KR102202530B1 - 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법 - Google Patents

마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법 Download PDF

Info

Publication number
KR102202530B1
KR102202530B1 KR1020190009436A KR20190009436A KR102202530B1 KR 102202530 B1 KR102202530 B1 KR 102202530B1 KR 1020190009436 A KR1020190009436 A KR 1020190009436A KR 20190009436 A KR20190009436 A KR 20190009436A KR 102202530 B1 KR102202530 B1 KR 102202530B1
Authority
KR
South Korea
Prior art keywords
mask
frame
manufacturing
insulating portion
pattern
Prior art date
Application number
KR1020190009436A
Other languages
English (en)
Other versions
KR20200045385A (ko
Inventor
김봉진
윤용호
Original Assignee
주식회사 오럼머티리얼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오럼머티리얼 filed Critical 주식회사 오럼머티리얼
Publication of KR20200045385A publication Critical patent/KR20200045385A/ko
Application granted granted Critical
Publication of KR102202530B1 publication Critical patent/KR102202530B1/ko

Links

Images

Classifications

    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • H01L51/0018
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching

Abstract

본 발명은 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법에 관한 것이다. 본 발명에 따른 마스크의 제조 방법은, OLED 화소 형성용 마스크의 제조 방법으로서, (a) 마스크 금속막을 제공하는 단계; (b) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계; (c) 마스크 금속막 상에 패턴화된 절연부를 형성하는 단계; (d) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및 (e) 절연부를 제거하는 단계를 포함하는 것을 특징으로 한다.

Description

마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법 {PRODUCING METHOD OF MASK, PRODUCING METHOD OF TEMPLATE FOR SUPPORTING MASK AND PRODUCING METHOD OF MASK INTEGRATED FRAME}
본 발명은 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법에 관한 것이다. 보다 상세하게는, 마스크의 변형없이 안정적으로 지지 및 이동이 가능하고, 마스크를 프레임과 일체를 이룰 시 마스크와 프레임의 밀착력을 향상시킬 수 있으며, 각 마스크 간의 얼라인(align)을 명확하게 할 수 있는 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법에 관한 것이다.
OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.
기존의 OLED 제조 공정에서는 마스크를 스틱 형태, 플레이트 형태 등으로 제조한 후, 마스크를 OLED 화소 증착 프레임에 용접 고정시켜 사용한다. 마스크 하나에는 디스플레이 하나에 대응하는 셀이 여러개 구비될 수 있다. 또한, 대면적 OLED 제조를 위해서 여러 개의 마스크를 OLED 화소 증착 프레임에 고정시킬 수 있는데, 프레임에 고정하는 과정에서 각 마스크가 평평하게 되도록 인장을 하게 된다. 마스크의 전체 부분이 평평하게 되도록 인장력을 조절하는 것은 매우 어려운 작업이다. 특히, 각 셀들을 모두 평평하게 하면서, 크기가 수 내지 수십 ㎛에 불과한 마스크 패턴을 정렬하기 위해서는, 마스크의 각 측에 가하는 인장력을 미세하게 조절하면서, 정렬 상태를 실시간으로 확인하는 고도의 작업이 요구된다.
그럼에도 불구하고, 여러 개의 마스크를 하나의 프레임에 고정시키는 과정에서 마스크 상호간에, 그리고 마스크 셀들의 상호간에 정렬이 잘 되지 않는 문제점이 있었다. 또한, 마스크를 프레임에 용접 고정하는 과정에서 마스크 막의 두께가 너무 얇고 대면적이기 때문에 하중에 의해 마스크가 쳐지거나 뒤틀어지는 문제점, 용접 과정에서 용접 부분에 발생하는 주름, 번짐(burr) 등에 의해 마스크 셀의 정렬이 엇갈리게 되는 문제점 등이 있었다.
초고화질의 OLED의 경우, 현재 QHD 화질은 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질은 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 된다. 이렇듯 초고화질의 OLED의 화소 크기를 고려하여 각 셀들간의 정렬 오차를 수 ㎛ 정도로 감축시켜야 하며, 이를 벗어나는 오차는 제품의 실패로 이어지게 되므로 수율이 매우 낮아지게 될 수 있다. 그러므로, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고, 정렬을 명확하게 할 수 있는 기술, 마스크를 프레임에 고정하는 기술 등의 개발이 필요한 실정이다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 마스크를 제조할 때, 마스크 금속막과 절연부의 접착력을 개선하여 보다 명확한 마스크 패턴을 형성할 수 있는 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크를 변형없이 안정적으로 지지 및 이동이 가능한 마스크 지지 템플릿의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크를 프레임에 부착할 때, 마스크와 프레임의 밀착력을 향상시킬 수 있는 마스크 지지 템플릿의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크를 프레임에 부착한 후에 반복 사용이 가능한 마스크 지지 템플릿의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크와 프레임이 일체형 구조를 이룰 수 있는 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킨 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 상기의 목적은, OLED 화소 형성용 마스크의 제조 방법으로서, (a) 마스크 금속막을 제공하는 단계; (b) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계; (c) 마스크 금속막 상에 패턴화된 절연부를 형성하는 단계; (d) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및 (e) 절연부를 제거하는 단계를 포함하는, 마스크의 제조 방법에 의해 달성된다.
(b) 단계에서, 니켈 스트라이크(Ni strike) 도금, 니켈 스퍼터링(Ni sputtering), 니켈 증착 (Ni evaporation) 중 어느 하나의 방법을 이용하여 Ni층을 형성할 수 있다.
니켈 스크라이크 도금을 이용하는 경우, 0.1ASD 내지 5.0ASD의 전류밀도로 니켈 스크라이크 도금을 수행할 수 있다.
(c) 단계 및 (d) 단계는, (1) 도금막의 일면 상에 패턴화된 제1 절연부를 형성하는 단계; (2) 도금막의 일면에서 습식 식각으로 소정 깊이만큼 제1 마스크 패턴을 형성하는 단계; (3) 적어도 제1 마스크 패턴 내에 제2 절연부를 채우는 단계; (4) 베이킹(baking)으로 제2 절연부의 적어도 일부를 휘발시키는 단계; (5) 제1 절연부의 상부에서 노광하고, 제1 절연부의 수직 하부에 위치한 제2 절연부만 남기는 단계; 및 (6) 도금막의 일면에서 습식 식각으로 제1 마스크 패턴에서부터 도금막의 타면을 관통하는 제2 마스크 패턴을 형성하는 단계를 포함할 수 있다.
제1 마스크 패턴보다 제2 마스크 패턴의 폭이 좁을 수 있다.
제1 마스크 패턴 및 제2 마스크 패턴의 형상의 합은 전체적으로 테이퍼 형상 또는 역테이퍼 형상을 나타낼 수 있다.
제1 절연부의 수직 하부에 위치한 제2 절연부만 남기는 단계에서, 제1 절연부의 양측 하부에 언더컷이 형성되는 공간에 제2 절연부가 남을 수 있다.
제1 절연부의 상부에서 노광할 때, 제1 절연부가 제2 절연부에 대해 노광 마스크로 작용할 수 있다.
제1 절연부의 수직 하부에 위치하며 남은 제2 절연부의 패턴 폭은 제1 절연부의 패턴 폭에 대응할 수 있다.
그리고, 본 발명의 상기의 목적은, OLED 화소 형성용 마스크를 지지하여 프레임에 대응시키는 템플릿(template)의 제조 방법으로서, (a) 마스크 금속막을 제공하는 단계; (b) 일면에 임시접착부가 형성된 템플릿 상에 마스크 금속막을 접착하는 단계; 및 (c) 마스크 금속막에 마스크 패턴을 형성하여 마스크를 제조하는 단계를 포함하고, (c) 단계는, (c1) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계; (c2) 마스크 금속막 상에 패턴화된 절연부를 형성하는 단계; (c3) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및 (c4) 절연부를 제거하는 단계를 포함하는, 마스크 지지 템플릿의 제조 방법에 의해 달성된다.
그리고, 본 발명의 상기의 목적은, 적어도 하나의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 마스크 금속막을 제공하는 단계; (b) 일면에 임시접착부가 형성된 템플릿 상에 마스크 금속막을 접착하는 단계; (c) 마스크 금속막에 마스크 패턴을 형성하여 마스크를 제조하는 단계; (d) 적어도 하나의 마스크 셀 영역을 구비한 프레임을 제공하는 단계; (e) 프레임 상에 템플릿을 로딩하여 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및 (f) 마스크의 용접부에 레이저를 조사하여 마스크를 프레임에 부착하는 단계를 포함하고, (c) 단계는, (c1) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계; (c2) 마스크 금속막 상에 패턴화된 절연부를 형성하는 단계; (c3) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및 (c4) 절연부를 제거하는 단계를 포함하는, 프레임 일체형 마스크의 제조 방법에 의해 달성된다.
상기와 같이 구성된 본 발명에 따르면, 마스크를 제조할 때, 마스크 금속막과 절연부의 접착력을 개선하여 보다 명확한 마스크 패턴을 형성할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 마스크를 변형없이 안정적으로 지지 및 이동이 가능한 효과가 있다.
또한, 본 발명에 따르면, 마스크를 프레임에 부착할 때, 마스크와 프레임의 밀착력을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에 따르면, 마스크를 프레임에 부착한 후에 반복 사용이 가능한 효과가 있다.
또한, 본 발명에 따르면, 마스크와 프레임이 일체형 구조를 이룰 수 있는 효과가 있다.
또한, 본 발명에 따르면, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 효과가 있다.
도 1은 종래의 OLED 화소 증착용 마스크를 나타내는 개략도이다.
도 2는 종래의 마스크를 프레임에 부착하는 과정을 나타내는 개략도이다.
도 3은 종래의 마스크를 인장하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도 및 측단면도이다.
도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도 및 측단면도이다.
도 6은 본 발명의 일 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 8은 종래의 고해상도 OLED 형성을 위한 마스크를 나타내는 개략도이다.
도 9는 본 발명의 일 실시예에 따른 마스크를 나타내는 개략도이다.
도 10은 본 발명의 일 실시예에 따른 마스크 금속막을 압연(rolling) 방식으로 제조하는 과정을 나타내는 개략도이다.
도 11은 본 발명의 다른 실시예에 따른 마스크 금속막을 전주 도금(electroforming) 방식으로 제조하는 과정을 나타내는 개략도이다.
도 12 내지 도 13은 본 발명의 일 실시예에 따른 템플릿 상에 마스크 금속막을 접착하고 마스크를 형성하여 마스크 지지 템플릿을 제조하는 과정을 나타내는 개략도이다.
도 14는 본 발명의 일 실시예에 따른 임시접착부를 나타내는 확대 단면 개략도이다.
도 15는 종래 방식의 문제점을 나타내는 개략도이다.
도 16은 여러가지 방법에 따른 마스크 금속막의 표면 처리를 나타낸다.
도 17 및 도 18은 여러 실시예에 따른 니켈 스트라이크(Nickel strike) 테스트 결과를 나타낸다.
도 19 및 도 20은 본 발명의 일 실시예에 따른 니켈 스트라이크(Nickel strike) 테스트 결과를 나타낸다.
도 21 내지 도 23은 본 발명의 일 실시예에 따른 마스크의 제조 과정을 나타내는 개략도이다.
도 24는 본 발명의 비교예에 따른 마스크의 식각 정도를 나타내는 개략도이다.
도 25는 본 발명의 일 실시예에 따른 마스크의 식각 정도를 나타내는 개략도이다.
도 26은 본 발명의 일 실시예에 따른 마스크 지지 템플릿을 프레임 상에 로딩하는 과정을 나타내는 개략도이다.
도 27은 본 발명의 일 실시예에 따른 템플릿을 프레임 상에 로딩하여 마스크를 프레임의 셀 영역에 대응시키는 상태를 나타내는 개략도이다.
도 28은 본 발명의 일 실시예에 따른 마스크를 프레임에 부착한 후 마스크와 템플릿을 분리하는 과정을 나타내는 개략도이다.
도 29는 본 발명의 일 실시예에 따른 마스크를 프레임에 부착한 상태를 나타내는 개략도이다.
도 30은 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 이용한 OLED 화소 증착 장치를 나타내는 개략도이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 종래의 OLED 화소 증착용 마스크(10)를 나타내는 개략도이다.
도 1을 참조하면, 종래의 마스크(10)는 스틱형(Stick-Type) 또는 판형(Plate-Type)으로 제조될 수 있다. 도 1의 (a)에 도시된 마스크(10)는 스틱형 마스크로서, 스틱의 양측을 OLED 화소 증착 프레임에 용접 고정시켜 사용할 수 있다. 도 1의 (b)에 도시된 마스크(100)는 판형(Plate-Type) 마스크로서, 넓은 면적의 화소 형성 공정에서 사용될 수 있다.
마스크(10)의 바디(Body)[또는, 마스크 막(11)]에는 복수의 디스플레이 셀(C)이 구비된다. 하나의 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 셀(C)에는 디스플레이의 각 화소에 대응하도록 화소 패턴(P)이 형성된다. 셀(C)을 확대하면 R, G, B에 대응하는 복수의 화소 패턴(P)이 나타난다. 일 예로, 셀(C)에는 70 X 140의 해상도를 가지도록 화소 패턴(P)이 형성된다. 즉, 수많은 화소 패턴(P)들은 군집을 이루어 셀(C) 하나를 구성하며, 복수의 셀(C)들이 마스크(10)에 형성될 수 있다.
도 2는 종래의 마스크(10)를 프레임(20)에 부착하는 과정을 나타내는 개략도이다. 도 3은 종래의 마스크(10)를 인장(F1~F2)하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다. 도 1의 (a)에 도시된 6개의 셀(C: C1~C6)을 구비하는 스틱 마스크(10)를 예로 들어 설명한다.
도 2의 (a)를 참조하면, 먼저, 스틱 마스크(10)를 평평하게 펴야한다. 스틱 마스크(10)의 장축 방향으로 인장력(F1~F2)을 가하여 당김에 따라 스틱 마스크(10)가 펴지게 된다. 그 상태로 사각틀 형태의 프레임(20) 상에 스틱 마스크(10)를 로딩한다. 스틱 마스크(10)의 셀(C1~C6)들은 프레임(20)의 틀 내부 빈 영역 부분에 위치하게 된다. 프레임(20)은 하나의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수 있고, 복수의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수도 있다.
도 2의 (b)를 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절하면서 정렬을 시킨 후, 스틱 마스크(10) 측면의 일부를 용접(W)함에 따라 스틱 마스크(10)와 프레임(20)을 상호 연결한다. 도 2의 (c)는 상호 연결된 스틱 마스크(10)와 프레임의 측단면을 나타낸다.
도 3을 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절함에도 불구하고, 마스크 셀(C1~C3)들의 상호간에 정렬이 잘 되지 않는 문제점이 나타난다. 가령, 셀(C1~C3)들의 패턴(P)간에 거리(D1~D1", D2~D2")가 상호 다르게 되거나, 패턴(P)들이 비뚤어지는 것이 그 예이다. 스틱 마스크(10)는 복수(일 예로, 6개)의 셀(C1~C6)을 포함하는 대면적이고, 수십 ㎛ 수준의 매우 얇은 두께를 가지기 때문에, 하중에 의해 쉽게 쳐지거나 뒤틀어지게 된다. 또한, 각 셀(C1~C6)들을 모두 평평하게 하도록 인장력(F1~F2)을 조절하면서, 각 셀(C1~C6)들간의 정렬 상태를 현미경을 통해 실시간으로 확인하는 것은 매우 어려운 작업이다.
따라서, 인장력(F1~F2)의 미세한 오차는 스틱 마스크(10) 각 셀(C1~C3)들이 늘어나거나, 펴지는 정도에 오차를 발생시킬 수 있고, 그에 따라 마스크 패턴(P)간에 거리(D1~D1", D2~D2")가 상이해지게 되는 문제점을 발생시킨다. 물론, 완벽하게 오차가 0이 되도록 정렬하는 것은 어려운 것이지만, 크기가 수 내지 수십 ㎛인 마스크 패턴(P)이 초고화질 OLED의 화소 공정에 악영향을 미치지 않도록 하기 위해서는, 정렬 오차가 3㎛를 초과하지 않는 것이 바람직하다. 이렇게 인접하는 셀 사이의 정렬 오차를 PPA(pixel position accuracy)라 지칭한다.
이에 더하여, 대략 6~20개 정도의 복수의 스틱 마스크(10)들을 프레임(20) 하나에 각각 연결하면서, 복수의 스틱 마스크(10)들간에, 그리고 스틱 마스크(10)의 복수의 셀(C~C6)들간에 정렬 상태를 명확히 하는 것도 매우 어려운 작업이고, 정렬에 따른 공정 시간이 증가할 수밖에 없게 되어 생산성을 감축시키는 중대한 이유가 된다.
한편, 스틱 마스크(10)를 프레임(20)에 연결 고정시킨 후에는, 스틱 마스크(10)에 가해졌던 인장력(F1~F2)이 프레임(20)에 역으로 작용할 수 있다. 즉, 인장력(F1~F2)에 의해 팽팽히 늘어났던 스틱 마스크(10)가 프레임(20)에 연결된 후에 프레임(20)에 장력(tension)을 작용할 수 있다. 보통 이 장력이 크지 않아서 프레임(20)에 큰 영향을 미치지 않을 수 있으나, 프레임(20)의 크기가 소형화되고 강성이 낮아지는 경우에는 이러한 장력이 프레임(20)을 미세하게 변형시킬 수 있다. 그리하면 복수의 셀(C~C6)들간에 정렬 상태가 틀어지는 문제가 발생할 수 있다.
이에, 본 발명은 마스크(100)가 프레임(200)과 일체형 구조를 이룰 수 있게 하는 프레임(200) 및 프레임 일체형 마스크를 제안한다. 프레임(200)에 일체로 형성되는 마스크(100)는 쳐지거나 뒤틀리는 등의 변형이 방지되고, 프레임(200)에 명확히 정렬될 수 있다. 마스크(100)가 프레임(200)에 연결될 때 마스크(100)에 어떠한 인장력도 가하지 않으므로, 마스크(100)가 프레임(200)에 연결된 후 프레임(200)이 변형될 정도의 장력을 가하지 않을 수 있다. 그리고, 마스크(100)를 프레임(200)에 일체로 연결하는 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 이점을 가진다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도[도 4의 (a)] 및 측단면도[도 4의 (b)]이고, 도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도[도 5의 (a)] 및 측단면도[도 5의 (b)]이다.
도 4 및 도 5를 참조하면, 프레임 일체형 마스크는, 복수의 마스크(100) 및 하나의 프레임(200)을 포함할 수 있다. 다시 말해, 복수의 마스크(100)들을 각각 하나씩 프레임(200)에 부착한 형태이다. 이하에서는, 설명의 편의상 사각 형태의 마스크(100)를 예로 들어 설명하나, 마스크(100)들은 프레임(200)에 부착되기 전에는 양측에 클램핑되는 돌출부를 구비한 스틱 마스크 형태일 수 있으며, 프레임(200)에 부착된 후에 돌출부가 제거될 수 있다.
각각의 마스크(100)에는 복수의 마스크 패턴(P)이 형성되며, 하나의 마스크(100)에는 하나의 셀(C)이 형성될 수 있다. 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응할 수 있다.
마스크(100)는 열팽창계수가 약 1.0 X 10-6/℃인 인바(invar), 약 1.0 X 10-7/℃ 인 슈퍼 인바(super invar) 재질일 수 있다. 이 재질의 마스크(100)는 열팽창계수가 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용될 수 있다. 이 외에, 최근에 온도 변화값이 크지 않은 범위에서 화소 증착 공정을 수행하는 기술들이 개발되는 것을 고려하면, 마스크(100)는 이보다 열팽창계수가 약간 큰 니켈(Ni), 니켈-코발트(Ni-Co) 등의 재질일 수도 있다. 마스크(100)는 압연(rolling) 공정 또는 전주 도금(electroforming)으로 생성한 금속 시트(sheet)를 사용할 수 있다. 도 9 및 도 10을 통해 구체적으로 후술한다.
프레임(200)은 복수의 마스크(100)를 부착시킬 수 있도록 형성된다. 프레임(200)은 최외곽 테두리를 포함해 제1 방향(예를 들어, 가로 방향), 제2 방향(예를 들어, 세로 방향)으로 형성되는 여러 모서리를 포함할 수 있다. 이러한 여러 모서리들은 프레임(200) 상에 마스크(100)가 부착될 구역을 구획할 수 있다.
프레임(200)은 대략 사각 형상, 사각틀 형상의 테두리 프레임부(210)를 포함할 수 있다. 테두리 프레임부(210)의 내부는 중공 형태일 수 있다. 즉, 테두리 프레임부(210)는 중공 영역(R)을 포함할 수 있다. 프레임(200)은 인바, 슈퍼인바, 알루미늄, 티타늄 등의 금속 재질로 구성될 수 있으며, 열변형을 고려하여 마스크와 동일한 열팽창계수를 가지는 인바, 슈퍼 인바, 니켈, 니켈-코발트 등의 재질로 구성되는 것이 바람직하고, 이 재질들은 프레임(200)의 구성요소인 테두리 프레임부(210), 마스크 셀 시트부(220)에 모두 적용될 수 있다.
이에 더하여, 프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하며, 테두리 프레임부(210)에 연결되는 마스크 셀 시트부(220)를 포함할 수 있다. 마스크 셀 시트부(220)는 마스크(100)와 마찬가지로 압연으로 형성되거나, 전주도금과 같은 그 외의 막 형성 공정을 사용하여 형성될 수도 있다. 또한, 마스크 셀 시트부(220)는 평면의 시트(sheet)에 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결할 수 있다. 또는, 마스크 셀 시트부(220)는 평면의 시트를 테두리 프레임부(210)에 연결한 후, 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 마스크 셀 시트부(220)에 먼저 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결한 것을 주로 상정하여 설명한다.
마스크 셀 시트부(220)는 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225) 중 적어도 하나를 포함하여 구성될 수 있다. 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225)는 동일한 시트에서 구획된 각 부분을 지칭하며, 이들은 상호간에 일체로 형성된다.
테두리 시트부(221)가 실질적으로 테두리 프레임부(210)에 연결될 수 있다. 따라서, 테두리 시트부(221)는 테두리 프레임부(210)와 대응하는 대략 사각 형상, 사각틀 형상을 가질 수 있다.
또한, 제1 그리드 시트부(223)는 제1 방향(가로 방향)으로 연장 형성될 수 있다. 제1 그리드 시트부(223)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 마스크 셀 시트부(220)가 복수의 제1 그리드 시트부(223)를 포함하는 경우, 각각의 제1 그리드 시트부(223)는 동등한 간격을 이루는 것이 바람직하다.
또한, 이에 더하여, 제2 그리드 시트부(225)가 제2 방향(세로 방향)으로 연장 형성될 수 있다. 제2 그리드 시트부(225)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 제1 그리드 시트부(223)와 제2 그리드 시트부(225)는 서로 수직 교차될 수 있다. 마스크 셀 시트부(220)가 복수의 제2 그리드 시트부(225)를 포함하는 경우, 각각의 제2 그리드 시트부(225)는 동등한 간격을 이루는 것이 바람직하다.
한편, 제1 그리드 시트부(223)들 간의 간격과, 제2 그리드 시트부(225)들 간의 간격은 마스크 셀(C)의 크기에 따라서 동일하거나 상이할 수 있다.
제1 그리드 시트부(223) 및 제2 그리드 시트부(225)는 박막 형태의 얇은 두께를 가지지만, 길이 방향에 수직하는 단면의 형상은 직사각형, 사다리꼴과 같은 사각형 형상, 삼각형 형상 등일 수 있고, 변, 모서리 부분이 일부 라운딩 될 수도 있다. 단면 형상은 레이저 스크라이빙, 에칭 등의 과정에서 조절 가능하다.
테두리 프레임부(210)의 두께는 마스크 셀 시트부(220)의 두께보다 두꺼울 수 있다. 테두리 프레임부(210)는 프레임(200)의 전체 강성을 담당하기 때문에 수mm 내지 수cm의 두께로 형성될 수 있다.
마스크 셀 시트부(220)의 경우는, 실질적으로 두꺼운 시트를 제조하는 공정이 어렵고, 너무 두꺼우면 OLED 화소 증착 공정에서 유기물 소스(600)[도 30 참조]가 마스크(100)를 통과하는 경로를 막는 문제를 발생시킬 수 있다. 반대로, 두께가 너무 얇아지면 마스크(100)를 지지할 정도의 강성 확보가 어려울 수 있다. 이에 따라, 마스크 셀 시트부(220)는 테두리 프레임부(210)의 두께보다는 얇지만, 마스크(100)보다는 두꺼운 것이 바람직하다. 마스크 셀 시트부(220)의 두께는, 약 0.1mm 내지 1mm 정도로 형성될 수 있다. 그리고, 제1, 2 그리드 시트부(223, 225)의 폭은 약 1~5mm 정도로 형성될 수 있다.
평면의 시트에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외하여, 복수의 마스크 셀 영역(CR: CR11~CR56)이 제공될 수 있다. 다른 관점에서, 마스크 셀 영역(CR)이라 함은, 테두리 프레임부(210)의 중공 영역(R)에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외한, 빈 영역을 의미할 수 있다.
이 마스크 셀 영역(CR)에 마스크(100)의 셀(C)이 대응됨에 따라, 실질적으로 마스크 패턴(P)을 통해 OLED의 화소가 증착되는 통로로 이용될 수 있게 된다. 전술하였듯이 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 하나의 마스크(100)에는 하나의 셀(C)을 구성하는 마스크 패턴(P)들이 형성될 수 있다. 또는, 하나의 마스크(100)가 복수의 셀(C)을 구비하고 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응할 수도 있으나, 마스크(100)의 명확한 정렬을 위해서는 대면적 마스크(100)를 지양할 필요가 있고, 하나의 셀(C)을 구비하는 소면적 마스크(100)가 바람직하다. 또는, 프레임(200)의 하나의 셀 영역(CR)에 복수의 셀(C)을 가지는 하나의 마스크(100)가 대응할 수도 있다. 이 경우, 명확한 정렬을 위해서는 2-3개 정도의 소수의 셀(C)을 가지는 마스크(100)를 대응하는 것을 고려할 수 있다.
프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하고, 각각의 마스크(100)는 각각 하나의 마스크 셀(C)이 마스크 셀 영역(CR)에 대응되도록 부착될 수 있다. 각각의 마스크(100)는 복수의 마스크 패턴(P)이 형성된 마스크 셀(C) 및 마스크 셀(C) 주변의 더미[셀(C)을 제외한 마스크 막(110) 부분에 대응]를 포함할 수 있다. 더미는 마스크 막(110)만을 포함하거나, 마스크 패턴(P)과 유사한 형태의 소정의 더미 패턴이 형성된 마스크 막(110)을 포함할 수 있다. 마스크 셀(C)은 프레임(200)의 마스크 셀 영역(CR)에 대응하고, 더미의 일부 또는 전부가 프레임(200)[마스크 셀 시트부(220)]에 부착될 수 있다. 이에 따라, 마스크(100)와 프레임(200)이 일체형 구조를 이룰 수 있게 된다.
한편, 다른 실시예에 따르면, 프레임은 테두리 프레임부(210)에 마스크 셀 시트부(220)를 부착하여 제조하지 않고, 테두리 프레임부(210)의 중공 영역(R) 부분에 테두리 프레임부(210)와 일체인 그리드 프레임[그리드 시트부(223, 225)에 대응]을 곧바로 형성한 프레임을 사용할 수도 있다. 이러한 형태의 프레임도 적어도 하나의 마스크 셀 영역(CR)을 포함하며, 마스크 셀 영역(CR)에 마스크(100)를 대응시켜 프레임 일체형 마스크를 제조할 수 있게 된다.
이하에서는, 프레임 일체형 마스크를 제조하는 과정에 대해 설명한다.
먼저, 도 4 및 도 5에서 상술한 프레임(200)을 제공할 수 있다. 도 6은 본 발명의 일 실시예에 따른 프레임(200)의 제조 과정을 나타내는 개략도이다.
도 6의 (a)를 참조하면, 테두리 프레임부(210)를 제공한다. 테두리 프레임부(210)는 중공 영역(R)을 포함한 사각 틀 형상일 수 있다.
다음으로, 도 6의 (b)를 참조하면, 마스크 셀 시트부(220)를 제조한다. 마스크 셀 시트부(220)는 압연, 전주도금 또는 그 외의 막 형성 공정을 사용하여 평면의 시트를 제조한 후, 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분을 제거함에 따라 제조할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)가 존재할 수 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응할 수 있다. 대응시키는 과정에서, 마스크 셀 시트부(220)의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220)를 평평하게 편 상태로 테두리 시트부(221)를 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 6의 (b)의 예로, 1~3포인트]로 마스크 셀 시트부(220)를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220)를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220)의 테두리 시트부(221)를 용접(W)하여 부착할 수 있다. 마스크 셀 시트부(220)가 테두리 프레임부(220)에 견고하게 부착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220)와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220)를 일체로 연결하는 매개체가 될 수 있다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다. 도 6의 실시예는 마스크 셀 영역(CR)을 구비한 마스크 셀 시트부(220)를 먼저 제조하고 테두리 프레임부(210)에 부착하였으나, 도 7의 실시예는 평면의 시트를 테두리 프레임부(210)에 부착한 후에, 마스크 셀 영역(CR) 부분을 형성한다.
먼저, 도 6의 (a)처럼, 중공 영역(R)을 포함한 테두리 프레임부(210)를 제공한다.
다음으로, 도 7의 (a)를 참조하면, 테두리 프레임부(210)에 평면의 시트[평면의 마스크 셀 시트부(220')]를 대응할 수 있다. 마스크 셀 시트부(220')는 아직 마스크 셀 영역(CR)이 형성되지 않은 평면 상태이다. 대응시키는 과정에서, 마스크 셀 시트부(220')의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220')를 평평하게 편 상태로 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 7의 (a)의 예로, 1~3포인트]로 마스크 셀 시트부(220')를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220')를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220')를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220')의 테두리 부분을 용접(W)하여 부착할 수 있다. 마스크 셀 시트부(220')가 테두리 프레임부(220)에 견고하게 부착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220') 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220')와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220')를 일체로 연결하는 매개체가 될 수 있다.
다음으로, 도 7의 (b)를 참조하면, 평면의 시트[평면의 마스크 셀 시트부(220')]에 마스크 셀 영역(CR)을 형성한다. 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분의 시트를 제거함에 따라 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 마스크 셀 영역(CR)을 형성하게 되면, 테두리 프레임부(210)와 용접(W)된 부분이 테두리 시트부(221)가 되고, 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)를 구비하는 마스크 셀 시트부(220)가 구성될 수 있다.
도 8은 종래의 고해상도 OLED 형성을 위한 마스크를 나타내는 개략도이다.
고해상도의 OLED를 구현하기 위해 패턴의 크기가 줄어들고 있으며, 이를 위해 사용되는 마스크 금속막의 두께도 얇아질 필요가 있다. 도 8의 (a)와 같이, 고해상도의 OLED 화소(6)를 구현하려면, 마스크(10')에서 화소 간격 및 화소 크기 등을 줄여야 한다(PD -> PD'). 또한, 새도우 이펙트에 의한 OLED 화소(6)가 불균일하게 증착되는 것을 막기 위하여, 마스크(10')의 패턴을 경사지게 형성(14)할 필요가 있다. 하지만, 약 30~50 ㎛정도의 두께(T1)를 가져 두꺼운 마스크(10')에 패턴을 경사지게 형성(14)하는 과정에서, 미세한 화소 간격(PD') 및 화소 크기에 맞는 패터닝(13)을 하기 어렵기 때문에 가공 공정에서 수율이 나빠지는 원인이 된다. 다시 말해, 미세한 화소 간격(PD')을 가지고 경사지게 패턴을 형성(14)하기 위해서는 얇은 두께의 마스크(10')를 사용하여야 한다.
특히, UHD 수준의 고해상도를 위해서는, 도 8의 (b)와 같이, 20㎛ 이하 정도의 두께(T2)를 가지는 얇은 마스크(10')를 사용하여야 미세한 패터닝을 할 수 있게 된다. 또한, UHD 이상의 초고해상도를 위해서는 10㎛ 정도의 두께(T2)를 가지는 얇은 마스크(10')의 사용을 고려할 수 있다.
도 9는 본 발명의 일 실시예에 따른 마스크(100)를 나타내는 개략도이다.
마스크(100)는 복수의 마스크 패턴(P)이 형성된 마스크 셀(C) 및 마스크 셀(C) 주변의 더미(DM)를 포함할 수 있다. 압연 공정, 전주 도금 등으로 생성한 금속 시트로 마스크(100)를 제조할 수 있고, 마스크(100)에는 하나의 셀(C)이 형성될 수 있음은 상술한 바 있다. 더미(DM)는 셀(C)을 제외한 마스크 막(110)[마스크 금속막(110)] 부분에 대응하고, 마스크 막(110)만을 포함하거나, 마스크 패턴(P)과 유사한 형태의 소정의 더미 패턴이 형성된 마스크 막(110)을 포함할 수 있다. 더미(DM)는 마스크(100)의 테두리에 대응하여 더미(DM)의 일부 또는 전부가 프레임(200)[마스크 셀 시트부(220)]에 부착될 수 있다.
마스크 패턴(P)의 폭은 40㎛보다 작게 형성될 수 있고, 마스크(100)의 두께는 약 5~20㎛로 형성될 수 있다. 프레임(200)이 복수의 마스크 셀 영역(CR: CR11~CR56)을 구비하므로, 각각의 마스크 셀 영역(CR: CR11~CR56)에 대응하는 마스크 셀(C: C11~C56)을 가지는 마스크(100)도 복수개 구비할 수 있다.
마스크(100)의 일면(101)은 프레임(200)에 접촉하여 부착될 면이기 때문에 평평한 것이 바람직하다. 후술할 평탄화 공정으로 일면(101)이 평평해지면서 경면화 될 수 있다. 마스크(100)의 타면(102)은 후술할 템플릿(50)의 일면과 대향할 수 있다.
이하에서는, 마스크 금속막(110')을 제조하고, 이를 템플릿(50)에 지지시켜 마스크(100)를 제조하며, 마스크(100)가 지지된 템플릿(50)을 프레임(200) 상에 로딩하고 마스크(100)를 프레임(200)에 부착함에 따라 프레임 일체형 마스크를 제조하는 일련의 공정을 설명한다.
도 10은 본 발명의 일 실시예에 따른 마스크 금속막을 압연(rolling) 방식으로 제조하는 과정을 나타내는 개략도이다. 도 11은 본 발명의 다른 실시예에 따른 마스크 금속막을 전주 도금(electroforming) 방식으로 제조하는 과정을 나타내는 개략도이다.
먼저, 마스크 금속막(110)을 준비할 수 있다. 일 실시예로서, 압연 방식으로 마스크 금속막(110)을 준비할 수 있다.
도 10의 (a)를 참조하면, 압연 공정으로 생성한 금속 시트를 마스크 금속막(110')으로 사용할 수 있다. 압연 공정으로 제조된 금속 시트는 제조 공정상 수십 내지 수백 ㎛의 두께를 가질 수 있다. 도 8에서 전술한 바와 같이, UHD 수준의 고해상도를 위해서는 20㎛ 이하 정도의 두께를 가지는 얇은 마스크 금속막(110)을 사용하여야 미세한 패터닝을 할 수 있고, UHD 이상의 초고해상도를 위해서는 10㎛ 정도의 두께를 가지는 얇은 마스크 금속막(110)을 사용하여야 한다. 하지만, 압연(rolling) 공정으로 생성한 마스크 금속막(110')은 약 25~500㎛ 정도의 두께를 가지므로, 두께가 더 얇게 해야할 필요가 있다.
따라서, 마스크 금속막(110')의 일면을 평탄화(PS)하는 공정을 더 수행할 수 있다. 여기서 평탄화(PS)는 마스크 금속막(110')의 일면(상면)을 경면화 하면서 동시에 마스크 금속막(110')의 상부를 일부 제거하여 두께를 얇게 감축시키는 것을 의미한다. 평탄화(PS)는 CMP(Chemical Mechanical Polishing) 방법으로 수행할 수 있고, 공지의 CMP 방법을 제한없이 사용할 수 있다. 또한, 화학적 습식 식각(chemical wet etching) 또는 건식 식각(dry etching) 방법으로 마스크 금속막(110')의 두께를 감축시킬 수 있다. 이 외에도 마스크 금속막(110')의 두께를 얇게 하는 평탄화가 가능한 공정을 제한없이 사용할 수 있다.
평탄화(PS)를 수행하는 과정에서, 일 예로 CMP 과정에서, 마스크 금속막(110') 상부면의 표면 조도(Ra)가 제어될 수 있다. 바람직하게는, 표면 조도가 더 감소하는 경면화가 진행될 수 있다. 또는, 다른 예로, 화학적 습식 식각 또는 건식 식각 과정을 진행하여 평탄화(PS)를 수행한 후, 이후에 별개의 CMP 공정 등의 폴리싱 공정을 더하여 표면 조도(Ra)를 감소시킬 수도 있다.
이처럼, 마스크 금속막(110')의 두께를 약 50㎛ 이하로 얇게 만들 수 있다. 이에 따라 마스크 금속막(110)의 두께는 약 2㎛ 내지 50㎛ 정도로 형성되는 것이 바람직하며, 더 바람직하게는 두께는 약 5㎛ 내지 20㎛ 정도로 형성될 수 있다. 하지만, 반드시 이에 제한되는 것은 아니다.
도 10의 (b)를 참조하면, 도 10의 (a)와 마찬가지로, 압연 공정으로 제조한 마스크 금속막(110')에 대해서 두께를 감축시켜 마스크 금속막(110)을 제조할 수 있다. 다만, 마스크 금속막(110')은 후술할 템플릿(50) 상에 임시접착부(55)를 개재하여 접착된 상태에서 평탄화(PS) 공정이 수행되어 두께가 감축될 수 있다.
다른 실시예로서, 전주 도금 방식으로 마스크 금속막(110)을 준비할 수 있다.
도 11의 (a)를 참조하면, 전도성 기재(21)를 준비한다. 전주 도금(electroforming)을 수행할 수 있도록, 모판의 기재(21)는 전도성 재질일 수 있다. 모판은 전주 도금에서 음극체(cathode) 전극으로 사용될 수 있다.
전도성 재질로서, 메탈의 경우에는 표면에 메탈 옥사이드들이 생성되어 있을 수 있고, 메탈 제조 과정에서 불순물이 유입될 수 있으며, 다결정 실리콘 기재의 경우에는 개재물 또는 결정립계(Grain Boundary)가 존재할 수 있으며, 전도성 고분자 기재의 경우에는 불순물이 함유될 가능성이 높고, 강도. 내산성 등이 취약할 수 있다. 메탈 옥사이드, 불순물, 개재물, 결정립계 등과 같이 모판(또는, 음극체)의 표면에 전기장이 균일하게 형성되는 것을 방해하는 요소를 "결함"(Defect)으로 지칭한다. 결함(Defect)에 의해, 상술한 재질의 음극체에는 균일한 전기장이 인가되지 못하여 도금막(110)[또는, 마스크 금속막(110)]의 일부가 불균일하게 형성될 수 있다.
UHD 급 이상의 초고화질 화소를 구현하는데 있어서 도금막 및 도금막 패턴[마스크 패턴(P)]의 불균일은 화소의 형성에 악영향을 미칠 수 있다. 예를 들어, 현재 QHD 화질의 경우는 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질의 경우는 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 된다. VR 기기에 직접 적용되는 마이크로 디스플레이, 또는 VR 기기에 끼워서 사용되는 마이크로 디스플레이는 약 2,000 PPI 이상급의 초고화질을 목표로 하고 있고, 화소의 크기는 약 5~10㎛ 정도에 이르게 된다. 이에 적용되는 FMM, 새도우 마스크의 패턴 폭은 수~수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있으므로, 수㎛ 크기의 결함조차 마스크의 패턴 사이즈에서 큰 비중을 차지할 정도의 크기이다. 또한, 상술한 재질의 음극체에서의 결함을 제거하기 위해서는 메탈 옥사이드, 불순물 등을 제거하기 위한 추가적인 공정이 수행될 수 있으며, 이 과정에서 음극체 재료가 식각되는 등의 또 다른 결함이 유발될 수도 있다.
따라서, 본 발명은 단결정 재질의 모판(또는, 음극체)을 사용할 수 있다. 특히, 단결정 실리콘 재질인 것이 바람직하다. 전도성을 가지도록, 단결정 실리콘 재질의 모판에는 1019/cm3이상의 고농도 도핑이 수행될 수 있다. 도핑은 모판의 전체에 수행될 수도 있으며, 모판의 표면 부분에만 수행될 수도 있다.
한편, 단결정 재질로는, Ti, Cu, Ag 등의 금속, GaN, SiC, GaAs, GaP, AlN, InN, InP, Ge 등의 반도체, 흑연(graphite), 그래핀(graphene) 등의 탄소계 재질, CH3NH3PbCl3, CH3NH3PbBr3, CH3NH3PbI3, SrTiO3 등을 포함하는 페로브스카이트(perovskite) 구조 등의 초전도체용 단결정 세라믹, 항공기 부품용 단결정 초내열합금 등이 사용될 수 있다. 금속, 탄소계 재질의 경우는 기본적으로 전도성 재질이다. 반도체 재질의 경우에는, 전도성을 가지도록 1019/cm3 이상의 고농도 도핑이 수행될 수 있다. 기타 재질의 경우에는 도핑을 수행하거나 산소 공공(oxygen vacancy) 등을 형성하여 전도성을 형성할 수 있다. 도핑은 모판의 전체에 수행될 수도 있으며, 모판의 표면 부분에만 수행될 수도 있다.
단결정 재질의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 도금막(110) 이 생성될 수 있는 이점이 있다. 균일한 도금막을 통해 제조하는 프레임 일체형 마스크(100, 200)는 OLED 화소의 화질 수준을 더욱 개선할 수 있다. 그리고, 결함을 제거, 해소하는 추가 공정이 수행될 필요가 없으므로, 공정비용이 감축되고, 생산성이 향상되는 이점이 있다.
도 10의 (a)를 다시 참조하면, 다음으로, 전도성 기재(21)를 모판[음극체(Cathode Body)]로 사용하고, 양극체(미도시)를 이격되게 배치하여 전도성 기재(21) 상에 전주 도금으로 도금막(110)[또는, 마스크 금속막(110)]을 형성할 수 있다. 도금막(110)은 양극체와 대향하고 전기장이 작용할 수 있는 전도성 기재(21)의 노출된 상부면 및 측면 상에서 형성될 수 있다. 전도성 기재(21)의 측면에 더하여 전도성 기재(21)의 하부면의 일부에까지도 도금막(110)이 생성될 수도 있다.
다음으로, 도금막(110)의 테두리 부분을 레이저로 커팅(D)하거나, 도금막(110) 상부에 포토레지스트층을 형성하고 노출된 도금막(110)의 부분만을 식각하여 제거(D)할 수 있다. 이에 따라, 도 10의 (b)와 같이, 전도성 기재(21)로부터 도금막(110)을 분리할 수 있다.
한편, 도금막(110)을 전도성 기재(21)로부터 분리하기 전에, 열처리(H)를 수행할 수 있다. 본 발명은 마스크(100)의 열팽창계수를 낮춤과 동시에 마스크(100) 및 마스크 패턴(P)의 열에 의한 변형을 방지하기 위해, 전도성 기재(21)[또는, 모판, 음극체]로부터 도금막(110)을 분리 전에 열처리(H)를 수행하는 것을 특징으로 한다. 열처리는 300℃ 내지 800℃의 온도로 수행할 수 있다.
일반적으로 압연으로 생성한 인바 박판에 비해, 전주 도금으로 생성한 인바 박판이 열팽창계수가 높다. 그리하여 인바 박판에 열처리를 수행함으로써 열팽창계수를 낮출 수 있는데, 이 열처리 과정에서 인바 박판에 박리, 변형 등이 생길 수 있다. 이는, 인바 박판만을 열처리 하거나, 전도성 기재(21)의 상부면에만 임시로 접착된 인바 박판을 열처리 하기 때문에 발생하는 현상이다. 하지만, 본 발명은 전도성 기재(21)의 상부면뿐만 아니라 측면 및 하부면 일부에까지 도금막(110)을 형성하기 때문에, 열처리(H)를 하여도 박리, 변형 등이 발생하지 않는다. 다시 말해, 전도성 기재(21)와 도금막(110)이 긴밀히 접착된 상태에서 열처리를 수행하므로, 열처리로 인한 박리, 변형 등을 방지하고 안정적으로 열처리를 할 수 있는 이점이 있다.
압연 공정보다 전주 도금 공정으로 생성한 마스크 금속막(110)의 두께가 얇을 수 있다. 이에 따라, 두께를 감축하는 평탄화(PS) 공정을 생략할 수도 있으나, 도금 마스크 금속막(110')의 표면층의 조성, 결정구조/미세구조에 따라 에칭 특성이 다를 수 있으므로, 평탄화(PS)를 통해 표면 특성, 두께를 제어할 필요가 있다.
도 12 내지 도 13은 본 발명의 일 실시예에 따른 템플릿(50) 상에 마스크 금속막(110)을 접착하고 마스크(100)를 형성하여 마스크 지지 템플릿을 제조하는 과정을 나타내는 개략도이다.
도 12의 (a)를 참조하면, 템플릿(template; 50)을 제공할 수 있다. 템플릿(50)은 마스크(100)가 일면 상에 부착되어 지지된 상태로 이동시킬 수 있는 매개체이다. 템플릿(50)의 일면은 평평한 마스크(100)를 지지하여 이동시킬 수 있도록 평평한 것이 바람직하다. 중심부(50a)는 마스크 금속막(110)의 마스크 셀(C)에 대응하고, 테두리부(50b)는 마스크 금속막(110)의 더미(DM)에 대응할 수 있다. 마스크 금속막(110)이 전체적으로 지지될 수 있도록 템플릿(50)의 크기는 마스크 금속막(110)보다 면적이 큰 평판 형상일 수 있다.
템플릿(50)은 마스크(100)를 프레임(200)에 정렬시키고 부착하는 과정에서 비전(vision) 등을 관측하기 용이하도록 투명한 재질인 것이 바람직하다. 또한, 투명한 재질인 경우 레이저가 관통할 수도 있다. 투명한 재질로서 글래스(glass), 실리카(silica), 내열유리, 석영(quartz), 알루미나(Al2O3), 붕규산유리(borosilicate glass), 지르코니아(zirconia) 등의 재질을 사용할 수 있다. 일 예로, 템플릿(50)은 붕규산유리 중 우수한 내열성, 화학적 내구성, 기계적 강도, 투명성 등을 가지는 BOROFLOAT® 33 재질을 사용할 수 있다. 또한, BOROFLOAT® 33은 열팽창계수가 약 3.3으로 인바 마스크 금속막(110)과 열팽창계수 차이가 적어 마스크 금속막(110)의 제어에 용이한 이점이 있다.
한편, 템플릿(50)은 마스크 금속막(110)[또는, 마스크(100)]과의 계면 사이에서 에어갭(air gap)이 발생하지 않도록, 마스크 금속막(110)과 접촉하는 일면이 경면일 수 있다. 이를 고려하여, 템플릿(50)의 일면의 표면 조도(Ra)가 100nm 이하일 수 있다. 표면 조도(Ra)가 100nm 이하인 템플릿(50)을 구현하기 위해, 템플릿(50)은 웨이퍼(wafer)를 사용할 수 있다. 웨이퍼(wafer)는 표면 조도(Ra)가 약 10nm 정도이고, 시중의 제품이 많고 표면처리 공정들이 많이 알려져 있으므로, 템플릿(50)으로 사용할 수 있다. 템플릿(50)의 표면 조도(Ra)가 nm 스케일이기 때문에 에어갭이 없거나, 거의 없는 수준으로, 레이저 용접에 의한 용접 비드(WB)의 생성이 용이하여 마스크 패턴(P)의 정렬 오차에 영향을 주지 않을 수 있다.
템플릿(50)은 템플릿(50)의 상부에서 조사하는 레이저(L)가 마스크(100)의 용접부(용접을 수행할 영역)에까지 도달할 수 있도록, 템플릿(50)에는 레이저 통과공(51)이 형성될 수 있다. 레이저 통과공(51)은 용접부의 위치 및 개수에 대응하도록 템플릿(50)에 형성될 수 있다. 용접부는 마스크(100)의 테두리 또는 더미(DM) 부분에서 소정 간격을 따라 복수개 배치되어 있으므로, 레이저 통과공(51)도 이에 대응하도록 소정 간격을 따라 복수개 형성될 수 있다. 일 예로, 용접부는 마스크(100)의 양측(좌측/우측) 더미(DM) 부분에 소정 간격을 따라 복수개 배치되어 있으므로, 레이저 통과공(51)도 템플릿(50)이 양측(좌측/우측)에 소정 간격을 따라 복수개 형성될 수 있다.
레이저 통과공(51)은 반드시 용접부의 위치 및 개수에 대응될 필요는 없다. 예를 들어, 레이저 통과공(51) 중 일부에 대해서만 레이저(L)를 조사하여 용접을 수행할 수도 있다. 또한, 용접부에 대응되지 않는 레이저 통과공(51) 중 일부는 마스크(100)와 템플릿(50)을 정렬할 때 얼라인 마크를 대신하여 사용할 수도 있다. 만약, 템플릿(50)의 재질이 레이저(L) 광에 투명하다면 레이저 통과공(51)을 형성하지 않을 수도 있다.
템플릿(50)의 일면에는 임시접착부(55)가 형성될 수 있다. 임시접착부(55)는 마스크(100)가 프레임(200)에 부착되기 전까지 마스크(100)[또는, 마스크 금속막(110)]이 임시로 템플릿(50)의 일면에 접착되어 템플릿(50) 상에 지지되도록 할 수 있다.
임시접착부(55)는 열을 가함에 따라 분리가 가능한 접착제 또는 접착 시트(thermal release type), UV 조사에 의해 분리가 가능한 접착제 또는 접착시트(UV release type)를 사용할 수 있다.
일 예로, 임시접착부(55)는 액체 왁스(liquid wax)를 사용할 수 있다. 액체 왁스는 반도체 웨이퍼의 폴리싱 단계 등에서 이용되는 왁스와 동일한 것을 사용할 수 있고, 그 유형이 특별히 한정되지는 않는다. 액체 왁스는 주로 유지력에 관한 접착력, 내충격성 등을 제어하기 위한 수지 성분으로 아크릴, 비닐아세테이트, 나일론 및 다양한 폴리머와 같은 물질 및 용매를 포함할 수 있다. 일 예로, 임시접착부(55)는 수지 성분으로 아크릴로나이트릴 뷰타디엔 고무(ABR, Acrylonitrile butadiene rubber), 용매 성분으로 n-프로필알코올을 포함하는 SKYLIQUID ABR-4016을 사용할 수 있다. 액체 왁스는 스핀 코팅을 사용하여 임시접착부(55) 상에 형성할 수 있다.
액체 왁스인 임시접착부(55)는 85℃~100℃보다 높은 온도에서는 점성이 낮아지고, 85℃보다 낮은 온도에서 점성이 커지고 고체처럼 일부 굳을 수 있어, 마스크 금속막(110')과 템플릿(50)을 고정 접착할 수 있다.
다음으로, 도 12의 (b)를 참조하면, 템플릿(50) 상에 마스크 금속막(110')을 접착할 수 있다. 액체 왁스를 85℃이상으로 가열하고 마스크 금속막(110')을 템플릿(50)에 접촉시킨 후, 마스크 금속막(110') 및 템플릿(50)을 롤러 사이에 통과시켜 접착을 수행할 수 있다.
일 실시예에 따르면, 템플릿(50)에 약 120℃, 60초 동안 베이킹(baking)을 수행하여 임시접착부(55)의 솔벤트를 기화시키고, 곧바로, 마스크 금속막 라미네이션(lamination) 공정을 진행할 수 있다. 라미네이션은 임시접착부(55)가 일면에 형성된 템플릿(50) 상에 마스크 금속막(110')을 로딩하고, 약 100℃의 상부 롤(roll)과 약 0℃의 하부 롤 사이에 통과시켜 수행할 수 있다. 그 결과로, 마스크 금속막(110')이 템플릿(50) 상에서 임시접착부(55)를 개재하여 접촉될 수 있다.
도 14는 본 발명의 일 실시예에 따른 임시접착부(55)를 나타내는 확대 단면 개략도이다. 또 다른 예로, 임시접착부(55)는 열박리 테이프(thermal release tape)를 사용할 수 있다. 열박리 테이프는 가운데에 PET 필름 등의 코어 필름(56)이 배치되고, 코어 필름(56)의 양면에 열박리가 가능한 점착층(thermal release adhesive; 57a, 57b)이 배치되며, 점착층(57a, 57b)의 외곽에 박리 필름/이형 필름(58a, 58b)이 배치된 형태일 수 있다. 여기서 코어 필름(56)의 양면에 배치되는 점착층(57a, 57b)은 상호 박리되는 온도가 상이할 수 있다.
일 실시예에 따르면, 박리 필름/이형 필름(58a, 58b)을 제거한 상태에서, 열박리 테이프의 하부면[제2 점착층(57b)]은 템플릿(50)에 접착되고, 열박리 테이프의 상부면[제1 점착층(57a)]은 마스크 금속막(110')에 접착될 수 있다. 제1 점착층(57a)과 제2 점착층(57b)은 상호 박리되는 온도가 상이하므로, 후술할 도 28에서 마스크(100)로부터 템플릿(50)을 분리할 때, 제1 점착층(57a)이 열박리 되는 열을 가함에 따라 마스크(100)는 템플릿(50) 및 임시접착부(55)로부터 분리가 가능해질 수 있다.
이어서, 도 12의 (b)를 더 참조하면, 마스크 금속막(110')의 일면을 평탄화(PS) 할 수 있다. 도 10에서 상술한 바와 같이, 압연 공정으로 제조된 마스크 금속막(110')은 평탄화(PS) 공정으로 두께를 감축(110' -> 110)시킬 수 있다. 그리고, 전주 도금 공정으로 제조된 마스크 금속막(110)도 표면 특성, 두께의 제어를 위해 평탄화(PS) 공정이 수행될 수 있다.
이에 따라, 도 12의 (c)와 같이, 마스크 금속막(110')의 두께가 감축(110' -> 110)됨에 따라, 마스크 금속막(110)은 두께가 약 5㎛ 내지 20㎛가 될 수 있다.
다음으로, 도 13의 (d)를 참조하면, 마스크 금속막(110)의 상부면(111)에 Ni층을 형성(RF)할 수 있다. Ni층 형성(RF)은 니켈 스트라이크(Ni strike) 도금, 니켈 스퍼터링(Ni sputtering), 니켈 증착 (Ni evaporation) 등의 증착 방법을 사용할 수 있다. 마스크 금속막(110)의 표면에 Ni층을 형성(RF)하는 것을 통해, 메탈기재[마스크 금속막(110)]의 표면에 절연부(25, PR)의 접착되는 특성이 개선되도록 하는 것이다. 절연부(25)가 마스크 금속막(110)에 보다 잘 접착됨에 따라, 절연부(25) 사이의 빈 공간인 절연부 패턴(26)이 명확해지게 되면, 마스크 패턴(P)의 형태도 보다 명확해지고 해상도가 증가할 수 있는 이점이 있다. 이하에서 구체적인 실험예를 통해 살펴본다.
도 15는 종래 방식의 문제점을 나타내는 사진이다. 도 15를 참조하면, 종래 방식은 마스크 패턴(P)이 생성되기 전에 PR[절연부(25)]이 제거되어 인바 시트의 모든 면이 어택받은 모습을 나타낸다. 이 상태에서 에칭이 더 진행될 시, 하부의 사진에서 나타내는 바와 같이 짧은 시간만에 마스크 패턴(P)이 사라지게 된다. 다시 말해, 문제는 사이드 에칭(Side etching)으로 인해 PR[절연부(25)]이 탈착되고, 홀(Hole)[마스크 패턴(P)] 생성 전에 PR[절연부(25)]이 제거되어 마스크 패턴(P)의 형성이 불가한 것이다. 이에 대한 해결책으로, 도 21 내지 도 25에서 후술할 이중 PR형성 방법, 마스크 금속막(110) 표면 처리(조도 형성), PR의 2차 Baking, 에칭액의 튜닝(Inhibitor 첨가) 등을 고려할 수 있다. 일단, 마스크 금속막(110)의 표면에 Ni층을 형성(RF)하는 방법으로 표면을 처리하는 것을 설명한다.
본 발명은 도 13의 (d)와 같이 마스크 금속막(110)의 상부면(111)에, Ni strike 도금, Ni sputtering, Ni evaporation 등의 증착 방법을 이용한 Ni층을 형성(RF)하는 것을 특징으로 한다. 니켈 스크라이크 도금을 이용하는 경우, 0.1ASD 내지 5.0ASD의 전류밀도로 니켈 스크라이크 도금을 수행할 수 있다.
도 16은 여러가지 방법에 따른 마스크 금속막(110)의 표면 처리를 나타낸다.
(a)는 상온에서 SPM 처리하는 것이다. SPM은 황산(sulfuric acid)와 과산화수소수(hydrogen peroxide)를 일정 비율로 섞은 것으로 Piranha 처리라고도 한다. SPM 처리를 각각 25s, 90s 수행하고, 절연부(25, PR)을 형성한 후에 에칭을 수행한 결과, 효과적으로 사이드 에칭이 줄었으나 표면 처리가 균일하지 않아 외관도 얼룩이 많으며, 홀의 형태도 균일하지 않음을 확인할 수 있다.
(b)는 상온에서 Nickel strike 처리하여 Ni층을 형성하는 것으로, 전류밀도 5ASD, 1min 수행한 결과, 사이드 에칭이 줄었으나, 홀의 에칭레이트 편차가 매우 크며, 형태 역시 불규칙한 모습을 보인다.
(c)는 상온에서 Nickel strike 처리하여 Ni층을 형성하는 것으로, 전류밀도 5ASD, 1min 수행하는 것에 더하여, 절연부(25)를 165℃에서 10s동안 2nd baking 처리한 것이다. 고온 하드 베이크를 통해 사이드 에칭이 줄고 홀의 에칭레이트 편차가 더 개선된 모습을 보이나 여전히 편차는 발생하는 문제점이 나타난다.
도 17 및 도 18은 여러 실시예에 따른 니켈 스트라이크(Nickel strike) 테스트 결과를 나타낸다.
도 17에서는 전류밀도, 시간, 에칭 시간 등을 구분하여 테스트를 수행하였다. 도 17을 참조하면, Nickel strike 테스트 결과 에칭된 패턴이 외관으로는 균일해 보이지만 홀마다 에칭 레이트가 다른 것을 확인할 수 있다. 홀의 에칭 레이트의 균일성이 더 좋아야 하므로, Nickel strike에 대한 보다 세밀한 조건을 세울 필요가 있다.
도 18에서는 더 낮은 전류밀도인 0.5ASD에서 120s, 높은 전류밀도인 4ASD에서 60s에서 테스트를 수행하고, 별도로 에칭전 질산 처리(5%)를 하여 에칭 대상이 되는 패턴 표면의 니켈층을 제거한 후 에칭 테스트를 수행하였다. 도 18을 참조하면, 0.5ASD는 비교적 원형의 형태로 에칭되나, 사이드 에칭이 큰 것을 확인할 수 있다. 4ASD는 사이드 에칭은 줄었으나, 홀의 형태가 좋지 않음을 확인할 수 있다. 질산 처리의 유무는 큰 차이가 없는 것을 확인할 수 있다.
도 19 및 도 20은 본 발명의 일 실시예에 따른 니켈 스트라이크(Nickel strike) 테스트 결과를 나타낸다.
질산 처리의 유무는 큰 차이가 없고, 질산 처리로 에칭 패턴이 완벽한 원형을 유지하지 않음을 확인한 바 있다. 도 17에서 확인하 바와 같이, 기존 조건인 4ASD 30sec보다 약하게 해야하나, 사이드 에칭이 늘어나는 것까지 고려할 필요가 있다. 후술할 도 21 내지 도 23의 공정을 진행하는 조건으로 테스트하였다.
Ni strike 처리가 없으면 에칭 30sec이상 부터 PR이 떨어져 패턴이 손상된다[도 15 사진 참조]. 도 19를 참조하면, 0.3, 0.5ASD에서는 사이드 에칭이 매우 크고, 1ASD 이상에서 사이드 에칭이 줄어든 것을 뚜렷하게 확인할 수 있다. 다만, 2, 4ASD에서는 에칭된 면이 고르지 않은 것을 확인할 수 있고, 이것은 홀의 형태에 영향을 준다. 따라서, 0.5~1ASD 사이에서 처리하는 것이 바람직하다.
도 20을 참조하면, 0.5~1ASD 사이에서 처리한 결과, 밑 면 구멍이 원형에 가까운 형태를 보이며, 명확한 패턴이 형성됨을 확인할 수 있다.
다음으로, 도 13의 (e)를 참조하면, 마스크 금속막(110) 상에 패턴화된 절연부(25)를 형성할 수 있다. 절연부(25)는 프린팅 법 등을 이용하여 포토레지스트 재질로 형성될 수 있다. 마스크 금속막(110)의 상부면(111)에 Ni층이 형성(RF)됨에 따라 절연부(25)와의 접착력이 개선될 수 있다.
이어서, 마스크 금속막(110)의 식각을 수행할 수 있다. 건식 식각, 습식 식각 등의 방법을 제한없이 사용할 수 있고, 식각 결과 절연부(25) 사이의 빈 공간(26)으로 노출된 마스크 금속막(110)의 부분이 식각될 수 있다. 마스크 금속막(110)의 식각된 부분은 마스크 패턴(P)을 구성하고, 복수의 마스크 패턴(P)이 형성된 마스크(100)가 제조될 수 있다. 도 19 및 도 20에서 확인한 바와 같이, 마스크 금속막(110)의 상부면(111)에 Ni층이 형성(RF)됨에 따라 절연부(25)와의 접착력이 개선되고, 원하는 형태로 선명하게 에칭된 마스크 패턴(P)을 형성할 수 있다.
한편, 종래의 마스크는 마스크 패턴들의 크기가 일정하지 않은 문제점이 있다. 습식 식각은 등방성으로 수행되기 때문에, 식각되는 형태는 대략 원호 형상을 나타내게 마련이다. 또한, 습식 식각 과정에서 각각의 부분에 식각되는 속도를 똑같이 수행하기는 매우 어렵기 때문에, 막이 관통된 후에 관통된 패턴의 폭은 각각 상이할 수 밖에 없다. 특히, 언더컷(undercut)이 많이 발생한 패턴에서 마스크 패턴의 하부 폭뿐만 아니라 상부 폭까지도 넓게 형성될 수 있고, 언더컷이 덜 발생한 패턴에서는 하부 폭 및 상부 폭이 상대적으로 좁게 형성될 수 있다. 초고화질의 OLED의 경우, 현재 QHD 화질은 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질은 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 되므로, 사소한 크기 차이도 제품의 실패로 이어질 위험이 있다.
도 21 내지 도 23은 본 발명의 일 실시예에 따른 마스크의 제조 과정을 나타내는 개략도이다. 본 발명은 습식 식각을 2회 수행하여, 습식 식각 과정에서 절연 마스크의 패턴 정밀도를 향상시킨 것을 특징으로 한다.
도 21의 (a)를 참조하면, 먼저, 압연(rolling), 전주 도금 등으로 생성한 금속 시트(sheet; 110)를 제공할 수 있다. 전술한 바와 같이, 마스크 금속막(110)의 재질은 인바(invar), 슈퍼 인바(super invar), 니켈(Ni), 니켈-코발트(Ni-Co) 등일 수 있다.
다음으로, 마스크 금속막(110)의 일면(상면) 상에 패턴화된 제1 절연부(M1)를 형성할 수 있다. 제1 절연부(M1)는 프린팅 법 등을 이용하여 포토레지스트 재질로 형성할 수 있다.
제1 절연부(M1)는 블랙 매트릭스 포토레지스트(black matrix photoresist) 또는 상부에 금속 코팅막이 형성된 포토레지스트 재질일 수 있다. 블랙 매트릭스 포토레지스트는, 디스플레이 패널의 블랙 매트릭스를 형성하는데 사용하는 블랙 매트릭스 수지(resin black matrix)를 포함하는 재질일 수 있다. 블랙 매트릭스 포토레지스트는 일반 포토레지스트보다 광 차단 효과가 클 수 있다. 또한, 상부에 금속 코팅막이 형성된 포토레지스트도 금속 코팅막에 의해 상부에서 조사되는 광을 차단하는 효과가 클 수 있다.
다음으로, 도 21의 (b)를 참조하면, 마스크 금속막(110)의 일면(상면)에서 습식 식각(WE1)으로 소정 깊이만큼 제1 마스크 패턴(P1)을 형성할 수 있다. 습식 식각(WE1)을 수행할 때, 마스크 금속막(110)이 관통되지 않도록 해야한다. 그리하여, 제1 마스크 패턴(P1)은 마스크 금속막(110)을 관통하지는 않고 대략 원호 형상으로 형성될 수 있다. 즉, 제1 마스크 패턴(P1)의 깊이 값은 마스크 금속막(110)의 두께보다는 적을 수 있다.
습식 식각(WE1)은 등방성 식각 특성을 가지기 때문에, 제1 마스크 패턴(P1)의 폭(R2)은 제1 절연부(M1)의 패턴 사이 간격(R3)과 동일한 폭을 가지지 않고, 제1 절연부(M1)의 패턴 사이 간격(R3)보다 넓은 폭을 가질 수 있다. 다시 말해, 제1 절연부(M1)의 양측 하부에 언더컷(undercut, UC)이 형성되므로, 제1 마스크 패턴(P1)의 폭(R2)은 제1 절연부(M1)의 패턴 사이 간격(R3)보다는 언더컷(UC)이 형성된 폭만큼 더 클 수 있다.
다음으로, 도 21의 (c)를 참조하면, 마스크 금속막(110)의 일면(상면) 상에 제2 절연부(M2)를 형성할 수 있다. 제2 절연부(M2)는 프린팅 법 등을 이용하여 포토레지스트 재질로 형성할 수 있다. 제2 절연부(M2)는 후술할 언더컷(UC)이 형성되는 공간에 남겨야 하기 때문에, 포지티브 타입의 포토레지스트 재질인 것이 바람직하다.
마스크 금속막(110)의 일면(상면) 상에 제2 절연부(M2)가 형성되므로, 일부는 제1 절연부(M1) 상에 형성되고, 일부는 제1 마스크 패턴(P1) 내에 채워질 수 있다.
제2 절연부(M2)는 용매에 희석(dilution)된 포토레지스트를 사용할 수 있다. 농도가 높은 포토레지스트 용액을 마스크 금속막(110) 및 제1 절연부(M1) 상에 형성하면, 제1 절연부(M1)의 포토레지스트와 반응하여 제1 절연부(M1)의 일부가 용해될 수도 있다. 그리하여, 제1 절연부(M1)에 영향을 주지 않도록, 제2 절연부(M2)는 용매에 희석하여 포토레지스트의 농도를 낮춘 것을 사용할 수 있다.
다음으로, 도 22의 (d)를 참조하면, 베이킹(baking)을 수행하여 제2 절연부(M2)의 일부를 휘발시킬 수 있다. 베이킹에 의해 제2 절연부(M2)의 용매가 휘발되고, 포토레지스트 성분만 남게 된다. 그리하여, 제2 절연부(M2')가 제1 마스크 패턴(P1)의 노출된 부분 및 제1 절연부(M1)의 표면 상에서 코팅된 막과 같이 얇게 남을 수 있다. 남은 제2 절연부(M2')의 두께는 제1 절연부(M1)의 패턴 폭(R3) 또는 제1 마스크 패턴(P1)의 패턴 폭(R2)에 영향을 주지 않을 정도로, 수㎛ 보다 적은 정도인 것이 바람직하다.
다음으로, 도 22의 (e)를 참조하면, 마스크 금속막(110)의 일면(상면) 상에서 노광(L)을 수행할 수 있다. 제1 절연부(M1)의 상부에서 노광(L) 시에 제1 절연부(M1)는 노광 마스크로 작용할 수 있다. 제1 절연부(M1)가 블랙 매트릭스 포토레지스트(black matrix photoresist) 또는 상부에 금속 코팅막이 형성된 포토레지스트 재질이기 때문에 광 차단하는 효과가 우수할 수 있다. 그리하여, 제1 절연부(M1)의 수직 하부에 위치한 제2 절연부(M2")[도 22의 (f) 참조]는 노광(L)되지 않을 수 있고, 나머지 절연부(M2')는 노광(L)될 수 있다.
다음으로, 도 22의 (f)를 참조하면, 노광(L) 후 현상하면, 노광(L)되지 않은 제2 절연부(M2")의 부분은 남고, 나머지 제2 절연부(M2')는 제거될 수 있다. 제2 절연부(M2')는 포지티브 타입의 포토레지스트이므로, 노광(L)된 부분이 제거될 수 있다. 제2 절연부(M2")가 남는 공간은 제1 절연부(M1)의 양측 하부에 언더컷(UC)이 형성[도 21의 (b) 단계 참조]되는 공간에 대응할 수 있다.
다음으로, 도 23의 (g)를 참조하면, 마스크 금속막(110)의 제1 마스크 패턴(P1) 상에 습식 식각(WE2)을 수행할 수 있다. 습식 식각액은 제1 절연부(M1)의 패턴 사이 공간 및 제1 마스크 패턴(P1) 공간으로 침투하여 습식 식각(WE2)을 수행할 수 있다. 제2 마스크 패턴(P2)은 마스크 금속막(110)을 관통하여 형성될 수 있다. 즉, 제1 마스크 패턴(P1)의 하단에서부터 마스크 금속막(110)의 타면을 관통하여 형성될 수 있다.
이때, 제1 마스크 패턴(P1)에는 제2 절연부(M2")가 남아 있다. 남아 있는 제2 절연부(M2")는 습식 식각의 마스크로 작용할 수 있다. 즉, 제2 절연부(M2")는 식각액을 마스킹하여, 식각액이 제1 마스크 패턴(P1)의 측면 방향으로 식각되는 것을 막고, 제1 마스크 패턴(P1)의 하부면 방향으로 식각되도록 한다.
제2 절연부(M2")는 제1 절연부(M1) 수직 하부의 언더 컷(UC) 공간에 배치되므로, 제2 절연부(M2")의 패턴 폭은 실질적으로 제1 절연부(M1)의 패턴 폭(R3)에 대응하게 된다. 이에 의해, 제2 마스크 패턴(P2)은 제1 절연부(M1)의 패턴 사이 간격(R3)에 대해서 습식 식각(WE2)을 수행한 것이나 마찬가지이게 된다. 따라서, 제2 마스크 패턴(P2)의 폭(R1)은 제1 마스크 패턴(P1)의 폭(R2)보다 좁게 형성될 수 있다.
제2 마스크 패턴(P2)의 폭은 화소의 폭을 규정하기 때문에, 제2 마스크 패턴(P2)의 폭은 35㎛보다는 작은 것이 바람직하다. 또한, 제2 마스크 패턴(P2)의 두께가 너무 두꺼우면, 제2 마스크 패턴(P2)의 폭(R1)을 제어하기 어렵고 폭(R1)들의 균일성이 낮아지며, 마스크 패턴(P)의 형상이 전체적으로 테이퍼/역테이퍼 형상으로 나타나지 않는 문제가 발생할 수 있으므로, 제2 마스크 패턴(P2)의 두께는 제1 마스크 패턴(P1)의 두께보다 작은 것이 바람직하다. 제2 마스크 패턴(P2)의 두께는 가급적 0에 가까운 것이 바람직하며, 화소의 크기를 고려하면, 예를 들어, 제2 마스크 패턴(P2)의 두께는 약 0.5 내지 3.0 ㎛인 것이 바람직하고, 0.5 내지 2.0 ㎛ 인 것이 더 바람직하다.
이어진 제1 마스크 패턴(P1)과 제2 마스크 패턴(P2)의 형상의 합이 마스크 패턴(P)을 구성할 수 있다.
다음으로, 도 23의 (h)를 참조하면, 제1 절연부(M1) 및 제2 절연부(M2)를 제거하여 마스크(100)의 제조를 완료할 수 있다. 제1, 2 마스크 패턴(P1)은 기울어진 면을 포함하여 형성되고, 제2 마스크 패턴(P2)의 높이는 매우 낮게 형성되므로, 제1 마스크 패턴(P1)과 제2 마스크 패턴(P2)의 형상을 합하면, 전체적으로 테이퍼 형상 또는 역테이퍼 형상을 나타낼 수 있다.
도 24는 본 발명의 비교예에 따른 마스크의 식각 정도를 나타내는 개략도이다.
도 24를 참조하면, 습식 식각은 등방성으로 수행되기 때문에, 식각되는 형태는 대략 원호 형상을 나타내게 마련이다. 또한, 습식 식각 과정에서 각각의 부분에 식각되는 속도가 완벽히 똑같기는 어려우며, 습식 식각을 1회만 수행하여 마스크 금속막(110)을 관통함에 따라 마스크 패턴을 형성한 경우에는 그 편차가 더욱 클 수 있다. 예를 들어, 마스크 패턴(111)과 마스크 패턴(112)은 습식 식각 속도의 차이가 있지만, 상부 폭(언더 컷)의 차이는 그렇게 크지 않다. 하지만, 마스크 패턴(111)의 형성에 의해 관통된 마스크 금속막(110)의 하부 폭(PD1)과 마스크 패턴(112)의 형성에 의해 관통된 마스크 금속막(110)의 하부 폭(PD2)의 차이는 상부 폭의 차이보다 훨씬 커지게 된다. 이는 습식 식각이 등방성으로 수행되기 때문에 나타나는 결과이다. 다시 말해, 화소의 크기를 결정하는 폭은 마스크 패턴(111, 112)의 상부 폭보다는 하부 폭(PD1, PD2)이기 때문에, 1회의 습식 식각보다는 2회의 습식 식각을 수행하는 것이 하부 폭(PD1, PD2)을 제어하기 용이하게 된다. 이하의 도 25에서 본 발명을 적용한 실시예를 들어서 더 설명한다.
도 25는 본 발명의 일 실시예에 따른 마스크의 식각 정도를 나타내는 개략도이다.
도 25의 (a)까지의 과정은 도 21의 (a) 내지 (b)에서 설명한 과정과 동일하다. 다만, 도 25의 (a)에서는 제1 절연부(M1)를 통한 습식 식각(WE1)에서 식각 정도의 차이가 나타난 제1 마스크 패턴(P1-1)과 제1 마스크 패턴(P1-2)을 비교하여 설명한다.
도 25의 (a)를 참조하면, 같은 습식 식각(WE1-1, WE1-2)에 의해서도 부분에 따라 제1 마스크 패턴(P1-1)과 제1 마스크 패턴(P1-2)과 같이 식각의 정도에 차이가 생길 수 있다. 제1 마스크 패턴(P1-1)의 패턴 폭(R2-1)은 제1 마스크 패턴(P1-2)의 패턴 폭(R2-2)보다 작으며, 이러한 패턴 폭(R2-1, R2-2)의 차이는 화소의 해상도에 악영향을 미칠 정도의 차이일 수 있다.
다음으로, 도 25의 (b)를 참조하면, 도 21의 (c) 내지 도 22의 (f)에서 설명한 과정을 수행한 후, 제1 절연부(M1)의 수직 하부 공간에 각각 제2 절연부(M2"-1, M2"-2)가 형성된 것을 확인할 수 있다. 제1 절연부 하부의 언더 컷 된 공간의 크기 차이에 의해, 각각 제2 절연부(M2"-1, M2"-2)가 형성된 크기는 상이할 수 있다. 제2 절연부(M2"-1)보다 제2 절연부(M2"-2)가 형성된 크기가 크지만, 제2 절연부(M2"-1, M2"-2)의 패턴 폭은 동일할 수 있다. 각각의 제2 절연부(M2"-1, M2"-2)의 패턴 폭은 제1 절연부(M1)의 패턴 폭(R3)에 대응하도록 동일할 수 있다.
다음으로, 도 25의 (c)를 참조하면, 각각의 제2 절연부(M2"-1, M2"-2)를 습식 식각의 마스크로 사용하여 두번째 습식 식각(WE2)을 수행하여, 마스크 금속막(110)을 관통할 수 있다. 이 결과로 형성된 제2 마스크 패턴(P2-1, P2-2)의 폭(R1-1, R1-2)의 편차는, 제1 마스크 패턴(P1-1, P1-2)의 폭(R2-1, R2-2)의 편차보다 현저히 작아질 수 있다. 이는, 제1 마스크 패턴(P1-1, P1-2)의 깊이만큼 마스크 금속막(110)을 1차로 습식 식각하고, 남은 마스크 금속막(110)의 두께에 대해서 2차로 습식 식각을 진행함과 동시에, 2차로 습식 식각을 수행하는 제2 절연부(M2"-1, M2"-2)의 패턴 폭이 1차로 습식 식각을 수행하는 제1 절연부(M1)의 패턴 폭과 실질적으로 동일하기 때문이다.
위와 같이, 본 발명은 마스크 제조 방법은 습식 식각을 2회 수행함에 따라, 마스크 패턴(P)을 원하는 크기로 형성할 수 있는 효과가 있다. 특히, 일부 제2 절연부(M2")를 남겨둠에 따라, 2번째 습식 식각은 1번째 습식보다 얇은 폭 및 얇은 두께에 대해 행해지기 때문에, 제2 마스크 패턴(P2)의 폭(R1)을 제어하기 용이한 이점이 있다. 게다가, 습식 식각으로 기울어진 면을 형성할 수 있기 때문에, 새도우 이펙트를 방지하는 마스크 패턴(P)을 구현할 수 있게 된다.
다음으로, 도 13의 (f)를 참조하면, 절연부(25)를 제거하여 마스크(100)를 지지하는 템플릿(50)의 제조를 완료할 수 있다.
프레임(200)이 복수의 마스크 셀 영역(CR: CR11~CR56)을 구비하므로, 각각의 마스크 셀 영역(CR: CR11~CR56)에 대응하는 마스크 셀(C: C11~C56)을 가지는 마스크(100)도 복수개 구비할 수 있다. 또한, 복수개의 마스크(100)의 각각을 지지하는 복수의 템플릿(50)을 구비할 수 있다.
도 26은 본 발명의 일 실시예에 따른 마스크 지지 템플릿을 프레임 상에 로딩하는 과정을 나타내는 개략도이다.
도 26을 참조하면, 템플릿(50)은 진공 척(90)에 의해 이송될 수 있다. 진공 척(90)으로 마스크(100)가 접착된 템플릿(50) 면의 반대 면을 흡착하여 이송할 수 있다. 진공 척(90)은 x, y, z, θ축으로 이동되는 이동 수단(미도시)에 연결될 수 있다. 또한, 진공 척(90)은 템플릿(50)을 흡착하여 플립(flip)할 수 있는 플립 수단(미도시)에 연결될 수 있다. 도 26의 (b)에 도시된 바와 같이, 진공 척(90)이 템플릿(50)을 흡착하여 플립한 후, 프레임(200) 상으로 템플릿(50)을 이송하는 과정에서도, 마스크(100)의 접착 상태 및 정렬 상태에는 영향이 없게 된다.
도 27은 본 발명의 일 실시예에 따른 템플릿을 프레임 상에 로딩하여 마스크를 프레임의 셀 영역에 대응시키는 상태를 나타내는 개략도이다. 도 27에는 하나의 마스크(100)를 셀 영역(CR)에 대응/부착하는 것이 예시되나, 복수의 마스크(100)를 동시에 각각 모든 셀 영역(CR)에 대응시켜서 마스크(100)를 프레임(200)에 부착하는 과정을 수행할 수도 있다. 이 경우, 복수개의 마스크(100)의 각각을 지지하는 복수의 템플릿(50)을 구비할 수 있다.
다음으로, 도 27을 참조하면, 마스크(100)를 프레임(200)의 하나의 마스크 셀 영역(CR)에 대응할 수 있다. 템플릿(50)을 프레임(200)[또는, 마스크 셀 시트부(220)] 상에 로딩하는 것으로 마스크(100)를 마스크 셀 영역(CR)에 대응시킬 수 있다. 템플릿(50)/진공 척(90)의 위치를 제어하면서, 현미경을 통해 마스크(100)가 마스크 셀 영역(CR)에 대응하는지 살펴볼 수 있다. 템플릿(50)이 마스크(100)를 압착하므로, 마스크(100)와 프레임(200)은 긴밀히 맞닿을 수 있다.
한편, 하부 지지체(70)를 프레임(200) 하부에 더 배치할 수도 있다. 하부 지지체(70)는 프레임 테두리부(210)의 중공 영역(R) 내에 들어갈 정도의 크기를 가지고 평판 형상일 수 있다. 또한, 하부 지지체(70)의 상부면에는 마스크 셀 시트부(220)의 형상에 대응하는 소정의 지지홈(미도시)이 형성될 수도 있다. 이 경우 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225)가 지지홈에 끼워지게 되어, 마스크 셀 시트부(220)가 더욱 잘 고정될 수 있다.
하부 지지체(70)는 마스크(100)가 접촉하는 마스크 셀 영역(CR)의 반대면을 압착할 수 있다. 즉, 하부 지지체(70)는 마스크 셀 시트부(220)를 상부 방향으로 지지하여 마스크(100)의 부착과정에서 마스크 셀 시트부(220)가 하부 방향으로 처지는 것을 방지할 수 있다. 이와 동시에, 하부 지지체(70)와 템플릿(50)이 상호 반대되는 방향으로 마스크(100)의 테두리 및 프레임(200)[또는, 마스크 셀 시트부(220)]를 압착하게 되므로, 마스크(100)의 정렬 상태가 흐트러지지 않고 유지될 수 있게 된다.
이처럼, 템플릿(50) 상에 마스크(100)를 부착하고, 템플릿(50)을 프레임(200) 상에 로딩하는 것만으로 마스크(100)를 프레임(200)의 마스크 셀 영역(CR)에 대응하는 과정이 완료되므로, 이 과정에서 마스크(100)에 어떠한 인장력도 가하지 않을 수 있다.
이어서, 마스크(100)에 레이저(L)를 조사하여 레이저 용접에 의해 마스크(100)를 프레임(200)에 부착할 수 있다. 레이저 용접된 마스크의 용접부 부분에는 용접 비드(WB)가 생성되고, 용접 비드(WB)는 마스크(100)/프레임(200)과 동일한 재질을 가지고 일체로 연결될 수 있다.
도 28은 본 발명의 일 실시예에 따른 마스크(100)를 프레임(200)에 부착한 후 마스크(100)와 템플릿(50)을 분리하는 과정을 나타내는 개략도이다.
도 28을 참조하면, 마스크(100)를 프레임(200)에 부착한 후, 마스크(100)와 템플릿(50)을 분리(debonding)할 수 있다. 마스크(100)와 템플릿(50)의 분리는 임시접착부(55)에 열 인가(ET), 화학적 처리(CM), 초음파 인가(US), UV 인가(UV) 중 적어도 어느 하나를 통해 수행할 수 있다. 마스크(100)는 프레임(200)에 부착된 상태를 유지하므로, 템플릿(50)만을 들어올릴 수 있다. 일 예로, 85℃~100℃보다 높은 온도의 열을 인가(ET)하면 임시접착부(55)의 점성이 낮아지게 되고, 마스크(100)와 템플릿(50)의 접착력이 약해지게 되어, 마스크(100)와 템플릿(50)이 분리될 수 있다. 다른 예로, IPA, 아세톤, 에탄올 등의 화학 물질에 임시접착부(55)를 침지(CM)함으로서 임시접착부(55)를 용해, 제거 등의 방식으로 마스크(100)와 템플릿(50)이 분리될 수 있다. 다른 예로, 초음파를 인가(US)하거나, UV를 인가(UV)하면 마스크(100)와 템플릿(50)의 접착력이 약해지게 되어, 마스크(100)와 템플릿(50)이 분리될 수 있다.
더 설명하면, 마스크(100)와 템플릿(50)의 접착을 매개하는 임시접착부(55)는 TBDB 접착소재(temporary bonding&debonding adhesive)이므로, 여러가지 분리(debonding) 방법을 사용할 수 있다.
일 예로, 화학적 처리(CM)에 따른 용매 디본딩(Solvent Debonding) 방법을 사용할 수 있다. 용매(solvent)의 침투에 의해 임시접착부(55)가 용해됨에 따라해 디본딩이 이루어질 수 있다. 이때, 마스크(100)에 패턴(P)이 형성되어 있으므로, 마스크 패턴(P) 및 마스크(100)와 템플릿(50)의 계면을 통해 용매가 침투될 수 있다. 용매 디본딩은 상온(room temperature)에서 디본딩이 가능하고 별도의 고안된 복잡한 디본딩 설비가 필요하지 않기 때문에 다른 디본딩 방법에 비해 상대적으로 경제적이라는 이점이 있다.
다른 예로, 열 인가(ET)에 따른 열 디본딩(Heat Debonding) 방법을 사용할 수 있다. 고온의 열을 이용해 임시접착부(55)의 분해를 유도하고, 마스크(100)와 템플릿(50) 간의 접착력이 감소되면 상하 방향 또는 좌우 방향로 디본딩이 진행될 수 있다.
다른 예로, 열 인가(ET), UV 인가(UV) 등에 따른 박리 접착제 디본딩(Peelable Adhesive Debonding) 방법을 사용할 수 있다. 임시접착부(55)가 열박리 테이프인 경우에 박리 접착제 디본딩 방법으로 디본딩을 수행할 수 있으며, 이 방법은 열 디본딩 방법처럼 고온의 열처리 및 고가의 열처리 장비가 필요하지 않다는 점과 진행 프로세스가 상대적으로 단순한 이점이 있다.
다른 예로, 화학적 처리(CM), 초음파 인가(US), UV 인가(UV) 등에 따른 상온 디본딩(Room Temperature Debonding) 방법을 사용할 수 있다. 마스크(100) 또는 템플릿(50)의 일부(중심부)에 non-sticky 처리를 하면, 임시접착부(55)에 의해 테두리 부분만 접착이 될 수 있다. 그리고, 디본딩 시에는 테두리 부분에 용제가 침투하여 입시접착부(55)의 용해에 의해 디본딩이 이루어지게 된다. 이 방법은 본딩과 디본딩이 진행되는 동안 마스크(100), 템플릿(50)의 테두리 영역을 제외한 나머지 부분은 직접적인 손실이나 디본딩 시 접착소재 잔여물(residue)에 의한 결함 등이 발생하지 않는 이점이 있다. 또한 열 디본딩법과 달리 디본딩시 고온의 열처리 과정이 필요하지 않기 때문에 상대적으로 공정 비용을 감축할 수 있는 이점이 있다.
도 29는 본 발명의 일 실시예에 따른 마스크(100)를 프레임(200)에 부착한 상태를 나타내는 개략도이다.
도 29를 참조하면, 하나의 마스크(100)는 프레임(200)의 하나의 셀 영역(CR) 상에 부착될 수 있다
프레임(200)의 마스크 셀 시트부(220)는 얇은 두께를 가지기 때문에, 마스크(100)에 인장력이 가해진 채로 마스크 셀 시트부(220)에 부착이 되면, 마스크(100)에 잔존하는 인장력이 마스크 셀 시트부(220) 및 마스크 셀 영역(CR)에 작용하게 되어 이들을 변형시킬 수도 있다. 따라서, 마스크(100)에 인장력을 가하지 않은 채로 마스크 셀 시트부(220)에 마스크(100)의 부착을 수행해야 한다. 본 발명은 템플릿(50) 상에 마스크(100)를 부착하고, 템플릿(50)을 프레임(200) 상에 로딩하는 것만으로 마스크(100)를 프레임(200)의 마스크 셀 영역(CR)에 대응하는 과정이 완료되므로, 이 과정에서 마스크(100)에 어떠한 인장력도 가하지 않을 수 있다. 그리하여, 마스크(100)에 가해진 인장력이 반대로 프레임(200)에 장력(tension)으로 작용하여 프레임(200)[또는, 마스크 셀 시트부(220)]을 변형시키는 것을 방지할 수 있게 된다.
종래의 도 1의 마스크(10)는 셀 6개(C1~C6)를 포함하므로 긴 길이를 가지는데 반해, 본 발명의 마스크(100)는 셀 1개(C)를 포함하여 짧은 길이를 가지므로 PPA(pixel position accuracy)가 틀어지는 정도가 작아질 수 있다. 예를 들어, 복수의 셀(C1~C6, ...)들을 포함하는 마스크(10)의 길이가 1m이고, 1m 전체에서 10㎛의 PPA 오차가 발생한다고 가정하면, 본 발명의 마스크(100)는 상대적인 길이의 감축[셀(C) 개수 감축에 대응]에 따라 위 오차 범위를 1/n 할 수 있다. 예를 들어, 본 발명의 마스크(100)의 길이가 100mm라면, 종래 마스크(10)의 1m에서 1/10로 감축된 길이를 가지므로, 100mm 길이의 전체에서 1㎛의 PPA 오차가 발생하게 되며, 정렬 오차가 현저히 감소하게 되는 효과가 있다.
한편, 마스크(100)가 복수의 셀(C)을 구비하고, 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응하여도 정렬 오차가 최소화되는 범위 내에서라면, 마스크(100)는 프레임(200)의 복수의 마스크 셀 영역(CR)에 대응할 수도 있다. 또는, 복수의 셀(C)을 가지는 마스크(100)가 하나의 마스크 셀 영역(CR)에 대응할 수도 있다. 이 경우에도, 정렬에 따른 공정 시간과 생산성을 고려하여, 마스크(100)는 가급적 적은 수의 셀(C)을 구비하는 것이 바람직하다.
본 발명의 경우는, 마스크(100)의 하나의 셀(C)을 대응시키고 정렬 상태를 확인하기만 하면 되므로, 복수의 셀(C: C1~C6)을 동시에 대응시키고 정렬 상태를 모두 확인하여야 하는 종래의 방법[도 2 참조]보다, 제조시간을 현저하게 감축시킬 수 있다.
즉, 본 발명의 프레임 일체형 마스크 제조 방법은, 6개의 마스크(100)에 포함되는 각각의 셀(C11~C16)을 각각 하나의 셀 영역(CR11~CR16)에 대응시키고 각각 정렬 상태를 확인하는 6번의 과정을 통해, 6개의 셀(C1~C6)을 동시에 대응시키고 6개 셀(C1~C6)의 정렬 상태를 동시에 모두 확인해야 하는 종래의 방법보다 훨씬 시간이 단축될 수 있다.
또한, 본 발명의 프레임 일체형 마스크 제조 방법은, 30개의 셀 영역(CR: CR11~CR56)에 30개의 마스크(100)를 각각 대응시키고 정렬하는 30번의 과정에서의 제품 수득률이, 6개의 셀(C1~C6)을 각각 포함하는 5개의 마스크(10)[도 2의 (a) 참조]를 프레임(20)에 대응시키고 정렬하는 5번의 과정에서의 종래의 제품 수득률보다 훨씬 높게 나타날 수 있다. 한번에 6개씩의 셀(C)이 대응하는 영역에 6개의 셀(C1~C6)을 정렬하는 종래의 방법이 훨씬 번거롭고 어려운 작업이므로 제품 수율이 낮게 나타나는 것이다.
한편, 도 12의 (b) 단계에서 상술한 바와 같이, 라미네이션 공정으로 템플릿(50)에 마스크 금속막(110)을 접착할 때, 약 100℃의 온도가 마스크 금속막(110)에 가해질 수 있다. 이에 의해 마스크 금속막(110)에 일부 인장 장력이 걸린 상태로 템플릿(50)에 접착될 수 있다. 그 후, 마스크(100)가 프레임(200)에 부착되고, 템플릿(50)이 마스크(100)와 분리되면, 마스크(100)는 소정양 수축할 수 있다.
각각의 마스크(100)들이 모두 대응되는 마스크 셀 영역(CR) 상에 부착된 후에 템플릿(50)과 마스크(100)들이 분리되면, 복수의 마스크(100)들이 상호 반대방향으로 수축되는 장력을 인가하기 때문에, 그 힘이 상쇄되어 마스크 셀 시트부(220)에는 변형이 일어나지 않게 된다. 예를 들어, CR11 셀 영역에 부착된 마스크(100)와 CR12 셀 영역에 부착된 마스크(100) 사이의 제1 그리드 시트부(223)는 CR11 셀 영역에 부착된 마스크(100)의 우측 방향으로 작용하는 장력과 CR12 셀 영역에 부착된 마스크(100)의 좌측 방향으로 작용하는 장력이 상쇄될 수 있다. 그리하여, 장력에 의한 프레임(200)[또는, 마스크 셀 시트부(220)]에는 변형이 최소화되어 마스크(100)[또는, 마스크 패턴(P)]의 정렬 오차가 최소화 될 수 있는 이점이 있다.
도 30은 본 발명의 일 실시예에 따른 프레임 일체형 마스크(100, 200)를 이용한 OLED 화소 증착 장치(1000)를 나타내는 개략도이다.
도 30을 참조하면, OLED 화소 증착 장치(1000)는, 마그넷(310)이 수용되고, 냉각수 라인(350)이 배설된 마그넷 플레이트(300)와, 마그넷 플레이트(300)의 하부로부터 유기물 소스(600)를 공급하는 증착 소스 공급부(500)를 포함한다.
마그넷 플레이트(300)와 소스 증착부(500) 사이에는 유기물 소스(600)가 증착되는 유리 등의 대상 기판(900)이 개재될 수 있다. 대상 기판(900)에는 유기물 소스(600)가 화소별로 증착되게 하는 프레임 일체형 마스크(100, 200)[또는, FMM]이 밀착되거나 매우 근접하도록 배치될 수 있다. 마그넷(310)이 자기장을 발생시키고 자기장에 의해 대상 기판(900)에 밀착될 수 있다.
증착 소스 공급부(500)는 좌우 경로를 왕복하며 유기물 소스(600)를 공급할 수 있고, 증착 소스 공급부(500)에서 공급되는 유기물 소스(600)들은 프레임 일체형 마스크(100, 200)에 형성된 패턴(P)을 통과하여 대상 기판(900)의 일측에 증착될 수 있다. 프레임 일체형 마스크(100, 200)의 패턴(P)을 통과한 증착된 유기물 소스(600)는 OLED의 화소(700)로서 작용할 수 있다.
새도우 이펙트(Shadow Effect)에 의한 화소(700)의 불균일 증착을 방지하기 위해, 프레임 일체형 마스크(100, 200)의 패턴은 경사지게 형성(S)[또는, 테이퍼 형상(S)으로 형성]될 수 있다. 경사진 면을 따라서 대각선 방향으로 패턴을 통과하는 유기물 소스(600)들도 화소(700)의 형성에 기여할 수 있으므로, 화소(700)는 전체적으로 두께가 균일하게 증착될 수 있다.
마스크(100)는 화소 증착 공정 온도보다 높은 제1 온도 상에서 프레임(200)에 부착 고정되므로, 화소 증착을 위한 공정 온도로 상승시킨다고 하더라도, 마스크 패턴(P)의 위치에는 영향이 거의 없게 되며, 마스크(100)와 이에 이웃하는 마스크(100) 사이의 PPA는 3㎛를 초과하지 않도록 유지될 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.
50: 템플릿(template)
51: 레이저 통과공
55: 임시접착부
70: 하부 지지체
100: 마스크
110: 마스크 막
200: 프레임
210: 테두리 프레임부
220: 마스크 셀 시트부
221: 테두리 시트부
223: 제1 그리드 시트부
225: 제2 그리드 시트부
1000: OLED 화소 증착 장치
C: 셀, 마스크 셀
CM: 화학적 처리
CR: 마스크 셀 영역
DM: 더미, 마스크 더미
ET: 열 인가
L: 레이저
R: 테두리 프레임부의 중공 영역
RF: Ni층 형성
P: 마스크 패턴
US: 초음파 인가
UV: UV 인가
W: 용접
WB: 용접 비드

Claims (19)

  1. OLED 화소 형성용 마스크의 제조 방법으로서,
    (a) 인바 또는 슈퍼 인바 재질의 마스크 금속막을 준비하는 단계;
    (b) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계;
    (c) Ni층 상에 패턴화된 절연부를 형성하는 단계;
    (d) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및
    (e) 절연부를 제거하는 단계
    를 포함하는, 마스크의 제조 방법
  2. 제1항에 있어서,
    (b) 단계에서, 니켈 스트라이크(Ni strike) 도금, 니켈 스퍼터링(Ni sputtering), 니켈 증착 (Ni evaporation) 중 어느 하나의 방법을 이용하여 Ni층을 형성하는, 마스크의 제조 방법.
  3. ◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈
    제2항에 있어서,
    니켈 스크라이크 도금을 이용하는 경우, 0.1ASD 내지 5.0ASD의 전류밀도로 니켈 스크라이크 도금을 수행하는, 마스크의 제조 방법.
  4. 제1항에 있어서,
    (c) 단계 및 (d) 단계는,
    (1) Ni층 상에 패턴화된 제1 절연부를 형성하는 단계;
    (2) 마스크 금속막의 일면에서 습식 식각으로 소정 깊이만큼 제1 마스크 패턴을 형성하는 단계;
    (3) 적어도 제1 마스크 패턴 내에 제2 절연부를 채우는 단계;
    (4) 베이킹(baking)으로 제2 절연부의 적어도 일부를 휘발시키는 단계;
    (5) 제1 절연부의 상부에서 노광하고, 제1 절연부의 수직 하부에 위치한 제2 절연부만 남기는 단계; 및
    (6) 마스크 금속막의 일면에서 습식 식각으로 제1 마스크 패턴에서부터 마스크 금속막의 타면을 관통하는 제2 마스크 패턴을 형성하는 단계
    를 포함하는, 마스크의 제조 방법.
  5. 제4항에 있어서,
    제1 마스크 패턴보다 제2 마스크 패턴의 폭이 좁은, 마스크의 제조 방법.
  6. 제4항에 있어서,
    제1 마스크 패턴 및 제2 마스크 패턴의 형상의 합은 전체적으로 테이퍼 형상 또는 역테이퍼 형상을 나타내는, 마스크의 제조 방법.
  7. 제4항에 있어서,
    제1 절연부의 수직 하부에 위치한 제2 절연부만 남기는 단계에서, 제1 절연부의 양측 하부에 언더컷이 형성되는 공간에 제2 절연부가 남는, 마스크의 제조 방법.
  8. ◈청구항 8은(는) 설정등록료 납부시 포기되었습니다.◈
    제4항에 있어서,
    제1 절연부의 상부에서 노광할 때, 제1 절연부가 제2 절연부에 대해 노광 마스크로 작용하는, 마스크의 제조 방법.
  9. ◈청구항 9은(는) 설정등록료 납부시 포기되었습니다.◈
    제4항에 있어서,
    제1 절연부의 수직 하부에 위치하며 남은 제2 절연부의 패턴 폭은 제1 절연부의 패턴 폭에 대응하는, 마스크의 제조 방법.
  10. OLED 화소 형성용 마스크를 지지하여 프레임에 대응시키는 템플릿(template)의 제조 방법으로서,
    (a) 인바 또는 슈퍼 인바 재질의 마스크 금속막을 준비하는 단계;
    (b) 일면에 임시접착부가 형성된 템플릿 상에 마스크 금속막을 접착하는 단계; 및
    (c) 마스크 금속막에 마스크 패턴을 형성하여 마스크를 제조하는 단계
    를 포함하고,
    (c) 단계는,
    (c1) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계;
    (c2) Ni층 상에 패턴화된 절연부를 형성하는 단계;
    (c3) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및
    (c4) 절연부를 제거하는 단계
    를 포함하는, 마스크 지지 템플릿의 제조 방법.
  11. ◈청구항 11은(는) 설정등록료 납부시 포기되었습니다.◈
    제10항에 있어서,
    (c1) 단계에서, 니켈 스트라이크(Ni strike) 도금, 니켈 스퍼터링(Ni sputtering), 니켈 증착 (Ni evaporation) 중 어느 하나의 방법을 이용하여 Ni층을 형성하는, 마스크 지지 템플릿의 제조 방법.
  12. ◈청구항 12은(는) 설정등록료 납부시 포기되었습니다.◈
    제11항에 있어서,
    니켈 스크라이크 도금을 이용하는 경우, 0.1ASD 내지 5.0ASD의 전류밀도로 니켈 스크라이크 도금을 수행하는, 마스크 지지 템플릿의 제조 방법.
  13. ◈청구항 13은(는) 설정등록료 납부시 포기되었습니다.◈
    제10항에 있어서,
    (c2) 단계 및 (c3) 단계는,
    (1) 마스크 금속막의 일면 상에 패턴화된 제1 절연부를 형성하는 단계;
    (2) 마스크 금속막의 일면에서 습식 식각으로 소정 깊이만큼 제1 마스크 패턴을 형성하는 단계;
    (3) 적어도 제1 마스크 패턴 내에 제2 절연부를 채우는 단계;
    (4) 베이킹(baking)으로 제2 절연부의 적어도 일부를 휘발시키는 단계;
    (5) 제1 절연부의 상부에서 노광하고, 제1 절연부의 수직 하부에 위치한 제2 절연부만 남기는 단계; 및
    (6) 마스크 금속막의 일면에서 습식 식각으로 제1 마스크 패턴에서부터 마스크 금속막의 타면을 관통하는 제2 마스크 패턴을 형성하는 단계
    를 포함하는, 마스크 지지 템플릿의 제조 방법.
  14. ◈청구항 14은(는) 설정등록료 납부시 포기되었습니다.◈
    제13항에 있어서,
    제1 마스크 패턴보다 제2 마스크 패턴의 폭이 좁은, 마스크 지지 템플릿의 제조 방법.
  15. ◈청구항 15은(는) 설정등록료 납부시 포기되었습니다.◈
    제13항에 있어서,
    제1 마스크 패턴 및 제2 마스크 패턴의 형상의 합은 전체적으로 테이퍼 형상 또는 역테이퍼 형상을 나타내는, 마스크 지지 템플릿의 제조 방법.
  16. ◈청구항 16은(는) 설정등록료 납부시 포기되었습니다.◈
    제13항에 있어서,
    제1 절연부의 수직 하부에 위치한 제2 절연부만 남기는 단계에서, 제1 절연부의 양측 하부에 언더컷이 형성되는 공간에 제2 절연부가 남는, 마스크 지지 템플릿의 제조 방법.
  17. ◈청구항 17은(는) 설정등록료 납부시 포기되었습니다.◈
    제13항에 있어서,
    제1 절연부의 상부에서 노광할 때, 제1 절연부가 제2 절연부에 대해 노광 마스크로 작용하는, 마스크 지지 템플릿의 제조 방법.
  18. ◈청구항 18은(는) 설정등록료 납부시 포기되었습니다.◈
    제13항에 있어서,
    제1 절연부의 수직 하부에 위치하며 남은 제2 절연부의 패턴 폭은 제1 절연부의 패턴 폭에 대응하는, 마스크 지지 템플릿의 제조 방법.
  19. 적어도 하나의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서,
    (a) 마스크 금속막을 준비하는 단계;
    (b) 일면에 임시접착부가 형성된 템플릿 상에 마스크 금속막을 접착하는 단계;
    (c) 마스크 금속막에 마스크 패턴을 형성하여 마스크를 제조하는 단계;
    (d) 적어도 하나의 마스크 셀 영역을 구비한 프레임을 준비하는 단계;
    (e) 프레임 상에 템플릿을 로딩하여 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및
    (f) 마스크의 용접부에 레이저를 조사하여 마스크를 프레임에 부착하는 단계
    를 포함하고,
    (c) 단계는,
    (c1) 마스크 금속막의 일면 상에 Ni층을 형성하는 단계;
    (c2) Ni층 상에 패턴화된 절연부를 형성하는 단계;
    (c3) 절연부 사이로 노출된 마스크 금속막의 부분을 식각하여 마스크 패턴을 형성하는 단계; 및
    (c4) 절연부를 제거하는 단계
    를 포함하는, 프레임 일체형 마스크의 제조 방법.
KR1020190009436A 2018-10-22 2019-01-24 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법 KR102202530B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180126079 2018-10-22
KR20180126079 2018-10-22

Publications (2)

Publication Number Publication Date
KR20200045385A KR20200045385A (ko) 2020-05-04
KR102202530B1 true KR102202530B1 (ko) 2021-01-13

Family

ID=70732587

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190009436A KR102202530B1 (ko) 2018-10-22 2019-01-24 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법

Country Status (1)

Country Link
KR (1) KR102202530B1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377776B1 (ko) * 2020-05-22 2022-03-24 주식회사 오럼머티리얼 마스크 제조용 마스크 금속막 및 마스크 금속막 지지 템플릿
KR102377777B1 (ko) * 2020-05-27 2022-03-24 주식회사 오럼머티리얼 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102442459B1 (ko) * 2020-10-07 2022-09-14 주식회사 오럼머티리얼 마스크 지지 템플릿의 제조 방법, 마스크 지지 템플릿 및 프레임 일체형 마스크의 제조 방법
KR102485407B1 (ko) * 2020-10-23 2023-01-06 주식회사 오럼머티리얼 마스크의 제조 방법
CN112859512A (zh) * 2021-02-04 2021-05-28 南京深光科技有限公司 一种掩膜板及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152396A (ja) * 2004-11-30 2006-06-15 Sony Corp メタルマスク、電鋳用マスク原版及びマスター原版の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082784B1 (ko) * 2014-12-11 2020-03-02 삼성디스플레이 주식회사 마스크 프레임 조립체, 그 제조 방법 및 유기 발광 표시 장치의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152396A (ja) * 2004-11-30 2006-06-15 Sony Corp メタルマスク、電鋳用マスク原版及びマスター原版の製造方法

Also Published As

Publication number Publication date
KR20200045385A (ko) 2020-05-04

Similar Documents

Publication Publication Date Title
KR102202530B1 (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102236538B1 (ko) 마스크의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102236542B1 (ko) 마스크 지지 템플릿, 마스크 금속막 지지 템플릿, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
TWI825149B (zh) 框架一體型遮罩的製造方法及框架
KR102196796B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102202529B1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임 일체형 마스크의 마스크 분리/교체 방법
KR101986528B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR101988498B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102196797B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102510212B1 (ko) 마스크 지지 템플릿 및 프레임 일체형 마스크의 제조 방법
KR102202531B1 (ko) 프레임 일체형 마스크 및 그 제조방법
KR102236541B1 (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102028639B1 (ko) 마스크의 제조 방법, 마스크 지지 버퍼기판과 그의 제조 방법
TWI826497B (zh) 遮罩支撑模板與其製造方法及框架一體型遮罩的製造方法
KR102242813B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크와 그의 제조 방법
KR20200044638A (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102142436B1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임
KR102404745B1 (ko) 마스크 지지 템플릿 및 프레임 일체형 마스크의 제조 방법
KR102252005B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크와 그의 제조 방법
KR20200143313A (ko) 마스크 지지 템플릿
KR20200044639A (ko) 마스크의 제조 방법, 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR20230170293A (ko) 마스크 지지 템플릿과 그의 제조 방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant