KR20200124863A - System and method for controlling ammonia occlusion amount of selective catalytic reduction system - Google Patents

System and method for controlling ammonia occlusion amount of selective catalytic reduction system Download PDF

Info

Publication number
KR20200124863A
KR20200124863A KR1020190048247A KR20190048247A KR20200124863A KR 20200124863 A KR20200124863 A KR 20200124863A KR 1020190048247 A KR1020190048247 A KR 1020190048247A KR 20190048247 A KR20190048247 A KR 20190048247A KR 20200124863 A KR20200124863 A KR 20200124863A
Authority
KR
South Korea
Prior art keywords
scr
activation
storage amount
reducing agent
factor
Prior art date
Application number
KR1020190048247A
Other languages
Korean (ko)
Other versions
KR102664097B1 (en
Inventor
김희중
서형만
김미진
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190048247A priority Critical patent/KR102664097B1/en
Publication of KR20200124863A publication Critical patent/KR20200124863A/en
Application granted granted Critical
Publication of KR102664097B1 publication Critical patent/KR102664097B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a system and a method for controlling an occlusion amount of a reducing agent of an SCR post-treatment system, capable of adjusting an occlusion amount of a reducing agent such as ammonia according to the degree of activation of an SCR catalyst. To this end, the present invention provides the system and the method for controlling an occlusion amount of a reducing agent of an SCR post-treatment system, wherein a frequency of exposure to a specific temperature or higher is calculated based on the average temperature of the SCR catalyst to grasp the degree of activation of the catalyst, and the occlusion amount of the reducing agent such as ammonia is determined based on the grasped activation degree, thereby improving the control accuracy of the occlusion amount of the reducing agent.

Description

SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법{SYSTEM AND METHOD FOR CONTROLLING AMMONIA OCCLUSION AMOUNT OF SELECTIVE CATALYTIC REDUCTION SYSTEM}BACKGROUND OF THE INVENTION The system and method of controlling the storage amount of reducing agent in the SCR post-treatment system {SYSTEM AND METHOD FOR CONTROLLING AMMONIA OCCLUSION AMOUNT OF SELECTIVE CATALYTIC REDUCTION SYSTEM}

본 발명은 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법에 관한 것으로서, 더욱 상세하게는 SCR 촉매의 활성화 정도에 따라 암모니아와 같은 환원제 흡장량을 조절할 수 있도록 한 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법에 관한 것이다.The present invention relates to a system and method for controlling the storage amount of a reducing agent in an SCR post-treatment system, and more particularly, to control the storage amount of a reducing agent such as ammonia according to the degree of activation of the SCR catalyst. It relates to systems and methods.

디젤엔진 차량에는 배기가스 정화 시스템의 일종으로서, 암모니아(NH3)나 암모니아를 주성분으로 하는 요소수(urea) 등과 같은 질소산화물 제거용 환원제를 배기관에 분사하여 SCR 촉매가 질소산화물을 효과적으로 정화할 수 있도록 한 SCR(Selective Catalytic Reduction) 후처리 시스템이 장착되어 있다.As a kind of exhaust gas purification system in diesel engine vehicles, the SCR catalyst can effectively purify nitrogen oxides by injecting a reducing agent for removing nitrogen oxides such as ammonia (NH 3 ) or urea as a main component into the exhaust pipe. It is equipped with a SCR (Selective Catalytic Reduction) post-treatment system.

상기 SCR 촉매는 암모니아와 같은 환원제가 산소와 질소산화물 중에서 질소산화물과 더 잘 반응하도록 한다는 의미에서 선택적 환원 촉매라고 한다.The SCR catalyst is referred to as a selective reduction catalyst in the sense that a reducing agent such as ammonia reacts better with nitrogen oxides among oxygen and nitrogen oxides.

상기 SCR 후처리 시스템은 환원제 탱크와, 배기파이프의 소정 위치에 장착되는 SCR 촉매와, 환원제 탱크 내의 환원제를 SCR 전단의 배기파이프에 분사하는 분사모듈(Dosing module)을 포함하여 구성된다.The SCR post-treatment system includes a reducing agent tank, an SCR catalyst mounted at a predetermined position of the exhaust pipe, and a dosing module for injecting the reducing agent in the reducing agent tank to the exhaust pipe in front of the SCR.

따라서, 상기 분사모듈로부터 배기파이프를 지나가는 배기가스에 암모니아와 같은 환원제가 분사됨으로써, 분사된 환원제는 SCR 촉매에 흡장되어 배기가스에 포함된 질소산화물을 정화하는 반응을 하게 된다.Accordingly, by injecting a reducing agent such as ammonia from the injection module into the exhaust gas passing through the exhaust pipe, the injected reducing agent is occluded in the SCR catalyst to purify nitrogen oxides contained in the exhaust gas.

이때, 상기 SCR 촉매에 흡장되는 환원제의 양은 SCR 촉매의 열화(Aging) 정도와 밀접한 관련을 가지고 있으며, 그 이유는 SCR 촉매의 현재 열화 정도에서 흡장할 수 있는 환원제의 양 이상의 환원제가 SCR 촉매에 흡장되면, 환원제의 일부가 SCR 촉매로부터 슬립되어 흡장되지 못하기 때문이다.At this time, the amount of reducing agent stored in the SCR catalyst is closely related to the degree of aging of the SCR catalyst, and the reason is that a reducing agent that is more than the amount of reducing agent that can be stored at the current degree of deterioration of the SCR catalyst is stored in the SCR catalyst. This is because part of the reducing agent slips from the SCR catalyst and cannot be stored.

이에, 상기 SCR 촉매의 암모니아와 같은 환원제 흡장량을 SCR 촉매 열화(Aging) 정도에 따라 다르게 제어하고 있다.Accordingly, the storage amount of a reducing agent such as ammonia of the SCR catalyst is controlled differently depending on the degree of SCR catalyst aging.

여기서, 종래의 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 첨부한 도 1을 참조로 살펴보면 다음과 같다.Here, referring to FIG. 1 to which a method for controlling the storage amount of a reducing agent in a conventional SCR post-treatment system will be described as follows.

도 1에 도시된 바와 같이, 종래의 환원제 흡장량 제어 시스템은 SCR 촉매의 열화 정도에 따라 환원제 흡장량을 다르게 산출하여 분사모듈에 출력하는 제어부(10)와, 이 제어부(10)에 SCR 촉매온도를 감지하여 입력하는 SCR 온도센서(20)와, 제어부(10)에 주행거리 정보를 입력하는 주행거리계(30)를 포함하여 구성된다.As shown in Fig. 1, the conventional reducing agent storage amount control system has a control unit 10 that calculates the storage amount of the reducing agent differently according to the degree of deterioration of the SCR catalyst, and outputs the calculated amount to the injection module, and the SCR catalyst temperature in the control unit 10 It is configured to include an SCR temperature sensor 20 for sensing and inputting, and a odometer 30 for inputting travel distance information to the control unit 10.

상기 제어부(10)는 SCR 온도센서(20)로부터 입력되는 SCR 촉매온도와, 주행거리계(30)로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터(Aging factor)를 계산하는 에이징 팩터 계산부(12)와, 에이징 팩터에 따라 맵 데이터를 기반으로 환원제 흡장량을 결정하는 흡장량 결정부(14)로 구성된다.The control unit 10 is an aging factor calculation unit 12 that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor 20 and the travel distance information input from the odometer 30. And, an storage amount determination unit 14 that determines the storage amount of the reducing agent based on map data according to the aging factor.

참고로, 상기 맵 데이터는 에어징 팩터에 따라 흡장량 최대값을 나타내는 맵 과 흡장량 최소값을 나타내는 맵을 포함하고, 이러한 맵 데이터를 이용하여 상기 흡장량 결정부(14)에서 흡장량 최대값과 흡장량 최소값 간의 범위 값을 환원제 흡장량으로 결정한다.For reference, the map data includes a map representing the maximum value of the storage amount and a map representing the minimum value of the storage amount according to the aeration factor, and the maximum value of the storage amount and the maximum value of the storage amount in the storage amount determination unit 14 by using this map data. The value of the range between the minimum values of the storage amount is determined as the storage amount of the reducing agent.

따라서, 상기 제어부(10)의 에어징 팩터 계산부(12)에서 SCR 촉매온도와 주행거리 정보를 기반으로 0과 1 사이의 값인 에이징 팩터(Aging factor)를 계산하여 흡장량 결정부(14)로 출력하면, 흡장량 결정부(14)에서 맵 데이터를 기반으로 흡장량 최대값과 흡장량 최소값 사이 범위의 최종 환원제 흡장량을 결정하여 분사모듈로 출력함으로써, 분사모듈의 환원제 분사량 및 SCR 촉매에 대한 환원제 흡장량이 조절될 수 있다.Accordingly, the aeration factor calculation unit 12 of the control unit 10 calculates an aging factor, which is a value between 0 and 1, based on the SCR catalyst temperature and travel distance information, and the stored amount determination unit 14 is used. When output, the storage amount determination unit 14 determines the final reducing agent storage amount in the range between the maximum storage amount and the minimum storage amount value based on the map data, and outputs it to the injection module. The amount of storing of the reducing agent can be adjusted.

그러나, 종래에는 단순히 SCR 촉매온도 및 주행거리를 기반으로 SCR 촉매의 열화 정도를 추정하여 에이징 팩터(Aging factor)를 결정할 뿐, SCR 촉매의 열화 정도와 별개로 SCR 촉매가 특정 온도 이상에서 얼마나 노출되었는지에 따라 촉매의 활성화 정도가 달라지는 점을 고려하지 않음에 따라, 환원제 흡장량의 제어 정확도가 떨어지는 문제점이 있다.However, conventionally, the aging factor is determined by simply estimating the degree of deterioration of the SCR catalyst based on the SCR catalyst temperature and the mileage, and how much the SCR catalyst has been exposed above a certain temperature independently of the degree of deterioration of the SCR catalyst. According to the fact that the degree of activation of the catalyst is not considered, there is a problem in that the control accuracy of the storage amount of the reducing agent is deteriorated.

예를 들어, 언더 플로어 타입(Under floor-type) SCR 시스템의 경우 촉매의 위치가 비교적 엔진과 멀게 배치됨에 따라 촉매의 열화가 많이 진행된 상황에서도 활성화 정도가 낮을 수 있고, 반면 CC(close-coupled)-type SCR 시스템의 경우 촉매의 위치가 엔진과 가까운 거리에 배치됨에 따라 촉매가 비교적 고온에 노출되기 때문에 열화가 덜 진행된 상황에서도 활성화 정도가 높을 수 있다.For example, in the case of an under floor-type SCR system, the degree of activation may be low even in a situation where the catalyst deteriorates a lot as the location of the catalyst is located relatively far from the engine, whereas CC (close-coupled) In the case of a -type SCR system, since the catalyst is exposed to relatively high temperatures as the location of the catalyst is placed close to the engine, the degree of activation may be high even in a situation where deterioration is less advanced.

이에, SCR 촉매의 활성화 정도는 SCR 촉매의 NOx 정화효율에 영향을 주기 때문에 활성화 정도에 따라 암모니아와 같은 환원제 흡장량을 다르게 제어할 필요가 있다.Accordingly, since the degree of activation of the SCR catalyst affects the NOx purification efficiency of the SCR catalyst, it is necessary to control the storage amount of a reducing agent such as ammonia differently according to the degree of activation.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출한 것으로서, SCR 촉매의 평균온도를 바탕으로 특정온도 이상에 노출된 빈도를 계산하여 촉매의 활성화 정도를 파악한 다음, 이를 기반으로 암모니아와 같은 환원제 흡장량을 결정할 수 있도록 함으로써, 환원제 흡장량의 제어 정확도를 향상시킬 수 있도록 한 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법를 제공하는데 그 목적이 있다.The present invention was devised to solve the conventional problems as described above, and based on the average temperature of the SCR catalyst, the frequency of exposure to a specific temperature or higher is calculated to determine the degree of activation of the catalyst, and then a reducing agent such as ammonia It is an object of the present invention to provide a reducing agent storage amount control system and method of an SCR post-treatment system capable of improving the control accuracy of the reducing agent storage amount by enabling the storage amount to be determined.

상기한 목적을 달성하기 위한 본 발명의 일 구현예는: SCR 온도센서로부터 입력되는 SCR 촉매온도와 주행거리계로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터를 계산하는 에이징 팩터 계산부; SCR 촉매의 활성화 정도를 산출하여 활성화 팩터를 출력하는 촉매 활성도 산출부; 및 상기 에이징 팩터와 활성화 팩터에 따라 맵 데이터를 기반으로 환원제 흡장량을 다르게 결정하는 흡장량 결정부; 를 포함하여 구성된 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 제공한다.One embodiment of the present invention for achieving the above object includes: an aging factor calculation unit that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor and the travel distance information input from the odometer; A catalyst activity calculation unit for calculating an activation degree of the SCR catalyst and outputting an activation factor; And an storage amount determination unit configured to differently determine the storage amount of the reducing agent based on map data according to the aging factor and the activation factor. It provides a reducing agent storage amount control system of the SCR post-treatment system, characterized in that configured to include.

상기한 목적을 달성하기 위한 본 발명의 다른 구현예는: SCR 촉매온도와 SCR 활성화 기준온도를 비교하는 단계; SCR 촉매온도가 SCR 활성화 기준온도보다 크면, 타이머가 작동되어 SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 단계; 상기 타이머에서 적산된 시간을 완전 활성화 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터 값을 출력하는 단계; 흡장량 결정부에서 활성화 팩터 값을 이용하여 최종 환원제 흡장량을 결정하는 단계; 를 포함하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 제공한다.Another embodiment of the present invention for achieving the above object is: comparing the SCR catalyst temperature and the SCR activation reference temperature; If the SCR catalyst temperature is greater than the SCR activation reference temperature, a timer is operated to accumulate a time when the SCR catalyst temperature is greater than the SCR activation reference temperature; Dividing the time accumulated by the timer by a complete activation reference time and outputting an activation factor value between 0 and 1; Determining a final reducing agent storage amount by using the activation factor value in the storage amount determining unit; It provides a reducing agent storage amount control method of the SCR post-treatment system comprising a.

상기한 과제 해결 수단을 통하여 본 발명은 다음과 같은 효과를 제공한다.The present invention provides the following effects through the above-described problem solving means.

첫째, SCR 촉매의 열화도 외에 별개로 촉매의 활성화 정도에 따라 암모니아 흡장량을 제어함으로써, 환원제 흡장량의 제어 정확도를 향상시킬 수 있다.First, by controlling the ammonia storage amount according to the degree of activation of the catalyst separately in addition to the degree of deterioration of the SCR catalyst, it is possible to improve the control accuracy of the storage amount of the reducing agent.

둘째, SCR 촉매는 내구가 진행될수록 암모니아와 같은 환원제 흡장 용량이 감소하지만, 활성화가 진행될수록 NOx 정화효율이 좋아지기 때문에 암모니아 흡장량을 저감 제어하여, 암모니아 흡장량을 감소시킬 수 있다.Second, the storage capacity of a reducing agent such as ammonia decreases as the durability of the SCR catalyst progresses, but the NOx purification efficiency improves as the activation progresses, so that the ammonia storage amount can be reduced and controlled, thereby reducing the ammonia storage amount.

즉, SCR 촉매가 활성화되었다면 열화도가 낮아도 환원제 흡장량을 감소 제어함으로써, 종래 대비 더욱 빠른 시점에서 동일한 NOx 정화효율을 확보하면서도 암모니아와 같은 환원제 흡장량을 감소시킬 수 있다.That is, if the SCR catalyst is activated, the storage amount of the reducing agent is reduced and controlled even when the degree of deterioration is low, so that the storage amount of the reducing agent such as ammonia can be reduced while securing the same NOx purification efficiency at a faster time point compared to the prior art.

셋째, 암모니아와 같은 환원제를 SCR 촉매에 흡장시키기 위하여 사용되는 요소수 분사량을 줄일 수 있고, 결국 암모니아 소모율을 줄일 수 있다.Third, it is possible to reduce the injection amount of urea water used to store a reducing agent such as ammonia in the SCR catalyst, and consequently reduce the ammonia consumption rate.

넷째, SCR 촉매에 암모니아가 과다하게 흡장되는 현상을 방지할 수 있고, 또한 과다 흡장된 암모니아가 SCR 촉매로부터 슬립 탈락되어 대기중으로 방출되는 현상도 방지할 수 있다.Fourth, it is possible to prevent a phenomenon in which ammonia is excessively occluded in the SCR catalyst, and it is also possible to prevent a phenomenon in which excessively occluded ammonia is slipped off from the SCR catalyst and released into the atmosphere.

도 1은 종래의 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 도시한 구성도,
도 2는 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 도시한 구성도,
도 3은 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 도시한 순서도.
1 is a configuration diagram showing a reducing agent storage amount control system of a conventional SCR post-treatment system,
2 is a configuration diagram showing a reducing agent storage amount control system of the SCR post-treatment system according to the present invention,
Figure 3 is a flow chart showing a method for controlling the storage amount of the reducing agent in the SCR post-treatment system according to the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

통상, SCR 촉매는 열부하를 받을수록 열화(Aging)되며, 열부하의 정도는 SCR 촉매의 환원제인 암모니아(NH3) 흡장량의 감소율에 비례한다.In general, the SCR catalyst deteriorates as it receives heat load, and the degree of heat load is proportional to the reduction rate of the storage amount of ammonia (NH 3 ), which is a reducing agent of the SCR catalyst.

하지만, 680 ℃에서 10시간 에이징한 촉매와, 550 ℃에서 96시간 에이징한 촉매가 암모니아 흡장량이 동일하여 두 촉매의 열화 정도가 동일한 것으로 판단할 수 있으나, 실험 결과 NOx 정화효율은 680 ℃에서 10시간 에이징한 촉매가 더 우수한 것으로 나타났다.However, the catalyst aged at 680°C for 10 hours and the catalyst aged at 550°C for 96 hours have the same amount of ammonia, so it can be determined that the degree of deterioration of the two catalysts is the same. The aged catalyst was found to be better.

위의 두 촉매의 NOx 정화효율이 다른 이유는 촉매 활성화(예를 들어 Cu-Zeolite type SCR 촉매의 Cu-활성화(activation))에 의한 효과이며, 이러한 촉매의 Cu-활성화(activation)는 열부하와 별개로 얼마나 더 고온에 노출되었는지에 따라 달라지기 때문이다.The reason why the NOx purification efficiency of the above two catalysts is different is the effect of catalyst activation (for example, Cu-activation of a Cu-Zeolite type SCR catalyst), and the Cu-activation of these catalysts is independent from the heat load. This is because it depends on how much higher the furnace is exposed.

이에, 본 발명은 열부하에 의해 촉매가 얼마나 열화되었는가를 판단하여 SCR 촉매의 암모니아 흡장량을 결정하기 위한 기존의 에이징 팩터(Aging factor)를 산출하는 것과 별개로, SCR 촉매가 일정 온도 이상의 고온에 어느 정도 노출되었는지를 판단하여 활성화 팩터(Activation factor)를 이용한 환원제 흡장량을 결정할 수 있도록 한 점에 주안점이 있다.Thus, the present invention determines how deteriorated the catalyst is due to heat load and calculates the existing aging factor for determining the ammonia storage amount of the SCR catalyst. One point is to be able to determine the degree of exposure and determine the storage amount of the reducing agent using an activation factor.

첨부한 도 2는 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 도시한 구성도이다.2 is a block diagram showing a reducing agent storage amount control system of the SCR post-treatment system according to the present invention.

도 2에 도시된 바와 같이, 본 발명에 따른 환원제 흡장량 제어 시스템은 SCR 촉매의 열화 정도에 따라 환원제 흡장량을 다르게 산출하여 분사모듈에 출력하는 제어부(10)와, 이 제어부(10)에 SCR 촉매온도를 감지하여 입력하는 SCR 온도센서(20)와, 제어부(10)에 주행거리 정보를 입력하는 주행거리계(30)를 포함한다.As shown in Fig. 2, the reducing agent storage amount control system according to the present invention has a control unit 10 that calculates the storage amount of the reducing agent differently according to the degree of deterioration of the SCR catalyst and outputs it to the injection module. It includes an SCR temperature sensor 20 for sensing and inputting the catalyst temperature, and a odometer 30 for inputting travel distance information to the control unit 10.

특히, 상기 제어부(10)는 SCR 온도센서(20)로부터 입력되는 SCR 촉매온도와, 주행거리계(30)로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터(Aging factor)를 계산하는 에이징 팩터 계산부(12)와, SCR 촉매의 활성화 정도를 산출하여 활성화 팩터를 출력하는 촉매 활성도 산출부(16)와, 상기 에이징 팩터 및/또는 활성화 팩터에 따라 미리 설정된 맵 데이터를 기반으로 환원제 흡장량을 다르게 결정하는 흡장량 결정부(14)를 포함하여 구성된다.In particular, the control unit 10 is an aging factor calculation unit that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor 20 and the travel distance information input from the odometer 30 ( 12) And, a catalyst activity calculation unit 16 that calculates the degree of activation of the SCR catalyst and outputs an activation factor, and determines the storage amount of the reducing agent differently based on map data set in advance according to the aging factor and/or activation factor. It is comprised including the storage amount determination part 14.

보다 상세하게는, 상기 촉매 활성도 산출부(16)는 SCR 온도센서(20)로부터 입력되는 SCR 촉매온도와 SCR 활성화(Activation) 기준온도 간을 비교하는 비교기(16-1)와, SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 타이머(16-2)와, 적산된 시간을 완전 활성화(Fully activation) 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터(Activation factor) 값을 출력하는 활성화 팩터 산출부(16-3)로 구성된다.More specifically, the catalyst activity calculation unit 16 includes a comparator 16-1 for comparing the SCR catalyst temperature input from the SCR temperature sensor 20 and the SCR activation reference temperature, and the SCR catalyst temperature is A timer (16-2) that accumulates the time when it is greater than the SCR activation reference temperature, and an activation that outputs an activation factor value between 0 and 1 by dividing the accumulated time by the fully activation reference time. It consists of a factor calculation unit 16-3.

아울러, 상기 제어부(10)는 상기 에어징 팩터 계산부(12)에서 계산된 에이징 팩터와 상기 촉매 활성도 산출부(16)에서 출력되는 활성화 팩터를 곱하여 흡장량 결정부(14)로 출력하는 곱셈기(18)를 더 포함한다.In addition, the control unit 10 multiplies the aging factor calculated by the aeration factor calculation unit 12 by the activation factor output from the catalytic activity calculation unit 16 and outputs the multiplier to the storage amount determination unit 14 ( 18).

여기서, 상기한 구성을 기반으로 이루어지는 본 발명의 환원제 흡장량 제어 방법을 살펴보면 다음과 같다.Here, a method of controlling the storage amount of a reducing agent of the present invention based on the above-described configuration will be described as follows.

첨부한 도 3은 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 도시한 순서도이다.3 is a flow chart showing a method of controlling the storage amount of a reducing agent in the SCR post-treatment system according to the present invention.

먼저, 상기 촉매 활성도 산출부(16)에 SCR 온도센서(20)로부터 SCR 온도 정보가 입력되면, 이를 촉매 활성도 산출부(16)에 미리 저장된 SCR 활성화(Activation) 기준온도와 비교한다(S101).First, when SCR temperature information is input from the SCR temperature sensor 20 to the catalytic activity calculation unit 16, it is compared with the SCR activation reference temperature previously stored in the catalytic activity calculation unit 16 (S101).

즉, 상기 촉매 활성도 산출부(16)의 비교기(16-1)에서 SCR 촉매온도와 SCR 활성화(Activation) 기준온도 간을 비교한다.That is, the SCR catalyst temperature and the SCR activation reference temperature in the comparator 16-1 of the catalytic activity calculation unit 16 are compared.

비교 결과, 상기 SCR 촉매온도가 SCR 활성화 기준온도보다 크면, 상기 타이머(16-2)가 온 작동된다(S102).As a result of the comparison, when the SCR catalyst temperature is greater than the SCR activation reference temperature, the timer 16-2 is turned on (S102).

이에, 상기 타이머(16-2)에서 SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산한다(S103).Accordingly, the time when the SCR catalyst temperature is greater than the SCR activation reference temperature is accumulated in the timer 16-2 (S103).

이어서, 상기 활성화 팩터 산출부(16-3)에서 타이머에서 적산된 시간을 미리 저장된 완전 활성화(Fully activation) 기준시간으로 나누어주면, 0 ~ 1 사이의 활성화 팩터(Activation factor) 값이 출력된다(S104).Subsequently, when the activation factor calculation unit 16-3 divides the time accumulated by the timer by a pre-stored full activation reference time, an activation factor value between 0 and 1 is output (S104). ).

이때, 상기 SCR 활성화 기준온도와 완전 활성화 기준시간은 촉매의 특성에 따라 설정하는 상수값이며, 촉매 활성화 산출부(16)에 미리 저장된다.At this time, the SCR activation reference temperature and the complete activation reference time are constant values set according to the characteristics of the catalyst, and are stored in advance in the catalyst activation calculation unit 16.

바람직하게는, 상기 SCR 활성화 기준온도 이상에 매우 오랜 시간 촉매가 노출될 경우, 적산된 시간이 매우 커져서 완전 활성화 기준시간보다 더 커질 수 있고, 이에 상기 활성화 팩터가 1보다 커질 수 있는 점을 감안하여 활성화 팩터의 최대값은 1로 제한한다.Preferably, when the catalyst is exposed to the SCR activation reference temperature or higher for a very long time, the accumulated time becomes very large and may be greater than the complete activation reference time, and thus the activation factor may be greater than 1. The maximum value of the activation factor is limited to 1.

이에, 상기 활성화 팩터 산출부(16-3)에서 흡장량 결정부(14)로 활성화 팩터 값을 출력할 때, 활성화 팩터 값이 0 ~ 1 사이의 값인지 여부를 확인한 후(S105), 활성화 팩터 값이 0 ~ 1 사이의 값이면 그대로 출력하고, 그렇지 않으면 활성화 팩터 값을 최대값인 1로 출력한다.Accordingly, when the activation factor calculation unit 16-3 outputs the activation factor value to the storage amount determining unit 14, after checking whether the activation factor value is a value between 0 and 1 (S105), the activation factor If the value is between 0 and 1, it is output as it is. Otherwise, the activation factor value is output as the maximum value of 1.

다음으로, 상기 흡장량 결정부(14)에서 활성화 팩터 값에 따라 맵 데이터를 기반으로 흡장량 최대값과 흡장량 최소값 사이 범위의 최종 환원제 흡장량을 결정하여 분사모듈로 출력함으로써, 분사모듈의 환원제 분사량 및 SCR 촉매에 대한 환원제 흡장량이 조절될 수 있다.Next, the storage amount determination unit 14 determines the final storage amount of the reducing agent in the range between the maximum storage amount and the minimum storage amount value based on the map data according to the activation factor value and outputs it to the injection module. The injection amount and the storage amount of the reducing agent for the SCR catalyst can be adjusted.

보다 상세하게는, 상기 맵 데이터는 에어징 팩터에 따라 흡장량 최대값을 나타내는 맵 과 흡장량 최소값을 나타내는 맵을 포함하는 바, 이러한 맵 데이터를 이용하여 상기 흡장량 결정부(14)에서 활성화 팩터 값에 따라 흡장량 최대값을 나타내는 맵과 흡장량 최소값을 나타내는 맵을 내분하여 흡장량 최대값과 흡장량 최소값 간의 범위에 있는 특정값을 최종 환원제 흡장량으로 결정하게 된다.In more detail, the map data includes a map representing the maximum value of the storage amount and a map representing the minimum value of the storage amount according to the aeration factor, and the activation factor in the storage amount determination unit 14 using this map data. According to the value, a map representing the maximum storage amount and a map representing the minimum storage amount are internally divided, and a specific value in the range between the maximum storage amount and the minimum storage amount is determined as the final reducing agent storage amount.

연이어, 상기 흡장량 결정부(14)에서 결정된 최종 환원제 흡장량이 분사모듈로 출력됨으로써, 분사모듈에서 최종 환원제 분사량에 맞게 환원제를 분사하여 SCR 촉매에 대한 환원제 흡장량이 알맞게 조절될 수 있다.Subsequently, the final reducing agent storage amount determined by the storage amount determining unit 14 is output to the injection module, so that the reducing agent is injected according to the final reducing agent injection amount in the injection module, so that the reducing agent storage amount for the SCR catalyst can be appropriately adjusted.

한편, 상기 에어징 팩터 계산부(12)에서 SCR 촉매온도와 주행거리 정보를 기반으로 0과 1 사이의 값인 에이징 팩터(Aging factor)를 출력하는 바, 이 에이징 팩터 값과 활성화 팩터 산출부(16-3)에서 출력되는 활성화 팩터 값을 곱셈기(18)에서 곱하여 흡장량 결정부(14)로 출력할 수 있고, 그에 따라 흡장량 결정부(14)에서 에이징 팩터 값과 활성화 팩터 값을 기반으로 최종 환원제 흡장량을 결정할 수 있다.Meanwhile, the aeration factor calculation unit 12 outputs an aging factor that is a value between 0 and 1 based on the SCR catalyst temperature and travel distance information, and the aging factor value and the activation factor calculation unit 16 The activation factor value output from -3) can be multiplied by the multiplier 18 and output to the storage amount determining unit 14, and accordingly, the storage amount determining unit 14 can finalize the aging factor value and the activation factor The storage amount of the reducing agent can be determined.

이와 같이, SCR 촉매의 내구 정도와는 별개로 일정 온도 이상의 고온에 노출된 시간을 파악하여 SCR 촉매가 활성화된 정도를 판단한 활성화 팩터값을 산출한후, 이를 이용하여 암모니아 흡장량을 더 효율적으로 제어할 수 있다.In this way, independent of the durability of the SCR catalyst, an activation factor value that determines the degree of activation of the SCR catalyst by determining the time of exposure to a high temperature above a certain temperature is calculated, and then the ammonia storage amount is more efficiently controlled using this. can do.

아울러, SCR 촉매가 활성화된 정도를 파악하여 활성화도가 높을 경우 암모니아 흡장량을 낮출 수 있기 때문에 암모니아와 같은 환원제를 SCR 촉매에 흡장시키기 위하여 사용되는 요소수 분사량 및 암모니아 소모율을 줄일 수 있고, 또한 기존에 과다 흡장된 암모니아가 SCR 촉매로부터 슬립 탈락되어 대기중으로 방출되어 소모되는 현상도 방지할 수 있다.In addition, since the degree of activation of the SCR catalyst can be determined and the ammonia storage amount can be reduced when the degree of activation is high, the amount of urea water injection and ammonia consumption rate used to store a reducing agent such as ammonia in the SCR catalyst can be reduced. It is also possible to prevent ammonia from being consumed by slipping off the SCR catalyst and being discharged to the atmosphere.

10 : 제어부
12 : 에이징 팩터 계산부
14 : 흡장량 결정부
16 : 촉매 활성도 산출부
16-1 : 비교기
16-2 : 타이머
16-3 : 활성화 팩터 산출부
20 : SCR 온도센서
30 : 주행거리계
10: control unit
12: aging factor calculation unit
14: storage amount determination portion
16: catalyst activity calculation unit
16-1: comparator
16-2: timer
16-3: activation factor calculation unit
20: SCR temperature sensor
30: odometer

Claims (7)

SCR 온도센서로부터 입력되는 SCR 촉매온도와 주행거리계로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터를 계산하는 에이징 팩터 계산부;
SCR 촉매의 활성화 정도를 산출하여 활성화 팩터를 출력하는 촉매 활성도 산출부; 및
상기 에이징 팩터와 활성화 팩터에 따라 맵 데이터를 기반으로 환원제 흡장량을 다르게 결정하는 흡장량 결정부;
를 포함하여 구성된 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템.
An aging factor calculation unit that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor and the travel distance information input from the odometer;
A catalyst activity calculation unit for calculating an activation degree of the SCR catalyst and outputting an activation factor; And
An occlusion amount determination unit configured to differently determine an occlusion amount of the reducing agent based on map data according to the aging factor and the activation factor;
Reducing agent storage amount control system of the SCR post-treatment system, characterized in that configured to include.
청구항 1에 있어서,
상기 촉매 활성도 산출부는:
SCR 온도센서로부터 입력되는 SCR 촉매온도와 SCR 활성화 기준온도 간을 비교하는 비교기;
SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 타이머; 및
적산된 시간을 완전 활성화 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터 값을 출력하는 활성화 팩터 산출부;
로 구성된 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템.
The method according to claim 1,
The catalytic activity calculation unit:
A comparator for comparing the SCR catalyst temperature input from the SCR temperature sensor and the SCR activation reference temperature;
A timer for accumulating a time when the SCR catalyst temperature is greater than the SCR activation reference temperature; And
An activation factor calculation unit that divides the accumulated time by a complete activation reference time and outputs an activation factor value between 0 and 1;
Reducing agent storage amount control system of the SCR post-treatment system, characterized in that consisting of.
청구항 1에 있어서,
상기 에이징 팩터와 활성화 팩터를 곱하여 흡장량 결정부로 출력하는 곱셈기를 더 포함하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템.
The method according to claim 1,
And a multiplier for multiplying the aging factor and the activation factor and outputting the multiplier to the storage amount determining unit.
SCR 촉매온도와 SCR 활성화 기준온도를 비교하는 단계;
SCR 촉매온도가 SCR 활성화 기준온도보다 크면, 타이머가 작동되어 SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 단계;
상기 타이머에서 적산된 시간을 완전 활성화 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터 값을 출력하는 단계;
흡장량 결정부에서 활성화 팩터 값을 이용하여 최종 환원제 흡장량을 결정하는 단계;
를 포함하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
Comparing the SCR catalyst temperature and the SCR activation reference temperature;
If the SCR catalyst temperature is greater than the SCR activation reference temperature, a timer is operated to accumulate a time when the SCR catalyst temperature is greater than the SCR activation reference temperature;
Dividing the time accumulated by the timer by a complete activation reference time and outputting an activation factor value between 0 and 1;
Determining a final reducing agent storage amount by using the activation factor value in the storage amount determining unit;
Reducing agent storage amount control method of the SCR post-treatment system comprising a.
청구항 4에 있어서,
상기 활성화 팩터 값을 출력할 때, 활성화 팩터 값의 최대값은 1로 제한되는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
The method of claim 4,
When outputting the activation factor value, the maximum value of the activation factor value is limited to 1, wherein the reducing agent storage amount control method of the SCR post-treatment system.
청구항 4에 있어서,
상기 흡장량 결정부에서 활성화 팩터 값에 따라 맵 데이터를 기반으로 흡장량 최대값과 흡장량 최소값 사이 범위의 최종 환원제 흡장량을 결정하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
The method of claim 4,
The storage amount determining unit determines a final reducing agent storage amount in a range between a maximum storage amount and a minimum storage amount based on map data according to an activation factor value.
청구항 4에 있어서,
상기 활성화 팩터 값은 에어징 팩터 계산부에서 산출된 에이징 팩터와 곱해져서 흡장량 결정부로 출력되는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
The method of claim 4,
The activation factor value is multiplied by the aging factor calculated by the aeration factor calculation unit and output to the storage amount determining unit.
KR1020190048247A 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system KR102664097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190048247A KR102664097B1 (en) 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190048247A KR102664097B1 (en) 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system

Publications (2)

Publication Number Publication Date
KR20200124863A true KR20200124863A (en) 2020-11-04
KR102664097B1 KR102664097B1 (en) 2024-05-07

Family

ID=73571270

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190048247A KR102664097B1 (en) 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system

Country Status (1)

Country Link
KR (1) KR102664097B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064002A (en) * 2007-12-14 2009-06-18 현대자동차주식회사 Method for calculating ammonia storage amount
KR20100000535A (en) * 2008-06-25 2010-01-06 현대자동차주식회사 Determinating method for injecting volume of urea in selective catalytic reduction system
KR20130058449A (en) * 2011-11-25 2013-06-04 현대자동차주식회사 System for control urea injection quantity of vehicle and method thereof
JP2018131997A (en) * 2017-02-16 2018-08-23 三菱自動車工業株式会社 Exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064002A (en) * 2007-12-14 2009-06-18 현대자동차주식회사 Method for calculating ammonia storage amount
KR20100000535A (en) * 2008-06-25 2010-01-06 현대자동차주식회사 Determinating method for injecting volume of urea in selective catalytic reduction system
KR20130058449A (en) * 2011-11-25 2013-06-04 현대자동차주식회사 System for control urea injection quantity of vehicle and method thereof
JP2018131997A (en) * 2017-02-16 2018-08-23 三菱自動車工業株式会社 Exhaust emission control device

Also Published As

Publication number Publication date
KR102664097B1 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
AU2010334855B2 (en) Method and device for controlling an SCR catalytic converter of a vehicle
JP4635860B2 (en) Exhaust gas purification device for internal combustion engine
WO2010082354A1 (en) Abnormality detection device for exhaust purification device and abnormality detection method for exhaust purification device
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
WO2013190633A1 (en) Exhaust purification device for internal combustion engine
KR101534714B1 (en) Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
US8434298B2 (en) Method for injecting ammonia into an exhaust gas stream
KR101664702B1 (en) Control method for UREA injection of SCR system
CN114746631B (en) Control method of double SCR (selective catalytic reduction) system
JP2007170337A (en) Exhaust emission control device of internal combustion engine
KR102664097B1 (en) System and method for controlling ammonia occlusion amount of selective catalytic reduction system
JP2020051402A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
CN110872975B (en) Method for controlling and/or regulating an SCR catalyst of an internal combustion engine arranged in a motor vehicle
KR20060028776A (en) Method and device for estimating a nitrogen oxide mass stored in a catalytic trapping device of a motor vehicle
US11761364B2 (en) Exhaust gas purification device for internal combustion engine, and vehicle
KR20220033793A (en) Exhaust processing device control method for vehicle
EP2865857B1 (en) Exhaust gas purification apparatus for internal combustion engine
KR102529523B1 (en) Method for controlling urea supply of exhaust purification apparatus for vehicle
KR101097492B1 (en) Control Method of A Selective Catalysts Reduction Apparatus in Diesel Engine
GB2538961A (en) A method of adaptively controlling purging of a lean NOx trap
EP3130774B1 (en) Exhaust gas purification system for internal combustion engine
US11753977B2 (en) Apparatus and method for controlling a vehicle action
US11719178B2 (en) Apparatus and method for controlling a vehicle action
KR102563490B1 (en) Regeneration control method for improving durability of exhaust gas purification system
JP6888448B2 (en) Deterioration judgment device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant