KR20200132345A - Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst - Google Patents

Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst Download PDF

Info

Publication number
KR20200132345A
KR20200132345A KR1020190057713A KR20190057713A KR20200132345A KR 20200132345 A KR20200132345 A KR 20200132345A KR 1020190057713 A KR1020190057713 A KR 1020190057713A KR 20190057713 A KR20190057713 A KR 20190057713A KR 20200132345 A KR20200132345 A KR 20200132345A
Authority
KR
South Korea
Prior art keywords
catalyst
natural gas
synthetic natural
synthesizing
ratio
Prior art date
Application number
KR1020190057713A
Other languages
Korean (ko)
Other versions
KR102250016B1 (en
Inventor
김재창
이수출
조성빈
김태영
채호진
이철호
강석환
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020190057713A priority Critical patent/KR102250016B1/en
Priority to PCT/KR2020/004211 priority patent/WO2020235799A1/en
Publication of KR20200132345A publication Critical patent/KR20200132345A/en
Application granted granted Critical
Publication of KR102250016B1 publication Critical patent/KR102250016B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a catalyst to be used in a reaction for synthesizing a high-heating-value synthetic natural gas, which contains C2-4 paraffinic hydrocarbons, by making carbon monoxide react with hydrogen. The catalyst comprises: an alumina support; and a binary metal catalyst component, which is supported on the alumina support and is composed of cobalt oxide and iron oxide.

Description

고발열량을 가진 합성 천연가스 제조용 촉매 및 이를 이용한 고발열량의 파라핀계 합성 천연가스의 합성 방법{CATALYST FOR SYNTHESIZING SYNTHETIC NATURAL GAS WITH HIGH HEATING VALUE AND METHOD OF SYNTHESIZING THE SYNTHETIC NATURAL GAS USING THE CATALYST}A catalyst for producing synthetic natural gas having a high calorific value and a method for synthesizing paraffin-based synthetic natural gas with a high calorific value using the same.

본 발명은 일산화탄소와 수소를 반응시켜 고발열량의 합성 천연가스를 합성하는 반응에 적용되는 촉매 및 이를 이용한 고발열량의 합성 천연가스를 합성하는 방법에 관한 것이다.The present invention relates to a catalyst applied to a reaction for synthesizing synthetic natural gas having a high calorific value by reacting carbon monoxide and hydrogen, and a method for synthesizing synthetic natural gas having a high calorific value using the same.

화석 연료의 잠재적인 대체제인 합성 천연 가스는 많은 관심을 받고 있고, 상업적으로 석탄 및 바이오매스를 포함하는 다른 출발물질로부터 생성되고 있다. 합성 천연가스 공정에서, 하기 반응식 1에 기재된 바와 같이 1몰의 일산화탄소와 3몰의 수소가 반응하여 메탄소과 물을 생성한다. Synthetic natural gas, a potential replacement for fossil fuels, has received a lot of attention and is being produced commercially from other starting materials including coal and biomass. In the synthetic natural gas process, 1 mole of carbon monoxide and 3 moles of hydrogen react as described in Scheme 1 below to produce methane and water.

[반응식 1][Scheme 1]

Figure pat00001
Figure pat00001

메탄은 모든 화석 연료의 에너지 단위당 가장 작은 양의 이산화탄소를 방출하므로, 합성 천연가스는 지구 온난화 문제를 감소시킬 수 있을 것으로 기대된다. 그러나 메탄의 발열량(heating value)은 전형적으로 에너지 생성에 대한 표준 발열량보다 더 낮다. 따라서, 발열량을 높이기 위해서는, 프로판, 부탄과 같은 LPG(liquefied petroleum gas)가 저칼로리 천연 가스에 첨가되는 것이 필요하나, LPG 가격은 오일 가격이 강하게 영향을 받는 문제점이 있다. 이러한 문제점은 피셔트롭쉬 반응을 이용하여 C2~C4 범위의 합성 탄화수소를 첨가함으로써 극복될 수 있다. 또한, 올레핀은 낮은 발열량을 나타낼 뿐만 아니라 고압 파이프라인 조건하에서 동일한 탄소 사슬 길이의 파라핀보다 액화가 용이하므로, LPG를 대체하기 위해서는 가스 생성물에서 파라핀 비율이 높게 유지되어야 한다. 따라서, LPG를 대체하기 위해서는, 촉매는 높은 파라핀 비율을 가지고 C2~C4의 가벼운 탄화수소를 생성하여야 한다. Since methane emits the smallest amount of carbon dioxide per unit of energy in all fossil fuels, synthetic natural gas is expected to reduce global warming problems. However, the heating value of methane is typically lower than the standard heating value for energy generation. Therefore, in order to increase the calorific value, it is necessary to add liquefied petroleum gas (LPG) such as propane and butane to low-calorie natural gas, but the LPG price has a problem that the oil price is strongly affected. This problem can be overcome by adding synthetic hydrocarbons ranging from C2 to C4 using the Fischer Tropsch reaction. In addition, olefins not only exhibit a low calorific value, but also are easier to liquefy than paraffins of the same carbon chain length under high pressure pipeline conditions, and thus, in order to replace LPG, a high paraffin ratio in the gas product must be maintained. Therefore, in order to replace LPG, the catalyst must produce light hydrocarbons of C2~C4 with a high paraffin ratio.

높은 촉매 활성, 높은 메탄 선택도 및 낮은 가격 때문에, 합성 천연가스를 생성하기 위해 니켈계 촉매가 상업적으로 사용되었다. 그러나 니켈계 촉매는 탄소수 2 이상의 탄화수소보다 메탄쪽에 더욱 선택도가 높은 문제점이 있다. 일산화탄소 및 수소로 이루어진 합성가스로부터 C2~C4의 가벼운 탄화수소를 생성하는 몇가지 방법, 예를 들면, 직접 LPG 합성, 이소 합성법(isosynthesis), 가벼운 올레핀 합성 반응 등과 같은 방법이 있다. 이러한 3가지 방법은 메탄의 생성을 억제하기 위해 0.5 내지 2의 낮은 H2/CO 비율에서 수행된다. LPG 합성법은 프로판 및 부탄을 제공하는 반면, 이소 합성법은 이소부탄(isobutane) 또는 이소부텐(isobutene) 쪽으로 선택도가 높다. 직접 LPG 합성법 및 이소 합성법은 상대적으로 낮은 일산화탄소 전환율(CO conversion) 및 높은 이산화탄소 선택도를 나타낸다. 가벼운 올레핀 합성 반응은 탄소수 5 이상의 탄화수소를 목적으로 하는 전통적인 피셔트롭쉬 반응에서 인가되는 온도인 220 내지 250℃보다 더 높은 300 내지 400℃의 고온에서 C2~C4의 가변운 탄화수소 생성을 위한 피셔트롭쉬 반응의 일부이다. 그럼에도 불구하고, 높은 C3~C4 선택도에도 불구하고 높은 올레핀 비율 때문에, 올레핀 합성을 위한 피셔트롭쉬 반응은 적당하지 않는 문제점이 있다. Because of their high catalytic activity, high methane selectivity and low cost, nickel-based catalysts have been used commercially to produce synthetic natural gas. However, nickel-based catalysts have a problem with higher selectivity toward methane than hydrocarbons having 2 or more carbon atoms. There are several methods of producing light hydrocarbons of C2 to C4 from a synthesis gas composed of carbon monoxide and hydrogen, for example, direct LPG synthesis, isosynthesis, and light olefin synthesis. These three methods are carried out at low H2/CO ratios of 0.5 to 2 to suppress the production of methane. The LPG synthesis method provides propane and butane, while the iso synthesis method has high selectivity toward isobutane or isobutene. The direct LPG synthesis method and the iso synthesis method show relatively low carbon monoxide conversion (CO conversion) and high carbon dioxide selectivity. The light olefin synthesis reaction is a Fischer Tropsch for producing variable hydrocarbons of C2 to C4 at a high temperature of 300 to 400°C, which is higher than 220 to 250°C, which is the temperature applied in the traditional Fischer Tropsch reaction for hydrocarbons with 5 or more carbon atoms. It's part of the reaction. Nevertheless, despite the high C3~C4 selectivity, due to the high olefin ratio, there is a problem that the Fischer Tropsch reaction for olefin synthesis is not suitable.

Inui et al.은 고칼로리 메탄화 공정을 통해 첨가된 C2~C4 탄화수소를 갖는 합성 가스와 비교하여 고칼로리 가스를 위한 ‘Co-Mn-Ru/Al2O3’촉매를 보고하였다. ‘Co-Mn-Ru/Al2O3’촉매는 98.8%의 높은 일산화탄소 전환율 및 19.1%의 C2~C4 선택도를 나타내었다. 그러나 회득된 발열량은 여전히 LPG가 첨가된 천연가스를 대체하기에 충분하지 않았다. Lee et al.은 'Co-Mn-Ru/Al2O3’촉매에서 각 성분의 역할을 조사하였고, 'Co-Mn-Ru/Al2O3’촉매의 최적 조성을 제안하였으나, 여전히 합성 천연가스의 발열량을 향상시키기에 부족한 부분이 있다. Inui et al. Reported a 'Co-Mn-Ru / Al 2 O 3' catalyst for the high-calorie gas as compared with synthesis gas having a C2 ~ C4 hydrocarbons added via a high-calorie methanation process. 'Co-Mn-Ru / Al 2 O 3' catalyst exhibited a selectivity of C2 ~ C4 and higher carbon monoxide conversion rate of 19.1% of 98.8%. However, the calorific value obtained was still not sufficient to replace LPG-added natural gas. Lee et al. Is on the 'Co-Mn-Ru / Al 2 O 3' catalyst was investigated the role of each component, but offer the optimum composition of the 'Co-Mn-Ru / Al 2 O 3' catalyst, still synthetic natural gas There are insufficient parts to improve the calorific value of.

최근 합성 천연가스의 발열량을 향상시키기 위한 몇가지 시도가 있었으나, 촉매 거동이 촉매 형태 및 공정 조건들에 영향을 받음에도 불구하고 다양한 공정 조건들 하에서의 촉매에 대해 상세히 조사되지 않았다.Recently, several attempts have been made to improve the calorific value of synthetic natural gas, but the catalyst under various process conditions has not been investigated in detail, although the catalyst behavior is affected by the catalyst type and process conditions.

본 발명의 일 목적은 코발트 산화물 및 철 산화물로 이루어진 2 성분계 금속 촉매 성분을 포함함에 의해, 높은 CO 전환율을 발휘하면서, C2 내지 C4의 파라핀계 탄화수소를 고 비율로 함유하여 고발열량을 가진 합성 천연가스를 합성할 수 있는 합성 천연가스 제조용 촉매를 제공하는 것이다.One object of the present invention is a synthetic natural gas having a high calorific value by containing a two-component metal catalyst component consisting of cobalt oxide and iron oxide, exhibiting a high CO conversion rate, and containing a high proportion of C2 to C4 paraffinic hydrocarbons It is to provide a catalyst for producing synthetic natural gas that can synthesize.

본 발명의 다른 목적은 상기 합성 천연가스 제조용 촉매를 이용하여 고발열량의 합성 천연가스를 합성하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for synthesizing synthetic natural gas having a high calorific value using the catalyst for producing synthetic natural gas.

본 발명의 실시예에 따른 합성 천연가스 제조용 촉매는 일산화탄소와 수소를 반응시켜 탄소수가 2 내지 4인 파라핀계 탄화수소를 함유하는 고발열양 합성 천연가스를 합성하는 반응에 사용되고, 알루미나 담지체; 및 상기 알루미나 담지체 상에 담지되고, 코발트 산화물 및 철 산화물로 이루어진 2 성분계 금속 촉매 성분을 포함한다. The catalyst for producing synthetic natural gas according to an embodiment of the present invention is used in a reaction of reacting carbon monoxide and hydrogen to synthesize a high-heat-generating synthetic natural gas containing a paraffinic hydrocarbon having 2 to 4 carbon atoms, and includes an alumina carrier; And a two-component metal catalyst component supported on the alumina support and composed of cobalt oxide and iron oxide.

일 실시예에 있어서, 상기 코발트 산화물 및 상기 철 산화물은 Co3O4 및 Fe2O3을 각각 포함할 수 있다. In one embodiment, the cobalt oxide and the iron oxide may each include Co 3 O 4 and Fe 2 O 3 .

일 실시예에 있어서, 상기 Co3O4의 전량은 CoO로 환원될 수 있고, 상기 Fe2O3의 전량은 Fe로 환원될 수 있다. In one embodiment, the entire amount of Co 3 O 4 may be reduced to CoO, and the entire amount of Fe 2 O 3 may be reduced to Fe.

일 실시예에 있어서, 상기 2 성분계 금속 촉매 성분에서 코발트(Co)에 대한 철(Fe)의 무게 비율이 2.8 내지 3.2일 수 있다. In one embodiment, the weight ratio of iron (Fe) to cobalt (Co) in the two-component metal catalyst component may be 2.8 to 3.2.

일 실시예에 있어서, 상기 2 성분계 금속 촉매 성분은 Fe2O3 상으로의 병합된 Co를 포함할 수 있다. In one embodiment, the two-component metal catalyst component may include Co incorporated into Fe 2 O 3 phase.

본 발명의 실시예에 따른 고발열량의 파라핀계 합성 천연가스의 합성 방법은 상기의 천연가스 제조용 촉매의 존재 하에 일산화탄소와 수소를 반응시켜 탄소수가 2 내지 4인 파라핀계 탄화수소를 함유하는 고발열양 합성 천연가스를 합성한다. The synthesis method of paraffin-based synthetic natural gas having a high calorific value according to an embodiment of the present invention is a synthetic natural high calorific value containing paraffinic hydrocarbons having 2 to 4 carbon atoms by reacting carbon monoxide and hydrogen in the presence of the catalyst for natural gas production. Synthesize gas.

일 실시예에 있어서, 상기 일산화탄소에 대한 상기 수소의 비율은 2.0 이상 4.0 이하일 수 있다. In one embodiment, the ratio of the hydrogen to the carbon monoxide may be 2.0 or more and 4.0 or less.

일 실시예에 있어서, 상기 일산화탄소와 상기 수소의 반응은 270℃ 이상 360℃ 이하의 온도에서 수행될 수 있다. In one embodiment, the reaction of the carbon monoxide and the hydrogen may be performed at a temperature of 270°C or more and 360°C or less.

본 발명의 고발열량을 가진 합성 천연가스 제조용 촉매 및 이를 이용한 고발열량의 파라핀계 합성 천연가스의 합성 방법에 따르면, 철의 환원성이 향상되어 상대적으로 높은 CO 전환율을 발휘하면서, C2 내지 C4의 파라핀계 탄화수소를 고 비율로 함유하여 고발열량을 가진 합성 천연가스를 제조할 수 있다. According to the catalyst for producing synthetic natural gas having a high calorific value of the present invention and a method for synthesizing a paraffin-based synthetic natural gas with a high calorific value using the same, the reducing property of iron is improved to exhibit a relatively high CO conversion rate, and a paraffinic C2 to C4 type Synthetic natural gas with high calorific value can be produced by containing hydrocarbons in a high proportion.

도 1은 환원 전 및 후의 촉매들에 대한 XRD 패턴을 나타낸다.
도 2는 촉매의 H2-TPR 프로파일을 나타낸다.
도 3은 10% H2/N2 혼합 가스 조건 하에서 500℃에서 1시간 동안 환원된 경우, 동일한 로딩양(20 wt%)이나 서로 다른 질량 비율을 가진 촉매들의 촉매 거동을 보여준다.
도 4a 내지 도 4c는 다른 H2/CO 비율들 및 반응 온도들에서의 '5Co-15Fe/γ-Al2O3’촉매의 활성화도 테스트 결과들이다.
도 5는 다양한 반응 온도 및 H2/CO 비율 조건 하에서의 '5Co-15Fe/γ-Al2O3’촉매의 CO 전환율에 대한 C2 내지 C4 탄화수소 선택도를 나타낸다.
1 shows the XRD pattern for catalysts before and after reduction.
2 shows the H2-TPR profile of the catalyst.
3 shows the catalyst behavior of catalysts having the same loading amount (20 wt%) or different mass ratios when reduced for 1 hour at 500° C. under 10% H 2 /N 2 mixed gas conditions.
Figures 4a to 4c are the activation of the '5Co-15Fe / γ-Al 2 O 3' of the catalyst at different H2 / CO ratio and reaction temperature also test results.
Figure 5 shows a C2 to C4 hydrocarbon selectivity for CO conversion of '5Co-15Fe / γ-Al 2 O 3' catalyst under various reaction temperature and the H2 / CO ratio conditions.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present invention, various modifications may be made and various forms may be applied, and specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific form of disclosure, it is to be understood as including all changes, equivalents, or substitutes included in the spirit and scope of the present invention.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate the existence of features, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features or steps It is to be understood that it does not preclude the possibility of addition or presence of, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms as defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined in this application. Does not.

<고발열량을 가진 합성 천연가스 제조용 촉매><Catalyst for producing synthetic natural gas with high calorific value>

본 발명의 실시예에 따른 합성 천연가스 제조용 촉매는 일산화탄소(CO)와 수소(H2)를 반응시켜 고발열량을 가진 합성 천연가스(Synthetic natural gas, SNG)를 합성하는 반응에 적용될 수 있다. 예를 들면, 상기 고발열량을 가진 합성 천연가스는 탄소수가 약 2 내지 4인 파라핀계 탄화수소를 상대적으로 높은 비율로 포함하는 가스 상의 탄화수소일 수 있다. The catalyst for producing synthetic natural gas according to an embodiment of the present invention can be applied to a reaction of synthesizing synthetic natural gas (SNG) having a high calorific value by reacting carbon monoxide (CO) and hydrogen (H2). For example, the synthetic natural gas having a high calorific value may be a gaseous hydrocarbon containing a paraffinic hydrocarbon having a carbon number of about 2 to 4 in a relatively high proportion.

상기 천연가스 제조용 촉매는 알루미나 담지체에 담지된 2 성분계 금속 촉매 성분을 포함할 수 있다. 상기 알루미나 담지체는 γ 상의 결정질 알루미나 입자를 포함할 수 있다. 예를 들면, 상기 알루미나 담지체는 약 1 내지 1000 μm의 크기를 갖는 γ-알루미나 입자를 포함할 수 있다. The catalyst for natural gas production may include a two-component metal catalyst component supported on an alumina support. The alumina carrier may include γ-phase crystalline alumina particles. For example, the alumina carrier may include γ-alumina particles having a size of about 1 to 1000 μm.

일 실시예에 있어서, 상기 2 성분계 금속 촉매 성분은 코발트 산화물 및 철 산화물을 포함할 수 있다. 예를 들면, 환원 전, 상기 코발트 산화물 및 철 산화물은 Co3O4 및 Fe2O3을 각각 포함할 수 있다. 한편, 상기 2 성분계 금속 촉매 성분 중 Co3O4는 CoO로 환원될 수 있고, Fe2O3는 Fe로 환원될 수 있다. In one embodiment, the two-component metal catalyst component may include cobalt oxide and iron oxide. For example, before reduction, the cobalt oxide and iron oxide may each include Co 3 O 4 and Fe 2 O 3 . Meanwhile, in the two-component metal catalyst component, Co 3 O 4 may be reduced to CoO, and Fe 2 O 3 may be reduced to Fe.

일 실시예에 있어서, 상기 2 성분계 금속 촉매 성분은 코발트(Co)에 대한 철(Fe)의 무게 비율이 약 2.8 내지 3.2일 수 있다. 코발트에 대한 철의 무게 비율이 상기의 범위 안에 있는 경우, Co의 Fe2O3 상으로의 병합에 의해 Fe와 알루미나 사이의 상호작용이 약해져 Fe의 환원성이 증가될 수 있다. In one embodiment, the two-component metal catalyst component may have a weight ratio of iron (Fe) to cobalt (Co) of about 2.8 to 3.2. When the weight ratio of iron to cobalt is within the above range, the interaction between Fe and alumina is weakened by the incorporation of Co into the Fe 2 O 3 phase, thereby increasing the reducibility of Fe.

