalkyl group having 2 to 20 carbon atoms (C 2-20 ) is a functional group in which at least one hydrogen of the above-described alkyl is substituted with alkoxy, specifically methoxymethyl, methoxyethyl, ethoxymethyl, iso-propoxymethyl, alkoxyalkyl such as iso-propoxyethyl, iso-propoxypropyl, iso-propoxyhexyl, tert-butoxymethyl, tert-butoxyethyl, tert-butoxypropyl, and tert-butoxyhexyl; Or aryloxyalkyl such as phenoxyhexyl, but is not limited thereto.

탄소수 1 내지 20(C1-20)의 알킬실릴 또는 탄소수 1 내지 20(C1-20)의 알콕시실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 상술한 바와 같은 알킬 또는 알콕시로 치환된 작용기이며, 구체적으로 메틸실릴, 디메틸실릴, 트라이메틸실릴, 디메틸에틸실릴, 디에틸메틸실릴기 또는 디메틸프로필실릴 등의 알킬실릴; 메톡시실릴, 디메톡시실릴, 트라이메톡시실릴 또는 디메톡시에톡시실릴 등의 알콕시실릴; 메톡시디메틸실릴, 디에톡시메틸실릴 또는 디메톡시프로필실릴 등의 알콕시알킬실릴을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkylsilyl having 1 to 20 (C 1-20 ) carbon atoms or alkoxysilyl group having 1 to 20 carbon atoms (C 1-20 ) is substituted with 1 to 3 hydrogens of -SiH 3 as alkyl or alkoxy as described above. It is a substituted functional group, specifically, alkylsilyl, such as methylsilyl, dimethylsilyl, trimethylsilyl, dimethylethylsilyl, diethylmethylsilyl group, or dimethylpropylsilyl; Alkoxysilyl such as methoxysilyl, dimethoxysilyl, trimethoxysilyl or dimethoxyethoxysilyl; Alkoxyalkylsilyl such as methoxydimethylsilyl, diethoxymethylsilyl, or dimethoxypropylsilyl may be mentioned, but the present invention is not limited thereto.

탄소수 1 내지 20(C1-20)의 실릴알킬은 상술한 바와 같은 알킬의 1 이상의 수소가 실릴로 치환된 작용기이며, 구체적으로 -CH2-SiH3, 메틸실릴메틸 또는 디메틸에톡시실릴프로필 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Silylalkyl having 1 to 20 carbon atoms (C 1-20 ) is a functional group in which one or more hydrogens of alkyl as described above are substituted with silyl, specifically -CH 2 -SiH 3 , methylsilylmethyl or dimethylethoxysilylpropyl, etc. However, it is not limited thereto.

또한, 탄소수 1 내지 20(C1-20)의 알킬렌으로는 2가 치환기라는 것을 제외하고는 상술한 알킬과 동일한 것으로, 구체적으로 메틸렌, 에틸렌, 프로필렌, 부틸렌, 펜틸렌, 헥실렌, 헵틸렌, 옥틸렌, 시클로프로필렌, 시클로부틸렌, 시클로펜틸렌, 시클로헥실렌, 시클로헵틸렌, 시클로옥틸렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, the alkylene having 1 to 20 carbon atoms (C 1-20 ) is the same as the above-described alkyl, except that it is a divalent substituent, specifically methylene, ethylene, propylene, butylene, pentylene, hexylene, hep Styrene, octylene, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, cyclooctylene, and the like, but are not limited thereto.

탄소수 6 내지 20(C6-20)의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소일 수 있다. 일예로, 상기 탄소수 6 내지 20(C6-20)의 아릴은 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The aryl having 6 to 20 carbon atoms (C 6-20 ) may be a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. As an example, the aryl having 6 to 20 carbon atoms (C 6-20 ) may include phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, etc., but is not limited thereto.

탄소수 7 내지 20(C7-20)의 알킬아릴은 방향족 고리의 수소 중 하나 이상의 수소가 상술한 알킬에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 탄소수 7 내지 20(C7-20)의 알킬아릴은 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다 Alkylaryl having 7 to 20 carbon atoms (C 7-20 ) may mean a substituent in which at least one hydrogen of the hydrogen of the aromatic ring is substituted by the above-described alkyl. As an example, the alkylaryl having 7 to 20 carbon atoms (C 7-20 ) may include methylphenyl, ethylphenyl, methylbiphenyl, methylnaphthyl, etc., but is not limited thereto.

상기 탄소수 7 내지 20(C7-20)의 아릴알킬은 상술한 알킬의 1 이상의 수소가 상술한 아릴에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 탄소수 7 내지 20(C7-20)의 아릴알킬은 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The arylalkyl having 7 to 20 carbon atoms (C 7-20 ) may mean a substituent in which at least one hydrogen of the above-described alkyl is substituted by the above-described aryl. For example, the arylalkyl having 7 to 20 carbon atoms (C 7-20 ) may include phenylmethyl, phenylethyl, biphenylmethyl, naphthylmethyl, and the like, but is not limited thereto.

또한, 탄소수 6 내지 20(C6-20)의 아릴렌은 2가 치환기라는 것을 제외하고는 상술한 아릴과 동일한 것으로, 구체적으로 페닐렌, 비페닐렌, 나프틸렌, 안트라세닐렌, 페난트레닐렌, 플루오레닐렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, the arylene having 6 to 20 carbon atoms (C 6-20 ) is the same as the aryl described above, except that it is a divalent substituent, and specifically, phenylene, biphenylene, naphthylene, anthracenylene, phenanthrenylene , Fluorenylene, and the like, but are not limited thereto.

그리고, 4족 전이 금속은, 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 또는 러더포듐(Rf)일 수 있으며, 구체적으로 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf) 일 수 있으며, 보다 구체적으로 지르코늄(Zr), 또는 하프늄(Hf)일 수 있으며, 이에만 한정되는 것은 아니다. In addition, the Group 4 transition metal may be titanium (Ti), zirconium (Zr), hafnium (Hf), or rutherfordium (Rf), and specifically titanium (Ti), zirconium (Zr), or hafnium (Hf) It may be, and more specifically, zirconium (Zr) or hafnium (Hf), but is not limited thereto.

또한, 13족 원소는, 붕소(B), 알루미늄(Al), 갈륨(Ga), 인듐(In), 또는 탈륨(Tl)일 수 있으며, 구체적으로 붕소(B), 또는 알루미늄(Al)일 수 있으며, 이에만 한정되는 것은 아니다. In addition, the Group 13 element may be boron (B), aluminum (Al), gallium (Ga), indium (In), or thallium (Tl), and specifically boron (B) or aluminum (Al). There is, but is not limited to this.

상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬 또는 알케닐, 아릴, 알콕시; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬 또는 알케닐, 아릴, 알콕시; 실릴; 알킬실릴 또는 알콕시실릴; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.The above-described substituents are optionally a hydroxy group within a range exhibiting the same or similar effect as the desired effect; halogen; Alkyl or alkenyl, aryl, alkoxy; Alkyl or alkenyl, aryl, alkoxy containing at least one hetero atom among the heteroatoms of groups 14 to 16; Silyl; Alkylsilyl or alkoxysilyl; Phosphine group; Phosphide group; Sulfonate group; And it may be substituted with one or more substituents selected from the group consisting of a sulfone group.

본 발명의 일 구현예에 따른 프로필렌-에틸렌 랜덤 공중합체의 제조에 사용되는 촉매 조성물은 상기 화학식 1의 화합물을 단일 메탈로센 촉매로서 포함한다. 이에 따라 종래 2종 이상의 촉매를 혼합하여 사용하여 제조되는 프로필렌 공중합체에 비해 분자량 분포가 현저히 좁아질 수 있으며, 이에 따라 프로필렌-에틸렌 랜덤 공중합체의 강성이 향상됨을 확인할 수 있다.The catalyst composition used for preparing the propylene-ethylene random copolymer according to an embodiment of the present invention includes the compound of Formula 1 as a single metallocene catalyst. Accordingly, it can be seen that the molecular weight distribution can be significantly narrowed compared to the conventional propylene copolymer prepared by mixing two or more types of catalysts, and accordingly, the rigidity of the propylene-ethylene random copolymer is improved.

상기 화학식 1로 표시되는 메탈로센 화합물은 리간드로서 위 아래로 서로 상이한 시클로펜타디에닐계열 그룹이, 브릿지에 의해 연결된, 비대칭 구조를 가진다. The metallocene compound represented by Chemical Formula 1 has an asymmetric structure in which different cyclopentadienyl-based groups are connected to each other by a bridge as a ligand.

구체적으로, 상기 화학식 1에서, 리간드의 위쪽은 알킬기가 치환된 시클로펜타디에닐 그룹이 브릿지에 연결되며, 상기 화학식 1에서, 리간드의 아랫 쪽은 특정 치환기를 갖는 인다세닐(indacenyl) 구조가 브릿지에 연결된다. Specifically, in Chemical Formula 1, a cyclopentadienyl group substituted with an alkyl group is connected to the bridge at the upper side of the ligand, and in Chemical Formula 1, an indacenyl structure having a specific substituent is connected to the bridge at the lower side of the ligand. Connected.

상기와 같은 특유의 구조에 따라, 서로 상이한 두 시클로펜타디에닐의 다양한 특징을 가지거나 선택적인 장점을 취할 수 있기 때문에, 보다 우수한 촉매 활성을 나타낼 수 있다.Depending on the unique structure as described above, since the two cyclopentadienyl different from each other may have various characteristics or take optional advantages, it may exhibit more excellent catalytic activity.

구체적으로, 상기 시클로펜타디에닐 구조는 수소 작용기가 알킬기로 치환됨으로써, 폴리프로필렌을 형성할 때 일정한 입체적 공간 배치(steric)을 유지하여 이소택틱서티(isotacticity)를 확보할 수 있으며 높은 활성을 유지할 수 있다. 수소로만 치환된 시클로펜타디에닐(Cp)의 경우 벌키한 부분이 없기 때문에 프로필렌이 삽입(insertion)할 때에 촉매가 완전 개방된 상태로 마주하기 때문에 택틱서티(tacticity)가 무너져 어택틱 폴리프로필렌(atactic PP)를 형성하게 된다.Specifically, in the cyclopentadienyl structure, a hydrogen functional group is substituted with an alkyl group, so that when forming polypropylene, a certain steric spatial arrangement (steric) can be maintained to secure isotacticity and high activity can be maintained. have. In the case of cyclopentadienyl (Cp) substituted with only hydrogen, since there is no bulky part, the catalyst faces completely open when propylene is inserted, so the tacticity collapses, resulting in atactic polypropylene. PP).

또한, 프로필렌(C3)과 H2를 같이 반응하게 될 경우 경쟁적으로 반응이 일어나게 되는데, 상기 화학식 1의 리간드 중 인다세닐(indacenyl) 구조의 2 번 위치에 벌키한 구조가 치환되어 있을 경우, 예컨대, R8가 C1-20 알킬로 치환된 경우, 금속 중심에 일정한 입체적 공간 배치(steric)가 주어지게 되어 C3 대비 크기가 작은 H2의 반응성이 좋아진다. 따라서, 인다세닐(indacenyl) 구조의 2 번 위치에 메틸(methyl) 등의 형태로 R8가 C1-20 알킬로 치환된 구조가 결합된 경우, 중합 공정에서 수소 반응성을 증가시킬 수 있다. In addition, when propylene (C3) and H 2 are reacted together, a competitive reaction occurs. If a bulky structure is substituted at position 2 of the indacenyl structure in the ligand of Formula 1, for example, When R 8 is substituted with C 1-20 alkyl, a certain steric spatial arrangement is given to the metal center, so that the reactivity of H 2 , which has a smaller size compared to C3, is improved. Therefore, when a structure in which R 8 is substituted with C 1-20 alkyl in the form of methyl or the like at position 2 of the indacenyl structure is bonded, hydrogen reactivity may be increased in the polymerization process.

이와 더불어, 상기 인다세닐(indacenyl) 구조의 4번 위치에 전자를 풍부하게 줄 수 있는 아릴 치환기, 예컨대, R7이 치환되거나 치환되지 않은 C6-20 아릴 치환기를 포함함으로써, 상기 화학식 1의 브릿지 구조에 포함된 금속(metal) 원자에 전자를 풍부하게 주게 되어 더욱 높은 촉매 활성을 확보할 수 있게 된다. In addition, by including an aryl substituent that can enrich electrons at position 4 of the indacenyl structure, for example, R 7 is substituted or unsubstituted C 6-20 aryl substituent, the bridge of Formula 1 It is possible to secure a higher catalytic activity by giving electrons to a metal atom included in the structure in abundance.

특히, 상기 화학식 1로 표시되는 메탈로센 화합물 중 상기 인다세닐 구조의 경우, 일반 인데닐 구조보다 시클로펜타디에닐과의 조합이 활성적인 부분에서 매우 탁월한 효과를 얻을 수 있다. 이는 시클로펜타디에닐의 입체 장애 효과(steric effect)에 있어서 인다세닐 구조가 인데닐보다 마주보는 평평한 구조를 확보할 수 있어 활성 사이트(active site)에 일정한 영향을 줌으로써 프로필렌 단량체의 활성화(activation)에 매우 유리하게 작용하는 것으로 보인다. 이러한 결과는 중합된 폴리프로필렌의 택틱서티(tacticity)의 증가로 확인할 수 있다.In particular, in the case of the indacenyl structure of the metallocene compound represented by Formula 1, a very excellent effect can be obtained in the active portion of the combination with cyclopentadienyl than the general indenyl structure. This can secure a flat structure in which the indacenyl structure faces more than indenyl in the steric effect of cyclopentadienyl, and has a certain effect on the active site, thereby affecting the activation of propylene monomers. It seems to work very favorably. This result can be confirmed by an increase in the tacticity of the polymerized polypropylene.

전술한 바와 같이, 상기 화학식 1로 표시되는 메탈로센 화합물은, 두 개의 리간드가 브릿지 그룹에 의해 연결되어 있는 형태로, 전이 금속에 전자를 공급하기 때문에, 구조적으로 높은 안정성을 가질 수 있으며, 담체에 담지 시에도 높은 중합 활성을 나타낼 수 있다.As described above, the metallocene compound represented by Chemical Formula 1 is in a form in which two ligands are connected by a bridge group and supplies electrons to the transition metal, so that it can have high structural stability, and a carrier It can exhibit high polymerization activity even when supported on.

이 때, 상기 화학식 1에서, M은 지르코늄(Zr) 또는 하프늄(Hf)인 것이 바람직할 수 있다. In this case, in Formula 1, M may be preferably zirconium (Zr) or hafnium (Hf).

그리고, 상기 화학식 1에서, R1 및 R2는 각각 C1-8 직쇄 또는 분지쇄 알킬, 또는 C2-12 직쇄 또는 분지쇄 알콕시알킬일 수 있고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 헥실, 또는 t-부톡시헥실일 수 있다. And, in Formula 1, R 1 and R 2 may each be C 1-8 straight or branched chain alkyl, or C 2-12 straight or branched alkoxyalkyl, specifically methyl, ethyl, propyl, isopropyl, It may be butyl, isobutyl, t-butyl, hexyl, or t-butoxyhexyl.

그리고, 상기 화학식 1에서, R3 내지 R6는 각각 C1-6 직쇄 또는 분지쇄 알킬 또는 C1-3 직쇄 또는 분지쇄 알킬일 수 있고, 구체적으로 메틸, 에틸, 프로필, 또는 이소프로필, 이소프로필일 수 있고, 바람직하게는 메틸일 수 있다. And, in Formula 1, R 3 to R 6 may each be C 1-6 straight or branched chain alkyl or C 1-3 straight or branched chain alkyl, specifically methyl, ethyl, propyl, or isopropyl, iso It may be propyl, preferably methyl.

그리고, 상기 화학식 1에 있어서, R7은 페닐, C1-6 직쇄 또는 분지쇄 알킬이 치환된 페닐, 나프틸, 또는 C1-6 직쇄 또는 분지쇄 알킬이 치환된 나프틸일수 있으며, 구체적으로 상기 페닐 또는 나프틸은 수소 치환기 중 하나 또는 둘 이상이 각각 C1-6 직쇄 또는 분지쇄 알킬로 치환된 것일 수 있다. 일 예로, 상기 페닐 또는 나프틸은 수소 치환기 중 하나 또는 둘 이상이 각각 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸로 치환된 것일 수 있다. And, in Formula 1, R 7 may be phenyl, C 1-6 linear or branched alkyl substituted phenyl, naphthyl, or C 1-6 linear or branched alkyl substituted naphthyl, specifically The phenyl or naphthyl may be one in which one or two or more of the hydrogen substituents are each substituted with C 1-6 straight or branched chain alkyl. For example, the phenyl or naphthyl may be one in which one or two or more of the hydrogen substituents are each substituted with methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl.

이러한 방향족 그룹 각 위치의 치환기는, 유발 효과(inductive effect)에 의해 방향족 그룹에 충분한 전자를 공급할 수 있으며, 메탈로센 화합물의 전체 사이즈를 증가시키고, 가용 각도를 크게 함에 따라, 단량체의 접근을 용이하게 하여, 보다 우수한 촉매 활성을 나타낼 수 있다.Substituents at each position of these aromatic groups can supply sufficient electrons to the aromatic group by an inductive effect, and by increasing the total size of the metallocene compound and increasing the usable angle, it is easy to access the monomer. Thus, it is possible to exhibit more excellent catalytic activity.

그리고, 상기 화학식 1에서, R8은 C1-6 직쇄 또는 분지쇄 알킬 또는 C1-3 직쇄 또는 분지쇄 알킬일 수 있고, 구체적으로 메틸, 에틸, 또는 프로필일 수 있고, 바람직하게는 메틸일 수 있다. And, in Formula 1, R 8 may be C 1-6 straight or branched chain alkyl or C 1-3 straight or branched chain alkyl, specifically methyl, ethyl, or propyl, preferably methyl. I can.

그리고, 상기 화학식 1로 표시되는 메탈로센 화합물은, 구체적으로 예를 들어, 하기 화학식 1-1로 표시되는 것일 수 있다.In addition, the metallocene compound represented by Formula 1 may be specifically represented by Formula 1-1 below.

[화학식 1-1][Formula 1-1]

Figure pat00009
Figure pat00009

상기 화학식 1-1에서, M, X1, X2, R1, R2, R7은 화학식 1에서 정의한 바와 같다.In Formula 1-1, M, X 1 , X 2 , R 1 , R 2 , R 7 are as defined in Formula 1.

또한, 상기 화학식 1로 표시되는 화합물은, 구체적으로 예를 들어, 하기 구조식으로 표시되는 화합물들 중 어느 하나일 수 있다. In addition, the compound represented by Formula 1 may be any one of compounds represented by the following structural formula, for example.

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

Figure pat00013
Figure pat00013

Figure pat00014
.
Figure pat00014
.

상기 화학식 1로 표시되는 메탈로센 화합물은 알려진 유기 화합물의 합성 방법에 의해 제조할 수 있으며, 후술하는 실시예에 보다 구체화하여 기재하였다.The metallocene compound represented by Formula 1 can be prepared by a method for synthesizing known organic compounds, and is described in more detail in Examples to be described later.

한편, 본 발명의 메탈로센 화합물이나 촉매 조성물을 제조하는 방법에 있어서, 당량(eq)은 몰 당량(eq/mol)을 의미한다. Meanwhile, in the method of preparing the metallocene compound or catalyst composition of the present invention, the equivalent (eq) means a molar equivalent (eq/mol).

본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 메탈로센 화합물을 조촉매 화합물과 함께 담체에 담지하여 담지 메탈로센 촉매의 형태로 사용될 수 있다.The metallocene catalyst used in the present invention may be used in the form of a supported metallocene catalyst by supporting the metallocene compound represented by Formula 1 on a carrier together with a cocatalyst compound.

본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. In the supported metallocene catalyst according to the present invention, as an organometallic compound including a Group 13 metal, as a cocatalyst supported together on a support to activate the metallocene compound, olefin is polymerized under a general metallocene catalyst. It is not particularly limited as long as it can be used.

구체적으로, 상기 조촉매 화합물은 하기 화학식 2의 알루미늄 함유 조촉매 1종 이상을 포함할 수 있다.Specifically, the cocatalyst compound may include one or more aluminum-containing cocatalysts of the following formula (2).

[화학식 2][Formula 2]

-[Al(R22)-O]m--[Al(R 22 )-O] m-

화학식 2에서, R22는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고; m은 2 이상의 정수이다. In Formula 2, R 22 are the same as or different from each other, and each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl; m is an integer of 2 or more.

이러한 조촉매의 사용에 의해 중합 활성이 보다 향상될 수 있다. The polymerization activity can be further improved by the use of such a cocatalyst.

일예로, 상기 화학식 2의 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다. As an example, the cocatalyst of Formula 2 may be an alkylaluminoxane-based compound in which a repeating unit is bonded in a linear, circular or network type, and specific examples of such a cocatalyst include methylaluminoxane (MAO), ethylaluminoxane And isobutyl aluminoxane or butyl aluminoxane.

본 발명에 따른 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. In the supported metallocene catalyst according to the present invention, the mass ratio of the total transition metal to the carrier contained in the metallocene compound represented by Formula 1 may be 1:10 to 1:1000. When the carrier and the metallocene compound are included in the mass ratio, the optimum shape may be exhibited. In addition, the mass ratio of the cocatalyst compound to the carrier may be 1:1 to 1:100.

본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.In the supported metallocene catalyst according to the present invention, a carrier containing a hydroxy group on the surface may be used as the carrier, and preferably has a highly reactive hydroxy group and a siloxane group from which moisture is removed from the surface. Any carrier can be used.

예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.For example, silica dried at high temperature, silica-alumina, and silica-magnesia may be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 , It may contain sulfate and nitrate components.

상기 담체의 건조 온도는 200 ℃ 내지 800 ℃가 바람직하고, 300 ℃ 내지 600 ℃가 더욱 바람직하며, 300 ℃ 내지 400 ℃가 가장 바람직하다. 상기 담체의 건조 온도가 200 ℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800 ℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.The drying temperature of the carrier is preferably 200°C to 800°C, more preferably 300°C to 600°C, and most preferably 300°C to 400°C. When the drying temperature of the carrier is less than 200°C, there is too much moisture to react with the surface moisture and the cocatalyst, and when it exceeds 800°C, the pores on the surface of the carrier are combined and the surface area decreases, and there are many hydroxyl groups on the surface. It is not preferable because it disappears and only siloxane groups remain, and the reaction site with the cocatalyst decreases.

상기 담체 표면의 하이드록시기 양은 0.1 mmol/g 내지 10 mmol/g이 바람직하며, 0.5 mmol/g 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.The amount of hydroxy group on the surface of the carrier is preferably 0.1 mmol/g to 10 mmol/g, and more preferably 0.5 mmol/g to 5 mmol/g. The amount of hydroxy groups on the surface of the carrier can be controlled by a method and conditions for preparing the carrier or drying conditions such as temperature, time, vacuum or spray drying.

상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.If the amount of the hydroxyl group is less than 0.1 mmol/g, the reaction site with the cocatalyst is small, and if it exceeds 10 mmol/g, it is not preferable because it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. not.

한편, 본 발명에 따른 프로필렌-에틸렌 랜덤 공중합체는, 상술한 메탈로센 촉매의 존재 하에서, 단량체 및 공단량체를 공중합함으로써 제조할 수 있다. Meanwhile, the propylene-ethylene random copolymer according to the present invention can be prepared by copolymerizing a monomer and a comonomer in the presence of the metallocene catalyst described above.

상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 프로필렌 단량체 및 공단량체를 접촉시켜 공중합하여 진행할 수 있다.The polymerization reaction may be carried out by copolymerization by contacting a propylene monomer and a comonomer using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.

그리고, 상기 중합 온도는 약 25 ℃ 내지 약 500 ℃, 바람직하게는 약 25 ℃ 내지 약 200 ℃, 보다 바람직하게는 약 50 ℃ 내지 약 100 ℃일 수 있다. 또한, 중합 압력은 약 1 kgf/㎠ 내지 약 100 kgf/㎠, 바람직하게는 약 1 kgf/㎠ 내지 약 50 kgf/㎠, 보다 바람직하게는 약 10 kgf/㎠ 내지 약 40 kgf/㎠일 수 있다.In addition, the polymerization temperature may be about 25 °C to about 500 °C, preferably about 25 °C to about 200 °C, more preferably about 50 °C to about 100 °C. In addition, the polymerization pressure may be about 1 kgf/cm 2 to about 100 kgf/cm 2, preferably about 1 kgf/cm 2 to about 50 kgf/cm 2, more preferably about 10 kgf/cm 2 to about 40 kgf/cm 2 .

또한, 상기 중합 반응은 수소 기체 존재 하에서 수행할 수 있으며, 구체적으로 프로필렌 단량체 함량 기준으로 수소 기체를 약 350 ppm 이하 또는 약 0 내지 약 350 ppm, 혹은 약 300 ppm 이하 또는 약 0 ppm 내지 약 300 ppm, 혹은 약 250 ppm 이하 또는 약 0 ppm 내지 약 250 ppm, 혹은 약 200 ppm 이하 또는 약 0 ppm 내지 약 200 ppm으로 투입하며 수행할 수 있다. 일예로, 상기 담지 촉매의 메탈로센 화합물에 따라, 수소 투입량을 전술한 함량에 범위에서 최소 50 ppm 이상, 또는 100 ppm 이상, 혹은 약 100 ppm 이상, 혹은 120 ppm 이상, 혹은 150 ppm 이상으로 하여 중합 반응을 수행할 수 있다.In addition, the polymerization reaction may be carried out in the presence of hydrogen gas, and specifically, hydrogen gas of about 350 ppm or less or about 0 to about 350 ppm, or about 300 ppm or less or about 0 ppm to about 300 ppm based on the propylene monomer content , Or about 250 ppm or less, or about 0 ppm to about 250 ppm, or about 200 ppm or less, or about 0 ppm to about 200 ppm. For example, depending on the metallocene compound of the supported catalyst, the hydrogen input amount is at least 50 ppm or more, or 100 ppm or more, or about 100 ppm or more, or 120 ppm or more, or 150 ppm or more in the above-described range. The polymerization reaction can be carried out.

상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.The supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, hexane, heptane, nonane, decane, and isomers thereof, and an aromatic hydrocarbon solvent such as toluene and benzene, and dichloromethane and chlorobenzene. It can be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom and injected. The solvent used here is preferably used after removing a small amount of water or air, which acts as a catalyst poison, by treating a small amount of alkyl aluminum, and it is possible to further use a cocatalyst.

이와 같이 본 발명에 따른 프로필렌-에틸렌 랜덤 공중합체는 상술한 담지 메탈로센 촉매를 사용하여, 프로필렌 및 에틸렌을 공중합하여 제조될 수 있다. 그 결과, 상기 프로필렌-에틸렌 랜덤 공중합체는, 증대된 에틸렌 함량에서도 높은 융점을 유지하고, 낮은 결정화 온도와 적절한 융융지수를 가짐으로써, 우수한 공정안정성 및 가공성과 압출 특성이 우수하며, 높은 강성과 함께 낮은 총휘발성 유기 화합물 방출량(TVOC)과 높은 투명도를 구현할 수 있어, 본 발명에 따른 프로필렌-에틸렌 랜덤 공중합체는 친환경 소재로서 고투명 박막 사출용 제품 등에 바람직하게 적용될 수 있다. As described above, the propylene-ethylene random copolymer according to the present invention may be prepared by copolymerizing propylene and ethylene using the above-described supported metallocene catalyst. As a result, the propylene-ethylene random copolymer maintains a high melting point even with an increased ethylene content, has a low crystallization temperature and an appropriate melting index, and thus has excellent process stability, processability and extrusion properties, and has high rigidity. Since a low total volatile organic compound emission (TVOC) and high transparency can be realized, the propylene-ethylene random copolymer according to the present invention is an eco-friendly material and can be preferably applied to products for high-transparent thin film injection.

본 발명에 따른 프로필렌-에틸렌 랜덤 공중합체는. 높은 융점을 유지하며 강성과 충격강도 등의 우수한 물성과 파울링 등이 발생하지 않은 공정 안정성을 확보할 수 있을 뿐만 아니라 사출 성형에 특히 용이한 우수한 가공성을 구현하면서도, 공단량체인 에틸렌 함량을 높은 수준으로 증대시켜 결정화도가 낮아지는 특성을 발현할 수 있고, 총휘발성 유기 화합물 방출량(TVOC)이 현저히 낮아 식품 용기 등의 친환경 소재로 사용되는 고투명 사출 제품을 제조하는 데 유리하다. Propylene-ethylene random copolymer according to the present invention. It maintains a high melting point, ensures excellent physical properties such as stiffness and impact strength, and process stability that does not cause fouling, while also realizing excellent processability, which is particularly easy for injection molding, while maintaining a high level of ethylene content as a comonomer. It is advantageous in manufacturing highly transparent injection products used as eco-friendly materials, such as food containers, because it can increase the crystallinity by increasing it to a lower level of crystallinity, and has a significantly lower total volatile organic compound emission (TVOC).

이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the functions and effects of the invention will be described in more detail through specific embodiments of the invention. However, these embodiments are only presented as examples of the invention, and the scope of the invention is not determined thereby.

<실시예><Example>

<메탈로센 화합물의 제조><Preparation of metallocene compound>

합성예 1Synthesis Example 1

Figure pat00015
Figure pat00015

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. In another reactor, add 2-methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) to toluene. After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00016
Figure pat00016

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride 의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 톨루엔/디에틸에테르(toluene/diethylether, Toluene/Ether, 부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in toluene/diethylether (Toluene/Ether, volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by 5 at room temperature. Stir for hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

이렇게 얻어진 전이금속 화합물에 대하여, Bruker AVANCE III HD 500 MHz NMR/ PABBO(1H/19F/Broad band) probe : 1H, 용매 : CDCl3으로 NMR 데이터를 측정하였다. For the thus obtained transition metal compound, NMR data were measured with Bruker AVANCE III HD 500 MHz NMR/PABBO (1H/19F/Broad band) probe: 1H, solvent: CDCl 3 .

1H-NMR (500 MHz, CDCl3): 7.73 (s, 2H), 7.56 (s, 1H), 7.42 (s, 1H), 6.36 (s, 1H), 2.85-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.31 (s, 18H), 1.00 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.73 (s, 2H), 7.56 (s, 1H), 7.42 (s, 1H), 6.36 (s, 1H), 2.85-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.31 (s, 18H), 1.00 (s, 6H) ppm

합성예 2Synthesis Example 2

Figure pat00017
Figure pat00017

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. In another reactor, add 2-methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) to toluene. After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00018
Figure pat00018

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) hafnium dichloride 의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) hafnium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 HfCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing HfCl 4 (1 eq) in toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.78 (s, 2H), 7.6 (s, 1H), 7.46 (s, 1H), 6.41 (s, 1H), 2.98-2.92 (m, 4H), 2.14 (s, 6H), 1.98 (m, 2H), 1.83 (s, 6H), 1.8 (s, 3H), 1.33 (s, 18H), 1.28 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.78 (s, 2H), 7.6 (s, 1H), 7.46 (s, 1H), 6.41 (s, 1H), 2.98-2.92 (m, 4H), 2.14 (s, 6H), 1.98 (m, 2H), 1.83 (s, 6H), 1.8 (s, 3H), 1.33 (s, 18H), 1.28 (s, 6H) ppm

합성예 3Synthesis Example 3

Figure pat00019
Figure pat00019

리간드 화합물 (2-Methyl-4-(4'-tertbutylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(4'-tertbutylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-메틸-4-(4-(tert-부틸)페닐) 인다센 (2-Methyl-4-(4'-tertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. In another reactor, 2-methyl-4-(4-(tert-butyl)phenyl) indacene (2-Methyl-4-(4'-tertbutylphenyl) Indacene (1 eq)) was added to toluene/tetrahydrofuran (Toluene/THF). ) Was dissolved in a mixed solvent (volume ratio of 3/2, 0.5 M), and then n-BuLi (1.05 eq) was slowly added dropwise at -25° C., followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00020
Figure pat00020

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-(4'-tertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(4'-tertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.42 (s, 1H), 7.38 (d, 2H), 7.30 (d, 2H), 6.37 (s, 1H), 2.85-2.79 (m, 4H), 2.12 (s, 6H), 1.94 (m, 2H), 1.79 (s, 9H), 1.30 (s, 9H), 1.00 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.42 (s, 1H), 7.38 (d, 2H), 7.30 (d, 2H), 6.37 (s, 1H), 2.85-2.79 (m, 4H), 2.12 (s, 6H), 1.94 (m, 2H), 1.79 (s, 9H), 1.30 (s, 9H), 1.00 (s, 6H) ppm

합성예 4Synthesis Example 4

Figure pat00021
Figure pat00021

리간드 화합물 (2-Methyl-4-phenylIndacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-phenylIndacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-메틸-4-페닐) 인다센 (2-Methyl-4-phenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. In another reactor, 2-methyl-4-phenyl) indacene (1 eq)) was added to a mixed solvent of toluene/tetrahydrofuran (Toluene/THF) (volume ratio 3/2, 0.5 M ), n-BuLi (1.05 eq) was slowly added dropwise at -25 °C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00022
Figure pat00022

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-phenylIndacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Dimethylsilanediyl (2-Methyl-4-phenylIndacenyl) (2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.54-7.38 (m, 6H), 6.37 (s, 1H), 2.85-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 0.99 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.54-7.38 (m, 6H), 6.37 (s, 1H), 2.85-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H) , 1.79 (s, 9H), 0.99 (s, 6H) ppm

합성예 5Synthesis Example 5

Figure pat00023
Figure pat00023

리간드 화합물 (2-Methyl-4-(2’-naphthylene)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(2'-naphthylene) Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-메틸-4-(2’-나프틸렌) 인다센 (2-Methyl-4-(2’-naphthylene) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. Mixing of toluene/tetrahydrofuran (Toluene/THF) with 2-methyl-4-(2'-naphthylene) indacene (1 eq)) in another reactor After dissolving in a solvent (volume ratio 3/2, 0.5 M), n-BuLi (1.05 eq) was slowly added dropwise at -25 °C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00024
Figure pat00024

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-(2’-naphthylene)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(2'-naphthylene)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 8.80 (d, 1H), 8.50 (d, 1H), 8.2-8.05 (m, 2H), 7.75 (t, 1H), 7.55-7.36 (m, 3H), 6.36 (s, 1H), 2.85-2.81 (m, 4H), 2.13 (s, 6H), 1.95 (m, 2H), 1.8 (s, 6H), 1.78 (s, 3H), 1.01 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 8.80 (d, 1H), 8.50 (d, 1H), 8.2-8.05 (m, 2H), 7.75 (t, 1H), 7.55-7.36 (m, 3H) , 6.36 (s, 1H), 2.85-2.81 (m, 4H), 2.13 (s, 6H), 1.95 (m, 2H), 1.8 (s, 6H), 1.78 (s, 3H), 1.01 (s, 6H) ) ppm

합성예 6Synthesis Example 6

Figure pat00025
Figure pat00025

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) diethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) diethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로 디에틸실란(dichloro diethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2- 메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro diethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. Toluene 2-Methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) in another reactor After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00026
Figure pat00026

전이 금속 화합물 Diethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Diethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.73 (s, 2H), 7.55 (s, 1H), 7.41 (s, 1H), 6.38 (s, 1H), 2.86-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.28 (t, 6H), 0.94 (m, 4H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.73 (s, 2H), 7.55 (s, 1H), 7.41 (s, 1H), 6.38 (s, 1H), 2.86-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.28 (t, 6H), 0.94 (m, 4H) ppm

합성예 7Synthesis Example 7

Figure pat00027
Figure pat00027

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) dihexyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) dihexyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로 디헥실실란(dichloro dihexyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2- 메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dihexyl silane (1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. Toluene 2-Methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) in another reactor After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00028
Figure pat00028

전이 금속 화합물 Dihexylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Dihexylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.74 (s, 2H), 7.56 (s, 1H), 7.43 (s, 1H), 6.36 (s, 1H), 2.85-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.80 (s, 6H), 1.79 (s, 3H), 1.38-1.28 (m, 34H), 0.88 (t, 6H), 0.68 (m, 4H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.74 (s, 2H), 7.56 (s, 1H), 7.43 (s, 1H), 6.36 (s, 1H), 2.85-2.80 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.80 (s, 6H), 1.79 (s, 3H), 1.38-1.28 (m, 34H), 0.88 (t, 6H), 0.68 (m, 4H) ppm

합성예 8Synthesis Example 8

Figure pat00029
Figure pat00029

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) methylpropyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) methylpropyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로 메틸프로필실란(dichloro methylpropyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2- 메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro methylpropyl silane (1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. Toluene 2-Methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) in another reactor After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00030
Figure pat00030

전이 금속 화합물 Methylpropylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Methylpropylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.73 (s, 2H), 7.55 (s, 1H), 7.42 (s, 1H), 6.36 (s, 1H), 2.85-2.80 (m, 4H), 2.13 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.31 (s, 18H), 1.00-0.84 (m, 10H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.73 (s, 2H), 7.55 (s, 1H), 7.42 (s, 1H), 6.36 (s, 1H), 2.85-2.80 (m, 4H), 2.13 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.31 (s, 18H), 1.00-0.84 (m, 10H) ppm

합성예 9Synthesis Example 9

Figure pat00031
Figure pat00031

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) methylphenyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) methylphenyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로 메틸페닐실란(dichloro methylphenyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2- 메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro methylphenyl silane (1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. Toluene 2-Methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) in another reactor After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00032
Figure pat00032

전이 금속 화합물 Methylphenylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Methylphenylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.73 (s, 2H), 7.56 (s, 1H), 7.42-7.28 (m, 6H), 6.38 (s, 1H), 2.88-2.82 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.31 (s, 18H), 0.98 (s, 3H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.73 (s, 2H), 7.56 (s, 1H), 7.42-7.28 (m, 6H), 6.38 (s, 1H), 2.88-2.82 (m, 4H) , 2.12 (s, 6H), 1.95 (m, 2H), 1.79 (s, 9H), 1.31 (s, 18H), 0.98 (s, 3H) ppm

합성예 10Synthesis Example 10

Figure pat00033
Figure pat00033

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) methylhexyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) methylhexyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로 메틸헥실실란(dichloro methylhexyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2- 메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro methylhexyl silane (1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. Toluene 2-Methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) in another reactor After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00034
Figure pat00034

전이 금속 화합물 Methylhexylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Methylhexylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.74 (s, 2H), 7.55 (s, 1H), 7.41 (s, 1H), 6.35 (s, 1H), 2.85-2.77 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.80 (s, 6H), 1.78 (s, 3H), 1.31 (s, 18H), 1.20-0.81 (m, 16H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.74 (s, 2H), 7.55 (s, 1H), 7.41 (s, 1H), 6.35 (s, 1H), 2.85-2.77 (m, 4H), 2.12 (s, 6H), 1.95 (m, 2H), 1.80 (s, 6H), 1.78 (s, 3H), 1.31 (s, 18H), 1.20-0.81 (m, 16H) ppm

합성예 11Synthesis Example 11

Figure pat00035
Figure pat00035

리간드 화합물 (2-Methyl-4-(2',5'-dimethylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(2',5'-dimethylphenyl)Indacenyl) dimethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-메틸-4-(2',5'-디메틸페닐) 인다센 (2-Methyl-4-(2',5'-dimethylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. In another reactor, 2-methyl-4-(2',5'-dimethylphenyl) indacene (2-Methyl-4-(2',5'-dimethylphenyl) Indacene (1 eq)) was added toluene/tetrahydrofuran ( Toluene/THF) was dissolved in a mixed solvent (volume ratio of 3/2, 0.5 M), and then n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00036
Figure pat00036

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-(2',5'-dimethylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) hafnium dichloride의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(2',5'-dimethylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) hafnium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 HfCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing HfCl 4 (1 eq) in toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.76 (s, 1H), 7.54 (s, 1H), 7.35-7.25 (m, 2H), 6.41 (s, 1H), 2.89-2.83 (m, 4H), 2.48 (s, 3H), 2.3 (s, 3H), 2.18 (s, 6H), 1.98 (m, 2H), 1.83 (s, 6H), 1.84 (s, 3H), 1.25 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.76 (s, 1H), 7.54 (s, 1H), 7.35-7.25 (m, 2H), 6.41 (s, 1H), 2.89-2.83 (m, 4H) , 2.48 (s, 3H), 2.3 (s, 3H), 2.18 (s, 6H), 1.98 (m, 2H), 1.83 (s, 6H), 1.84 (s, 3H), 1.25 (s, 6H) ppm

합성예 12Synthesis Example 12

Figure pat00037
Figure pat00037

리간드 화합물 (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) 6-tertButoxyhexylmethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl) 6-tertButoxyhexylmethyl (2,3,4,5-tetramethyl cyclopentadienyl) silane

2,3,4,5-테트라메틸시클로펜타디엔(TMCP, 2,3,4,5-tetramethylcyclopentadien)을 테트라하이드로퓨란(THF)에 녹인 후 -25 ℃에서 n-부틸리튬 (n-BuLi, 1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로 6-(tert 부톡시)헥실메틸실란(dichloro 6-tertButoxyhexylmethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2- 메틸-4-(3',5'-디(tert-부틸)페닐) 인다센 (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2,3,4,5-tetramethylcyclopentadiene (TMCP, 2,3,4,5-tetramethylcyclopentadien) was dissolved in tetrahydrofuran (THF) and then n-butyllithium (n-BuLi, 1.05) at -25 °C. eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro 6- (tert butoxy) hexylmethyl silane (dichloro 6-tertButoxyhexylmethyl silane, 1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. Toluene 2-Methyl-4-(3',5'-di(tert-butyl)phenyl) indacene (2-Methyl-4-(3',5'-ditertbutylphenyl) Indacene (1 eq)) in another reactor After dissolving in a mixed solvent (volume ratio of 3/2, 0.5 M) of /tetrahydrofuran (Toluene/THF), n-BuLi (1.05 eq) was slowly added dropwise at -25°C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00038
Figure pat00038

전이 금속 화합물 6-tertButoxyhexylmethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) hafnium dichloride의 제조Preparation of transition metal compound 6-tertButoxyhexylmethylsilanediyl(2-Methyl-4-(3',5'-ditertbutylphenyl)Indacenyl)(2,3,4,5-tetramethyl cyclopentadienyl) hafnium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 HfCl4(1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing HfCl 4 (1 eq) in toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.76 (s, 2H), 7.59 (s, 1H), 7.48 (s, 1H), 6.4 (s, 1H), 3.28 (t, 2H), 2.9-2.83 (m, 4H), 2.15 (s, 6H), 1.96 (m, 2H), 1.82-1.52 (m, 13H), 1.38-1.23 (m, 22H), 1.28 (s, 9H), 0.96-0.86 (m, 5H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.76 (s, 2H), 7.59 (s, 1H), 7.48 (s, 1H), 6.4 (s, 1H), 3.28 (t, 2H), 2.9-2.83 (m, 4H), 2.15 (s, 6H), 1.96 (m, 2H), 1.82-1.52 (m, 13H), 1.38-1.23 (m, 22H), 1.28 (s, 9H), 0.96-0.86 (m , 5H) ppm

비교합성예 1Comparative Synthesis Example 1

Figure pat00039
Figure pat00039

리간드 화합물 (2-Methyl-4-(4'-tertbutylphenyl)Inden-1yl)dimethyl(2,3,4,5-tetramethyl cyclopentadienyl) silane 의 제조Preparation of ligand compound (2-Methyl-4-(4'-tertbutylphenyl)Inden-1yl)dimethyl(2,3,4,5-tetramethyl cyclopentadienyl) silane

(2,3,4,5-tetramethyl) cyclopentadiene(1 equiv)을 THF (0.3 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 dichloro dimethyl Silane (1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 2-Methyl-4-(4'-tertbutylphenyl)indene (1 eq)을 Toluene/THF (3/2, 0.5M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. After dissolving (2,3,4,5-tetramethyl) cyclopentadiene (1 equiv) in THF (0.3 M), n-BuLi (1.05 eq) was slowly added dropwise at -25 °C, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl Silane (1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. In another reactor, 2-Methyl-4-(4'-tertbutylphenyl)indene (1 eq) was dissolved in Toluene/THF (3/2, 0.5M), and then n-BuLi (1.05 eq) was slowly added dropwise at -25 °C. Then, it was stirred at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00040
Figure pat00040

전이 금속 화합물 Dimethylsilanediyl(2-Methyl-4-(4'-tertbutylphenyl)Inden-1-yl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(4'-tertbutylphenyl)Inden-1-yl)(2,3,4,5-tetramethyl cyclopentadienyl) zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(1.2 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) in toluene (1.2 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

비교합성예 2Comparative Synthesis Example 2

Figure pat00041
Figure pat00041

리간드 화합물 bis(2-Methyl-4-(4'-tertbutylphenyl)Inden-1yl) silane의 제조Preparation of the ligand compound bis(2-Methyl-4-(4'-tertbutylphenyl)Inden-1yl)silane

2-Methyl-4-(4'-tertbutylphenyl)Indene(1 equiv)을 Toluene/THF (10:1 0.3 M)에 녹인 후 -25 ℃에서 n-BuLi (2.1 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분동안 교반한 후, dichloro dimethyl Silane (0.53 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. After dissolving 2-Methyl-4-(4'-tertbutylphenyl)Indene(1 equiv) in Toluene/THF (10:1 0.3 M), n-BuLi (2.1 eq) was slowly added dropwise at -25°C, and then at room temperature. Stir for 3 hours. Then, CuCN (2 mol%) was added and stirred for 30 minutes, dichloro dimethyl Silane (0.53 eq) was added at -10° C., and then stirred at room temperature overnight. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00042
Figure pat00042

전이 금속 화합물 Dimethylsilanediylbis(2-Methyl-4-(4'-tertbutylphenyl)Inden-1yl) zirconium dichloride의 제조Preparation of transition metal compound Dimethylsilanediylbis(2-Methyl-4-(4'-tertbutylphenyl)Inden-1yl)zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 10/1, 0.1 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 10/1, 0.1 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

비교합성예 3Comparative Synthesis Example 3

Figure pat00043
Figure pat00043

리간드 화합물 (4-(4'-tert-butylphenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacen-7-yl)dimethyl(2-isopropyl-4-(4'-tertbutylphenyl)-inden-1-yl) silane 의 제조Ligand compound (4-(4'-tert-butylphenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacen-7-yl)dimethyl(2-isopropyl-4-(4'-tertbutylphenyl) Preparation of -inden-1-yl) silane

2-isopropyl-4-(4'-tertbutylphenyl)-1-indene (1 equiv)을 테트라하이드로퓨란/헥산(THF/Hexane, 부피비 1/10, 0.3 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 dichloro dimethyl Silane (1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 4-(4'-tert-butylphenyl)-6-methyl-1,2,3,5-tetrahydro-s-7-indacene (1 eq)을 Toluene/THF (3/2, 0.5M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. 2-isopropyl-4-(4'-tertbutylphenyl)-1-indene (1 equiv) was dissolved in tetrahydrofuran/hexane (THF/Hexane, volume ratio 1/10, 0.3 M), and then n-BuLi ( 1.05 eq) was slowly added dropwise, followed by stirring at room temperature for 3 hours. Thereafter, dichloro dimethyl Silane (1.05 eq) was added at -10 °C, followed by stirring at room temperature overnight. In another reactor, add 4-(4'-tert-butylphenyl)-6-methyl-1,2,3,5-tetrahydro-s-7-indacene (1 eq) to Toluene/THF (3/2, 0.5M). After dissolving, n-BuLi (1.05 eq) was slowly added dropwise at -25 °C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00044
Figure pat00044

전이 금속 화합물 Dimethylsilanediyl(4-(4'-tert-butylphenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacen-7-yl)(2-isopropyl-4-(4'-tertbutylphenyl)-inden-1-yl) zirconium dichloride의 제조Transition metal compound Dimethylsilanediyl(4-(4'-tert-butylphenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacen-7-yl)(2-isopropyl-4-(4'-tertbutylphenyl) )-inden-1-yl) Preparation of zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(1.2 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) in toluene (1.2 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

비교합성예 4Comparative Synthesis Example 4

Figure pat00045
Figure pat00045

리간드 화합물 (2-Methyl-4-(4-t-butylphenyl)-tetrahydrocyclopenta[b]naphthalene)dimethyl(2-isopropyl-4-(4'-tert-butylphenyl) silane의 제조Preparation of ligand compound (2-Methyl-4-(4-t-butylphenyl)-tetrahydrocyclopenta[b]naphthalene)dimethyl(2-isopropyl-4-(4'-tert-butylphenyl) silane

메타크릴 클로라이드(37.5 mL, 375 mmol)를 잘 교반된 CH2Cl2(600 mL) 중의 AlCl3(100 g, 750 mmol)에 -70 ℃에서 부가하였다. 20 분 후, 테트라히드로나프탈렌(49.5 g, 375 mmol)을 부가하였다. 반응 혼합물을 실온으로 가온시키고, 16 시간 동안 교반하고, 얼음물-HCl(1 L/150 mL) 내로 부었다. 유기 층을 분리하고, 수 층을 CH2Cl2(2100 mL)로 추출하였다. 합해진 유기 상들을 물, 수성 NaHCO3로 세정하고, MgSO4로 건조시키고, 증발시켰다. 진공 증류(130-140 ℃/0.5 Torr) 케톤 혼합물. 5일 동안 보관한 후, 원하는 이성질체는 액체로 유지되고, 경사분리에 의해 분리될 수 있다. 수율: 30 g(40%).Methacrylic chloride (37.5 mL, 375 mmol) was added to AlCl 3 (100 g, 750 mmol) in well stirred CH 2 Cl 2 (600 mL) at -70 °C. After 20 minutes, tetrahydronaphthalene (49.5 g, 375 mmol) was added. The reaction mixture was warmed to room temperature, stirred for 16 hours, and poured into ice water-HCl (1 L/150 mL). The organic layer was separated, and the aqueous layer was extracted with CH 2 Cl 2 (2100 mL). The combined organic phases were washed with water, aqueous NaHCO 3 , dried over MgSO 4 and evaporated. Vacuum distillation (130-140° C./0.5 Torr) ketone mixture. After storage for 5 days, the desired isomer remains liquid and can be separated by decantation. Yield: 30 g (40%).

앞서 제조한 CH2Cl2(50 mL) 중의 2-메틸-2,3,5,6,7,8-헥사히드로-1H-시클로펜타[b]나프탈렌-1-온 (30 g, 150 mmol)을 CH2Cl2(250 mL) 중의 AlCl3(40 g, 300 mmol) 현탁액에 -20 ℃에서 부가하였다. 20 분 교반한 후, Br2(7.7 ml, 150 mmol)를 부가하였다. 반응 혼합물을 실온으로 가온시키고, 16 시간 동안 교반하고, 얼음물/HCl(500 mL/70 mL) 내로 부었다. 유기 상을 분리하고, 수 상을 CH2Cl2로 추출하고(두 번 50 mL), 합해진 유기 분획을 물, 수성 KHCO3으로 세정하고, MgSO4로 건조시키고, 증발시켰다. 잔류물을 진공 내에서 증류시켜(175~180 ℃/0.5 Torr), 31 g(74%)의 반응 생성물, 즉, 2-메틸-2,3,5,6,7,8-헥사히드로-1H-시클로펜타[b]나프탈렌-1-온을 수득하였다. 2-methyl-2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]naphthalen-1-one (30 g, 150 mmol) in previously prepared CH 2 Cl 2 (50 mL) Was added to a suspension of AlCl 3 (40 g, 300 mmol) in CH 2 Cl 2 (250 mL) at -20 °C. After stirring for 20 minutes, Br 2 (7.7 ml, 150 mmol) was added. The reaction mixture was warmed to room temperature, stirred for 16 hours, and poured into ice water/HCl (500 mL/70 mL). The organic phase was separated, the aqueous phase was extracted with CH 2 Cl 2 (twice 50 mL) and the combined organic fractions were washed with water, aqueous KHCO 3 , dried over MgSO 4 and evaporated. The residue was distilled in vacuo (175-180 °C/0.5 Torr), and 31 g (74%) of the reaction product, i.e. 2-methyl-2,3,5,6,7,8-hexahydro-1H -Cyclopenta[b]naphthalen-1-one was obtained.

Pd(OAc)2(0.74 g, 3 몰%) 및 PPh3(1.73 g, 6 몰%)을, 잘 교반된 디메톡시에탄 (380 ml)/H2O(130 mL) 중의 상기 2-메틸-2,3,5,6,7,8-헥사히드로-1H-시클로펜타[b]나프탈렌-1-온 (31 g, 110 mmol), tert-부틸페닐보론산(26.7 g, 150 mmol) 및 Na2CO3(31.8 g, 300 mmol) 혼합물에 부가하였다. 얻어지는 혼합물을 6 시간 동안 교반하면서 환류시키고, 냉각하고, 물(700 mL) 내로 붓고, 벤젠으로 추출하였다(100 mL씩 4번). 얻어지는 용액을 여과하고 증발시켰다. 상기 반응 생성물인 4-(4-t-부틸페닐)-2-메틸-2,3,5,6,7,8-헥사히드로-1H-시클로펜타[b]나프탈렌-1-온을 컬럼 크로마토그래피(실리카 겔 60, 헥산/CH2Cl2 1:1)로 얻었다. 수율은 18.3 g (50%)이었다.Pd(OAc) 2 (0.74 g, 3 mol%) and PPh 3 (1.73 g, 6 mol%) were mixed with the 2-methyl- in well stirred dimethoxyethane (380 ml)/H 2 O (130 mL). 2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]naphthalen-1-one (31 g, 110 mmol), tert-butylphenylboronic acid (26.7 g, 150 mmol) and Na 2 CO 3 (31.8 g, 300 mmol) was added to the mixture. The resulting mixture was refluxed while stirring for 6 hours, cooled, poured into water (700 mL), and extracted with benzene (4 times each 100 mL). The resulting solution was filtered and evaporated. The reaction product, 4-(4-t-butylphenyl)-2-methyl-2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]naphthalen-1-one, was subjected to column chromatography. (Silica gel 60, hexane/CH 2 Cl 2 1:1). The yield was 18.3 g (50%).

LiAIH4(0.95 g, 25 mmol)를 Et2O(150 mL) 중의 상기 4-(4-tert-부틸페닐)-2-메틸2,3,5,6,7,8-헥사히드로-1H-시클로펜타[b]나프탈렌-1-온(16.6 g, 50 mmol) 용액에 -20 ℃에서 부가하였다. 얻어지는 혼합물을 실온으로 가온시키고, 추가적인 1 시간 동안 교반하였다. 그리고 나서, 5% HCl(100 mL)을 부가하고, 얻어지는 혼합물을 Et2O로 추출하였다(50 mL씩 3번). 합해진 유기 상들을 물로 세정하고, MgSO4로 건조시키고, 증발시켰다. 벤젠(300 mL) 및 p-TSA(0.5 g)를 부가하고, 얻어지는 용액을 딘 스타크 헤드(TLC에 의해 제어, 벤젠/EtOAc 4:1)로 4 시간 내에 환류시켰다. 그리고 나서, 얻어지는 용액을 물, 수성 KHCO3으로 세정하고, MgSO4로 건조시키고, 실리카 겔을 통해 통과시키고, 증발시켜, 12.8 g(81%)의 반응 생성물, 즉, 9-(4-tert-부틸페닐)-2-메틸-5,6,7,8-테트라히드로-1H-시클로펜타[b]나프탈렌을 얻었다. LiAIH 4 (0.95 g, 25 mmol) was added to the 4-(4-tert-butylphenyl)-2-methyl2,3,5,6,7,8-hexahydro-1H- in Et 2 O (150 mL) To a solution of cyclopenta[b]naphthalen-1-one (16.6 g, 50 mmol) was added at -20°C. The resulting mixture was warmed to room temperature and stirred for an additional hour. Then, 5% HCl (100 mL) was added, and the resulting mixture was extracted with Et 2 O (3 times each 50 mL). The combined organic phases were washed with water, dried over MgSO 4 and evaporated. Benzene (300 mL) and p-TSA (0.5 g) were added, and the resulting solution was refluxed within 4 hours with Dean Stark head (controlled by TLC, benzene/EtOAc 4:1). Then, the resulting solution was washed with water, aqueous KHCO 3 , dried over MgSO 4 , passed through silica gel and evaporated to give 12.8 g (81%) of the reaction product, i.e. 9-(4-tert- Butylphenyl)-2-methyl-5,6,7,8-tetrahydro-1H-cyclopenta[b]naphthalene was obtained.

Et2O(50 mL) 중의 상기 9-(4-tert-부틸페닐)-2-메틸-5,6,7,8-테트라히드로-1H-시클로펜타[b]나프탈렌 (2.97 g, 9.38 mmol) 용액을 -60 ℃로 냉각시키고, n-BuLi (헥산 중의 1.6 M, 6.04 mL, 9.67 mmol)를 부가하였다. 얻어지는 혼합물을 실온으로 가온시키고, 3 시간 동안 교반하고, -60 ℃로 냉각시키고, CuCN(50 mg, 0.55 mmol)을 부가하였다. 15 분 후, Et2O(24 mL) 중의 클로로-(4-(4-tert-부틸페닐)-2-이소프로필-1H-인덴-1-일)-디메틸실란(9.67 mmol)의 용액을 부가하고, 얻어지는 혼합물을 실온으로 가온시키고, 16 시간 동안 교반하였다. 물(5 mL) 및 헥산(200 mL)을 부가하고, 유기 상을 분리하고, MgSO4로 건조시키고, 실리카 겔을 통해 통과시키고, 증발시켰다. 상기 반응 생성물인 [4-(4-t-부틸페닐)-2-이소프로필-1H-인덴-1-일][4-(4-tert-부틸페닐)-2-메틸-5,6,7,8-테트라히드로-1H-시클로펜타[b]나프탈렌-1-일]디메틸실란을 진공 내에서 건조시키고, 정제 없이 사용하였다. The 9-(4-tert-butylphenyl)-2-methyl-5,6,7,8-tetrahydro-1H-cyclopenta[b]naphthalene (2.97 g, 9.38 mmol) above in Et 2 O (50 mL) The solution was cooled to -60 °C and n-BuLi (1.6 M in hexanes, 6.04 mL, 9.67 mmol) was added. The resulting mixture was warmed to room temperature, stirred for 3 hours, cooled to -60° C., and CuCN (50 mg, 0.55 mmol) was added. After 15 minutes, a solution of chloro-(4-(4-tert-butylphenyl)-2-isopropyl-1H-inden-1-yl)-dimethylsilane (9.67 mmol) in Et 2 O (24 mL) was added. And the resulting mixture was warmed to room temperature and stirred for 16 hours. Water (5 mL) and hexane (200 mL) were added and the organic phase was separated, dried over MgSO 4 , passed through silica gel and evaporated. The reaction product [4-(4-t-butylphenyl)-2-isopropyl-1H-inden-1-yl][4-(4-tert-butylphenyl)-2-methyl-5,6,7 ,8-tetrahydro-1H-cyclopenta[b]naphthalen-1-yl]dimethylsilane was dried in vacuo and used without purification.

전이금속 화합물 Dimethylsilanediyl(2-Methyl-4-(4-t-butylphenyl)-tetrahydrocyclopenta[b]naphthalene)(2-isopropyl-4-(4'-tert-butylphenyl)zirconium dichloride의 제조Preparation of transition metal compound Dimethylsilanediyl(2-Methyl-4-(4-t-butylphenyl)-tetrahydrocyclopenta[b]naphthalene)(2-isopropyl-4-(4'-tert-butylphenyl)zirconium dichloride

상기에서 제조한 리간드 화합물, [4-(4-tert-부틸페닐)-2-이소프로필-1H-인덴-1-일][4-(4-tert-부틸페닐)-2-메틸-5,6,7,8-테트라히드로-1H-시클로펜타[b]나프탈렌-1-일]디메틸실란(5.82 g, 8.78 mmol)을 Et2O(60 mL) 중에 용해시키고, -40 ℃로 냉각하고, n-BuLi(헥산 중의 1.6M, 11.52 mL, 18.44 mmol)를 부가하였다. 반응 혼합물을 실온으로 가온시키고, 3 시간 동안 교반하고, 증발시켰다. 잔류물을 펜탄(100 mL) 중에 현탁시키고, -60 ℃로 냉각하고, ZrCl4(2.15 g, 9.22 mmol)를 부가하였다. 5 분 후, Et2O(1 mL)를 부가하였다. 얻어지는 혼합물을 실온으로 가온시키고, 추가적인 16 시간 동안 교반하고, 여과하였다. 얻어지는 황등색 분말을 건조시키고, 디메톡시에탄(100 mL) 및 LiCl(0.3 g)을 부가하고, 혼합물을 6 시간 동안 교반하면서 환류시켰다. 이어지는 디메톡시에탄 및 CH2Cl2/Et2O로부터의 재결정화에 의해 생성물을 얻었다. 락-형태의 수율은 0.88 g(24.4%)이었다. The ligand compound prepared above, [4-(4-tert-butylphenyl)-2-isopropyl-1H-inden-1-yl][4-(4-tert-butylphenyl)-2-methyl-5, 6,7,8-tetrahydro-1H-cyclopenta[b]naphthalen-1-yl]dimethylsilane (5.82 g, 8.78 mmol) was dissolved in Et 2 O (60 mL), cooled to -40 °C, n-BuLi (1.6M in hexane, 11.52 mL, 18.44 mmol) was added. The reaction mixture was warmed to room temperature, stirred for 3 hours and evaporated. The residue was suspended in pentane (100 mL), cooled to -60 °C, and ZrCl 4 (2.15 g, 9.22 mmol) was added. After 5 minutes, Et 2 O (1 mL) was added. The resulting mixture was warmed to room temperature, stirred for an additional 16 hours, and filtered. The resulting yellowish-orange powder was dried, dimethoxyethane (100 mL) and LiCl (0.3 g) were added, and the mixture was refluxed while stirring for 6 hours. The product was obtained by subsequent recrystallization from dimethoxyethane and CH 2 Cl 2 /Et 2 O. The yield of the rock-form was 0.88 g (24.4%).

비교합성예 5Comparative Synthesis Example 5

Figure pat00046
Figure pat00046

리간드 화합물 [(6-tertbutoxyhexyl)(methyl)-bis[2-methyl-4-phenyl)-inden-1-yl] silane 의 제조Preparation of a ligand compound [(6-tertbutoxyhexyl)(methyl)-bis[2-methyl-4-phenyl)-inden-1-yl] silane

먼저, 100 mL의 트리클로로메틸실란 용액(약 0.21 mol, 헥산)에 100 mL의 t-부톡시헥실 마그네슘 클로라이드 용액(약 0.14 mol, 에테르)을 -100 ℃ 하에서 3 시간에 걸쳐 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다. 상기 혼합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하여, 투명한 액상의 (6-t-부톡시헥실)디클로로메틸실란을 얻었다. First, 100 mL of t-butoxyhexyl magnesium chloride solution (about 0.14 mol, ether) was slowly added dropwise to 100 mL of trichloromethylsilane solution (about 0.21 mol, hexane) over 3 hours at -100°C, It was stirred at room temperature for 3 hours. After separating the transparent organic layer from the mixed solution, the separated transparent organic layer was vacuum-dried to remove excess trichloromethylsilane to obtain a transparent liquid (6-t-butoxyhexyl)dichloromethylsilane.

77 mL의 2-메틸-4-페닐인덴 톨루엔/THF=10/1 용액(34.9 mmol)에 n-부틸리튬 용액(2.5 M, 헥산 용매) 15.4 mL를 0 ℃에서 천천히 적가하였고, 80 ℃에서 1 시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, -78 ℃에서 상기 혼합 용액에 앞서 제조한 (6-터트-부톡시헥실)디클로로메틸실란 5 g을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 80 ℃에서 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 78%의 수율로 얻었다(racemic:meso = 1:1).To 77 mL of 2-methyl-4-phenylindene toluene/THF=10/1 solution (34.9 mmol), 15.4 mL of n-butyllithium solution (2.5 M, hexane solvent) was slowly added dropwise at 0 °C, and at 80 °C After stirring for 1 hour, the mixture was stirred at room temperature for one day. Thereafter, 5 g of (6-tert-butoxyhexyl)dichloromethylsilane prepared above was slowly added dropwise to the mixed solution at -78°C, and stirred for about 10 minutes, followed by stirring at 80°C for 1 hour. Then, water was added to separate the organic layer, followed by purification on a silica column, followed by vacuum drying to obtain a sticky yellow oil in a yield of 78% (racemic: meso = 1:1).

1H NMR (500 MHz, CDCl3): 0.10 (s, 3H), 0.98 (t, 2H), 1.25 (s, 9H), 1.36~1.50 (m, 8H), 1.62 (m, 8H), 2.26 (s, 6H), 3.34 (t, 2H), 3.81 (s, 2H), 6.87 (s, 2H), 7.25 (t, 2H), 7.35 (t, 2H), 7.45 (d, 4H), 7.53 (t, 4H), 7.61 (d, 4H) 1 H NMR (500 MHz, CDCl 3 ): 0.10 (s, 3H), 0.98 (t, 2H), 1.25 (s, 9H), 1.36~1.50 (m, 8H), 1.62 (m, 8H), 2.26 ( s, 6H), 3.34 (t, 2H), 3.81 (s, 2H), 6.87 (s, 2H), 7.25 (t, 2H), 7.35 (t, 2H), 7.45 (d, 4H), 7.53 (t , 4H), 7.61 (d, 4H)

전이금속 화합물 [(6-tertbutoxyhexylmethylsilanediyl)-bis[2-methyl-4-(4'-tertbutylphenyl)]zirconium dichloride의 제조 Preparation of transition metal compound [(6-tertbutoxyhexylmethylsilanediyl)-bis[2-methyl-4-(4'-tertbutylphenyl)]zirconium dichloride

상기에서 제조한 리간드 화합물, (6-터트-부톡시헥실)(메틸)비스(2-메틸-4-페닐)인데닐실란 에테르/헥산=1/1 용액(3.37 mmol) 50 mL에 n-부틸리튬 용액(2.5 M in 헥산) 3.0 mL를 -78 ℃에서 천천히 적가한 후, 상온에서 약 2 시간 동안 교반한 뒤 진공 건조하였다. 헥산으로 염을 세척한 후 여과 및 진공 건조하여 노란색의 고체를 얻었다. 글로브 박스(glove box) 내에서 합성한 리간드 염(ligand salt)와 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2NC5H6)Cl2(C4H8O)2]을 쉬링크 플라스크에 칭량한 후, -78 ℃에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 이후에, 붉은색 반응 용액을 여과 분리한 후 HCl 에테르 용액(1 M) 4 당량을 -78 ℃에서 천천히 적가한 후 상온에서 3 시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 안사-메탈로센 화합물을 85%의 수율로 얻었다(racemic:meso = 10:1).The ligand compound prepared above, (6-tert-butoxyhexyl)(methyl)bis(2-methyl-4-phenyl)indenylsilane ether/hexane=1/1 solution (3.37 mmol) n-butyl in 50 mL 3.0 mL of a lithium solution (2.5 M in hexane) was slowly added dropwise at -78 °C, stirred at room temperature for about 2 hours, and then dried under vacuum. After washing the salt with hexane, it was filtered and dried under vacuum to obtain a yellow solid. Ligand salt and bis (N,N'-diphenyl-1,3-propanediamido) dichlorozirconium bis (tetrahydrofuran) synthesized in a glove box [Zr(C 5 H 6 NCH 2 CH 2 NC 5 H 6 )Cl 2 (C 4 H 8 O) 2 ] was weighed into a Shrink flask, ether was slowly added dropwise at -78 °C, and then stirred at room temperature for a day. Thereafter, the red reaction solution was separated by filtration, 4 equivalents of an HCl ether solution (1 M) was slowly added dropwise at -78°C, followed by stirring at room temperature for 3 hours. After filtration and vacuum drying, an ansa-metallocene compound as an orange solid component was obtained in a yield of 85% (racemic:meso = 10:1).

1H NMR (500 MHz, C6D6, 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s), 1.48~1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, t), 6.95 (2H, s), 7.13 (2H, t), 7.36 (2H, d), 7.43 (6H, t), 7.62 (4H, d), 7.67 (2H, d) 1 H NMR (500 MHz, C 6 D 6 , 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s), 1.48-1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, t), 6.95 (2H, s), 7.13 (2H, t), 7.36 (2H, d), 7.43 (6H, t), 7.62 (4H, d), 7.67 (2H, d)

비교합성예 6Comparative Synthesis Example 6

Figure pat00047
Figure pat00047

리간드 화합물 (2-Methyl-4-phenyl)Indacen-1-yl)dimethyl(cyclopentadienyl) silane 의 제조Preparation of Ligand Compound (2-Methyl-4-phenyl) Indacen-1-yl)dimethyl(cyclopentadienyl) silane

Dicyclopentadiene을 150 ℃에서 Cracking을 통해 condensation하여 cyclopentadiene을 추출하여 (1 equiv) THF (0.3 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 디클로로디메틸실란(dichloro dimethyl silane, 1.05 eq)을 -10 ℃에서 투입한 뒤, 상온에서 밤새(overnight) 교반하였다. 다른 반응기에 (2-메틸-4-페닐) 인다센 (2-Methyl-4-phenyl) Indacene (1 eq))을 톨루엔/테트라하이드로퓨란(Toluene/THF)의 혼합 용매(부피비 3/2, 0.5 M)에 녹인 후 -25 ℃에서 n-BuLi (1.05 eq)를 천천히 적가한 뒤, 상온에서 3 시간 동안 교반하였다. 이후 CuCN (2 mol%)를 투입하고 30 분 동안 교반한 후, 첫번째 반응물인 mono-Si 용액을 투입하였다. 이후 상온에서 밤새 교반하고 물을 이용하여 work-up 한 뒤 건조하여 리간드를 얻었다. Dicyclopentadiene was condensed through cracking at 150 °C to extract cyclopentadiene (1 equiv) and dissolved in THF (0.3 M), and then n-BuLi (1.05 eq) was slowly added dropwise at -25 °C, followed by stirring at room temperature for 3 hours. . Thereafter, dichloro dimethyl silane (1.05 eq) was added at -10°C, followed by stirring at room temperature overnight. (2-Methyl-4-phenyl) indacene (1 eq)) to another reactor in a mixed solvent of toluene/tetrahydrofuran (Toluene/THF) (volume ratio 3/2, 0.5 After dissolving in M), n-BuLi (1.05 eq) was slowly added dropwise at -25 °C, followed by stirring at room temperature for 3 hours. Thereafter, CuCN (2 mol%) was added and stirred for 30 minutes, and then a mono-Si solution as the first reactant was added. After that, the mixture was stirred at room temperature overnight, worked-up with water, and dried to obtain a ligand.

Figure pat00048
Figure pat00048

전이 금속 화합물 Dimethyl-silanediyl(cyclopentadienyl)(2-methyl-4-phenyl)Indacenyl) zirconium dichloride의 제조Preparation of transition metal compound Dimethyl-silanediyl(cyclopentadienyl)(2-methyl-4-phenyl)Indacenyl)zirconium dichloride

상기에서 제조한 리간드를 Toluene/Ether (부피비 2/1, 0.53 M)에 녹이고, -25 ℃에서 n-BuLi (2.05 eq)를 투입한 뒤, 상온에서 5 시간 동안 교반하였다. 별도의 플라스크에 ZrCl4 (1 eq)를 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 제조하고, 상기 리간드 용액에 투입한 후, 상온에서 밤새 교반하였다. 반응이 완료되면, 용매를 진공 건조하고 디클로로메탄을 재투입하여 필터 등을 통해 LiCl를 제거하고, 여액을 진공 건조하고, 디클로로메탄/헥산을 첨가하여 상온에서 재결정 시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 얻었다.The ligand prepared above was dissolved in Toluene/Ether (volume ratio 2/1, 0.53 M), and n-BuLi (2.05 eq) was added at -25°C, followed by stirring at room temperature for 5 hours. A slurry prepared by mixing ZrCl 4 (1 eq) with toluene (0.17 M) in a separate flask was prepared, added to the ligand solution, and stirred at room temperature overnight. When the reaction was completed, the solvent was vacuum-dried, dichloromethane was re-introduced to remove LiCl through a filter, etc., the filtrate was vacuum-dried, and dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried in vacuo to obtain the title metallocene compound.

1H-NMR (500 MHz, CDCl3): 7.54-7.38 (m, 6H),6.54-6.52(m, 4H), 6.37 (s, 1H), 2.85-2.80 (m, 4H), 1.95 (m, 2H), 1.77 (s, 3H), 0.98 (s, 6H) ppm 1 H-NMR (500 MHz, CDCl 3 ): 7.54-7.38 (m, 6H),6.54-6.52 (m, 4H), 6.37 (s, 1H), 2.85-2.80 (m, 4H), 1.95 (m, 2H), 1.77 (s, 3H), 0.98 (s, 6H) ppm

<담지 촉매의 제조><Preparation of supported catalyst>

제조예 1Manufacturing Example 1

실리카겔(Silica gel, SYLOPOL 952X, calcinated under 250 ℃, 100 g)을 Ar 하에 2 L 반응기에 넣고 MAO (766 mL)를 상온에서 천천히 주입하여 90 ℃에서 15 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치하여 cannula를 이용해 용매를 decant한다. Toluene (400 mL)을 넣고 1 분 동안 교반하고 15 분 동안 방치하여 cannula를 이용해 용매를 decant 하였다. Silica gel (SYLOPOL 952X, calcinated under 250°C, 100 g) was placed in a 2 L reactor under Ar, and MAO (766 mL) was slowly injected at room temperature, followed by stirring at 90°C for 15 hours. After completion of the reaction, cool to room temperature and leave for 15 minutes to decant the solvent with a cannula. Toluene (400 mL) was added, stirred for 1 minute, left for 15 minutes, and the solvent was decanted using a cannula.

합성예 1의 메탈로센 화합물 700 μmol을 톨루엔 400 mL에 녹인 후, 반응기에 cannula를 이용해 transfer하였다. 50 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 톨루엔 400 mL를 넣고 1 분 동안 교반하고 15 분 동안 방치하여 cannula를 이용해 용매를 decant하는 것을 2회 진행하였다. 동일한 방법으로 헥산 400 mL을 넣고 1 분 동안 교반하고 15 분 동안 방치하여 cannula를 이용해 용매를 decant하고 대전방지제 (Atmer 163, 3 g)를 hexane 400 mL에 녹인 후 반응기에 cannula를 이용해 transfer하였다. 상온에서 20 분간 교반하고 glass filter로 transfer 하여 용매를 제거하였다. 700 μmol of the metallocene compound of Synthesis Example 1 was dissolved in 400 mL of toluene, and then transferred to a reactor using a cannula. After stirring at 50° C. for 5 hours, it was cooled to room temperature and allowed to stand for 15 minutes to decant the solvent using a cannula. 400 mL of toluene was added, stirred for 1 minute, left for 15 minutes, and decanted the solvent using a cannula twice. In the same way, 400 mL of hexane was added, stirred for 1 minute, and allowed to stand for 15 minutes to decant the solvent using a cannula, and an antistatic agent (Atmer 163, 3 g) was dissolved in 400 mL of hexane, and then transferred to the reactor using a cannula. After stirring at room temperature for 20 minutes, the solvent was removed by transferring to a glass filter.

상온에서 진공 하에 5 시간 동안 1차 건조하고, 45 ℃에서 4 시간 동안 진공 하에 2차 건조하여 담지 촉매를 수득하였다.Primary drying at room temperature under vacuum for 5 hours, and secondary drying under vacuum at 45° C. for 4 hours to obtain a supported catalyst.

제조예 2 내지 12Preparation Examples 2 to 12

합성예 1의 메탈로센 화합물 대신에, 각각 합성예 2 내지 12의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 실리카 담지 메탈로센 촉매를 제조하였다. Instead of the metallocene compound of Synthesis Example 1, a silica-supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Synthesis Examples 2 to 12 were used, respectively.

비교제조예 1 내지 6Comparative Preparation Examples 1 to 6

합성예 1의 메탈로센 화합물 대신에, 각각 비교합성예 1 내지 6의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 실리카 담지 메탈로센 촉매를 제조하였다. Instead of the metallocene compound of Synthesis Example 1, a silica-supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Comparative Synthesis Examples 1 to 6 were used, respectively.

<프로필렌-에틸렌 랜덤 공중합체의 제조><Preparation of propylene-ethylene random copolymer>

실시예 1Example 1

제조예 1에서 제조한 실리카 담지 메탈로센 촉매의 존재 하에서, 연속적인 2기의 루프 반응기를 이용하여 프로필렌과 에틸렌의 벌크-슬러리 중합을 진행하였다. In the presence of the silica-supported metallocene catalyst prepared in Preparation Example 1, bulk-slurry polymerization of propylene and ethylene was carried out using two continuous loop reactors.

이때, 벌크-슬러리 중합을 위하여 제조예 1에 따라 제조한 담지 촉매를 16 wt%로 오일, 그리스에 섞은 머드 촉매 형태로 사용하였다. 이렇게 제조된 촉매 혼합물을 예비 중합 반응기(pre-polymerization reactor)로 약 20 kg/hr의 프로필렌과 함께 투입하고, 체류시간 8 분 이상 경과한 후에 연속적으로 루프 반응기(loop reactor)로 투입하였다. 이때, 수소가 루프 반응기로 유입되는 프로필렌과 함께 투입되고, 반응기 온도는 약 70 ℃로 유지하고, 반응기 압력은 압력은 약 35 kg/cm2로 유지하였다. 이때, 수소의 투입량은 연속식으로 투입되는 프로필렌 함량을 기준으로 약 150 ppm으로 투입하였다. 또한, 에틸렌(C2)은 연속식으로 투입되는 프로필렌(C3) 함량을 기준으로 3.5 wt%가 되도록 루프 반응기로 직접 투입하여, 벌크-슬러리 중합 공정을 수행하였다. At this time, the supported catalyst prepared according to Preparation Example 1 for bulk-slurry polymerization was used in the form of a mud catalyst mixed with oil and grease at 16 wt%. The thus-prepared catalyst mixture was introduced into a pre-polymerization reactor together with about 20 kg/hr of propylene, and after a residence time of at least 8 minutes had elapsed, it was continuously introduced into a loop reactor. At this time, hydrogen was introduced together with propylene flowing into the loop reactor, the reactor temperature was maintained at about 70°C, and the reactor pressure was maintained at about 35 kg/cm 2 . At this time, the amount of hydrogen was added at about 150 ppm based on the propylene content introduced in a continuous manner. In addition, ethylene (C2) was directly introduced into the loop reactor so that the content of propylene (C3) in a continuous manner was 3.5 wt%, and a bulk-slurry polymerization process was performed.

실시예 2 내지 12Examples 2 to 12

제조예 1의 실리카 담지 메탈로센 촉매 대신에, 각각 제조예 2 내지 12의 실리카 담지 메탈로센 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다. In place of the silica-supported metallocene catalyst of Preparation Example 1, the bulk-slurry polymerization of propylene and ethylene was carried out in the same manner as in Example 1, except that the silica-supported metallocene catalysts of Preparation Examples 2 to 12 were used, respectively. I did.

비교예 1Comparative Example 1

에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 2.0 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다. Bulk-slurry polymerization of propylene and ethylene was performed in the same manner as in Example 1, except that the input amount of ethylene (C2) was changed to be 2.0 wt% based on the content of propylene (C3).

비교예 2Comparative Example 2

에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 2.6 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다.Bulk-slurry polymerization of propylene and ethylene was performed in the same manner as in Example 1, except that the input amount of ethylene (C2) was changed to be 2.6 wt% based on the content of propylene (C3).

비교예 3Comparative Example 3

메탈로센 촉매 대신에 지글러-나타(Z/N) 촉매(제조사: Lyondellbasell, 제품명: ZN127VS)를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 3.0 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다. Instead of a metallocene catalyst, a Ziegler-Natta (Z/N) catalyst (manufacturer: Lyondellbasell, product name: ZN127VS) was used, and the amount of ethylene (C2) input was varied to be 3.0 wt% based on the propylene (C3) content. Except, bulk-slurry polymerization of propylene and ethylene was performed in the same manner as in Example 1.

비교예 4Comparative Example 4

메탈로센 촉매로 비교제조예 1에서 제조한 실리카 담지 촉매를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 2.0 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다. The same as in Example 1, except that the silica-supported catalyst prepared in Comparative Preparation Example 1 was used as the metallocene catalyst, and the input amount of ethylene (C2) was changed to be 2.0 wt% based on the propylene (C3) content. As a method, bulk-slurry polymerization of propylene and ethylene was carried out.

비교예 5Comparative Example 5

에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 2.5 wt%가 되도록 달리한 것을 제외하고는, 비교예 4와 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다Bulk-slurry polymerization of propylene and ethylene was carried out in the same manner as in Comparative Example 4, except that the input amount of ethylene (C2) was changed to be 2.5 wt% based on the propylene (C3) content.

비교예 6Comparative Example 6

에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 3.5 wt%가 되도록 달리한 것을 제외하고는, 비교예 4와 동일한 방법으로 프로필렌과 에틸렌의 Propylene and ethylene were mixed in the same manner as in Comparative Example 4, except that the input amount of ethylene (C2) was changed to be 3.5 wt% based on the propylene (C3) content.

벌크-슬러리 중합을 수행하였으나, 중합 공정에서 파울링(Fouling)이 발생하였다. Bulk-slurry polymerization was performed, but fouling occurred in the polymerization process.

비교예 7Comparative Example 7

메탈로센 촉매로 비교제조예 2에서 제조한 실리카 담지 촉매를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 3.0 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다. The same as in Example 1, except that the silica-supported catalyst prepared in Comparative Preparation Example 2 was used as the metallocene catalyst, and the input amount of ethylene (C2) was changed to be 3.0 wt% based on the propylene (C3) content. As a method, bulk-slurry polymerization of propylene and ethylene was performed.

비교예 8Comparative Example 8

에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 4.5 wt%가 되도록 달리한 것을 제외하고는, 비교예 7과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다. Bulk-slurry polymerization of propylene and ethylene was carried out in the same manner as in Comparative Example 7, except that the input amount of ethylene (C2) was changed to be 4.5 wt% based on the content of propylene (C3).

비교예 9Comparative Example 9

에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 6.0 wt%가 되도록 달리한 것을 제외하고는, 비교예 7과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였으나, 중합 공정에서 파울링(Fouling)이 발생하였다. Bulk-slurry polymerization of propylene and ethylene was performed in the same manner as in Comparative Example 7, except that the input amount of ethylene (C2) was changed to be 6.0 wt% based on the content of propylene (C3), but fouling in the polymerization process (Fouling) occurred.

비교예 10Comparative Example 10

메탈로센 촉매로 비교제조예 3에서 제조한 실리카 담지 촉매를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 6.0 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다.The same as in Example 1, except that the silica-supported catalyst prepared in Comparative Preparation Example 3 was used as the metallocene catalyst, and the amount of ethylene (C2) input was changed to be 6.0 wt% based on the propylene (C3) content. As a method, bulk-slurry polymerization of propylene and ethylene was performed.

비교예 11Comparative Example 11

메탈로센 촉매로 비교제조예 4에서 제조한 실리카 담지 촉매를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 5.5 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다.The same as in Example 1, except that the silica-supported catalyst prepared in Comparative Preparation Example 4 was used as the metallocene catalyst, and the input amount of ethylene (C2) was changed to be 5.5 wt% based on the propylene (C3) content. As a method, bulk-slurry polymerization of propylene and ethylene was performed.

비교예 12Comparative Example 12

메탈로센 촉매로 비교제조예 5에서 제조한 실리카 담지 촉매를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 4.5 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다.The same as in Example 1, except that the silica-supported catalyst prepared in Comparative Preparation Example 5 was used as the metallocene catalyst, and the input amount of ethylene (C2) was changed to be 4.5 wt% based on the propylene (C3) content. As a method, bulk-slurry polymerization of propylene and ethylene was performed.

비교예 13Comparative Example 13

메탈로센 촉매로 비교제조예 6에서 제조한 실리카 담지 촉매를 사용하고, 에틸렌(C2) 투입량을 프로필렌(C3) 함량을 기준으로 2.0 wt%가 되도록 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 프로필렌과 에틸렌의 벌크-슬러리 중합을 수행하였다.The same as in Example 1, except that the silica-supported catalyst prepared in Comparative Preparation Example 6 was used as the metallocene catalyst, and the input amount of ethylene (C2) was changed to be 2.0 wt% based on the propylene (C3) content. As a method, bulk-slurry polymerization of propylene and ethylene was performed.

<실험예><Experimental Example>

프로필렌-에틸렌 랜덤 공중합체의 물성 평가Evaluation of properties of propylene-ethylene random copolymer

상기 실시예 및 비교예에서 제조한 프로필렌-에틸렌 랜덤 공중합체에 대하여 하기의 방법으로 물성을 평가하였다. The propylene-ethylene random copolymers prepared in the above Examples and Comparative Examples were evaluated for physical properties by the following method.

(1) 공단량체의 함량(C2, wt%)(1) Content of comonomer (C2, wt%)

미국재료시험학회규격 ASTM D 5576에 따라, 프로필렌-에틸렌 랜덤 공중합체의 필름 혹은 필름 형태 시편을 FT-IR 장비의 Magnetic holder에 고정시킨 후, IR 흡수 스펙트럼에서 시편 두께를 반영하는 4800~3500 cm-1 피크의 에틸렌 성분이 나타나는 710~760 cm-1 피크의 면적을 각각 측정하고, 측정한 값을 Standard 샘플의 710~760 cm-1 피크의 면적을 4800~3500 cm-1 피크 높이로 나눈 값을 플롯(Plot)하여 구한 캘리브레이션(Calibration) 식에 대입하여 공단량체 함량을 계산하였다. According to the American Society for Testing and Materials specification ASTM D 5576, a propylene - After fixing the film or the film type specimens of the ethylene random copolymer to Magnetic holder of the FT-IR equipment, 4800 ~ 3500 cm reflecting the sample thickness in the IR absorption spectrum 1 Measure the area of the 710~760 cm -1 peak where the ethylene component of the peak appears, and divide the measured value by dividing the area of the 710~760 cm -1 peak of the standard sample by the height of 4800~3500 cm -1 peak. The comonomer content was calculated by substituting into the calibration equation obtained by plotting.

(2) 융점(Tm) 및 결정화온도(Tc)(2) Melting point (Tm) and crystallization temperature (Tc)

시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 프로필렌 중합체의 녹는점, 용융점(Tm)과 결정화온도(Tc)을 측정하였다. 구체적으로, 중합체를 200 ℃까지 가열한 후 5 분 동안 그 온도에서 유지하고, 그 다음 30 ℃까지 내리고, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기를 융점(Tm)으로 측정하고, 다시 온도를 30 ℃까지 내릴 때 곡선의 꼭대기를 결정화온도(Tc)로 측정하였다. 이 때, 온도의 상승과 내림의 속도는 10 ℃/min이고, 융점(Tm) 및 결정화온도(Tc)는 두 번째 온도가 상승, 내림하는 구간에서 측정한 결과를 사용하였다.The melting point, melting point (Tm) and crystallization temperature (Tc) of the propylene polymer were measured using a Differential Scanning Calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). Specifically, the polymer is heated to 200° C., maintained at that temperature for 5 minutes, then lowered to 30° C., and the temperature is increased again, so that the top of the DSC (Differential Scanning Calorimeter, manufactured by TA) curve is the melting point (Tm). When the temperature was lowered to 30 °C again, the top of the curve was measured as the crystallization temperature (Tc). At this time, the rate of rise and fall of the temperature was 10 °C/min, and the melting point (Tm) and crystallization temperature (Tc) were measured in a section where the second temperature rises and falls.

(3) 용융지수(melt index, MI)(3) melt index (MI)

미국재료시험학회규격 ASTM D 1238에 따라 230 ℃에서 2.16 kg 하중으로 측정하였으며, 10 분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.According to the American Society for Testing and Materials Standard ASTM D 1238, it was measured with a load of 2.16 kg at 230° C., and expressed as the weight (g) of the polymer melted for 10 minutes.

(4) 헤이즈(Haze, %)(4) Haze (%)

미국재료시험학회규격 ASTM D1003에 따라 프로필렌-에틸렌 랜덤 공중합체 시편의 1T(1mm) 에 빛을 쏘았을 때에 빛이 굴절된 정도(%)를 측정하였다. 헤이즈는 Td(굴절된 빛)/Tt(통과한 빛) × 100(%)으로 시편의 투명도를 측정하였다According to the American Society for Testing and Materials standard ASTM D1003, the degree of refraction of light (%) when light was irradiated on 1T (1mm) of a propylene-ethylene random copolymer specimen was measured. Haze was measured as Td (refracted light) / Tt (passed light) × 100 (%) of the transparency of the specimen.

(5) 자일렌 가용분(X.S: Xylene Soluble, wt%)(5) Xylene Soluble (X.S: Xylene Soluble, wt%)

프로필렌-에틸렌 랜덤 공중합체의 각 샘플에 자일렌을 넣고, 135 ℃에서 1 시간 동안 가열하고, 30 분간 냉각하여 전처리를 하였다. OminiSec(Viscotek사 FIPA) 장비에서 1 mL/min의 유속(flow rate)으로 4 시간 동안 자일렌을 흘려주어, RI(Refractive Index), DP(Pressure across middle of bridge), IP(Inlet pressure through bridge top to bottom)의 베이스 라인(base line)이 안정화되면, 전처리한 샘플의 농도 및 인젝션 양을 기입하여 측정한 후, 피크면적을 계산하였다. Xylene was added to each sample of the propylene-ethylene random copolymer, heated at 135° C. for 1 hour, and cooled for 30 minutes to perform pretreatment. Xylene flows for 4 hours at a flow rate of 1 mL/min in OminiSec (Viscotek, FIPA) equipment, and RI (Refractive Index), DP (Pressure across middle of bridge), IP (Inlet pressure through bridge top) When the base line of (to bottom) stabilized, the concentration of the pretreated sample and the amount of injection were recorded and measured, and then the peak area was calculated.

(6) 총휘발성 유기 화합물 방출량(TVOC, ppm)(6) Total volatile organic compound emission (TVOC, ppm)

VDA 277 방법에 따라 Headspace-GC(Gas chromatography) 장치를 사용하여 프로필렌-에틸렌 랜덤 공중합체에 포함된 총휘발성 유기 화합물 방출량(TVOC, Toatal Volatile Organic Compound, ppm)을 측정하였다. According to the VDA 277 method, a total volatile organic compound emission amount (TVOC, Toatal Volatile Organic Compound, ppm) included in the propylene-ethylene random copolymer was measured using a Headspace-GC (Gas chromatography) apparatus.

상술한 바와 같은 방법으로 측정한 프로필렌-에틸렌 랜덤 공중합체의 물성 평가 결과를 하기 표 1에 나타내었다. The evaluation results of the properties of the propylene-ethylene random copolymer measured by the method described above are shown in Table 1 below.

중합 공정Polymerization process 공중합체의 물성Properties of the copolymer 촉매catalyst C2
투입량
(wt%)
C2
input
(wt%)
C2 함량
(IR분석 wt%)
C2 content
(IR analysis wt%)
Tm
(℃)
Tm
(℃)
Random Tc
(℃)
Random Tc
(℃)
MI
(g/10min)
MI
(g/10min)
Haze
(%)
Haze
(%)
X.S
(wt%)
XS
(wt%)
TVOC (ppm)TVOC (ppm)
실시예 1Example 1 제조예 1Manufacturing Example 1 3.53.5 4.34.3 125.2125.2 73.073.0 18.818.8 7.17.1 0.60.6 5858 실시예 2Example 2 제조예 2Manufacturing Example 2 3.53.5 4.24.2 126.2126.2 73.873.8 19.119.1 7.27.2 0.70.7 5555 실시예 3Example 3 제조예 3Manufacturing Example 3 3.53.5 4.34.3 125.4125.4 72.572.5 19.119.1 7.17.1 0.80.8 5555 실시예 4Example 4 제조예 4Manufacturing Example 4 3.53.5 4.24.2 125.4125.4 72.672.6 19.219.2 7.37.3 0.60.6 5858 실시예 5Example 5 제조예 5Manufacturing Example 5 3.53.5 4.24.2 125.5125.5 72.872.8 19.519.5 7.27.2 0.70.7 5555 실시예 6Example 6 제조예 6Manufacturing Example 6 3.53.5 4.24.2 125.3125.3 72.872.8 18.518.5 7.27.2 0.80.8 5858 실시예 7Example 7 제조예 7Manufacturing Example 7 3.53.5 4.14.1 125.3125.3 73.573.5 18.418.4 7.47.4 0.60.6 5858 실시예 8Example 8 제조예 8Manufacturing Example 8 3.53.5 4.24.2 125.4125.4 73.173.1 18.418.4 7.37.3 0.80.8 5757 실시예 9Example 9 제조예 9Manufacturing Example 9 3.53.5 4.24.2 125.2125.2 73.273.2 18.618.6 7.37.3 0.70.7 5656 실시예 10Example 10 제조예 10Manufacturing Example 10 3.53.5 4.24.2 125.1125.1 73.073.0 18.618.6 7.27.2 0.70.7 5757 실시예 11Example 11 제조예 11Manufacturing Example 11 3.53.5 4.34.3 125.8125.8 72.872.8 18.418.4 7.17.1 0.70.7 5555 실시예 12Example 12 제조예 12Manufacturing Example 12 3.53.5 4.24.2 125.6125.6 73.873.8 18.518.5 7.27.2 0.80.8 5858 비교예 1Comparative Example 1 제조예 1Manufacturing Example 1 2.02.0 2.62.6 134.6134.6 85.585.5 18.118.1 8.38.3 0.80.8 5454 비교예 2Comparative Example 2 제조예 1Manufacturing Example 1 2.62.6 3.33.3 130.6130.6 80.180.1 18.518.5 7.87.8 0.60.6 5656 비교예 3Comparative Example 3 Z/NZ/N 3.03.0 5.25.2 138.1138.1 111111 1818 8.38.3 4.54.5 310310 비교예 4Comparative Example 4 비교
제조예 1
compare
Manufacturing Example 1
2.02.0 2.32.3 131.1131.1 83.183.1 18.418.4 8.58.5 0.60.6 5656
비교예 5Comparative Example 5 비교
제조예 1
compare
Manufacturing Example 1
2.52.5 2.82.8 125.8125.8 73.573.5 19.319.3 8.18.1 0.60.6 6161
비교예 6Comparative Example 6 비교
제조예 1
compare
Manufacturing Example 1
3.53.5 측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
비교예 7Comparative Example 7 비교
제조예 2
compare
Manufacturing Example 2
3.03.0 22 132.1132.1 83.883.8 19.119.1 8.88.8 0.80.8 5858
비교예 8Comparative Example 8 비교
제조예 2
compare
Manufacturing Example 2
4.54.5 2.82.8 126.1126.1 74.574.5 2020 8.28.2 0.60.6 5656
비교예 9Comparative Example 9 비교
제조예 2
compare
Manufacturing Example 2
6.06.0 측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
비교예 10Comparative Example 10 비교
제조예 3
compare
Manufacturing Example 3
6.06.0 3.53.5 126.1126.1 78.178.1 18.218.2 7.87.8 0.60.6 5656
비교예 11Comparative Example 11 비교
제조예 4
compare
Manufacturing Example 4
5.55.5 3.33.3 125.8125.8 77.177.1 19.619.6 7.77.7 0.70.7 5050
비교예 12Comparative Example 12 비교
제조예 5
compare
Manufacturing Example 5
4.54.5 2.62.6 125.7125.7 76.876.8 20.120.1 8.38.3 1.11.1 5454
비교예 13Comparative Example 13 비교
제조예 6
compare
Manufacturing Example 6
2.02.0 측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible
측정
불가
Measure
Impossible

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 12의 프로필렌-에틸렌 랜덤 공중합체는 125.2 ℃ 내지 126.2 ℃의 높은 융점(Tm)을 확보하여 공정 안정성과 기타 사출 물성을 유지하며 에틸렌(C2) 함량을 증대시킬 수 있을 뿐만 아니라, 이렇게 증대된 에틸렌(C2) 함량은 결정화도가 낮아지는 특성을 발현하고 이를 통해 투명성이 개선됨을 확인하였다. 이와 더불어, 실시예 1 내지 12의 경우, TVOC가 현저히 낮아 식품용기 등으로 사용되는 고투명 사출용 프로필렌-에틸렌 랜덤 공중합체로 친환경성을 확보할 수 있음을 알 수 있다.As shown in Table 1, the propylene-ethylene random copolymers of Examples 1 to 12 according to the present invention secure a high melting point (Tm) of 125.2 °C to 126.2 °C to maintain process stability and other injection properties, and ethylene ( In addition to being able to increase the C2) content, it was confirmed that the increased ethylene (C2) content exhibited a characteristic of lowering the crystallinity, thereby improving transparency. In addition, in the case of Examples 1 to 12, it can be seen that the TVOC is remarkably low, and eco-friendliness can be secured with a highly transparent propylene-ethylene random copolymer used for food containers and the like.

반면에, 실시예 1과 동일한 제조예 1의 촉매 전구체를 사용한 비교예 1 및 2의 경우라도, 중합 공정에서 에틸렌(C2) 투입량이 적어짐에 따라 에틸렌(C2) 함량이 줄어들어 헤이즈(Haze)가 8.3% 및 7.8%로 높게 나타나며 투명성이 떨어짐을 알 수 있다. On the other hand, even in the case of Comparative Examples 1 and 2 using the same catalyst precursor of Preparation Example 1 as in Example 1, the content of ethylene (C2) decreased as the amount of ethylene (C2) input in the polymerization process decreased, resulting in a haze of 8.3. It appears as high as% and 7.8%, and it can be seen that transparency is poor.

또한, 지글러-나타(Z/N) 촉매를 사용한 비교예 3은, 높은 에틸렌(C2) 함량에도 불구하고, 에틸렌(C2)의 고분자 구조내 블록키(Blocky)하게 불균일한 공중합으로 결정화온도(Tc)가 111 ℃로 매우 높고 TVOC가 310 ppm으로 극단적으로 높으며 어택틱(atactic)한 자일렌 가용분(X.S, Xylene soluble)도 4.5 wt%로 매우 높게 확인되었다.In addition, Comparative Example 3 using a Ziegler-Natta (Z/N) catalyst, despite the high ethylene (C2) content, was a blocky non-uniform copolymerization of ethylene (C2) in the polymer structure, resulting in the crystallization temperature (Tc ) Was very high at 111 ℃, TVOC was extremely high at 310 ppm, and the atactic xylene soluble content was also very high at 4.5 wt%.

한편, 인다센 리간드가 포함되지 않고 일반적으로 알려진 시클로펜타디에닐을 포함하는 리간드의 메탈로센 화합물을 포함한 촉매 조성물을 사용한 비교예 4 내지 6의 경우에는 파울링이 나지 않는 Tm 범위를 유지할 경우에는 에틸렌(C2) 함량을 증대시키는 데 한계가 있어 일정 투명도까지 도달할 수 없었다. 특히, 비교예 6의 경우에는 중합 공정에서 파울링이 발생하며, 공중합체에 대한 물성 평가를 수행할 수 없었다On the other hand, in the case of Comparative Examples 4 to 6 using a catalyst composition containing a metallocene compound of a ligand containing a generally known cyclopentadienyl without an indacene ligand, when maintaining the Tm range in which fouling does not occur There was a limit to increasing the ethylene (C2) content, so it was not possible to reach a certain degree of transparency. In particular, in the case of Comparative Example 6, fouling occurred in the polymerization process, and physical property evaluation of the copolymer could not be performed.

이와 마찬가지로 인다센 리간드와 브릿지 결합한 시클로펜타디에닐(Cp) 리간드 대신에 인덴 리간드가 브릿지 결합된 메탈로센 화합물을 포함한 비교제조예 2의 촉매 조성물을 사용한 비교예 7 내지 9의 경우에는, 기본적으로 호모 폴리프로필렌의 Tm 자체가 낮기 때문에 에틸렌(C2) 함량을 올리면 파울링이 발생하여 일정 수준의 에틸렌(C2) 함량을 유지할 수 없었다. 더욱이 에틸렌(C2) 반응성이 좋지않아 공중합체내 동등 수준의 에틸렌 함량을 확보하기 위해서는 에틸렌(C2) 투입량이 매우 높아야만 하였다. 특히, 비교예 9의 경우에는 중합 공정에서 파울링이 발생하며, 공중합체에 대한 물성 평가를 수행할 수 없었다.Similarly, in the case of Comparative Examples 7 to 9 using the catalyst composition of Comparative Preparation Example 2 including a metallocene compound having an indene ligand bridged instead of a cyclopentadienyl (Cp) ligand bridged with an indacene ligand, basically Since the Tm of homopolypropylene itself is low, if the ethylene (C2) content is raised, fouling occurs, and a certain level of ethylene (C2) content cannot be maintained. Moreover, since ethylene (C2) reactivity was not good, the amount of ethylene (C2) input had to be very high in order to secure an equivalent level of ethylene content in the copolymer. In particular, in the case of Comparative Example 9, fouling occurred in the polymerization process, and physical property evaluation of the copolymer could not be performed.

또한, 비스 인데닐(또는 인다세닐)기를 가지는 메탈로센 화합물을 포함하는 촉매 조성물을 사용한 비교예 10 내지 12의 경우에는 에틸렌 전환율(C2 conversion)이 매우 낮아 투입되는 에틸렌(C2) 투입량이 높아야 공중합체내 에틸렌(C2) 함량을 일정 수준 이상으로 올릴 수 있었으며, 이 또한 에틸렌(C2) 함량을 증대시키는 데 한계가 있어 일정 투명도까지 도달할 수 없었다.In addition, in the case of Comparative Examples 10 to 12 using a catalyst composition containing a metallocene compound having a bis-indenyl (or indacenyl) group, the ethylene conversion rate (C2 conversion) is very low, and the amount of ethylene (C2) inputted is high. The ethylene (C2) content in the body could be raised to a certain level or more, and this also had a limit in increasing the ethylene (C2) content, and thus a certain transparency could not be reached.

한편, 비교예 13의 경우에는 폴리프로필렌의 방향성을 갖게하는 라세모 선택성을 가질 수 없는 구조로 인하여 어택틱 폴리프로필렌(atactic polypropylene)이 생성되면서, 공중합체에 대한 물성 평가를 수행할 수 없었다.On the other hand, in the case of Comparative Example 13, atactic polypropylene was produced due to a structure that could not have racemo selectivity that gives the directionality of polypropylene, and the evaluation of physical properties of the copolymer was not possible.

Claims (11)

융점(Tm)이 125 ℃ 이상이고,
에틸렌의 함량이 4.0 중량% 이상이고,
결정화 온도(Tc)가 75 ℃ 이하이고,
용융지수(MI2.16, 230 ℃, 2.16 kg 하중에서 측정한 용융 지수)가 16 g/min 내지 22 g/min인,
프로필렌-에틸렌 랜덤 공중합체.
The melting point (Tm) is 125°C or higher,
The content of ethylene is at least 4.0% by weight,
The crystallization temperature (Tc) is 75 °C or less,
The melt index (MI 2.16 , melt index measured at 230 °C, 2.16 kg load) is 16 g/min to 22 g/min,
Propylene-ethylene random copolymer.
제1항에 있어서,
융점(Tm)이 125 ℃ 내지 150 ℃인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 1,
The melting point (Tm) is 125 ℃ to 150 ℃,
Propylene-ethylene random copolymer.
제1항에 있어서,
에틸렌의 함량이 4.0 중량% 내지 5.5 중량%인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 1,
The content of ethylene is 4.0% to 5.5% by weight,
Propylene-ethylene random copolymer.
제1항에 있어서,
결정화 온도(Tc)가 65 ℃ 내지 75 ℃인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 1,
The crystallization temperature (Tc) is 65 ℃ to 75 ℃,
Propylene-ethylene random copolymer.
제1항에 있어서,
자일렌 가용분(X.S, Xylene soluble)이 1.0 중량% 이하인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 1,
Xylene soluble content (XS, Xylene soluble) is 1.0% by weight or less,
Propylene-ethylene random copolymer.
제1항에 있어서,
ASTM 1003 방법에 따라 측정한 헤이즈(Haze)가 7.5% 이하인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 1,
Haze measured according to the ASTM 1003 method is 7.5% or less,
Propylene-ethylene random copolymer.
제1항에 있어서,
VDA 277 방법에 따라 측정한 총휘발성 유기 화합물 방출량(TVOC)이 70 ppm 이하인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 1,
The total volatile organic compound emission (TVOC) measured according to the VDA 277 method is 70 ppm or less,
Propylene-ethylene random copolymer.
제1항에 있어서,
하기 화학식 1의 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 프로필렌 단량체와 에틸렌 공단량체를 공중합시킴으로써 제조되는,
프로필렌-에틸렌 랜덤 공중합체:
[화학식 1]
Figure pat00049

상기 화학식 1에서,
M은 4족 전이 금속이고,
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 원소이고,
R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, 또는 C7-40 아릴알킬이고,
R3 내지 R6는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬이고,
R7 은 치환되거나 비치환된 C6-20 아릴이고,
R8 는 C1-20 알킬이다.
The method of claim 1,
Prepared by copolymerizing a propylene monomer and an ethylene comonomer in the presence of a catalyst composition comprising a metallocene compound of Formula 1 below,
Propylene-ethylene random copolymer:
[Formula 1]
Figure pat00049

In Formula 1,
M is a Group 4 transition metal,
X 1 and X 2 are the same as or different from each other, and each independently a halogen element,
R 1 and R 2 are the same as or different from each other, and each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, or C 7-40 arylalkyl,
R 3 to R 6 are the same as or different from each other, and each independently C 1-20 alkyl,
R 7 is substituted or unsubstituted C 6-20 aryl,
R 8 is C 1-20 alkyl.
제8항에 있어서,
R1 및 R2는 각각 C1-8 직쇄 또는 분지쇄 알킬, 또는 C2-12 직쇄 또는 분지쇄 알콕시알킬이고;
R3 내지 R6는 각각 C1-6 직쇄 또는 분지쇄 알킬이고;
M은 지르코늄 또는 하프늄이고;
R7은 페닐, C1-6 직쇄 또는 분지쇄 알킬이 치환된 페닐, 나프틸, 또는 C1-6 직쇄 또는 분지쇄 알킬이 치환된 나프틸이고;
R8은 C1-6 직쇄 또는 분지쇄 알킬인,
프로필렌-에틸렌 랜덤 공중합체.
The method of claim 8,
R 1 and R 2 are each C 1-8 straight or branched chain alkyl, or C 2-12 straight or branched chain alkoxyalkyl;
R 3 to R 6 are each C 1-6 straight or branched chain alkyl;
M is zirconium or hafnium;
R 7 is phenyl, phenyl substituted with C 1-6 straight or branched chain alkyl, naphthyl, or naphthyl substituted with C 1-6 straight or branched chain alkyl;
R 8 is C 1-6 straight or branched chain alkyl,
Propylene-ethylene random copolymer.
제8항에 있어서,
상기 메탈로센 화합물은 하기 화학식 1-1로 표시되는 것인,
프로필렌-에틸렌 랜덤 공중합체:
[화학식 1-1]
Figure pat00050

상기 화학식 1-1에서,
M, X1, X2, R1, R2, R7은 제8항에서 정의한 바와 같다.
The method of claim 8,
The metallocene compound is represented by the following formula 1-1,
Propylene-ethylene random copolymer:
[Formula 1-1]
Figure pat00050

In Formula 1-1,
M, X 1 , X 2 , R 1 , R 2 , R 7 are as defined in claim 8.
제8항에 있어서,
상기 메탈로센 화합물은 하기 구조식으로 표시되는 화합물들 중 어느 하나인,
프로필렌-에틸렌 랜덤 공중합체:
Figure pat00051

Figure pat00052

Figure pat00053

Figure pat00054

Figure pat00055
.
The method of claim 8,
The metallocene compound is any one of the compounds represented by the following structural formula,
Propylene-ethylene random copolymer:
Figure pat00051

Figure pat00052

Figure pat00053

Figure pat00054

Figure pat00055
.
KR1020200070124A 2019-06-11 2020-06-10 Propylene-ethylene random copolymer KR102502159B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021559021A JP7278653B2 (en) 2019-06-11 2020-06-11 Propylene-ethylene random copolymer
CN202080023515.7A CN113840845B (en) 2019-06-11 2020-06-11 Propylene-ethylene random copolymer
EP20822421.2A EP3936542B1 (en) 2019-06-11 2020-06-11 Propylene-ethylene random copolymer
US17/602,495 US20220213303A1 (en) 2019-06-11 2020-06-11 Propylene-Ethylene Random Copolymer
PCT/KR2020/007547 WO2020251264A1 (en) 2019-06-11 2020-06-11 Propylene-ethylene random copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190068772 2019-06-11
KR20190068772 2019-06-11

Publications (2)

Publication Number Publication Date
KR20200141950A true KR20200141950A (en) 2020-12-21
KR102502159B1 KR102502159B1 (en) 2023-02-21

Family

ID=74090815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200070124A KR102502159B1 (en) 2019-06-11 2020-06-10 Propylene-ethylene random copolymer

Country Status (1)

Country Link
KR (1) KR102502159B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131885A (en) * 2014-01-10 2015-07-23 日本ポリプロ株式会社 Propylene-ethylene random block copolymer and production method therefor
JP2016172714A (en) * 2015-03-17 2016-09-29 日本ポリエチレン株式会社 Metallocene compound, olefin polymerization catalyst component and olefin polymerization catalyst that contain the same, and olefin polymer production method using said olefin polymerization catalyst
KR20200109600A (en) * 2019-03-13 2020-09-23 주식회사 엘지화학 Transition metal compound, catalyst composition and method for preparing polypropylene using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131885A (en) * 2014-01-10 2015-07-23 日本ポリプロ株式会社 Propylene-ethylene random block copolymer and production method therefor
JP2016172714A (en) * 2015-03-17 2016-09-29 日本ポリエチレン株式会社 Metallocene compound, olefin polymerization catalyst component and olefin polymerization catalyst that contain the same, and olefin polymer production method using said olefin polymerization catalyst
KR20200109600A (en) * 2019-03-13 2020-09-23 주식회사 엘지화학 Transition metal compound, catalyst composition and method for preparing polypropylene using the same

Also Published As

Publication number Publication date
KR102502159B1 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
KR101549206B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using the same
KR101653356B1 (en) Metallocene catalyst for preparing polyolefin with high molecular weight
US20100261860A1 (en) Racemoselective synthesis of ansa-metallocene compounds, ansa-metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo- and copolymers
JP7226892B2 (en) TRANSITION METAL COMPOUND AND CATALYST COMPOSITION CONTAINING THE SAME
EP3936542B1 (en) Propylene-ethylene random copolymer
KR20150052804A (en) Method for preparing propylene-1-butene copolymer resin composition and propylene-1-butene copolymer resin composition prepared therefrom
WO2015047030A1 (en) Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer obtained thereby
EP3431516B1 (en) Polypropylene
KR101665076B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using it
KR102080640B1 (en) Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR102338106B1 (en) Supported hybrid metallocene catalyst and method for preparing of polyolefin using the same
KR20150037654A (en) Method for preparing propylene based terpolymer and propylene based terpolymer prepared therefrom
KR101659540B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR101969123B1 (en) Polypropylene having high rigidity and for reducing energy in foaming
US10633467B2 (en) Method for preparing long fiber-reinforcing olefin polymer and long fiber
KR20200109600A (en) Transition metal compound, catalyst composition and method for preparing polypropylene using the same
KR102502159B1 (en) Propylene-ethylene random copolymer
KR102396402B1 (en) Homo polypropylene and method for preparing the same
KR101653357B1 (en) Metallocene catalyst for preparing polyolefin with high molecular weight
KR102035310B1 (en) Catalyst system and process for preparing polyolefins
KR102564398B1 (en) Hybride supported metallocene catalyst and method for preparing polyethylene copolymer using the same
KR101703273B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using it
KR20200141790A (en) Propylene-ethylene random copolymer
KR102086059B1 (en) Metallocene compound and method for preparing polyolefin using the same
KR20230069618A (en) Metallocene compound for polymerization of ultra-high molecular weight polyolefin and method for producing ultra-high molecular weight polyolefin polymer using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant