KR20200137591A - 마스크 제조용 마스크 금속막 - Google Patents

마스크 제조용 마스크 금속막 Download PDF

Info

Publication number
KR20200137591A
KR20200137591A KR1020190064212A KR20190064212A KR20200137591A KR 20200137591 A KR20200137591 A KR 20200137591A KR 1020190064212 A KR1020190064212 A KR 1020190064212A KR 20190064212 A KR20190064212 A KR 20190064212A KR 20200137591 A KR20200137591 A KR 20200137591A
Authority
KR
South Korea
Prior art keywords
mask
template
mask metal
metal layer
thickness
Prior art date
Application number
KR1020190064212A
Other languages
English (en)
Inventor
이병일
이영호
김봉진
Original Assignee
주식회사 오럼머티리얼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오럼머티리얼 filed Critical 주식회사 오럼머티리얼
Priority to KR1020190064212A priority Critical patent/KR20200137591A/ko
Publication of KR20200137591A publication Critical patent/KR20200137591A/ko

Links

Images

Classifications

    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • H01L51/0011
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크와 그의 제조 방법에 관한 것이다. 본 발명에 따른 마스크 지지 템플릿은, OLED 화소 형성용 마스크(100)를 지지하여 프레임(200)에 대응시키는 템플릿(template; 50)으로서, 템플릿(50), 템플릿(50) 상에 형성된 임시접착부(55) 및 임시접착부(55)를 개재하여 템플릿(50) 상에 접착되고, 마스크 패턴(P)이 형성된 마스크(100)를 포함하며, 마스크(100)는 압연(rolling) 공정으로 제조된 마스크 금속막(sheet;110")의 중앙부(115")를 포함하는 것을 특징으로 한다.

Description

마스크 제조용 마스크 금속막 {MASK METAL SHEET FOR PRODUCING MASK}
본 발명은 마스크 제조용 마스크 금속막에 관한 것이다.
OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.
기존의 OLED 제조 공정에서는 마스크를 스틱 형태, 플레이트 형태 등으로 제조한 후, 마스크를 OLED 화소 증착 프레임에 용접 고정시켜 사용한다. 마스크 하나에는 디스플레이 하나에 대응하는 셀이 여러개 구비될 수 있다. 또한, 대면적 OLED 제조를 위해서 여러 개의 마스크를 OLED 화소 증착 프레임에 고정시킬 수 있는데, 프레임에 고정하는 과정에서 각 마스크가 평평하게 되도록 인장을 하게 된다. 마스크의 전체 부분이 평평하게 되도록 인장력을 조절하는 것은 매우 어려운 작업이다. 특히, 각 셀들을 모두 평평하게 하면서, 크기가 수 내지 수십 ㎛에 불과한 마스크 패턴을 정렬하기 위해서는, 마스크의 각 측에 가하는 인장력을 미세하게 조절하면서, 정렬 상태를 실시간으로 확인하는 고도의 작업이 요구된다.
그럼에도 불구하고, 여러 개의 마스크를 하나의 프레임에 고정시키는 과정에서 마스크 상호간에, 그리고 마스크 셀들의 상호간에 정렬이 잘 되지 않는 문제점이 있었다. 또한, 마스크를 프레임에 용접 고정하는 과정에서 마스크 막의 두께가 너무 얇고 대면적이기 때문에 하중에 의해 마스크가 쳐지거나 뒤틀어지는 문제점, 용접 과정에서 용접 부분에 발생하는 주름, 번짐(burr) 등에 의해 마스크 셀의 정렬이 엇갈리게 되는 문제점 등이 있었다.
초고화질의 OLED의 경우, 현재 QHD 화질은 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질은 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 된다. 이렇듯 초고화질의 OLED의 화소 크기를 고려하여 각 셀들간의 정렬 오차를 수 ㎛ 정도로 감축시켜야 하며, 이를 벗어나는 오차는 제품의 실패로 이어지게 되므로 수율이 매우 낮아지게 될 수 있다. 그러므로, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고, 정렬을 명확하게 할 수 있는 기술, 마스크를 프레임에 고정하는 기술 등의 개발이 필요한 실정이다.
또한, 각 셀들간의 정렬 오차의 감축뿐만 아니라, 초고화질의 OLED 화소 크기에 대응하는 마스크 패턴을 보다 정밀하게 형성하기 위한 기술 개발도 필요한 실정이다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 마스크에 미세한 마스크 패턴을 형성할 수 있는 마스크 금속막을 제공하는 것을 목적으로 한다.
본 발명의 상기의 목적은, OLED 화소 형성용 마스크를 제조하는데 사용하는 마스크 금속막으로서, 압연(rolling) 공정으로 제조된 마스크 금속막(sheet)의 중앙부를 포함하는, 마스크 금속막에 의해 달성된다.
압연(rolling) 공정으로 제조된 마스크 금속막(sheet)의 상부면 및 하부면으로부터 적어도 일부 두께를 감축시켜 중앙부를 형성할 수 있다.
마스크 금속막의 두께는 5㎛ 내지 20㎛일 수 있다.
압연 공정으로 제조된 마스크 금속막의 두께를 기준으로 상부면 0%, 하부면을 100%으로 할 때, 중앙부는 마스크 금속막의 10% 내지 90%의 두께에 해당하는 부분에서 적어도 일부를 사용하는 것일 수 있다.
상기와 같이 구성된 본 발명에 따르면, 마스크에 미세한 마스크 패턴을 형성할 수 있는 효과가 있다.
도 1은 종래의 고해상도 OLED 형성을 위한 마스크를 나타내는 개략도이다.
도 2는 본 발명의 일 실시예에 따른 마스크를 나타내는 개략도이다.
도 3은 본 발명의 일 실시예에 따른 마스크 금속막을 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 마스크 금속막의 제조 과정을 나타내는 개략도이다.
도 5 내지 도 6은 본 발명의 일 실시예에 따른 템플릿 상에 마스크 금속막을 접착하고 마스크를 형성하여 마스크 지지 템플릿을 제조하는 과정을 나타내는 개략도이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 종래의 고해상도 OLED 형성을 위한 마스크를 나타내는 개략도이다.
고해상도의 OLED를 구현하기 위해 패턴의 크기가 줄어들고 있으며, 이를 위해 사용되는 마스크 금속막의 두께도 얇아질 필요가 있다. 도 1의 (a)와 같이, 고해상도의 OLED 화소(6)를 구현하려면, 마스크(10')에서 화소 간격 및 화소 크기 등을 줄여야 한다(PD -> PD'). 또한, 새도우 이펙트에 의한 OLED 화소(6)가 불균일하게 증착되는 것을 막기 위하여, 마스크(10')의 패턴을 경사지게 형성(14)할 필요가 있다. 하지만, 약 30~50 ㎛정도의 두께(T1)를 가져 두꺼운 마스크(10')에 패턴을 경사지게 형성(14)하는 과정에서, 미세한 화소 간격(PD') 및 화소 크기에 맞는 패터닝(13)을 하기 어렵기 때문에 가공 공정에서 수율이 나빠지는 원인이 된다. 다시 말해, 미세한 화소 간격(PD')을 가지고 경사지게 패턴을 형성(14)하기 위해서는 얇은 두께의 마스크(10')를 사용하여야 한다.
특히, UHD 수준의 고해상도를 위해서는, 도 1의 (b)와 같이, 20㎛ 이하 정도의 두께(T2)를 가지는 얇은 마스크(10')를 사용하여야 미세한 패터닝을 할 수 있게 된다. 또한, UHD 이상의 초고해상도를 위해서는 10㎛ 정도의 두께(T2)를 가지는 얇은 마스크(10')의 사용을 고려할 수 있다.
도 2는 본 발명의 일 실시예에 따른 마스크(100)를 나타내는 개략도이다.
각각의 마스크(100)에는 복수의 마스크 패턴(P)이 형성되며, 하나의 마스크(100)에는 하나의 셀(C)이 형성될 수 있다. 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응할 수 있다.
마스크(100)는 압연(rolling) 공정으로 생성한 금속 시트(sheet)를 사용할 수 있다. 마스크(100)는 열팽창계수가 약 1.0 X 10-6/℃인 인바(invar), 약 1.0 X 10-7/℃ 인 슈퍼 인바(super invar) 재질일 수 있다. 이 재질의 마스크(100)는 열팽창계수가 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용될 수 있다. 이 외에, 최근에 온도 변화값이 크지 않은 범위에서 화소 증착 공정을 수행하는 기술들이 개발되는 것을 고려하면, 마스크(100)는 이보다 열팽창계수가 약간 큰 니켈(Ni), 니켈-코발트(Ni-Co) 등의 재질일 수도 있다.
압연 공정으로 제조된 금속 시트는 제조 공정상 수십 내지 수백 ㎛의 두께를 가질 수 있다. 이 정도로 비교적 두꺼운 금속 시트는, 후술할 마스크 패턴(P)을 미세하게 형성하기 위해, 더 얇게 만들어질 필요가 있다. 금속 시트에 CMP 등의 방법을 사용하여 두께를 약 50㎛ 이하로 얇게 만드는 공정을 더 수행할 수 있다. 마스크의 두께는 약 2㎛ 내지 50㎛ 정도로 형성되는 것이 바람직하며, 더 바람직하게는 두께는 약 5㎛ 내지 20㎛ 정도로 형성될 수 있다. 하지만, 반드시 이에 제한되는 것은 아니다.
압연 공정으로 제조된 금속 시트를 사용하는 경우에는, 전주도금으로 형성한 도금막보다 두께면에서는 두꺼운 문제가 있지만, 열팽창계수(CTE)가 낮기 때문에 별도의 열처리 공정을 수행할 필요가 없으며, 내부식성이 강한 이점이 있다.
한편, 반드시 압연 공정으로 생성한 금속 시트를 사용하지 않고, 전주 도금(electroforming)으로 생성한 금속 시트를 사용할 수도 있다. 이때, 열처리 공정을 더 수행하여 전주 도금 시트의 열팽창계수를 낮출 수 있다. 전주 도금의 음극체(cathode) 전극으로 사용되는 기재는 전도성 재질일 수 있다. 특히, 메탈의 경우 메탈 옥사이드, 다결정의 경우 개재물, 결정립계로 인해 음극체에 균일한 전기장이 인가되지 못하여 도금 금속 시트의 일부가 불균일하게 형성될 수 있으므로, 단결정 재질의 모판(또는, 음극체)을 사용할 수 있다. 특히, 단결정 실리콘 재질일 수 있고, Ti, Cu, Ag 등의 금속, GaN, SiC, GaAs, GaP, AlN, InN, InP, Ge 등의 반도체, 흑연(graphite), 그래핀(graphene) 등의 탄소계 재질, CH3NH3PbCl3, CH3NH3PbBr3, CH3NH3PbI3, SrTiO3 등을 포함하는 페로브스카이트(perovskite) 구조 등의 초전도체용 단결정 세라믹, 항공기 부품용 단결정 초내열합금 등이 사용될 수도 있다. 전도성을 가지도록 도핑이 일부, 전체에 수행될 수 있다. 단결정 재질의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 금속 시트를 생성하고, 이를 통해 제조하는 OLED 화소의 화질 수준을 더욱 개선할 수 있다.
마스크(100)는 복수의 마스크 패턴(P)이 형성된 마스크 셀(C) 및 마스크 셀(C) 주변의 더미(DM)를 포함할 수 있다. 압연 공정으로 생성한 금속 시트로 마스크(100)를 제조할 수 있고, 마스크(100)에는 하나의 셀(C)이 형성될 수 있음은 상술한 바 있다. 더미(DM)는 셀(C)을 제외한 마스크 막(110)[마스크 금속막(110)] 부분에 대응하고, 마스크 막(110)만을 포함하거나, 마스크 패턴(P)과 유사한 형태의 소정의 더미 패턴이 형성된 마스크 막(110)을 포함할 수 있다. 더미(DM)는 마스크(100)의 테두리에 대응하여 더미(DM)의 일부 또는 전부가 프레임(200)[마스크 셀 시트부(220)]에 접착될 수 있다.
마스크 패턴(P)의 폭은 40㎛보다 작게 형성될 수 있고, 마스크(100)의 두께는 약 5~20㎛로 형성될 수 있다.
마스크(100)의 일면(101)은 프레임(200)에 접촉하여 접착될 면이기 때문에 평평한 것이 바람직하다. 후술할 평탄화 공정으로 일면(101)이 평평해지면서 경면화 될 수 있다. 마스크(100)의 타면(102)은 후술할 템플릿(50)의 일면과 대향할 수 있다.
도 3은 본 발명의 일 실시예에 따른 마스크 금속막(110")을 나타내는 개략도이다.
도 2에서 상술한 마스크(100)를 만들기 위해서 마스크 금속막(110")에 마스크 패턴(P)을 형성하는 공정이 필요하다. 마스크 패턴(P)은 식각(etching) 등으로 형성될 수 있다. 다만, UHD 이상의 고해상도의 OLED를 구현하기 위해 마스크 패턴(P)의 폭이 40㎛보다 작게 형성되어야 하므로, 마스크 금속막(110") 내의 결정립(grain)의 형태, 방향까지 고려하여 식각을 수행하는 것이 필요하다. 결정립의 방향성에 따라서 식각 속도(etching rate)가 차이가 생기기 때문에, 불균일한 결정립에 대해서 식각을 수행하면 원하는 폭의 마스크 패턴(P)이 생성되지 않을 수 있고, 수 ㎛의 오차조차 고해상도 구현의 성패를 좌우할 수 있다.
일반적으로 압연(rolling)으로 생성한 금속막(sheet)의 경우에는 표면, 즉, 상부면과 하부면의 결정립의 형태, 방향 등이 금속막의 중앙부 부분과 차이가 있다. 도 3을 참조하면, 마스크 금속막(110")의 상부 표면(111")으로부터 소정 두께에 해당하는 부분(117")[상층부(117")]과 하부 표면(112")으로부터 소정 두께에 해당하는 부분(119")[하층부(119")]과, 상층부(117") 및 하층부(119")를 제외한 중앙부(115")에 해당하는 부분은 결정립의 특성에 차이가 있다. 상층부(117")와 하층부(119")는 압연에 의해 결정립이 압연 방향으로 길게 배향되고 불규칙한 형태를 가질 수 있다. 중앙부(115")는 결정립이 대체로 방향성이 없고 구형의 형태를 가질 수 있다.
따라서, 본 발명은 결정립의 형태 차이에 의한 식각 오차가 발생하는 것을 방지하기 위하여, 마스크 금속막(110")의 상부(117")와 하부(119")를 제외한 중앙부(115")를 사용하여 마스크(100)를 제조하는 것을 특징으로 한다. 상부(117")와 하부(119")에 대해서 평탄화(PS1, PS2) 공정 또는 두께 감축 공정을 수행하여 중앙부(115")를 포함하는 마스크 금속막(110)을 제조할 수 있다. 결접립이 불규칙하지 않고 균일한 중앙부(115")만을 식각하여 마스크 패턴(P)을 형성하므로, 마스크 패턴(P)의 폭을 미세하게 제어할 수 있게 되는 이점이 있다.
도 4는 본 발명의 일 실시예에 따른 마스크 금속막(110)의 제조 과정을 나타내는 개략도이다.
도 4의 (a)를 참조하면, 압연 공정으로 제조된 마스크 금속막(110")의 하부면(112")[제2 면]을 지지기판(40)에 접착부(41)를 사용하여 접착시킬 수 있다. 접착부(41)는 후술할 임시접착부(55)와 동일한 재질 또는 소정의 접착력을 가지며 추후 분리가능한 재질을 제한없이 사용할 수 있다.
마스크 금속막(110")을 지지기판(40)에 접착시킨 후, 상부면(111")[제1 면]을 평탄화(PS1) 할 수 있다. 여기서, 평탄화(PS1, PS2)는 마스크 금속막(110")의 일면을 경면화 하면서 동시에 마스크 금속막(110")을 일부 제거하여 두께를 얇게 감축시키는 것을 의미한다. 평탄화(PS1, PS2)는 CMP, 화학적 습식 식각, 건식 식각 등의 방법으로 수행할 수 있다.
마스크 금속막(110")의 두께를 기준으로 상부면 0%, 하부면을 100%으로 할 때, 중앙부(115")는 10% 내지 90%의 두께 부분에서 적어도 일부를 사용할 수 있다. 평탄화(PS1, PS2)가 거의 동일한 두께범위에서 이루어진다고 하면, 상부면(111")으로부터의 평탄화(PS1) 공정으로 줄어드는 두께 감축은, 전체 마스크 금속막(110") 두께의 약 5% 내지 45%에서 수행될 수 있다. 하지만, 반드시 이에 제한되지는 않으며, 중앙부(115")가 마스크 금속막(110")의 두께 기준으로 10% 내지 90%의 두께 부분에서 적어도 일부를 사용한다면 각각의 평탄화(PS1, PS2) 공정에서 두께 감축 정도는 변경가능하다.
평탄화(PS1) 공정 후에 마스크 금속막(110")에서 상층부(117")가 제거될 수 있다.
다음으로, 도 4의 (b)를 참조하면, 다른 지지기판(45)을 준비하고 마스크 금속막(110')의 상부면(111")[제1 면]을 지지기판(45)에 접착부(46)를 사용하여 접착시킬 수 있다. 지지기판(45)과 접착부(45)는 지지기판(40) 및 접착부(41)와 동일할 수 있다. 또는, 지지기판(45)은 후술할 템플릿(50), 접착부(45)는 후술할 임시접착부(55)에 대응할 수 있다. 이 경우 도 4의 (b) 단계는 도 5의 (b) 단계로 대체될 수도 있다.
다음으로, 도 4의 (c)를 참조하면, 마스크 금속막(110')을 지지기판(45)에 접착시킨 후, 지지기판(40)을 분리할 수 있다. 이어서, 제2 면(112")을 평탄화(PS2) 할 수 있다. 평탄화(PS2) 공정 후에 마스크 금속막(110")에서 하층부(119")가 제거될 수 있다.
다음으로, 도 4의 (d)를 참조하면, 평탄화(PS2)까지 마치게 되어 마스크 금속막(110)의 제조가 완료될 수 있다. 마스크 금속막(110)은 중앙부(115")를 포함하고, 마스크 금속막(110)의 두께는 약 5㎛ 내지 20㎛가 될 수 있다.
한편, 도 3 및 도 4에서는 마스크 금속막(110)을 압연 공정으로 제조된 것을 상정하여 설명하였으나, 전주 도금 등 다른 공정으로 제조된 마스크 금속막의 경우라도 표면 부분과 중앙 부분의 결정립의 특성 차이가 있을 수 있으므로, 도 4과 같은 평탄화(PS1, PS2) 공정을 적용할 수 있다.
도 5 내지 도 6은 본 발명의 일 실시예에 따른 템플릿(50) 상에 마스크 금속막(110)을 접착하고 마스크(100)를 형성하여 마스크 지지 템플릿을 제조하는 과정을 나타내는 개략도이다.
도 5의 (a)를 참조하면, 템플릿(template; 50)을 제공할 수 있다. 템플릿(50)은 마스크(100)가 일면 상에 부착되어 지지된 상태로 이동시킬 수 있는 매개체이다. 템플릿(50)의 일면은 평평한 마스크(100)를 지지하여 이동시킬 수 있도록 평평한 것이 바람직하다. 중심부(50a)는 마스크 금속막(110)의 마스크 셀(C)에 대응하고, 테두리부(50b)는 마스크 금속막(110)의 더미(DM)에 대응할 수 있다. 마스크 금속막(110)이 전체적으로 지지될 수 있도록 템플릿(50)의 크기는 마스크 금속막(110)보다 면적이 큰 평판 형상일 수 있다.
템플릿(50)은 마스크(100)를 프레임(200)에 정렬시키고 접착하는 과정에서 비전(vision) 등을 관측하기 용이하도록 투명한 재질인 것이 바람직하다. 또한, 투명한 재질인 경우 레이저가 관통할 수도 있다. 투명한 재질로서 글래스(glass), 실리카(silica), 내열유리, 석영(quartz), 알루미나(Al2O3), 붕규산유리(borosilicate glass), 지르코니아(zirconia) 등의 재질을 사용할 수 있다. 일 예로, 템플릿(50)은 붕규산유리 중 우수한 내열성, 화학적 내구성, 기계적 강도, 투명성 등을 가지는 BOROFLOAT® 33 재질을 사용할 수 있다. 또한, BOROFLOAT® 33은 열팽창계수가 약 3.3으로 인바 마스크 금속막(110)과 열팽창계수 차이가 적어 마스크 금속막(110)의 제어에 용이한 이점이 있다.
한편, 템플릿(50)은 마스크 금속막(110)[또는, 마스크(100)]과의 계면 사이에서 에어갭(air gap)이 발생하지 않도록, 마스크 금속막(110)과 접촉하는 일면이 경면일 수 있다. 이를 고려하여, 템플릿(50)의 일면의 표면 조도(Ra)가 100nm 이하일 수 있다. 표면 조도(Ra)가 100nm 이하인 템플릿(50)을 구현하기 위해, 템플릿(50)은 웨이퍼(wafer)를 사용할 수 있다. 웨이퍼(wafer)는 표면 조도(Ra)가 약 10nm 정도이고, 시중의 제품이 많고 표면처리 공정들이 많이 알려져 있으므로, 템플릿(50)으로 사용할 수 있다. 템플릿(50)의 표면 조도(Ra)가 nm 스케일이기 때문에 에어갭이 없거나, 거의 없는 수준으로, 레이저 용접에 의한 용접 비드(WB)의 생성이 용이하여 마스크 패턴(P)의 정렬 오차에 영향을 주지 않을 수 있다.
템플릿(50)은 템플릿(50)의 상부에서 조사하는 레이저(L)가 마스크(100)의 용접부(용접을 수행할 영역)에까지 도달할 수 있도록, 템플릿(50)에는 레이저 통과공(51)이 형성될 수 있다. 레이저 통과공(51)은 용접부의 위치 및 개수에 대응하도록 템플릿(50)에 형성될 수 있다. 용접부는 마스크(100)의 테두리 또는 더미(DM) 부분에서 소정 간격을 따라 복수개 배치되어 있으므로, 레이저 통과공(51)도 이에 대응하도록 소정 간격을 따라 복수개 형성될 수 있다. 일 예로, 용접부는 마스크(100)의 양측(좌측/우측) 더미(DM) 부분에 소정 간격을 따라 복수개 배치되어 있으므로, 레이저 통과공(51)도 템플릿(50)이 양측(좌측/우측)에 소정 간격을 따라 복수개 형성될 수 있다.
레이저 통과공(51)은 반드시 용접부의 위치 및 개수에 대응될 필요는 없다. 예를 들어, 레이저 통과공(51) 중 일부에 대해서만 레이저(L)를 조사하여 용접을 수행할 수도 있다. 또한, 용접부에 대응되지 않는 레이저 통과공(51) 중 일부는 마스크(100)와 템플릿(50)을 정렬할 때 얼라인 마크를 대신하여 사용할 수도 있다. 만약, 템플릿(50)의 재질이 레이저(L) 광에 투명하다면 레이저 통과공(51)을 형성하지 않을 수도 있다.
템플릿(50)의 일면에는 임시접착부(55)가 형성될 수 있다. 임시접착부(55)는 마스크(100)가 프레임(200)에 접착되기 전까지 마스크(100)[또는, 마스크 금속막(110')]이 임시로 템플릿(50)의 일면에 접착되어 템플릿(50) 상에 지지되도록 할 수 있다.
임시접착부(55)는 열을 가함에 따라 분리가 가능한 접착제 또는 접착 시트, UV 조사에 의해 분리가 가능한 접착제 또는 접착시트를 사용할 수 있다.
일 예로, 임시접착부(55)는 액체 왁스(liquid wax)를 사용할 수 있다. 액체 왁스는 반도체 웨이퍼의 폴리싱 단계 등에서 이용되는 왁스와 동일한 것을 사용할 수 있고, 그 유형이 특별히 한정되지는 않는다. 액체 왁스는 주로 유지력에 관한 접착력, 내충격성 등을 제어하기 위한 수지 성분으로 아크릴, 비닐아세테이트, 나일론 및 다양한 폴리머와 같은 물질 및 용매를 포함할 수 있다. 일 예로, 임시접착부(55)는 수지 성분으로 아크릴로나이트릴 뷰타디엔 고무(ABR, Acrylonitrile butadiene rubber), 용매 성분으로 n-프로필알코올을 포함하는 SKYLIQUID ABR-4016을 사용할 수 있다. 액체 왁스는 스핀 코팅을 사용하여 임시접착부(55) 상에 형성할 수 있다.
액체 왁스인 임시접착부(55)는 85℃~100℃보다 높은 온도에서는 점성이 낮아지고, 85℃보다 낮은 온도에서 점성이 커지고 고체처럼 일부 굳을 수 있어, 마스크 금속막(110')과 템플릿(50)을 고정 접착할 수 있다.
다음으로, 도 5의 (b)를 참조하면, 템플릿(50) 상에 마스크 금속막(110')을 접착할 수 있다. 액체 왁스를 85℃이상으로 가열하고 마스크 금속막(110')을 템플릿(50)에 접촉시킨 후, 마스크 금속막(110') 및 템플릿(50)을 롤러 사이에 통과시켜 접착을 수행할 수 있다.
일 실시예에 따르면, 템플릿(50)에 약 120℃, 60초 동안 베이킹(baking)을 수행하여 임시접착부(55)의 솔벤트를 기화시키고, 곧바로, 마스크 금속막 라미네이션(lamination) 공정을 진행할 수 있다. 라미네이션은 임시접착부(55)가 일면에 형성된 템플릿(50) 상에 마스크 금속막(110)을 로딩하고, 약 100℃의 상부 롤(roll)과 약 0℃의 하부 롤 사이에 통과시켜 수행할 수 있다. 그 결과로, 마스크 금속막(110')이 템플릿(50) 상에서 임시접착부(55)를 개재하여 접촉될 수 있다.
또 다른 예로, 임시접착부(55)는 열박리 테이프(thermal release tape)를 사용할 수 있다. 열박리 테이프는 가운데에 PET 필름 등의 코어 필름이 배치되고, 코어 필름의 양면에 열박리가 가능한 점착층(thermal release adhesive)이 배치되며, 점착층의 외곽에 박리 필름/이형 필름가 배치된 형태일 수 있다. 여기서 코어 필름의 양면에 배치되는 점착층은 상호 박리되는 온도가 상이할 수 있다.
일 실시예에 따르면, 박리 필름/이형 필름을 제거한 상태에서, 열박리 테이프의 하부면(코어 필름의 하부 제2 점착층)은 템플릿(50)에 접착되고, 열박리 테이프의 상부면(코어 필름의 상부 제1 점착층)은 마스크 금속막(110')에 접착될 수 있다. 제1 점착층과 제2 점착층은 상호 박리되는 온도가 상이하므로, 후술할 도 16에서 마스크(100)로부터 템플릿(50)을 분리할 때, 제1 점착층이 열박리 되는 열을 가함에 따라 마스크(100)는 템플릿(50) 및 임시접착부(55)로부터 분리가 가능해질 수 있다.
이어서, 도 5의 (b)를 더 참조하면, 마스크 금속막(110')의 일면을 평탄화(PS) 할 수 있다. 여기서 평탄화(PS)는 마스크 금속막(110')의 일면(상면)을 경면화 하면서 동시에 마스크 금속막(110')의 상부를 일부 제거하여 두께를 얇게 감축시키는 것을 의미한다. 도 1의 (b)에서 상술한 바와 같이, UHD 수준의 고해상도를 위해서는 20㎛ 이하 정도의 두께를 가지는 얇은 마스크 금속막(110)을 사용하여야 미세한 패터닝을 할 수 있고, UHD 이상의 초고해상도를 위해서는 10㎛ 정도의 두께를 가지는 얇은 마스크 금속막(110)을 사용하여야 한다. 하지만, 압연(rolling) 공정으로 생성한 마스크 금속막(110')은 약 25~500㎛ 정도의 두께를 가지므로, 두께가 더 얇게 해야할 필요가 있다. 또한, 압연 공정보다 두께가 얇은 전주 도금 공정으로 생성한 마스크 금속막(110')을 사용한다고 하더라도, 도금 마스크 금속막(110')의 표면층의 조성, 결정구조/미세구조에 따라 에칭 특성이 다를 수 있으므로, 평탄화(PS)를 통해 표면 특성, 두께를 제어할 필요가 있다.
구체적으로, 템플릿(50)에 접착된 마스크 금속막(110')의 면(102)에 대향하는 반대면(101)을 평탄화(PS)하여 마스크 금속막(110')의 두께를 감축할 수 있다. 평탄화(PS)는 CMP(Chemical Mechanical Polishing) 방법으로 수행할 수 있고, 공지의 CMP 방법을 제한없이 사용할 수 있다. 또한, 화학적 습식 식각(chemical wet etching) 또는 건식 식각(dry etching) 방법으로 마스크 금속막(110')의 두께를 감축시킬 수 있다.
평탄화(PS)를 수행하는 과정에서, 일 예로 CMP 과정에서, 마스크 금속막(110') 상부면의 표면 조도(Ra)가 제어될 수 있다. 바람직하게는, 표면 조도가 더 감소하는 경면화가 진행될 수 있다. 또는, 다른 예로, 화학적 습식 식각 또는 건식 식각 과정을 진행하여 평탄화(PS)를 수행한 후, 이후에 별개의 CMP 공정 등의 폴리싱 공정을 더하여 표면 조도(Ra)를 감소시킬 수도 있다.
이 외에도 마스크 금속막(110')의 두께를 얇게 하는 평탄화가 가능한 공정을 제한없이 사용할 수 있다. 이에 따라, 도 5의 (c)와 같이, 마스크 금속막(110')의 두께가 감축(110' -> 110)됨에 따라, 마스크 금속막(110)은 두께가 약 5㎛ 내지 20㎛가 될 수 있다.
한편, 마스크 금속막(110)이 도 4의 (a) 내지 (d) 단계를 통해서 제조되었다면, 도 5의 (b) 단계는 생략할 수도 있다. 이때, 도 4에서 제조된 마스크 금속막(110)을 템플릿(50)에 부착하여 곧바로 12의 (c) 단계를 수행할 수 있다.
다음으로, 도 6의 (d)를 참조하면, 마스크 금속막(110) 상에 패턴화된 절연부(25)를 형성할 수 있다. 절연부(25)는 프린팅 법 등을 이용하여 포토레지스트 재질로 형성될 수 있다.
이어서, 마스크 금속막(110)의 식각을 수행할 수 있다. 건식 식각, 습식 식각 등의 방법을 제한없이 사용할 수 있고, 식각 결과 절연부(25) 사이의 빈 공간(26)으로 노출된 마스크 금속막(110)의 부분이 식각될 수 있다. 마스크 금속막(110)의 식각된 부분은 마스크 패턴(P)을 구성하고, 복수의 마스크 패턴(P)이 형성된 마스크(100)가 제조될 수 있다.
다음으로, 도 6의 (e)를 참조하면, 절연부(25)를 제거하여 마스크(100)를 지지하는 템플릿(50)의 제조를 완료할 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.
40, 45: 지지기판
41, 46: 접착제
50: 템플릿(template)
50a, 50b: 템플릿의 중심부, 테두리부
51: 레이저 통과공
55: 임시접착부
100: 마스크
101, 102: 마스크의 일면, 타면
110, 110', 110": 마스크 막, 마스크 금속막
111": 마스크 금속막의 제1 면
112": 마스크 금속막의 제2 면
115": 마스크 금속막의 중앙부
117": 마스크 금속막의 상층부
119": 마스크 금속막의 하층부
C: 셀, 마스크 셀
DM: 더미, 마스크 더미
P: 마스크 패턴
PS, PS1, PS2: 평탄화 공정

Claims (4)

  1. OLED 화소 형성용 마스크를 제조하는데 사용하는 마스크 금속막으로서,
    압연(rolling) 공정으로 제조된 마스크 금속막(sheet)의 중앙부를 포함하는, 마스크 금속막.
  2. 제1항에 있어서,
    압연(rolling) 공정으로 제조된 마스크 금속막(sheet)의 상부면 및 하부면으로부터 적어도 일부 두께를 감축시켜 중앙부를 형성하는, 마스크 금속막.
  3. 제1항에 있어서,
    마스크 금속막의 두께는 5㎛ 내지 20㎛인, 마스크 금속막.
  4. 제1항에 있어서,
    압연 공정으로 제조된 마스크 금속막의 두께를 기준으로 상부면 0%, 하부면을 100%으로 할 때,
    중앙부는 마스크 금속막의 10% 내지 90%의 두께에 해당하는 부분에서 적어도 일부를 사용하는 것인, 마스크 금속막.
KR1020190064212A 2019-05-31 2019-05-31 마스크 제조용 마스크 금속막 KR20200137591A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190064212A KR20200137591A (ko) 2019-05-31 2019-05-31 마스크 제조용 마스크 금속막

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190064212A KR20200137591A (ko) 2019-05-31 2019-05-31 마스크 제조용 마스크 금속막

Publications (1)

Publication Number Publication Date
KR20200137591A true KR20200137591A (ko) 2020-12-09

Family

ID=73787542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190064212A KR20200137591A (ko) 2019-05-31 2019-05-31 마스크 제조용 마스크 금속막

Country Status (1)

Country Link
KR (1) KR20200137591A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220105997A (ko) * 2021-01-21 2022-07-28 주식회사 필옵틱스 용접을 위한 인장에 따른 변형을 방지하기 위한 전주도금 마스크

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220105997A (ko) * 2021-01-21 2022-07-28 주식회사 필옵틱스 용접을 위한 인장에 따른 변형을 방지하기 위한 전주도금 마스크

Similar Documents

Publication Publication Date Title
KR102196796B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102236538B1 (ko) 마스크의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102236542B1 (ko) 마스크 지지 템플릿, 마스크 금속막 지지 템플릿, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR101986528B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102202530B1 (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102202529B1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임 일체형 마스크의 마스크 분리/교체 방법
CN111224019A (zh) 掩模支撑模板和其制造方法及框架一体型掩模的制造方法
KR102196797B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102101257B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102510212B1 (ko) 마스크 지지 템플릿 및 프레임 일체형 마스크의 제조 방법
KR102130081B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102202531B1 (ko) 프레임 일체형 마스크 및 그 제조방법
TWI810381B (zh) 遮罩支撐模板及其製造方法與框架一體型遮罩的製造方法
KR102028639B1 (ko) 마스크의 제조 방법, 마스크 지지 버퍼기판과 그의 제조 방법
KR20200137591A (ko) 마스크 제조용 마스크 금속막
KR102252005B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크와 그의 제조 방법
KR102242813B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크와 그의 제조 방법
KR20200044638A (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102142436B1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임
KR102026456B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR20210023918A (ko) 마스크 지지 템플릿 및 프레임 일체형 마스크의 제조 방법
KR20200143313A (ko) 마스크 지지 템플릿
KR20200044639A (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR20200093487A (ko) 프레임 일체형 마스크의 제조 방법 및 프레임