<고발열량의 파라핀계 합성 천연가스의 합성 방법><Method of synthesizing high calorific paraffinic synthetic natural gas>

본 발명의 실시예에 따른 고발열량의 파라핀계 합성 천연가스의 합성 방법은 앞에서 설명한 본 발명의 고발열량을 가진 합성 천연가스 제조용 촉매의 존재 하에 일산화탄소(CO) 및 수소(H2)를 반응시키는 단계를 포함하고, C2 내지 C4의 파라핀계 탄화수소 가스를 고비율로 함유한 고발열량의 탄화수소를 생성할 수 있다. The synthesis method of paraffin-based synthetic natural gas having a high calorific value according to an embodiment of the present invention is a step of reacting carbon monoxide (CO) and hydrogen (H 2 ) in the presence of the catalyst for producing synthetic natural gas having a high calorific value of the present invention described above. Including, it is possible to produce a hydrocarbon having a high calorific value containing a C2 to C4 paraffinic hydrocarbon gas in a high ratio.

일 실시예에 있어서, 상기 일산화탄소(CO)와 상기 수소(H2)는 챔버 내에서 반응될 수 있고, 이를 위해 상기 챔버 내부에는 상기 일산화탄소(CO)에 대한 상기 수소(H2)의 비율은 약 2.0 이상 4.0 이하, 바람직하게는 약 3.0 이상 4.0 이하의 비율이 되도록 상기 일산화탄소(CO)와 상기 수소(H2)가 공급될 수 있다. In one embodiment, the carbon monoxide (CO) and the hydrogen (H 2 ) may be reacted in the chamber, and for this purpose, the ratio of the hydrogen (H 2 ) to the carbon monoxide (CO) is about The carbon monoxide (CO) and the hydrogen (H 2 ) may be supplied in a ratio of 2.0 or more and 4.0 or less, preferably about 3.0 or more and 4.0 or less.

일 실시예에 있어서, 상기 일산화탄소(CO)와 상기 수소(H2)의 반응은 약 270℃ 이상 약 360℃ 이하의 온도, 바람직하게는 약 290℃ 이상 약 360℃ 이하의 온도에서 수행될 수 있다. 상기 반응 온도가 270℃ 미만인 경우에는 CO 전환율이 지나치게 낮은 문제점이 발생할 수 있고, 360℃를 초과하는 경우에는 C2 내지 C4 탄화수소 선택도 및 파라핀 비율이 감소되는 문제점이 발생될 수 있다. 일 실시예로, 상기 일산화탄소(CO)와 상기 수소(H2)의 반응은 약 290℃ 이상 약 310℃ 이하의 온도에서 수행될 수 있다.In one embodiment, the reaction of the carbon monoxide (CO) and the hydrogen (H 2 ) may be carried out at a temperature of about 270° C. or more and about 360° C. or less, preferably about 290° C. or more and about 360° C. or less. . When the reaction temperature is less than 270°C, the CO conversion rate may be too low, and when the reaction temperature exceeds 360°C, the C2 to C4 hydrocarbon selectivity and the paraffin ratio may decrease. In one embodiment, the reaction of the carbon monoxide (CO) and the hydrogen (H 2 ) may be performed at a temperature of about 290°C or more and about 310°C or less.

본 발명의 고발열량을 가진 합성 천연가스 제조용 촉매 및 이를 이용한 고발열량의 파라핀계 합성 천연가스의 합성 방법에 따르면, 철의 환원성이 향상되어 상대적으로 높은 CO 전환율을 발휘하면서, C2 내지 C4의 파라핀계 탄화수소를 고 비율로 함유한 고발열량을 가진 합성 천연가스를 제조할 수 있다. According to the catalyst for producing synthetic natural gas having a high calorific value of the present invention and a method for synthesizing a paraffin-based synthetic natural gas with a high calorific value using the same, the reducing property of iron is improved to exhibit a relatively high CO conversion rate, and a paraffinic C2 to C4 type Synthetic natural gas with high calorific value containing a high proportion of hydrocarbons can be produced.

이하 본 발명의 실시예 및 실험예에 대해 상술한다. 다만, 하기 실시예들은 본 발명의 일부 실시형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예들에 한정되는 것은 아니다. Hereinafter, examples and experimental examples of the present invention will be described in detail. However, the following examples are only some embodiments of the present invention, and the scope of the present invention is not limited to the following examples.

<촉매 합성><Catalyst synthesis>

Co(NO3)2·6H2O, Fe(NO3)3·9H2O 및 γ-알루미나(γ-alumina)를 이용한 IWI(Incipient wetness impregnation)법에 의해 촉매들을 합성하였다. γ-알루미나 상에 코발트(Co) 및 철(Fe)을 지지하기 위한 함침 공정은 다음의 순서에 따라 수행되었다. Catalysts were synthesized by IWI (Incipient wetness impregnation) method using Co(NO 3 ) 2 ·6H 2 O, Fe(NO 3 ) 3 ·9H 2 O and γ-alumina. The impregnation process for supporting cobalt (Co) and iron (Fe) on γ-alumina was performed according to the following sequence.

기 설정된 비율의 코발트 질산염 및 철 질산염을 함유하는 용액에 알루미나를 무수에탄올(anhydrous ethanol)과 함께 첨가하였고, 이어서 자기 교반기를 이용하여 24시간 동안 혼합하였다. 교반 후 회전 증발기(rotary evaporator)를 이용하여 40 내지 60℃에서 용매를 제거하였다. 샘플들은 120℃에서 12시간 동안 건조되었고, 10℃/min의 속도로 온도를 증가시켜 400℃에서 8시간 동안 하소(Calcination)되었다. γ-알루미나 상에 지지된 2원계 Co-Fe 촉매인 ‘xCo-yFe/γ-Al2O3’(x, y는 각 금속의 질량비율을 나타냄)가 합성되었다. Alumina was added together with anhydrous ethanol to a solution containing cobalt nitrate and iron nitrate in a preset ratio, followed by mixing for 24 hours using a magnetic stirrer. After stirring, the solvent was removed at 40 to 60° C. using a rotary evaporator. The samples were dried at 120° C. for 12 hours and calcined at 400° C. for 8 hours by increasing the temperature at a rate of 10° C./min. A binary Co-Fe catalyst supported on γ-alumina, “xCo-yFe/γ-Al2O3” (x, y denotes the mass ratio of each metal) was synthesized.

<실험예><Experimental Example>

도 1은 환원 전 및 후의 촉매들에 대한 XRD 패턴을 나타낸다. 1 shows the XRD pattern for catalysts before and after reduction.

도 1을 참조하면, 환원 전(Fresh) '20Co/γ-Al2O3’및 '20Fe/γ-Al2O3’촉매의 XRD 패턴은 Co3O4 상 및 Fe2O3 상을 각각 포함하는 것으로 나타났다. 2 금속 성분계 촉매의 경우, 코발트에 대한 철의 비율이 증가함에 따라 Co3O4의 XRD 피크는 감소하였다. '5Co-15Fe/γ-Al2O3’촉매에서는 Co3O4에 대응되는 피크를 나타내지 않은 반면 CoO에 대응되는 피크를 나타났는데, 이는 하소 후 Co가 Fe2O3로 병합되었음을 나타낸다. 그러나 Fe2O3의 XRD 피크는 Co3O4와 비교하여 매우 넓은 것으로 나타났는데, 이는 γ-알루미나에 상에서 철의 우수한 분산도로 인하여 입자크기가 작게 형성되었기 때문이다. 1, the reduction pre (Fresh) '20Co / γ- Al 2 O 3' and the XRD pattern of '20Fe / γ-Al 2 O 3' catalyst are each a Co 3 O 4 phase and a Fe 2 O 3 phase Appeared to contain. In the case of a two-metal component catalyst, the XRD peak of Co 3 O 4 decreased as the ratio of iron to cobalt increased. The '5Co-15Fe/γ-Al 2 O 3 'catalyst did not show a peak corresponding to Co 3 O 4 , whereas a peak corresponding to CoO appeared, indicating that Co was incorporated into Fe 2 O 3 after calcining. However, the XRD peak of Fe 2 O 3 was found to be very wide compared to that of Co 3 O 4 , because the particle size was formed small due to the excellent dispersibility of iron in the γ-alumina phase.

환원된(Reduced) '20Co/γ-Al2O3’촉매의 XRD 패턴은 CoO 상 및 Co 금속상을 나타낸 반면, 환원된 '20Fe/γ-Al2O3’촉매의 XRD 패턴은 Fe3O4 상 및 Fe 금속 상을 나타내었다. 2 금속 성분계 촉매의 경우, 코발트에 대한 철의 비율이 증가함에 따라 Co 금속에 대응되는 XRD 피크는 감소하고, Fe 금속에 대응되는 XRD 피크는 증가하는 것으로 나타났다. '5Co-15Fe/γ-Al2O3’촉매에서는 CoO 및 Fe 금속에 대응되는 XRD 피크들을 나타났다. 위에서 설명한 바와 같이, '5Co-15Fe/γ-Al2O3’촉매에서 Co의 Fe2O3 상으로의 병합으로 인하여 철과 알루미나 사이의 상호작용 약해지고, 이로 인해 철 종류의 환원성이 향상될 수 있다. XRD pattern of the XRD pattern of the reduced (Reduced) '20Co / γ- Al 2 O 3' catalyst CoO phase and while showing a Co metal phase, the reduced '20Fe / γ-Al 2 O 3' catalyst is Fe 3 O 4 phase and Fe metal phase were shown. In the case of a two-metal component catalyst, as the ratio of iron to cobalt increases, the XRD peak corresponding to the Co metal decreases, and the XRD peak corresponding to the Fe metal increases. In the '5Co-15Fe/γ-Al 2 O 3 'catalyst, XRD peaks corresponding to CoO and Fe metals were shown. As explained above, '5Co-15Fe / γ- Al 2 O 3' weakens the interaction between due to the merging of the phase Co in Fe 2 O 3 of iron and alumina in the catalyst, resulting in iron types to be reducible to improve have.

도 2는 촉매의 H2-TPR 프로파일을 나타낸다. 2 shows the H2-TPR profile of the catalyst.

도 2를 참조하면, '20Co/γ-Al2O3’촉매의 H2-TPR 곡선은 300 내지 400℃에서의 저온 피크 및 450 내지 650℃에서의 고온 피크로 이루어진 2 그룹의 피크를 나타내고, 이들은 Co3O4의 CoO로의 환원 및 CoO의 금속 Co로의 환원에 각각 기인한다. Referring to Figure 2, '20Co / γ-Al 2 O 3' of the catalytic H2-TPR curve represents the second group of peaks made up of a high temperature peak at the lower temperature peak, and 450 to 650 ℃ at 300 to 400 ℃, which It is attributed to the reduction of Co 3 O 4 to CoO and the reduction of CoO to metal Co, respectively.

'20Fe/γ-Al2O3’촉매의 H2-TPR 곡선은 300 내지 400℃에서의 피크 및 450 내지 700℃에서의 넓은 피크를 나타내고, 이들은 Fe2O3의 Fe3O4로의 환원 및 Fe3O4의 금속 Fe로의 환원에 각각 기인한다. FeO 상은 중간체 상으로서 검출되지 않았다. 코발트에 대한 철의 비율이 증가함에 따라, 코발트의 환원 온도는 더 높은 온도로 쉬프트되는 반면, 철의 환원 온도는 더 낮은 온도로 쉬프트되는 것이 발견되었다. 따라서, 코발트의 환원은 철의 존재 하에서 더 어려워지고, 철의 환원은 코발트의 첨가에 의해 향상되는 것으로 판단된다. The H2-TPR curve of the '20Fe/γ-Al2O3' catalyst shows a peak at 300 to 400°C and a broad peak at 450 to 700°C, and these are the reduction of Fe 2 O 3 to Fe 3 O 4 and Fe 3 O 4 Respectively due to the reduction of the metal to Fe The FeO phase was not detected as an intermediate phase. It has been found that as the ratio of iron to cobalt increases, the reduction temperature of cobalt shifts to a higher temperature, while the reduction temperature of iron shifts to a lower temperature. Therefore, it is judged that the reduction of cobalt becomes more difficult in the presence of iron, and the reduction of iron is enhanced by the addition of cobalt.

도 3은 10% H2/N2 혼합 가스 조건 하에서 500℃에서 1시간 동안 환원된 경우, 동일한 로딩양(20 wt%)이나 서로 다른 질량 비율을 가진 촉매들의 촉매 거동을 보여주고, 표 1은 이의 결과를 나타낸다. 활성 테스트는 300℃ 및 10bar에서 H2/CO 비율이 3인 조건 하에서 수행되었다. 3 shows the catalytic behavior of catalysts having the same loading amount (20 wt%) or different mass ratios when reduced for 1 hour at 500° C. under 10% H 2 /N 2 mixed gas conditions, and Table 1 shows The results are shown. The activity test was carried out under conditions of 3 H 2 /CO ratio at 300° C. and 10 bar.

CO 전환율
(%)
CO conversion rate
(%)
선택도 (%)Selectivity (%)
CH4 CH 4 C2~C4 C 2 to C 4 C5+ C 5+ CO2 CO 2 20Co20Co 97.097.0 42.242.2 16.716.7 29.229.2 11.911.9 15Co-5Fe15Co-5Fe 99.199.1 49.349.3 19.919.9 20.720.7 10.210.2 10Co-10Fe10Co-10Fe 95.495.4 45.045.0 20.520.5 18.818.8 15.615.6 5Co-15Fe5Co-15Fe 91.591.5 23.523.5 28.228.2 26.026.0 22.322.3 20Fe20Fe 54.054.0 25.425.4 26.626.6 26.226.2 25.425.4

도 3 및 표 1을 참조하면, '20Co/γ-Al2O3’및 '20Fe/γ-Al2O3’촉매들은 97.0% 및 54.0%의 CO 전환율을 각각 나타내었고, 2 금속 성분계 촉매들은 91.5% 내지 99.1%의 CO 전환율을 나타내었다. 즉, 2 금속 성분계 촉매들이 '20Fe/γ-Al2O3’촉매보다 더 높은 CO 전환율을 나타내었다. 이러한 CO 전환율에서의 향상은 향상된 철의 환원성과 부합한다. '20Co/γ-Al2O3’촉매는 탄소수 2 이상(C2+)의 탄화수소보다 메탄에 대한 더 높은 선택도를 나타내었고, '20Fe/γ-Al2O3’촉매는 상대적으로 낮은 메탄 선택도와 상대적으로 더 높은 탄소수 2 이상(C2+)의 탄화수소에 대한 선택도 그리고 CO2 선택도를 나타내었다. 철 촉매는 코발트 촉매보다 더 낮은 활성화도를 갖고, 고온에서 더 낮은 메탄 선택도를 갖고 더 높은 올레핀 함유량을 가지게 함이 널리 알려져 있다. 또한, 철 촉매의 높은 CO2 선택도는 물-가스 변화 반응(WGS, CO+H2O->CO2+H2)을 야기한다. 이에 반해, 2 금속 성분계 촉매는 1 금속 성분계 촉매와 비교하여 중간 생성물 선택도를 나타낸다. 특히, 코발트에 대한 철의 비율이 증가함에 따라, 메탄 선택도는 감소하고 C2 내지 C4의 탄화수소 생성은 증가한다. 모든 촉매들 중, '5Co-15Fe/γ-Al2O3' 촉매가 높은 CO 전환율(91.5%)에서 가장 높은 C2 내지 C4의 파라핀 선택도(28.2%)를 나타내었다. '20Fe/γ-Al2O3’촉매와 비교하여, '5Co-15Fe/γ-Al2O3’촉매의 높은 전환율 및 유사한 선택도는 향상된 철 환원성으로부터 기인한다. Referring to Figure 3 and Table 1, showed '20Co / γ-Al 2 O 3' and '20Fe / γ-Al 2 O 3' catalysts for CO conversion of 97.0% and 54.0%, respectively, second metal component catalysts It showed a CO conversion of 91.5% to 99.1%. That is, the two metal component catalysts exhibited higher CO conversion than the '20Fe/γ-Al 2 O 3 'catalyst. This improvement in CO conversion is consistent with improved iron reducibility. '20Co / γ-Al 2 O 3' catalyst having 2 or more (C 2+) of exhibited a higher selectivity to methane than the hydrocarbon, '20Fe / γ-Al 2 O 3' catalyst is relatively low methane Selectivity and relatively higher selectivity for hydrocarbons having 2 or more carbon atoms (C 2+ ) and CO 2 selectivity were shown. It is well known that iron catalysts have a lower degree of activation than cobalt catalysts, lower methane selectivity at high temperatures, and higher olefin content. In addition, the high CO 2 selectivity of the iron catalyst causes a water-gas change reaction (WGS, CO+H 2 O->CO 2 +H 2 ). In contrast, the two metal component catalyst exhibits intermediate product selectivity compared to the one metal component catalyst. In particular, as the ratio of iron to cobalt increases, methane selectivity decreases and hydrocarbon production of C2 to C4 increases. Among all catalysts, the '5Co-15Fe/γ-Al 2 O 3 'catalyst showed the highest C2 to C4 paraffin selectivity (28.2%) at a high CO conversion rate (91.5%). As compared to the '20Fe / γ-Al 2 O 3' catalyst, and '5Co-15Fe / γ-Al 2 O 3' high conversion and similar selectivity of the catalyst resulting from an improved iron-reducing.

도 4a 내지 도 4c 및 표 2는 다른 H2/CO 비율들 및 반응 온도들에서의 '5Co-15Fe/γ-Al2O3’촉매의 활성화도 테스트 결과들이다. Figures 4a to 4c and Table 2 are the activation of the '5Co-15Fe / γ-Al 2 O 3' of the catalyst at different H2 / CO ratio and reaction temperature also test results.

H2/COH2/CO 온도
(℃)
Temperature
(℃)
CO 전환율
(%)
CO conversion rate
(%)
선택도 (%)Selectivity (%) P/(P+O)P/(P+O)
CH4CH4 C2~C4
Paraffins
C2~C4
Paraffins
C2~C4
Olefins
C2~C4
Olefins
C5+C5+ CO2CO2
1.01.0 250250 18.518.5 20.020.0 7.67.6 10.910.9 41.841.8 19.719.7 0.410.41 300300 36.736.7 22.622.6 13.213.2 7.27.2 28.428.4 28.628.6 0.650.65 350350 52.352.3 19.919.9 9.29.2 6.46.4 30.130.1 34.534.5 0.590.59 400400 93.793.7 19.719.7 8.88.8 2.72.7 33.633.6 35.335.3 0.770.77 2.02.0 250250 45.145.1 23.723.7 13.513.5 10.510.5 26.626.6 25.725.7 0.560.56 300300 43.843.8 26.926.9 24.024.0 1.61.6 23.323.3 24.224.2 0.940.94 350350 70.970.9 25.825.8 18.418.4 2.92.9 22.322.3 30.530.5 0.860.86 400400 90.090.0 33.633.6 14.814.8 2.22.2 22.022.0 27.527.5 0.870.87 3.03.0 250250 55.655.6 31.931.9 16.516.5 8.58.5 17.917.9 25.325.3 0.660.66 300300 91.591.5 23.523.5 27.627.6 0.60.6 26.026.0 22.322.3 0.980.98 350350 96.496.4 33.533.5 22.022.0 2.12.1 14.814.8 27.627.6 0.910.91 400400 98.598.5 44.644.6 16.716.7 2.72.7 12.612.6 23.423.4 0.860.86

도 4a 및 표 2를 참조하면, 모든 H2/CO 비율들에서 온도에 따라 CO 전환율이 현저하게 증가하는 것으로 나타났다. 또한,400℃까지는 더 높은 H2/CO 비율에서 CO 전환율이 향상되는 것으로 나타났다. 이들로부터, H2/CO 비율 및 온도는 CO 전환율 향상에 중요한 역할을 함을 알 수 있다. Referring to FIG. 4A and Table 2, it was found that the CO conversion rate significantly increased with temperature at all H 2 /CO ratios. In addition, it was shown that the CO conversion was improved at higher H 2 /CO ratios up to 400°C. From these, it can be seen that the H 2 /CO ratio and temperature play an important role in improving the CO conversion rate.

도 4b 및 표 2를 참조하면, 모든 H2/CO 비율들에서 반응 온도에 따라 유사한 경향을 나타내는 것으로 나타났다. C2 내지 C4 선택도는 300℃까지는 온도가 증가함에 따라 증가하는 것으로 나타났으나, 더 높은 온도에서는 온도가 증가함에 따라 감소하는 것으로 나타났다. 또한, C2 내지 C4 선택도는 H2/CO 비율이 증가함에 따라 향상되는 것으로 나타났으나, 이러한 효과는 H2/CO 비율이 2.0을 초과하는 경우에는 작은 것으로 나타났다. '5Co-15Fe/γ-Al2O3’촉매는 반응 온도가 300℃이고 H2/CO 비율이 3.0인 조건 하에서 28.2%의 C2 내지 C4 선택도를 나타내었다. H2/CO 비율보다 반응 온도가 C2 내지 C4 선택도에 대해 더 큰 영향을 미치는 것으로 나타났다. Referring to FIG. 4B and Table 2, it was found that all H 2 /CO ratios exhibited a similar trend according to the reaction temperature. C2 to C4 selectivity was found to increase with increasing temperature up to 300°C, but decreased with increasing temperature at higher temperatures. In addition, C2 to C4 selectivity was found to be improved as the H 2 /CO ratio increased, but this effect was found to be small when the H 2 /CO ratio exceeded 2.0. '5Co-15Fe / γ-Al 2 O 3' catalyst exhibited a 28.2% of a C2 to C4 selectivity under the condition of a reaction temperature of 300 ℃ 3.0 and H 2 / CO ratio. It was found that the reaction temperature had a greater effect on the C2 to C4 selectivity than the H 2 /CO ratio.

도 4c 및 표 2를 참조하면, C2 내지 C4 탄화수소 중 파라핀의 비율은 도 4b에 도시된 C2 내지 C4 선택도와 유사한 경향을 나타내었다. 3.0 및 2.0의 H2/CO 비율들에서, 파라핀 비율은 300℃까지는 온도가 증가함에 따라 증가하는 것으로 나타났으나, 더 높은 온도에서는 온도가 증가함에 따라 감소하는 것으로 나타났다. 하지만, 1.0의 H2/CO 비율의 경우, 온도가 350℃ 이상인 구간에서 온도가 증가함에 따라 파라핀 비율이 증가하는 것으로 나타났다. 그리고 파라핀 비율은 H2/CO 비율이 증가함에 따라 향상되는 것으로 나타났으나, 이러한 효과는 H2/CO 비율이 2.0을 초과하는 경우에는 작은 것으로 나타났다. H2/CO 비율의 효과는 2.0을 초과하는 영역에서는 작다는 사실은 반응의 진행에 따라 생성된 물에 의해 WGS(water gas shift, CO+H2O->CO2+H2) 반응이 진행되어 H2/CO비율의 재조정에 의한 영향 때문인 것으로 판단된다. 4C and Table 2, the proportion of paraffin among C2 to C4 hydrocarbons exhibited a similar trend to the C2 to C4 selectivity shown in FIG. 4B. At H 2 /CO ratios of 3.0 and 2.0, the paraffin ratio was found to increase with increasing temperature up to 300°C, but at higher temperatures it was found to decrease with increasing temperature. However, in the case of the H 2 /CO ratio of 1.0, it was found that the paraffin ratio increased as the temperature increased in the section where the temperature was 350°C or higher. And it was found that the paraffin ratio improved as the H 2 /CO ratio increased, but this effect was found to be small when the H 2 /CO ratio exceeded 2.0. The fact that the effect of the H 2 /CO ratio is small in the region exceeding 2.0 is that WGS (water gas shift, CO+H 2 O->CO 2 +H 2 ) reaction proceeds by the water generated as the reaction proceeds. This is believed to be due to the effect of the readjustment of the H 2 /CO ratio.

이상의 사항을 종합하면, '5Co-15Fe/γ-Al2O3’촉매를 적용하는 경우, H2/CO 비율은 3.0 이상이고, 반응 온도는 290℃ 이상 360℃ 이하인 것이 바람직하다. In summary, when the '5Co-15Fe/γ-Al 2 O 3 'catalyst is applied, the H2/CO ratio is preferably 3.0 or more, and the reaction temperature is preferably 290°C or more and 360°C or less.

도 5는 다양한 반응 온도 및 H2/CO 비율 조건 하에서의 '5Co-15Fe/γ-Al2O3’촉매의 CO 전환율에 대한 C2 내지 C4 탄화수소 선택도를 나타낸다. Figure 5 shows a C2 to C4 hydrocarbon selectivity for CO conversion of '5Co-15Fe / γ-Al 2 O 3' catalyst under various reaction temperature and the H2 / CO ratio conditions.

도 5를 참조하면, 3.0의 H2/CO 비율 및 300℃ 이상의 반응 온도에서의 결과는 높은 C2 내지 C4 파라핀 선택도를 나타낼 뿐만 아니라 높은 CO 전환율을 나타내는 것으로 나타났다. Referring to FIG. 5, the results at a H2/CO ratio of 3.0 and a reaction temperature of 300° C. or higher show high C2 to C4 paraffin selectivity as well as high CO conversion.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the present invention described in the following claims. You will understand that you can.

없음none

Claims (8)

일산화탄소와 수소를 반응시켜 탄소수가 2 내지 4인 파라핀계 탄화수소를 함유하는 고발열양 합성 천연가스를 합성하는 반응에 사용되는 촉매에 있어서,
알루미나 담지체; 및
상기 알루미나 담지체 상에 담지되고, 코발트 산화물 및 철 산화물로 이루어진 2 성분계 금속 촉매 성분을 포함하는, 합성 천연가스 제조용 촉매.
In the catalyst used in the reaction of reacting carbon monoxide and hydrogen to synthesize a high-heat synthetic natural gas containing a paraffinic hydrocarbon having 2 to 4 carbon atoms,
Alumina carrier; And
A catalyst for producing synthetic natural gas, which is supported on the alumina support and comprises a two-component metal catalyst component consisting of cobalt oxide and iron oxide.
제1항에 있어서,
상기 코발트 산화물 및 상기 철 산화물은 Co3O4 및 Fe2O3을 각각 포함하는 것을 특징으로 하는, 합성 천연가스 제조용 촉매.
The method of claim 1,
The cobalt oxide and the iron oxide are Co 3 O 4 and Fe 2 O 3 , characterized in that each containing, synthetic natural gas production catalyst.
제2항에 있어서,
상기 Co3O4의 전량은 CoO로 환원될 수 있고, 상기 Fe2O3의 전량은 Fe로 환원될 수 있는 것을 특징으로 하는, 합성 천연가스 제조용 촉매.
The method of claim 2,
The total amount of Co 3 O 4 may be reduced to CoO, and the total amount of Fe 2 O 3 may be reduced to Fe, a catalyst for producing synthetic natural gas.
제1항에 있어서,
상기 2 성분계 금속 촉매 성분에서 코발트(Co)에 대한 철(Fe)의 무게 비율이 2.8 내지 3.2인 것을 특징으로 하는, 합성 천연가스 제조용 촉매.
The method of claim 1,
A catalyst for producing synthetic natural gas, characterized in that the weight ratio of iron (Fe) to cobalt (Co) in the two-component metal catalyst component is 2.8 to 3.2.
제4항에 있어서,
상기 2 성분계 금속 촉매 성분은 Fe2O3 상으로의 병합된 Co를 포함하는 것을 특징으로 하는, 합성 천연가스 제조용 촉매.
The method of claim 4,
The two-component metal catalyst component is characterized in that it comprises Co incorporated into the Fe 2 O 3 phase, a catalyst for producing synthetic natural gas.
제1항 내지 제5항 중 어느 한 항의 천연가스 제조용 촉매의 존재 하에 일산화탄소와 수소를 반응시켜 탄소수가 2 내지 4인 파라핀계 탄화수소를 함유하는 고발열양 합성 천연가스를 합성하는 것을 특징으로 하는, 고발열량의 파라핀계 합성 천연가스의 합성 방법.Claims 1 to 5 characterized in that by reacting carbon monoxide and hydrogen in the presence of the catalyst for natural gas production according to any one of claims 1 to 5 to synthesize a high-heat synthetic natural gas containing a paraffinic hydrocarbon having 2 to 4 carbon atoms. A method for synthesizing caloric paraffinic synthetic natural gas. 제6항에 있어서,
상기 일산화탄소에 대한 상기 수소의 비율은 2.0 이상 4.0 이하인 것을 특징으로 하는, 고발열량의 파라핀계 합성 천연가스의 합성 방법.
The method of claim 6,
The method of synthesizing a high calorific paraffin-based synthetic natural gas, characterized in that the ratio of the hydrogen to the carbon monoxide is 2.0 or more and 4.0 or less.
제6항에 있어서,
상기 일산화탄소와 상기 수소의 반응은 270℃ 이상 360℃ 이하의 온도에서 수행되는 것을 특징으로 하는, 고발열량의 파라핀계 합성 천연가스의 합성 방법.
The method of claim 6,
The reaction of the carbon monoxide and the hydrogen is characterized in that carried out at a temperature of not less than 270 ℃ 360 ℃, synthesis method of high calorific paraffin-based synthetic natural gas.
KR1020190057713A 2019-05-17 2019-05-17 Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst KR102250016B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190057713A KR102250016B1 (en) 2019-05-17 2019-05-17 Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst
PCT/KR2020/004211 WO2020235799A1 (en) 2019-05-17 2020-03-27 Catalyst for preparing synthetic natural gas having high heating value, and method for synthesizing paraffinic synthetic natural gas having high heating value by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190057713A KR102250016B1 (en) 2019-05-17 2019-05-17 Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst

Publications (2)

Publication Number Publication Date
KR20200132345A true KR20200132345A (en) 2020-11-25
KR102250016B1 KR102250016B1 (en) 2021-05-07

Family

ID=73458535

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190057713A KR102250016B1 (en) 2019-05-17 2019-05-17 Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst

Country Status (2)

Country Link
KR (1) KR102250016B1 (en)
WO (1) WO2020235799A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024786A (en) * 2001-07-13 2003-01-28 Nippon Oil Corp Catalyst for fischer-tropsch synthesis and method for producing hydrocarbon
KR20190032705A (en) * 2017-09-19 2019-03-28 한국가스공사 Fe-Co based complex catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962181B1 (en) * 2008-04-28 2010-06-10 한국화학연구원 Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
KR101272082B1 (en) * 2011-07-07 2013-06-07 한국에너지기술연구원 Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst
KR101816787B1 (en) * 2013-11-28 2018-01-11 한국화학연구원 Storage method of activated catalysts for Fischer-Tropsch synthesis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024786A (en) * 2001-07-13 2003-01-28 Nippon Oil Corp Catalyst for fischer-tropsch synthesis and method for producing hydrocarbon
KR20190032705A (en) * 2017-09-19 2019-03-28 한국가스공사 Fe-Co based complex catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof

Also Published As

Publication number Publication date
WO2020235799A1 (en) 2020-11-26
KR102250016B1 (en) 2021-05-07

Similar Documents

Publication Publication Date Title
US4542122A (en) Cobalt catalysts for the preparation of hydrocarbons from synthesis gas and from methanol
US7045554B2 (en) Method for improved Fischer-Tropsch catalyst stability and higher stable syngas conversion
US4568663A (en) Cobalt catalysts for the conversion of methanol to hydrocarbons and for Fischer-Tropsch synthesis
Rauch et al. Fischer-Tropsch synthesis to biofuels (BtL process)
JP5049793B2 (en) Use of said catalysts for reforming catalysts and synthesis gas to hydrocarbon conversion
ZA200504460B (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
ZA200505106B (en) Process for the preparation of linear alpha-olefins from synthesis gas over a cobalt catalyst
CA2170408A1 (en) Catalyst and process for the production of hydrogen and/or methane
US4670475A (en) Improved cobalt catalysts, and use thereof for Fischer-Tropsch synthesis
Speight Liquid fuels from natural gas
JPS6118728A (en) Conversion of methanol to hydrocarbon
KR102069159B1 (en) Method and Apparatus for producing higher calorific synthetic natural gas
Lee et al. Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component
AU2002313208B2 (en) Method for producing hydrocarbons by fischer-tropsch process
KR102250016B1 (en) Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst
JP5277364B2 (en) Process for producing hydrocarbons by reduction of carbon monoxide
CN111068743B (en) Production method of low-carbon olefin
US4556752A (en) Preparation of liquid hydrocarbons from methanol
JP2009195815A (en) Catalyst for liquefied petroleum gas production and method for manufacturing liquefied petroleum gas using the same
US4751345A (en) Cobalt catalysts, and use thereof for the conversion of methanol to hydrocarbons, and for Fisher-Tropsch synthesis
JP4118503B2 (en) Process for producing hydrocarbons in the presence of carbon dioxide
KR100903271B1 (en) New catalysts and method to produce synthetic gas H2/CO?2 for Fischer-Tropsch process through autothermal reforming of natural gas
AU2009329785A1 (en) Low-pressure Fischer-Tropsch process
ZA200307796B (en) Method for producing hydrocarbons by fisher-tropsch process.
Amin et al. Issues and challenges of Fischer–Tropsch synthesis catalysts

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant