KR20200133306A - Rooftop type solar light reflecting system - Google Patents

Rooftop type solar light reflecting system Download PDF

Info

Publication number
KR20200133306A
KR20200133306A KR1020200144871A KR20200144871A KR20200133306A KR 20200133306 A KR20200133306 A KR 20200133306A KR 1020200144871 A KR1020200144871 A KR 1020200144871A KR 20200144871 A KR20200144871 A KR 20200144871A KR 20200133306 A KR20200133306 A KR 20200133306A
Authority
KR
South Korea
Prior art keywords
double
solar cell
sided light
rooftop
receiving solar
Prior art date
Application number
KR1020200144871A
Other languages
Korean (ko)
Inventor
이선영
Original Assignee
솔랩 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔랩 주식회사 filed Critical 솔랩 주식회사
Priority to KR1020200144871A priority Critical patent/KR20200133306A/en
Publication of KR20200133306A publication Critical patent/KR20200133306A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Optics & Photonics (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

According to the present invention, provided is a rooftop solar reflection system which is installed on a rooftop, thereby enabling power generation. The rooftop solar reflection system comprises: a double-sided light-receiving solar cell module installed on a rooftop; a frame arranging the double-sided light-receiving solar cell module installed on the rooftop; and a multi-functional layer located on a rear side of the double-sided light-receiving solar cell module installed on the rooftop, and installed on a floor of the rooftop. The multi-functional layer has heat shielding and waterproof functions, and among sunlight entering the rooftop floor directly from the double-sided light-receiving solar cell module or passing through the double-sided light-receiving solar cell module, 85% or more of sunlight in a wavelength band of 380 to 1,100 nm is diffusely reflected to the rear side of the double-sided light-receiving solar cell module.

Description

옥상 태양광 반사시스템{ROOFTOP TYPE SOLAR LIGHT REFLECTING SYSTEM}Rooftop solar light reflection system {ROOFTOP TYPE SOLAR LIGHT REFLECTING SYSTEM}

본 발명은 옥상 태양광 반사시스템에 관한 것이다.The present invention relates to a rooftop solar reflection system.

일반적으로 태양광 모듈은 전면으로만 수광하여 발전하므로, 발전량 증가에 한계가 있다. 최근에는 전후면 모두에서 수광하여 발전할 수 있는 양면 수광형 태양전지가 개발되고 있다.In general, since the solar module receives light from the front side and generates power, there is a limit to the increase in power generation. Recently, a double-sided light-receiving solar cell capable of generating power by receiving light from both front and rear surfaces has been developed.

한국공개특허(10-2018-0002015)에는, 양면 수광형 태양전지의 발전량을 증가시키기 위한, 태양광 모듈용 백시트를 개시하고 있다.Korean Patent Publication (10-2018-0002015) discloses a back sheet for a photovoltaic module to increase the amount of power generation of a double-sided light-receiving solar cell.

그러나, 태양광 모듈용 백시트가 아무리 우수한 성질을 가진다 하더라도, 태양광이 반사되는 바닥면 상태에 따라, 양면 수광형 태양전지의 발전량은 달라질 수밖에 없다.However, no matter how excellent the solar module backsheet has, the amount of power generation of the double-sided light-receiving solar cell is bound to vary depending on the state of the bottom surface to which sunlight is reflected.

예를 들어, 바닥면이 흙인 경우, 바닥면에 콘크리트가 깔린 경우, 바닥면에 백색 페인트가 칠해진 경우, 바닥면에 눈이 쌓인 경우, 바닥면이 젖은 경우, 바닥면이 건조한 경우 등에 따라 발전량은 크게 달라질 수밖에 없다.For example, if the floor surface is soil, concrete is laid on the floor surface, white paint is applied to the floor surface, snow has accumulated on the floor surface, the floor surface is wet, the floor surface is dry, etc. It has to be greatly different.

또한, 태양광 모듈 백시트를 사용하려면, 이미 설치된 양면 수광형 태양전지를 한국공개특허(10-2018-0002015)에 기재된 양면 수광형 태양전지로 모두 교체해야 하는 문제점이 있다.In addition, in order to use the solar module back sheet, there is a problem in that all the double-sided light-receiving solar cells already installed must be replaced with the double-sided light-receiving solar cells described in Korean Patent Publication (10-2018-0002015).

이러한 문제점을 해결하기 위해, 본 출원인은, 양면 수광형 태양전지모듈의 후측 바닥면 위에 고반사 팔름을 깔아서, 발전량을 30% 이상 증가시킨 태양광 반사시스템을 개발하여 출원하였다.(출원번호:10-2018-0016957)In order to solve this problem, the present applicant has developed and applied for a solar reflection system that increases the amount of power generation by 30% or more by spreading a highly reflective arm on the rear bottom surface of a double-sided light-receiving solar cell module. -2018-0016957)

또한, 이러한 태양광 반사시스템을, 설치공간이 부족한 도심과 같은 인구 밀집 지역에도 사용하기 위해, 옥상에 설치할 수 있는 옥상 태양광 반사시스템을 개발하고자 한다.In addition, in order to use such a solar reflection system in a densely populated area such as an urban area where installation space is insufficient, an attempt is made to develop a rooftop solar reflection system that can be installed on a roof.

한국공개특허(10-2018-0002015)Korean Patent Publication (10-2018-0002015)

본 발명의 목적은, 옥상에 설치되어 발전할 수 있는 옥상 태양광 반사시스템을 제공하는 데 있다.An object of the present invention is to provide a rooftop solar reflecting system that can be installed on a roof and generate electricity.

본 발명의 다른 목적은, 종래 옥상의 바닥면에 일반적으로 깔려 있는 우레탄 방수제를 대신할 수 있는 다기능층이 구비된 옥상 태양광 반사시스템을 제공하는 데 있다.Another object of the present invention is to provide a rooftop solar reflecting system provided with a multifunctional layer that can replace the urethane waterproofing agent generally laid on the floor of the rooftop.

본 발명의 또 다른 목적은, 종래 옥상의 바닥면에 설치된 우레탄 방수제 위에 설치할 수 있는 반사층이 구비된 옥상 태양광 반사시스템을 제공하는 데 있다.Another object of the present invention is to provide a rooftop solar reflection system provided with a reflective layer that can be installed on a polyurethane waterproofing agent installed on a conventional rooftop floor.

상기 목적을 달성하기 위한 옥상 태양광 반사시스템은,A rooftop solar reflection system for achieving the above object,

옥상에 설치된 양면 수광형 태양전지모듈;Double-sided light-receiving solar cell module installed on the roof;

상기 옥상에 설치된 양면 수광형 태양전지모듈을 배열시키는 프레임; 및A frame for arranging double-sided light-receiving solar cell modules installed on the roof; And

상기 옥상에 설치된 양면 수광형 태양전지모듈의 후측에 위치되며, 상기 옥상의 바닥면에 설치된 다기능층을 포함하며,It is located on the rear side of the double-sided light-receiving solar cell module installed on the roof, and includes a multi-functional layer installed on the floor of the roof,

상기 다기능층은 차열 및 방수 기능을 가지며, 상기 양면 수광형 태양전지모듈을 피해 상기 옥상 바닥면으로 직접 들어오거나, 상기 양면 수광형 태양전지모듈을 통과해서 상기 옥상 바닥면으로 들어오는 태양광 중, 380~1100nm 파장대의 태양광 85% 이상을, 상기 양면 수광형 태양전지모듈의 후측으로 난반사시키는 것을 특징으로 한다.The multi-functional layer has a heat shielding and waterproof function, and among sunlight entering the rooftop floor directly from the double-sided light-receiving solar cell module or passing through the double-sided light-receiving solar cell module, 380 It is characterized in that 85% or more of sunlight in the ~1100nm wavelength band is diffusely reflected to the rear side of the double-sided light-receiving solar cell module.

또한, 상기 목적은,In addition, the above purpose,

옥상에 설치된 양면 수광형 태양전지모듈;Double-sided light-receiving solar cell module installed on the roof;

상기 옥상에 설치된 양면 수광형 태양전지모듈을 배열시키는 프레임; 및A frame for arranging double-sided light-receiving solar cell modules installed on the roof; And

상기 옥상에 설치된 양면 수광형 태양전지모듈의 후측에 위치되며, 상기 옥상의 바닥면에 설치된 우레탄 방수제 위에 도포된 반사층을 포함하며,It is located on the rear side of the double-sided light-receiving solar cell module installed on the roof, and includes a reflective layer applied on the urethane waterproofing agent installed on the floor of the roof,

상기 반사층은 상기 양면 수광형 태양전지모듈을 피해 상기 옥상 바닥면으로 직접 들어오거나, 상기 양면 수광형 태양전지모듈을 통과해서 상기 옥상 바닥면으로 들어오는 태양광 중, 380~1100nm 파장대의 태양광 85% 이상을, 상기 양면 수광형 태양전지모듈의 후측으로 난반사시키는 것을 특징으로 하는 옥상 태양광 반사시스템에 의해 달성된다.The reflective layer avoids the double-sided light-receiving solar cell module and enters directly to the rooftop floor or passes through the double-sided light-receiving solar cell module and enters the rooftop floor, of which 85% of sunlight in a wavelength range of 380 to 1100 nm The above is achieved by a rooftop solar reflection system, characterized in that diffusely reflecting to the rear side of the double-sided light-receiving solar cell module.

본 발명의 다기능층은, 태양광의 반사는 물론, 차열 및 방수 기능을 가지고 있어, 종전 옥상의 바닥면에 설치하는 우레탄 방수제를 대체할 수 있다.The multifunctional layer of the present invention, as well as reflecting sunlight, has heat shielding and waterproofing functions, and can replace the urethane waterproofing agent installed on the floor of the previous rooftop.

본 발명은 다기능층의 표면에 복수개의 돌기를 형성하여, 태양광 난반사율을 증가시킴으로써, 양면 수광형 태양전지모듈 후면에 태양광이 골고루 퍼질 수 있게 만든다.In the present invention, by forming a plurality of protrusions on the surface of the multifunctional layer, the diffuse reflectance of sunlight is increased, so that sunlight can be spread evenly on the rear surface of the double-sided light-receiving solar cell module.

본 발명의 반사층은, 종전 옥상의 바닥면 설치된 우레탄 방수제 위에 형성될 수 있다. 따라서, 종전 옥상의 바닥면에 설치된 우레탄 방수제를 제거하지 않고도 설치될 수 있다.The reflective layer of the present invention may be formed on the urethane waterproofing agent previously installed on the floor surface of the roof. Therefore, it can be installed without removing the urethane waterproofing agent previously installed on the floor of the roof.

본 발명의 다기능층 및 반사층은, 옥상에 설치된 양면 수광형 태양전지의 발전량을 30% 이상 높일 수 있다.The multifunctional layer and the reflective layer of the present invention can increase the power generation amount of a double-sided light-receiving solar cell installed on a roof by 30% or more.

본 발명은, 양면 수광형 태양전지모듈을 수직으로 배열시켜, 옥상의 에 최대한 많은 양면 수광형 태양전지모듈을 설치할 수 있어, 옥상 공간을 최대한 활용할 수 있다.In the present invention, by arranging the double-sided light-receiving solar cell modules vertically, it is possible to install as many double-sided light-receiving solar cell modules as possible on the roof, so that the rooftop space can be utilized as much as possible.

도 1은 본 발명의 제1실시예에 따른 옥상 태양광 반사시스템을 나타낸 도면이다.
도 2는 도 1에 도시된 양면 수광형 태양전지모듈의 높이와 상면길이의 관계와, 양면 수광형 태양전지모듈 간의 거리 관계를 설명하기 위한 도면이다.
도 3은 양면 수광형 태양전지모듈들이 수직으로 배열된 상태를 나타낸 도면으로, 도 3(a)는 정면에서 바라본 도면이고, 도 3(b)는 위에서 내려다 본 도면이다.
도 4는 도 1에 도시된 다기능층의 상면에 돌기가 형성된 상태를 나타낸 도면이다.
도 5는 도 1에 도시된 다기능층을 나타낸 단면도이다.
도 6은 제1변형예에 따른 다기능층을 나타낸 단면도이다.
도 7은 본 발명의 제2실시예에 따른 옥상 태양광 반사시스템을 나타낸 도면이다.
도 8은 도 7에 도시된 반사층을 나타낸 단면도이다.
1 is a view showing a rooftop solar reflection system according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a relationship between a height and a top length of the double-sided light-receiving solar cell module shown in FIG. 1 and a distance relationship between the double-sided light-receiving solar cell module.
3 is a view showing a state in which double-sided light-receiving solar cell modules are arranged vertically, FIG. 3(a) is a view viewed from the front, and FIG. 3(b) is a view viewed from above.
4 is a view showing a state in which a projection is formed on the upper surface of the multi-functional layer shown in FIG.
5 is a cross-sectional view showing the multifunctional layer shown in FIG. 1.
6 is a cross-sectional view showing a multifunctional layer according to a first modified example.
7 is a view showing a rooftop solar reflection system according to a second embodiment of the present invention.
8 is a cross-sectional view illustrating the reflective layer shown in FIG. 7.

이하, 본 발명의 제1실시예에 따른 옥상 태양광 반사시스템을 자세히 설명한다.Hereinafter, a rooftop solar reflection system according to a first embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 옥상 태양광 반사시스템(1)은, 양면 수광형 태양전지모듈(M), 프레임(F), 다기능층(10)으로 구성된다.As shown in Fig. 1, the rooftop solar reflection system 1 according to an embodiment of the present invention is composed of a double-sided light-receiving solar cell module (M), a frame (F), and a multi-functional layer 10.

양면 수광형 태양전지모듈(M)은 공지된 기술로 구성이 가능하고, 양면 수광형 태양전지모듈(M) 구성 자체는 본 발명의 요지가 아니므로, 그 설명을 생략한다.The double-sided light-receiving solar cell module (M) can be configured with a known technology, and the configuration of the double-sided light-receiving solar cell module (M) itself is not the gist of the present invention, so its description will be omitted.

프레임(F)에는, 양면 수광형 태양전지모듈(M)이 경사지게 배열된다. 프레임(F)은 양면 수광형 양면 수광형 태양전지모듈(M)의 테두리를 떠받치는 제1프레임(F1), 프레임(F)을 옥상 바닥면(G)에 고정하는 제2프레임(F2), 제2프레임(F2)을 보강하는 제3프레임(F3)으로 구성된다.In the frame (F), double-sided light-receiving solar cell modules (M) are arranged obliquely. The frame (F) is a first frame (F1) supporting the edge of the double-sided light-receiving type double-sided light-receiving solar cell module (M), a second frame (F2) that fixes the frame (F) to the rooftop floor (G), It is composed of a third frame (F3) reinforcing the second frame (F2).

본 발명은 옥상 바닥면(G)에 고정되는 제2프레임(F2)을 최소개(4~6개)로 두어, 양면 수광형 태양전지모듈(M)들을 피해 프레임(F)의 하측 옥상 바닥면(G)으로 직접 들어오는 태양광(L2)이 제2프레임(F2)에 걸리지 않게 만든다.The present invention has a minimum number of second frames (F2) fixed to the rooftop floor (G) (4 to 6), avoiding the double-sided light-receiving solar cell modules (M), the lower roof of the frame (F) The sunlight (L2) directly entering (G) does not get caught in the second frame (F2).

본 발명은 최소한의 제2프레임(F2)을 보강하기 위해, 제3프레임(F3)으로 제2프레임(F2)들의 측면을 연결한다.The present invention connects side surfaces of the second frames F2 to the third frame F3 in order to reinforce the minimum second frame F2.

제1프레임(F1)은 양면 수광형 태양전지모듈(M)들을 태양광을 잘 받도록, 20~45°로 상향 경사지게 떠받친다.The first frame (F1) supports the double-sided light-receiving solar cell modules (M) in an upward inclined angle of 20 to 45° to receive sunlight well.

제1프레임(F)에 상방향으로 떠받쳐진 양면 수광형 태양전지모듈(M)의 개수는 최대 4개이다. 그 이유는, 상방향 개수가 4개보다 많아도, 맨 위 5번째 양면 수광형 태양전지모듈(M)의 후면에 도달하는 태양광(L3)이 적어, 양면 수광형 태양전지모듈(M)의 후면 발전량이 더 이상 늘어나지 않는다. 따라서, 상방향 개수는 최대 4개가 바람직하다. 한편, 제1프레임(F1)에 떠받쳐진 양면 수광형 태양모듈(M)의 폭방향 개수는 제한이 없다.The number of double-sided light-receiving solar cell modules (M) supported in the upward direction on the first frame (F) is a maximum of four. The reason is that even if the number of upwards is more than 4, there is less sunlight (L3) reaching the rear of the top 5 double-sided light-receiving solar cell module (M), so the rear of the double-sided light-receiving solar cell module (M) Power generation does not increase any more. Therefore, the number of upwards is preferably at most four. On the other hand, there is no limit to the number of the double-sided light-receiving solar modules M supported by the first frame F1 in the width direction.

양면 수광형 태양전지모듈(M)의 상방향 개수에 따라, 옥상 바닥면(G)과 양면 수광형 태양전지모듈(M)의 최하단 높이(H)는 0.5 내지 3m 로 조절된다.Depending on the number of the double-sided light-receiving solar cell modules (M) in the upward direction, the lowermost height (H) of the rooftop bottom surface (G) and the double-sided light-receiving solar cell module (M) is adjusted to 0.5 to 3m.

그 이유는, 양면 수광형 태양전지모듈(M)들을 피해 프레임(F)의 하측 옥상 바닥면(G)으로 태양광(L2)이 직접 들어오기 위해서, 최소한의 높이(H)가 필요하기 때문이다.The reason is that the minimum height (H) is required in order for sunlight (L2) to directly enter the lower rooftop (G) of the frame (F) to avoid the double-sided light-receiving solar cell modules (M). .

예를 들어, 양면 수광형 태양전지모듈(M)의 상방향 개수가 1개이면, 옥상 바닥면(G)과 양면 수광형 태양전지모듈(M)의 최하단 높이는 0.5m 면 충분하다.For example, if the number of the double-sided light-receiving solar cell module M in the upper direction is one, 0.5m is sufficient as the lowermost height of the rooftop bottom surface G and the double-sided light-receiving solar cell module M.

그러나, 양면 수광형 태양전지모듈(M)의 상방향 개수가 4개이면, 옥상 바닥면(G)과 양면 수광형 태양전지모듈(M)의 최하단 높이가 3m는 되야, 상 방향 맨 위에 있는 양면 수광형 태양전지모듈(M)의 후면까지 태양광(L2)이 반사될 수 있다.However, if the number of the two-sided light-receiving solar cell modules (M) in the upper direction is 4, the height of the bottom of the rooftop floor (G) and the two-sided light-receiving solar cell module (M) must be 3m. The sunlight L2 may be reflected to the rear surface of the light-receiving solar cell module M.

도 2에 도시된 바와 같이, 양면 수광형 태양모듈(M)들 사이 간격(D)은 양면 수광형 태양전지모듈(M)의 세로길이(HL)의 1/3 이상이다.As shown in Figure 2, the distance (D) between the double-sided light-receiving solar module (M) is more than 1/3 of the vertical length (HL) of the double-sided light-receiving solar cell module (M).

양면 수광형 태양모듈(M)들 사이 간격(D)이, 이 정도는 되어야, 태양광(L2)이 양면 수광형 태양전지모듈(M)들 사이를 통해, 옥상 바닥면(G)으로 직접 들어올 수 있다.The distance (D) between the double-sided light-receiving solar modules (M) should be at this level, so that the sunlight (L2) will directly enter the rooftop floor (G) through the double-sided light-receiving solar cell modules (M). I can.

도 3(a)에 도시된 바와 같이, 옥상 공간을 최대한 활용하기 위하여, 양면 수광형 태양모듈(M)들은 수직하게 배치될 수 있다. 도 3(b)에 도시된 바와 같이, 양면 수광형 태양모듈(M)들은 앞뒤좌우로 일정간격으로 떨어져 배치되어, 동쪽에서 남쪽을 거쳐 서쪽으로 이동하는 태양의 광을 낮 시간 동안 최대한 받는다. As shown in Fig. 3(a), in order to make the most of the rooftop space, the double-sided light-receiving solar modules M may be vertically disposed. As shown in Figure 3 (b), the double-sided light-receiving solar modules (M) are arranged at regular intervals apart from the front, back, left and right, and receive the maximum light of the sun moving from east to south through west during the daytime.

다기능층(10)은, 양면 수광형 태양전지모듈(M)들을 피해 프레임(F)의 하측 옥상 바닥면(G)으로 직접 들어오거나, 양면 수광형 태양전지모듈(M)을 통과해서 옥상 바닥면(G)으로 들어오는 태양광(L1,L2) 중, 380~1100nm 파장대의 태양광(L3) 85% 이상을, 양면 수광형 태양전지모듈(M)의 후측으로 반사시켜, 다기능층(10)이 없는 경우보다 발전량을 30% 이상 증가시킨다. 여기서, 도면부호 L은 태양광 전체를 나타내고, L1은 양면 수광형 태양전지모듈(M)을 통과해서 옥상 바닥면(G)으로 들어오는 태양광을 나타내고, L2는 양면 수광형 태양전지모듈(M)들을 피해 프레임(F)의 하측 옥상 바닥면(G)으로 직접 들어오는 태양광을 나타내고, L3은 다기능층(10)에 의해 양면 수광형 태양전지모듈(M)의 후면으로 반사되는 태양광(L3)을 나타낸다.The multi-functional layer 10 directly enters the lower rooftop floor (G) of the frame (F) avoiding the double-sided light-receiving solar cell modules (M), or passes through the double-sided light-receiving solar cell module (M) to the rooftop floor. Of the sunlight (L1, L2) entering (G), more than 85% of the sunlight (L3) in the 380~1100nm wavelength band is reflected to the rear side of the double-sided light-receiving solar cell module (M), so that the multifunctional layer (10) is Increase the amount of power generation by more than 30% compared to the case without it. Here, reference numeral L denotes the entire solar light, L1 denotes sunlight that passes through the double-sided light-receiving solar cell module (M) and enters the rooftop floor (G), and L2 is the double-sided light-receiving solar cell module (M). Represents sunlight directly entering the lower rooftop floor (G) of the frame (F) to avoid hearing, and L3 represents the sunlight (L3) reflected to the rear of the double-sided light-receiving solar cell module (M) by the multifunctional layer (10). Represents.

도 4에 도시된 바와 같이, 다기능층(10)의 표면에는 돌기(10a)들이 형성될 수 있다. 돌기(10a)는 볼록한 형상을 가진다. 돌기(10a)로 인해, 태양광의 난 반사율이 더 증가되어, 양면 수광형 태양전지모듈(M)의 후면에 태양광이 골고루 전달될 수 있다.As shown in FIG. 4, protrusions 10a may be formed on the surface of the multifunctional layer 10. The protrusion 10a has a convex shape. Due to the protrusion 10a, the diffuse reflectance of sunlight is further increased, so that sunlight can be evenly transmitted to the rear surface of the double-sided light-receiving solar cell module M.

도 5에 도시된 바와 같이, 다기능층(10)은, 하층(11), 중층(12)으로 구성된다. 하층(11), 중층(12)은 서로 접착된다.As shown in Fig. 5, the multi-functional layer 10 is composed of a lower layer 11 and a middle layer 12. The lower layer 11 and the middle layer 12 are adhered to each other.

하층(11)은 옥상 바닥면(G)에 설치된다. 하층(11)은 우레탄 프라이머로 구성되어 방수 역할을 한다. The lower layer 11 is installed on the rooftop floor G. The lower layer 11 is composed of a urethane primer and serves as a waterproofing.

중층(12)은 하층(11)과 상층(12) 사이에 위치된다. 중층(12)은 부틸 계열 수지와 산화티타늄(TiO2)로 구성된다. 산화티타늄(TiO2)은 부틸 계열 수지에 혼합된 상태로 존재한다.The middle layer 12 is located between the lower layer 11 and the upper layer 12. The intermediate layer 12 is composed of a butyl-based resin and titanium oxide (TiO2). Titanium oxide (TiO2) is present in a mixed state with a butyl-based resin.

부틸 계열 수지는 차열 및 방수 역할을 한다. 산화티타늄(TiO2)은 태양광을 반사시키는 역할을 한다. 산화티타늄은 중층(12)안에 10~35% 포함된다.Butyl-based resin acts as a heat shield and waterproof. Titanium oxide (TiO2) serves to reflect sunlight. Titanium oxide is contained in the middle layer 12 by 10 to 35%.

도 6에 도시된 바와 같이, 중층(12)을 보호하기 위해, 중층(12) 위에 상층(13)이 더 형성될 수 있다.As shown in FIG. 6, in order to protect the middle layer 12, an upper layer 13 may be further formed on the middle layer 12.

상층(13)은 부틸 계열 수지와 산화티타늄(TiO2)로 구성된다. 상층(13)에 부틸 계열 수지를, 중층(12) 보다 더 많이 첨가함으로써, 중층(12) 보다 더 매끈한 표면을 가질 수 있다.The upper layer 13 is composed of a butyl-based resin and titanium oxide (TiO2). By adding more butyl-based resin to the upper layer 13 than the middle layer 12, it is possible to have a smoother surface than the middle layer 12.

이하, 본 발명의 제2실시예에 따른 옥상 태양광 반사시스템을 자세히 설명한다.Hereinafter, a rooftop solar reflection system according to a second embodiment of the present invention will be described in detail.

도 7에 도시된 바와 같이, 본 발명의 제2실시예에 따른 옥상 태양광 반사시스템(2)은, 양면 수광형 태양전지모듈(M), 프레임(F), 반사층(20)으로 구성된다.As shown in FIG. 7, the rooftop solar reflection system 2 according to the second embodiment of the present invention includes a double-sided light-receiving solar cell module M, a frame F, and a reflective layer 20.

본 발명의 제2실시예에 따른 옥상 태양광 반사시스템(2)의 양면 수광형 태양전지모듈(M), 프레임(F)은, 본 발명의 제1실시예에 따른 옥상 태양광 반사시스템(2)의 양면 수광형 태양전지모듈(M), 프레임(F)과 동일하므로, 그 설명을 생략한다.The double-sided light-receiving solar cell module (M) and the frame (F) of the rooftop solar reflecting system 2 according to the second embodiment of the present invention are provided with a rooftop solar reflecting system 2 according to the first embodiment of the present invention. ) Of the double-sided light-receiving solar cell module (M) and the frame (F), the description thereof will be omitted.

반사층(20)은, 우레탄 방수제(WP)가 바닥면(G)에 깔려져 있는 옥상에, 본 발명을 적용하기 위하여, 기존 우레탄 방수제(WP) 위에 형성된다.The reflective layer 20 is formed on the roof where the urethane waterproofing agent (WP) is laid on the floor surface (G), and on the existing urethane waterproofing agent (WP) in order to apply the present invention.

도 8에 도시된 바와 같이, 반사층(20)은 수성용 페인트(P)와 산화티타늄(TiO2)로 구성된다. 산화티타늄(TiO2)은 수성용 페인트(P)에 혼합된 상태로 존재한다. 반사층(20)은 산화티타늄(TiO2)이 혼합된 수성용 페인트(P)가 우레탄 방수제(WP) 위에 발라져 형성된다. 산화티타늄(TiO2)은 반사층(20)안에 10~35% 포함된다. 반사층(20)은 100um의 두께를 가진다.As shown in FIG. 8, the reflective layer 20 is composed of a water-based paint (P) and titanium oxide (TiO2). Titanium oxide (TiO2) is present in a mixed state in water-based paint (P). The reflective layer 20 is formed by applying a water-based paint (P) mixed with titanium oxide (TiO2) on the urethane waterproofing agent (WP). Titanium oxide (TiO2) is contained in the reflective layer 20 by 10 to 35%. The reflective layer 20 has a thickness of 100 μm.

도 9에 도시된 바와 같이, 반사층(20)은 제1도포층(21), 제2도포층(22)의 2겹으로 구성될 수 있다.As shown in FIG. 9, the reflective layer 20 may be composed of two layers of the first coating layer 21 and the second coating layer 22.

제1도포층(21)은 수성용 페인트(P)와 산화티타늄(TiO2)으로 구성된다. 산화티타늄(TiO2)은 수성용 페인트(P)에 혼합된 상태로 존재한다. 산화티타늄(TiO2)은 제1도포층(21)안에 10~35% 포함된다. 제1도포층(21)은 50um의 두께를 가진다.The first coating layer 21 is composed of water-based paint (P) and titanium oxide (TiO2). Titanium oxide (TiO2) is present in a mixed state in water-based paint (P). Titanium oxide (TiO2) is contained in the first coating layer 21 by 10 to 35%. The first coating layer 21 has a thickness of 50 μm.

제2도포층(22)은 수성용 페인트(P)와 산화티타늄(TiO2)으로 구성된다. 산화티타늄(TiO2)은 수성용 페인트(P)에 혼합된 상태로 존재한다. 산화티타늄(TiO2)은 제2도포층(22)안에 10~35% 포함된다. 제2도포층(22)는 50um의 두께를 가진다.The second coating layer 22 is composed of water-based paint (P) and titanium oxide (TiO2). Titanium oxide (TiO2) is present in a mixed state in water-based paint (P). Titanium oxide (TiO2) is included in the second coating layer 22 by 10 to 35%. The second coating layer 22 has a thickness of 50 μm.

이렇게, 반사층(20)을 제1도포층(21)과 제2도포층(22) 굳이 2겹으로 구성한 이유는, 반사층(20)의 두께가 두꺼워지면, 표면이 먼저 경화되고 내부가 늦게 경화되어, 크랙(crack)이 발생될 수 있기 때문이다. 이러한 문제점을 해결하기 위하여, 산화티타늄(TiO2)이 혼합된 수성용 페인트(P)를 50um씩 얇게 2회 우레탄 방수제(WP) 위에 발라 제1도포층(21)과 제2도포층(22)을 각각 형성한다.In this way, the reason why the reflective layer 20 is composed of two layers of the first coating layer 21 and the second coating layer 22 is that when the thickness of the reflective layer 20 becomes thick, the surface is cured first and the inside is cured late. , Because cracks may occur. In order to solve this problem, a water-based paint (P) mixed with titanium oxide (TiO2) was applied twice on the urethane waterproofing agent (WP) twice by 50um to form the first coating layer 21 and the second coating layer 22. Each form.

1,2: 옥상 태양광 반사시스템 10: 다기능층
11: 하층 12: 중층
13: 상층 20: 반사층
21: 제1도포층 22: 제2도포층
M: 양면 수광형 태양전지모듈
F: 프레임 G: 옥상 바닥면
WP: 우레탄 방수제
1,2: rooftop solar reflection system 10: multifunctional layer
11: lower level 12: middle level
13: upper layer 20: reflective layer
21: first coating layer 22: second coating layer
M: Double-sided light-receiving solar cell module
F: Frame G: Rooftop floor
WP: urethane waterproofing agent

Claims (1)

옥상에 설치된 양면 수광형 태양전지모듈;
상기 옥상에 설치된 양면 수광형 태양전지모듈을 배열시키는 프레임; 및
상기 옥상에 설치된 양면 수광형 태양전지모듈의 후측에 위치되며, 상기 옥상의 바닥면에 설치된 우레탄 방수제 위에 도포된 반사층을 포함하며,
상기 반사층은 제1도포층과 제2도포층 2겹으로 구성되며,
상기 제1도포층은, 상기 우레탄 방수제 위에, 산화티타늄(TiO2)이 혼합된 수성용 페인트가 발라져 1차적으로 형성되고,
상기 제2도포층은, 상기 제1도포층이 형성된 다음에, 상기 제1도포층 위에, 산화티타늄(TiO2)이 혼합된 수성용 페인트가 발라져 2차적으로 형성되는 것을 특징으로 하는 옥상 태양광 반사시스템.
Double-sided light-receiving solar cell module installed on the roof;
A frame for arranging double-sided light-receiving solar cell modules installed on the roof; And
It is located on the rear side of the double-sided light-receiving solar cell module installed on the roof, and includes a reflective layer applied on the urethane waterproofing agent installed on the floor of the roof,
The reflective layer is composed of two layers of a first coating layer and a second coating layer,
The first coating layer is formed primarily by applying a water-based paint mixed with titanium oxide (TiO2) on the urethane waterproofing agent,
The second coating layer is, after the first coating layer is formed, on the first coating layer, a water-based paint mixed with titanium oxide (TiO2) is applied to form a second rooftop solar reflection. system.
KR1020200144871A 2020-11-03 2020-11-03 Rooftop type solar light reflecting system KR20200133306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200144871A KR20200133306A (en) 2020-11-03 2020-11-03 Rooftop type solar light reflecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200144871A KR20200133306A (en) 2020-11-03 2020-11-03 Rooftop type solar light reflecting system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180134326A Division KR20200051234A (en) 2018-11-05 2018-11-05 Rooftop type solar light reflecting system

Publications (1)

Publication Number Publication Date
KR20200133306A true KR20200133306A (en) 2020-11-27

Family

ID=73641666

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200144871A KR20200133306A (en) 2020-11-03 2020-11-03 Rooftop type solar light reflecting system

Country Status (1)

Country Link
KR (1) KR20200133306A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180002015A (en) 2016-06-28 2018-01-05 코오롱인더스트리 주식회사 Backsheet for pv module and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180002015A (en) 2016-06-28 2018-01-05 코오롱인더스트리 주식회사 Backsheet for pv module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
NL2013168B1 (en) Solar panel and method of manufacturing such a solar panel.
US20080121270A1 (en) Photovoltaic roof tile system
KR101021587B1 (en) building intergrated photovoltaic modules
CN102800730A (en) Photovoltaic device
KR20190004243A (en) Method for Generater using double-sided Solar Cell Module with Solar Light Tube and Reflector
KR101172560B1 (en) Photovoltaic module for building exterior
KR102290423B1 (en) Coating type solar light reflecting system
US20150009568A1 (en) Light collection system and method
KR20200051234A (en) Rooftop type solar light reflecting system
CN206114933U (en) Photovoltaic module beam condensing unit, photovoltaic array and photovoltaic system
JP5929578B2 (en) Solar cell module and solar cell module assembly
KR102369011B1 (en) Structure of solar cell module for shading relief
KR20200133306A (en) Rooftop type solar light reflecting system
CN105577093B (en) New clean photovoltaic panel
JP2023107850A (en) Glass building material
JP2017010965A (en) Solar battery module
JP6920853B2 (en) Solar cell module and vehicle superstructure
KR101989451B1 (en) Window with solar cell
CN111147005A (en) Sunlight reflecting system
JP2018188896A (en) Photovoltaic power generation system
KR20200144804A (en) Generating system of bi-facial solar cell with reflection body reflecting beam onto the under face
KR101080901B1 (en) Photovoltaic module for Multiple Energy-Absorb Type
JP2001230441A (en) Solar cell module panel
JP3173456U (en) Solar power plant
KR101957335B1 (en) Solar light reflecting system

Legal Events

Date Code Title Description
A107 Divisional application of patent