KR102664097B1 - System and method for controlling ammonia occlusion amount of selective catalytic reduction system - Google Patents

System and method for controlling ammonia occlusion amount of selective catalytic reduction system Download PDF

Info

Publication number
KR102664097B1
KR102664097B1 KR1020190048247A KR20190048247A KR102664097B1 KR 102664097 B1 KR102664097 B1 KR 102664097B1 KR 1020190048247 A KR1020190048247 A KR 1020190048247A KR 20190048247 A KR20190048247 A KR 20190048247A KR 102664097 B1 KR102664097 B1 KR 102664097B1
Authority
KR
South Korea
Prior art keywords
scr
storage amount
activation
reducing agent
factor
Prior art date
Application number
KR1020190048247A
Other languages
Korean (ko)
Other versions
KR20200124863A (en
Inventor
김희중
서형만
김미진
Original Assignee
현대자동차주식회사
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190048247A priority Critical patent/KR102664097B1/en
Publication of KR20200124863A publication Critical patent/KR20200124863A/en
Application granted granted Critical
Publication of KR102664097B1 publication Critical patent/KR102664097B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 SCR 촉매의 활성화 정도에 따라 암모니아와 같은 환원제 흡장량을 조절할 수 있도록 한 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법에 관한 것이다.
이를 위해, 본 발명은 SCR 촉매의 평균온도를 바탕으로 특정온도 이상에 노출된 빈도를 계산하여 촉매의 활성화 정도를 파악한 다음, 이를 기반으로 암모니아와 같은 환원제 흡장량을 결정할 수 있도록 함으로써, 환원제 흡장량의 제어 정확도를 향상시킬 수 있도록 한 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법를 제공한다.
The present invention relates to a system and method for controlling the storage amount of a reducing agent such as ammonia in an SCR post-treatment system, which allows controlling the storage amount of a reducing agent such as ammonia depending on the degree of activation of the SCR catalyst.
For this purpose, the present invention determines the degree of activation of the catalyst by calculating the frequency of exposure to a certain temperature or higher based on the average temperature of the SCR catalyst, and then determines the storage amount of a reducing agent such as ammonia based on this. Provides a system and method for controlling the amount of reducing agent stored in an SCR post-treatment system to improve control accuracy.

Description

SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법{SYSTEM AND METHOD FOR CONTROLLING AMMONIA OCCLUSION AMOUNT OF SELECTIVE CATALYTIC REDUCTION SYSTEM}System and method for controlling the amount of reducing agent stored in the SCR post-treatment system {SYSTEM AND METHOD FOR CONTROLLING AMMONIA OCCLUSION AMOUNT OF SELECTIVE CATALYTIC REDUCTION SYSTEM}

본 발명은 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법에 관한 것으로서, 더욱 상세하게는 SCR 촉매의 활성화 정도에 따라 암모니아와 같은 환원제 흡장량을 조절할 수 있도록 한 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법에 관한 것이다.The present invention relates to a system and method for controlling the storage amount of reducing agent in an SCR post-treatment system. More specifically, the control of the storage amount of reducing agent in an SCR post-treatment system allows the storage amount of a reducing agent, such as ammonia, to be adjusted depending on the degree of activation of the SCR catalyst. It relates to systems and methods.

디젤엔진 차량에는 배기가스 정화 시스템의 일종으로서, 암모니아(NH3)나 암모니아를 주성분으로 하는 요소수(urea) 등과 같은 질소산화물 제거용 환원제를 배기관에 분사하여 SCR 촉매가 질소산화물을 효과적으로 정화할 수 있도록 한 SCR(Selective Catalytic Reduction) 후처리 시스템이 장착되어 있다.As a type of exhaust gas purification system for diesel engine vehicles, a reducing agent for removing nitrogen oxides, such as ammonia (NH 3 ) or urea containing ammonia as the main ingredient, is sprayed into the exhaust pipe so that the SCR catalyst can effectively purify nitrogen oxides. It is equipped with an SCR (Selective Catalytic Reduction) post-processing system.

상기 SCR 촉매는 암모니아와 같은 환원제가 산소와 질소산화물 중에서 질소산화물과 더 잘 반응하도록 한다는 의미에서 선택적 환원 촉매라고 한다.The SCR catalyst is called a selective reduction catalyst in the sense that it allows a reducing agent such as ammonia to react better with nitrogen oxides among oxygen and nitrogen oxides.

상기 SCR 후처리 시스템은 환원제 탱크와, 배기파이프의 소정 위치에 장착되는 SCR 촉매와, 환원제 탱크 내의 환원제를 SCR 전단의 배기파이프에 분사하는 분사모듈(Dosing module)을 포함하여 구성된다.The SCR post-treatment system includes a reducing agent tank, an SCR catalyst mounted at a predetermined position in the exhaust pipe, and a dosing module that injects the reducing agent in the reducing agent tank into the exhaust pipe in front of the SCR.

따라서, 상기 분사모듈로부터 배기파이프를 지나가는 배기가스에 암모니아와 같은 환원제가 분사됨으로써, 분사된 환원제는 SCR 촉매에 흡장되어 배기가스에 포함된 질소산화물을 정화하는 반응을 하게 된다.Therefore, when a reducing agent such as ammonia is injected from the injection module into the exhaust gas passing through the exhaust pipe, the injected reducing agent is stored in the SCR catalyst and undergoes a reaction to purify nitrogen oxides contained in the exhaust gas.

이때, 상기 SCR 촉매에 흡장되는 환원제의 양은 SCR 촉매의 열화(Aging) 정도와 밀접한 관련을 가지고 있으며, 그 이유는 SCR 촉매의 현재 열화 정도에서 흡장할 수 있는 환원제의 양 이상의 환원제가 SCR 촉매에 흡장되면, 환원제의 일부가 SCR 촉매로부터 슬립되어 흡장되지 못하기 때문이다.At this time, the amount of reducing agent stored in the SCR catalyst is closely related to the degree of aging of the SCR catalyst, and the reason is that more reducing agent than the amount that can be stored at the current degree of aging of the SCR catalyst is stored in the SCR catalyst. This is because part of the reducing agent slips from the SCR catalyst and cannot be stored.

이에, 상기 SCR 촉매의 암모니아와 같은 환원제 흡장량을 SCR 촉매 열화(Aging) 정도에 따라 다르게 제어하고 있다.Accordingly, the storage amount of a reducing agent such as ammonia in the SCR catalyst is controlled differently depending on the degree of SCR catalyst aging.

여기서, 종래의 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 첨부한 도 1을 참조로 살펴보면 다음과 같다.Here, the method for controlling the amount of reducing agent stored in a conventional SCR post-treatment system is as follows with reference to FIG. 1 attached thereto.

도 1에 도시된 바와 같이, 종래의 환원제 흡장량 제어 시스템은 SCR 촉매의 열화 정도에 따라 환원제 흡장량을 다르게 산출하여 분사모듈에 출력하는 제어부(10)와, 이 제어부(10)에 SCR 촉매온도를 감지하여 입력하는 SCR 온도센서(20)와, 제어부(10)에 주행거리 정보를 입력하는 주행거리계(30)를 포함하여 구성된다.As shown in FIG. 1, the conventional reducing agent storage amount control system includes a control unit 10 that calculates the reducing agent storage amount differently depending on the degree of deterioration of the SCR catalyst and outputs it to the injection module, and this control unit 10 controls the SCR catalyst temperature. It is composed of an SCR temperature sensor 20 that detects and inputs , and an odometer 30 that inputs mileage information to the control unit 10.

상기 제어부(10)는 SCR 온도센서(20)로부터 입력되는 SCR 촉매온도와, 주행거리계(30)로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터(Aging factor)를 계산하는 에이징 팩터 계산부(12)와, 에이징 팩터에 따라 맵 데이터를 기반으로 환원제 흡장량을 결정하는 흡장량 결정부(14)로 구성된다.The control unit 10 includes an aging factor calculation unit 12 that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor 20 and the mileage information input from the odometer 30. It is composed of an storage amount determination unit 14 that determines the storage amount of the reducing agent based on map data according to the aging factor.

참고로, 상기 맵 데이터는 에어징 팩터에 따라 흡장량 최대값을 나타내는 맵 과 흡장량 최소값을 나타내는 맵을 포함하고, 이러한 맵 데이터를 이용하여 상기 흡장량 결정부(14)에서 흡장량 최대값과 흡장량 최소값 간의 범위 값을 환원제 흡장량으로 결정한다.For reference, the map data includes a map representing the maximum storage amount and a map representing the minimum storage amount according to the airing factor, and using this map data, the storage amount determination unit 14 determines the storage amount maximum value and The range value between the minimum storage amount is determined as the reducing agent storage amount.

따라서, 상기 제어부(10)의 에어징 팩터 계산부(12)에서 SCR 촉매온도와 주행거리 정보를 기반으로 0과 1 사이의 값인 에이징 팩터(Aging factor)를 계산하여 흡장량 결정부(14)로 출력하면, 흡장량 결정부(14)에서 맵 데이터를 기반으로 흡장량 최대값과 흡장량 최소값 사이 범위의 최종 환원제 흡장량을 결정하여 분사모듈로 출력함으로써, 분사모듈의 환원제 분사량 및 SCR 촉매에 대한 환원제 흡장량이 조절될 수 있다.Therefore, the aeration factor calculation unit 12 of the control unit 10 calculates the aging factor, which is a value between 0 and 1, based on the SCR catalyst temperature and mileage information, and sends it to the storage amount determination unit 14. When output, the storage amount determination unit 14 determines the final reducing agent storage amount in the range between the maximum storage amount and the minimum storage amount based on the map data and outputs it to the injection module, thereby determining the injection amount of the reducing agent in the injection module and the SCR catalyst. The amount of reducing agent stored can be adjusted.

그러나, 종래에는 단순히 SCR 촉매온도 및 주행거리를 기반으로 SCR 촉매의 열화 정도를 추정하여 에이징 팩터(Aging factor)를 결정할 뿐, SCR 촉매의 열화 정도와 별개로 SCR 촉매가 특정 온도 이상에서 얼마나 노출되었는지에 따라 촉매의 활성화 정도가 달라지는 점을 고려하지 않음에 따라, 환원제 흡장량의 제어 정확도가 떨어지는 문제점이 있다.However, conventionally, the aging factor is simply determined by estimating the degree of deterioration of the SCR catalyst based on the SCR catalyst temperature and mileage. Regardless of the degree of deterioration of the SCR catalyst, how much the SCR catalyst is exposed to above a certain temperature is determined. As the fact that the degree of activation of the catalyst varies depending on the temperature is not taken into consideration, there is a problem in that the control accuracy of the amount of reducing agent stored is low.

예를 들어, 언더 플로어 타입(Under floor-type) SCR 시스템의 경우 촉매의 위치가 비교적 엔진과 멀게 배치됨에 따라 촉매의 열화가 많이 진행된 상황에서도 활성화 정도가 낮을 수 있고, 반면 CC(close-coupled)-type SCR 시스템의 경우 촉매의 위치가 엔진과 가까운 거리에 배치됨에 따라 촉매가 비교적 고온에 노출되기 때문에 열화가 덜 진행된 상황에서도 활성화 정도가 높을 수 있다.For example, in the case of an under-floor-type SCR system, the degree of activation may be low even when the catalyst is deteriorated significantly as the catalyst is located relatively far from the engine, while in the case of a close-coupled (CC) system, the degree of activation may be low In the case of -type SCR systems, the catalyst is exposed to relatively high temperatures as the catalyst is located close to the engine, so the degree of activation can be high even when deterioration is less advanced.

이에, SCR 촉매의 활성화 정도는 SCR 촉매의 NOx 정화효율에 영향을 주기 때문에 활성화 정도에 따라 암모니아와 같은 환원제 흡장량을 다르게 제어할 필요가 있다.Accordingly, because the degree of activation of the SCR catalyst affects the NOx purification efficiency of the SCR catalyst, it is necessary to control the storage amount of a reducing agent such as ammonia differently depending on the degree of activation.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출한 것으로서, SCR 촉매의 평균온도를 바탕으로 특정온도 이상에 노출된 빈도를 계산하여 촉매의 활성화 정도를 파악한 다음, 이를 기반으로 암모니아와 같은 환원제 흡장량을 결정할 수 있도록 함으로써, 환원제 흡장량의 제어 정확도를 향상시킬 수 있도록 한 SCR 후처리 시스템의 환원제 흡장량 제어 시스템 및 방법를 제공하는데 그 목적이 있다.The present invention was developed to solve the above-described conventional problems. Based on the average temperature of the SCR catalyst, the frequency of exposure to a certain temperature or higher is calculated to determine the degree of activation of the catalyst, and based on this, a reducing agent such as ammonia is used. The purpose is to provide a system and method for controlling the storage amount of reducing agent in an SCR post-treatment system that improves the control accuracy of the storage amount of reducing agent by allowing the storage amount to be determined.

상기한 목적을 달성하기 위한 본 발명의 일 구현예는: SCR 온도센서로부터 입력되는 SCR 촉매온도와 주행거리계로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터를 계산하는 에이징 팩터 계산부; SCR 촉매의 활성화 정도를 산출하여 활성화 팩터를 출력하는 촉매 활성도 산출부; 및 상기 에이징 팩터와 활성화 팩터에 따라 맵 데이터를 기반으로 환원제 흡장량을 다르게 결정하는 흡장량 결정부; 를 포함하여 구성된 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 제공한다.One embodiment of the present invention for achieving the above object includes: an aging factor calculation unit that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor and the mileage information input from the odometer; A catalyst activity calculation unit that calculates the degree of activation of the SCR catalyst and outputs an activation factor; and a storage amount determination unit that determines a different storage amount of reducing agent based on map data according to the aging factor and activation factor. It provides a reducing agent storage amount control system for an SCR post-treatment system, characterized in that it includes.

상기한 목적을 달성하기 위한 본 발명의 다른 구현예는: SCR 촉매온도와 SCR 활성화 기준온도를 비교하는 단계; SCR 촉매온도가 SCR 활성화 기준온도보다 크면, 타이머가 작동되어 SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 단계; 상기 타이머에서 적산된 시간을 완전 활성화 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터 값을 출력하는 단계; 흡장량 결정부에서 활성화 팩터 값을 이용하여 최종 환원제 흡장량을 결정하는 단계; 를 포함하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 제공한다.Another embodiment of the present invention for achieving the above object is: comparing the SCR catalyst temperature and the SCR activation reference temperature; When the SCR catalyst temperature is greater than the SCR activation reference temperature, a timer is activated to accumulate the time when the SCR catalyst temperature is greater than the SCR activation reference temperature; Dividing the accumulated time from the timer by the full activation reference time and outputting an activation factor value between 0 and 1; Determining the final reducing agent storage amount using the activation factor value in the storage amount determination unit; It provides a method for controlling the storage amount of reducing agent in an SCR post-treatment system, comprising:

상기한 과제 해결 수단을 통하여 본 발명은 다음과 같은 효과를 제공한다.Through the means for solving the above problems, the present invention provides the following effects.

첫째, SCR 촉매의 열화도 외에 별개로 촉매의 활성화 정도에 따라 암모니아 흡장량을 제어함으로써, 환원제 흡장량의 제어 정확도를 향상시킬 수 있다.First, the control accuracy of the reducing agent storage amount can be improved by controlling the ammonia storage amount according to the degree of activation of the catalyst in addition to the degree of deterioration of the SCR catalyst.

둘째, SCR 촉매는 내구가 진행될수록 암모니아와 같은 환원제 흡장 용량이 감소하지만, 활성화가 진행될수록 NOx 정화효율이 좋아지기 때문에 암모니아 흡장량을 저감 제어하여, 암모니아 흡장량을 감소시킬 수 있다.Second, as the SCR catalyst lasts, the storage capacity of reducing agents such as ammonia decreases, but as activation progresses, the NOx purification efficiency improves, so the ammonia storage amount can be controlled to reduce the ammonia storage amount.

즉, SCR 촉매가 활성화되었다면 열화도가 낮아도 환원제 흡장량을 감소 제어함으로써, 종래 대비 더욱 빠른 시점에서 동일한 NOx 정화효율을 확보하면서도 암모니아와 같은 환원제 흡장량을 감소시킬 수 있다.In other words, if the SCR catalyst is activated, the storage amount of the reducing agent, such as ammonia, can be reduced by controlling the reduction of the storage amount of the reducing agent even if the degree of deterioration is low, thereby securing the same NOx purification efficiency at a faster time than before.

셋째, 암모니아와 같은 환원제를 SCR 촉매에 흡장시키기 위하여 사용되는 요소수 분사량을 줄일 수 있고, 결국 암모니아 소모율을 줄일 수 있다.Third, the amount of urea water injection used to store a reducing agent such as ammonia in the SCR catalyst can be reduced, ultimately reducing the ammonia consumption rate.

넷째, SCR 촉매에 암모니아가 과다하게 흡장되는 현상을 방지할 수 있고, 또한 과다 흡장된 암모니아가 SCR 촉매로부터 슬립 탈락되어 대기중으로 방출되는 현상도 방지할 수 있다.Fourth, it is possible to prevent excessive ammonia from being stored in the SCR catalyst, and also prevent the phenomenon of excessively stored ammonia slipping away from the SCR catalyst and being released into the atmosphere.

도 1은 종래의 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 도시한 구성도,
도 2는 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 도시한 구성도,
도 3은 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 도시한 순서도.
Figure 1 is a configuration diagram showing the reducing agent storage amount control system of a conventional SCR post-treatment system;
Figure 2 is a configuration diagram showing the reducing agent storage amount control system of the SCR post-treatment system according to the present invention;
Figure 3 is a flowchart showing a method for controlling the storage amount of reducing agent in the SCR post-treatment system according to the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

통상, SCR 촉매는 열부하를 받을수록 열화(Aging)되며, 열부하의 정도는 SCR 촉매의 환원제인 암모니아(NH3) 흡장량의 감소율에 비례한다.Typically, the SCR catalyst deteriorates as it receives heat load, and the degree of heat load is proportional to the rate of decrease in the storage amount of ammonia (NH 3 ), a reducing agent of the SCR catalyst.

하지만, 680 ℃에서 10시간 에이징한 촉매와, 550 ℃에서 96시간 에이징한 촉매가 암모니아 흡장량이 동일하여 두 촉매의 열화 정도가 동일한 것으로 판단할 수 있으나, 실험 결과 NOx 정화효율은 680 ℃에서 10시간 에이징한 촉매가 더 우수한 것으로 나타났다.However, the catalyst aged at 680 ℃ for 10 hours and the catalyst aged at 550 ℃ for 96 hours have the same ammonia storage amount, so it can be judged that the degree of deterioration of the two catalysts is the same. However, as a result of the experiment, the NOx purification efficiency is 10 hours at 680 ℃. The aged catalyst was found to be superior.

위의 두 촉매의 NOx 정화효율이 다른 이유는 촉매 활성화(예를 들어 Cu-Zeolite type SCR 촉매의 Cu-활성화(activation))에 의한 효과이며, 이러한 촉매의 Cu-활성화(activation)는 열부하와 별개로 얼마나 더 고온에 노출되었는지에 따라 달라지기 때문이다.The reason why the NOx purification efficiency of the above two catalysts is different is due to the effect of catalyst activation (for example, Cu-activation of Cu-Zeolite type SCR catalyst), and Cu-activation of this catalyst is independent of heat load. This is because it varies depending on how much higher temperature it is exposed to.

이에, 본 발명은 열부하에 의해 촉매가 얼마나 열화되었는가를 판단하여 SCR 촉매의 암모니아 흡장량을 결정하기 위한 기존의 에이징 팩터(Aging factor)를 산출하는 것과 별개로, SCR 촉매가 일정 온도 이상의 고온에 어느 정도 노출되었는지를 판단하여 활성화 팩터(Activation factor)를 이용한 환원제 흡장량을 결정할 수 있도록 한 점에 주안점이 있다.Accordingly, the present invention determines how much the catalyst has deteriorated due to heat load and calculates the existing aging factor to determine the ammonia storage amount of the SCR catalyst. The main point is to determine the extent of exposure and determine the amount of reducing agent stored using the activation factor.

첨부한 도 2는 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 시스템을 도시한 구성도이다.The attached Figure 2 is a configuration diagram showing the reducing agent storage amount control system of the SCR post-treatment system according to the present invention.

도 2에 도시된 바와 같이, 본 발명에 따른 환원제 흡장량 제어 시스템은 SCR 촉매의 열화 정도에 따라 환원제 흡장량을 다르게 산출하여 분사모듈에 출력하는 제어부(10)와, 이 제어부(10)에 SCR 촉매온도를 감지하여 입력하는 SCR 온도센서(20)와, 제어부(10)에 주행거리 정보를 입력하는 주행거리계(30)를 포함한다.As shown in FIG. 2, the reducing agent storage amount control system according to the present invention includes a control unit 10 that calculates the reducing agent storage amount differently depending on the degree of deterioration of the SCR catalyst and outputs it to the injection module, and an SCR control system to this control unit 10. It includes an SCR temperature sensor 20 that detects and inputs the catalyst temperature, and an odometer 30 that inputs mileage information to the control unit 10.

특히, 상기 제어부(10)는 SCR 온도센서(20)로부터 입력되는 SCR 촉매온도와, 주행거리계(30)로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터(Aging factor)를 계산하는 에이징 팩터 계산부(12)와, SCR 촉매의 활성화 정도를 산출하여 활성화 팩터를 출력하는 촉매 활성도 산출부(16)와, 상기 에이징 팩터 및/또는 활성화 팩터에 따라 미리 설정된 맵 데이터를 기반으로 환원제 흡장량을 다르게 결정하는 흡장량 결정부(14)를 포함하여 구성된다.In particular, the control unit 10 includes an aging factor calculation unit that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor 20 and the mileage information input from the odometer 30. 12) and a catalyst activity calculation unit 16 that calculates the degree of activation of the SCR catalyst and outputs an activation factor, and determines the amount of reducing agent stored differently based on map data preset according to the aging factor and/or activation factor. It is configured to include a storage amount determining unit 14.

보다 상세하게는, 상기 촉매 활성도 산출부(16)는 SCR 온도센서(20)로부터 입력되는 SCR 촉매온도와 SCR 활성화(Activation) 기준온도 간을 비교하는 비교기(16-1)와, SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 타이머(16-2)와, 적산된 시간을 완전 활성화(Fully activation) 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터(Activation factor) 값을 출력하는 활성화 팩터 산출부(16-3)로 구성된다.More specifically, the catalyst activity calculation unit 16 includes a comparator 16-1 that compares the SCR catalyst temperature input from the SCR temperature sensor 20 and the SCR activation reference temperature, and the SCR catalyst temperature. A timer (16-2) that accumulates the time when the SCR activation temperature is greater than the standard temperature, and an activation that divides the accumulated time by the full activation standard time and outputs an activation factor value between 0 and 1. It consists of a factor calculation unit 16-3.

아울러, 상기 제어부(10)는 상기 에어징 팩터 계산부(12)에서 계산된 에이징 팩터와 상기 촉매 활성도 산출부(16)에서 출력되는 활성화 팩터를 곱하여 흡장량 결정부(14)로 출력하는 곱셈기(18)를 더 포함한다.In addition, the control unit 10 multiplies the aging factor calculated by the aeration factor calculation unit 12 and the activation factor output from the catalyst activity calculation unit 16 and outputs the product to the storage amount determination unit 14. 18) is further included.

여기서, 상기한 구성을 기반으로 이루어지는 본 발명의 환원제 흡장량 제어 방법을 살펴보면 다음과 같다.Here, the method for controlling the storage amount of reducing agent of the present invention based on the above-described configuration is as follows.

첨부한 도 3은 본 발명에 따른 SCR 후처리 시스템의 환원제 흡장량 제어 방법을 도시한 순서도이다.The attached Figure 3 is a flowchart showing a method for controlling the storage amount of reducing agent in the SCR post-treatment system according to the present invention.

먼저, 상기 촉매 활성도 산출부(16)에 SCR 온도센서(20)로부터 SCR 온도 정보가 입력되면, 이를 촉매 활성도 산출부(16)에 미리 저장된 SCR 활성화(Activation) 기준온도와 비교한다(S101).First, when SCR temperature information is input from the SCR temperature sensor 20 to the catalyst activity calculation unit 16, it is compared with the SCR activation reference temperature previously stored in the catalyst activity calculation unit 16 (S101).

즉, 상기 촉매 활성도 산출부(16)의 비교기(16-1)에서 SCR 촉매온도와 SCR 활성화(Activation) 기준온도 간을 비교한다.That is, the comparator 16-1 of the catalyst activity calculation unit 16 compares the SCR catalyst temperature and the SCR activation reference temperature.

비교 결과, 상기 SCR 촉매온도가 SCR 활성화 기준온도보다 크면, 상기 타이머(16-2)가 온 작동된다(S102).As a result of comparison, if the SCR catalyst temperature is greater than the SCR activation reference temperature, the timer 16-2 is turned on (S102).

이에, 상기 타이머(16-2)에서 SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산한다(S103).Accordingly, the timer 16-2 accumulates the time when the SCR catalyst temperature is greater than the SCR activation reference temperature (S103).

이어서, 상기 활성화 팩터 산출부(16-3)에서 타이머에서 적산된 시간을 미리 저장된 완전 활성화(Fully activation) 기준시간으로 나누어주면, 0 ~ 1 사이의 활성화 팩터(Activation factor) 값이 출력된다(S104).Subsequently, when the time accumulated by the timer is divided by the pre-stored full activation reference time in the activation factor calculation unit 16-3, an activation factor value between 0 and 1 is output (S104 ).

이때, 상기 SCR 활성화 기준온도와 완전 활성화 기준시간은 촉매의 특성에 따라 설정하는 상수값이며, 촉매 활성화 산출부(16)에 미리 저장된다.At this time, the SCR activation reference temperature and full activation reference time are constant values set according to the characteristics of the catalyst, and are stored in advance in the catalyst activation calculation unit 16.

바람직하게는, 상기 SCR 활성화 기준온도 이상에 매우 오랜 시간 촉매가 노출될 경우, 적산된 시간이 매우 커져서 완전 활성화 기준시간보다 더 커질 수 있고, 이에 상기 활성화 팩터가 1보다 커질 수 있는 점을 감안하여 활성화 팩터의 최대값은 1로 제한한다.Preferably, when the catalyst is exposed to the SCR activation reference temperature or higher for a very long time, the accumulated time may become very large and may be greater than the full activation reference time, taking into account that the activation factor may be greater than 1. The maximum value of the activation factor is limited to 1.

이에, 상기 활성화 팩터 산출부(16-3)에서 흡장량 결정부(14)로 활성화 팩터 값을 출력할 때, 활성화 팩터 값이 0 ~ 1 사이의 값인지 여부를 확인한 후(S105), 활성화 팩터 값이 0 ~ 1 사이의 값이면 그대로 출력하고, 그렇지 않으면 활성화 팩터 값을 최대값인 1로 출력한다.Accordingly, when the activation factor calculation unit 16-3 outputs the activation factor value to the storage amount determination unit 14, after checking whether the activation factor value is a value between 0 and 1 (S105), the activation factor If the value is between 0 and 1, it is output as is. Otherwise, the activation factor value is output as the maximum value of 1.

다음으로, 상기 흡장량 결정부(14)에서 활성화 팩터 값에 따라 맵 데이터를 기반으로 흡장량 최대값과 흡장량 최소값 사이 범위의 최종 환원제 흡장량을 결정하여 분사모듈로 출력함으로써, 분사모듈의 환원제 분사량 및 SCR 촉매에 대한 환원제 흡장량이 조절될 수 있다.Next, the storage amount determination unit 14 determines the final reducing agent storage amount in the range between the maximum storage amount and the minimum storage amount based on the map data according to the activation factor value and outputs it to the injection module, so that the reducing agent of the injection module The injection amount and the amount of reducing agent stored in the SCR catalyst can be adjusted.

보다 상세하게는, 상기 맵 데이터는 에어징 팩터에 따라 흡장량 최대값을 나타내는 맵 과 흡장량 최소값을 나타내는 맵을 포함하는 바, 이러한 맵 데이터를 이용하여 상기 흡장량 결정부(14)에서 활성화 팩터 값에 따라 흡장량 최대값을 나타내는 맵과 흡장량 최소값을 나타내는 맵을 내분하여 흡장량 최대값과 흡장량 최소값 간의 범위에 있는 특정값을 최종 환원제 흡장량으로 결정하게 된다.More specifically, the map data includes a map representing the maximum storage amount and a map representing the minimum storage amount according to the airing factor. Using this map data, the storage amount determination unit 14 determines the activation factor. Depending on the value, the map representing the maximum storage amount and the map representing the minimum storage amount are internally divided, and a specific value in the range between the maximum storage amount and the minimum storage amount is determined as the final reducing agent storage amount.

연이어, 상기 흡장량 결정부(14)에서 결정된 최종 환원제 흡장량이 분사모듈로 출력됨으로써, 분사모듈에서 최종 환원제 분사량에 맞게 환원제를 분사하여 SCR 촉매에 대한 환원제 흡장량이 알맞게 조절될 수 있다.Subsequently, the final reducing agent storage amount determined in the storage amount determination unit 14 is output to the injection module, so that the injection module injects the reducing agent according to the final reducing agent injection amount, so that the storage amount of the reducing agent for the SCR catalyst can be appropriately adjusted.

한편, 상기 에어징 팩터 계산부(12)에서 SCR 촉매온도와 주행거리 정보를 기반으로 0과 1 사이의 값인 에이징 팩터(Aging factor)를 출력하는 바, 이 에이징 팩터 값과 활성화 팩터 산출부(16-3)에서 출력되는 활성화 팩터 값을 곱셈기(18)에서 곱하여 흡장량 결정부(14)로 출력할 수 있고, 그에 따라 흡장량 결정부(14)에서 에이징 팩터 값과 활성화 팩터 값을 기반으로 최종 환원제 흡장량을 결정할 수 있다.Meanwhile, the aging factor calculation unit 12 outputs an aging factor, which is a value between 0 and 1, based on the SCR catalyst temperature and mileage information, and this aging factor value and the activation factor calculation unit 16 The activation factor value output in -3) can be multiplied by the multiplier 18 and output to the storage amount determination unit 14. Accordingly, the storage amount determination unit 14 makes the final decision based on the aging factor value and the activation factor value. The amount of reducing agent stored can be determined.

이와 같이, SCR 촉매의 내구 정도와는 별개로 일정 온도 이상의 고온에 노출된 시간을 파악하여 SCR 촉매가 활성화된 정도를 판단한 활성화 팩터값을 산출한후, 이를 이용하여 암모니아 흡장량을 더 효율적으로 제어할 수 있다.In this way, regardless of the durability of the SCR catalyst, the time of exposure to high temperatures above a certain temperature is determined to calculate the activation factor value that determines the degree to which the SCR catalyst is activated, and this is used to more efficiently control the ammonia storage amount. can do.

아울러, SCR 촉매가 활성화된 정도를 파악하여 활성화도가 높을 경우 암모니아 흡장량을 낮출 수 있기 때문에 암모니아와 같은 환원제를 SCR 촉매에 흡장시키기 위하여 사용되는 요소수 분사량 및 암모니아 소모율을 줄일 수 있고, 또한 기존에 과다 흡장된 암모니아가 SCR 촉매로부터 슬립 탈락되어 대기중으로 방출되어 소모되는 현상도 방지할 수 있다.In addition, by determining the degree to which the SCR catalyst is activated, the amount of ammonia stored can be lowered when the activation degree is high. Therefore, the amount of urea water injection and the ammonia consumption rate used to store a reducing agent such as ammonia in the SCR catalyst can be reduced, and the existing It is also possible to prevent ammonia excessively stored in the SCR catalyst from slipping off and being released into the atmosphere and being consumed.

10 : 제어부
12 : 에이징 팩터 계산부
14 : 흡장량 결정부
16 : 촉매 활성도 산출부
16-1 : 비교기
16-2 : 타이머
16-3 : 활성화 팩터 산출부
20 : SCR 온도센서
30 : 주행거리계
10: control unit
12: Aging factor calculation unit
14: storage amount determination unit
16: Catalyst activity calculation unit
16-1: Comparator
16-2: Timer
16-3: Activation factor calculation unit
20: SCR temperature sensor
30: Odometer

Claims (7)

SCR 온도센서로부터 입력되는 SCR 촉매온도와 주행거리계로부터 입력되는 주행거리 정보를 기반으로 에이징 팩터를 계산하는 에이징 팩터 계산부;
SCR 촉매의 활성화 정도를 산출하여 활성화 팩터를 출력하는 촉매 활성도 산출부; 및
상기 에이징 팩터와 활성화 팩터에 따라 맵 데이터를 기반으로 환원제 흡장량을 다르게 결정하는 흡장량 결정부;
를 포함하여 구성된 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템.
An aging factor calculation unit that calculates an aging factor based on the SCR catalyst temperature input from the SCR temperature sensor and the mileage information input from the odometer;
A catalyst activity calculation unit that calculates the degree of activation of the SCR catalyst and outputs an activation factor; and
a storage amount determination unit that determines a different storage amount of reducing agent based on map data according to the aging factor and the activation factor;
A reducing agent storage amount control system for an SCR post-treatment system comprising:
청구항 1에 있어서,
상기 촉매 활성도 산출부는:
SCR 온도센서로부터 입력되는 SCR 촉매온도와 SCR 활성화 기준온도 간을 비교하는 비교기;
SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 타이머; 및
적산된 시간을 완전 활성화 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터 값을 출력하는 활성화 팩터 산출부;
로 구성된 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템.
In claim 1,
The catalyst activity calculation unit:
A comparator that compares the SCR catalyst temperature input from the SCR temperature sensor and the SCR activation reference temperature;
A timer that accumulates the time when the SCR catalyst temperature is greater than the SCR activation reference temperature; and
An activation factor calculation unit that divides the accumulated time by the full activation reference time and outputs an activation factor value between 0 and 1;
A reducing agent storage amount control system for an SCR post-treatment system, characterized in that it consists of.
청구항 1에 있어서,
상기 에이징 팩터와 활성화 팩터를 곱하여 흡장량 결정부로 출력하는 곱셈기를 더 포함하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 시스템.
In claim 1,
A reducing agent storage amount control system for an SCR post-treatment system, further comprising a multiplier that multiplies the aging factor and the activation factor and outputs the product to a storage amount determination unit.
SCR 촉매온도와 SCR 활성화 기준온도를 비교하는 단계;
SCR 촉매온도가 SCR 활성화 기준온도보다 크면, 타이머가 작동되어 SCR 촉매온도가 SCR 활성화 기준온도보다 클 때의 시간을 적산하는 단계;
상기 타이머에서 적산된 시간을 완전 활성화 기준시간으로 나누어서 0 ~ 1 사이의 활성화 팩터 값을 출력하는 단계;
흡장량 결정부에서 활성화 팩터 값을 이용하여 최종 환원제 흡장량을 결정하는 단계;
를 포함하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
Comparing the SCR catalyst temperature and the SCR activation reference temperature;
When the SCR catalyst temperature is greater than the SCR activation reference temperature, a timer is activated to accumulate the time when the SCR catalyst temperature is greater than the SCR activation reference temperature;
Dividing the time accumulated by the timer by the full activation reference time and outputting an activation factor value between 0 and 1;
Determining the final reducing agent storage amount using the activation factor value in the storage amount determination unit;
A method for controlling the storage amount of reducing agent in an SCR post-treatment system, comprising:
청구항 4에 있어서,
상기 활성화 팩터 값을 출력할 때, 활성화 팩터 값의 최대값은 1로 제한되는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
In claim 4,
When outputting the activation factor value, the maximum value of the activation factor value is limited to 1. A method for controlling the storage amount of reducing agent in an SCR post-treatment system.
청구항 4에 있어서,
상기 흡장량 결정부에서 활성화 팩터 값에 따라 맵 데이터를 기반으로 흡장량 최대값과 흡장량 최소값 사이 범위의 최종 환원제 흡장량을 결정하는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
In claim 4,
A method for controlling the storage amount of reducing agent in an SCR post-treatment system, characterized in that the storage amount determination unit determines the final storage amount of reducing agent in the range between the maximum storage amount and the minimum storage amount based on map data according to the activation factor value.
청구항 4에 있어서,
상기 활성화 팩터 값은 에어징 팩터 계산부에서 산출된 에이징 팩터와 곱해져서 흡장량 결정부로 출력되는 것을 특징으로 하는 SCR 후처리 시스템의 환원제 흡장량 제어 방법.
In claim 4,
The activation factor value is multiplied by the aging factor calculated in the aeration factor calculation unit and output to the storage amount determination unit.
KR1020190048247A 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system KR102664097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190048247A KR102664097B1 (en) 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190048247A KR102664097B1 (en) 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system

Publications (2)

Publication Number Publication Date
KR20200124863A KR20200124863A (en) 2020-11-04
KR102664097B1 true KR102664097B1 (en) 2024-05-07

Family

ID=73571270

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190048247A KR102664097B1 (en) 2019-04-25 2019-04-25 System and method for controlling ammonia occlusion amount of selective catalytic reduction system

Country Status (1)

Country Link
KR (1) KR102664097B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131997A (en) 2017-02-16 2018-08-23 三菱自動車工業株式会社 Exhaust emission control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131997A (en) 2017-02-16 2018-08-23 三菱自動車工業株式会社 Exhaust emission control device

Also Published As

Publication number Publication date
KR20200124863A (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US9297287B2 (en) Exhaust gas control apparatus and control method for exhaust gas control apparatus
US8671660B2 (en) Catalyst degradation determination device for exhaust purification system
CN107448265B (en) Controlling nitrogen oxide emissions in the exhaust of an internal combustion engine
JP4635860B2 (en) Exhaust gas purification device for internal combustion engine
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
US20110094209A1 (en) Method for correcting nitrogen oxide emission models
KR100993364B1 (en) System for control urea injection quantity of vehicle and method thereof
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
KR101664702B1 (en) Control method for UREA injection of SCR system
KR101534714B1 (en) Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
US8434298B2 (en) Method for injecting ammonia into an exhaust gas stream
KR102664097B1 (en) System and method for controlling ammonia occlusion amount of selective catalytic reduction system
CN109642485B (en) Method for quality control of a reducing agent solution in an SCR catalyst
US11761364B2 (en) Exhaust gas purification device for internal combustion engine, and vehicle
CN110872975B (en) Method for controlling and/or regulating an SCR catalyst of an internal combustion engine arranged in a motor vehicle
EP2865857B1 (en) Exhaust gas purification apparatus for internal combustion engine
KR101097492B1 (en) Control Method of A Selective Catalysts Reduction Apparatus in Diesel Engine
CN113006910A (en) Method for controlling an SCR catalytic converter
KR102529523B1 (en) Method for controlling urea supply of exhaust purification apparatus for vehicle
EP3130774B1 (en) Exhaust gas purification system for internal combustion engine
US11753977B2 (en) Apparatus and method for controlling a vehicle action
US11719178B2 (en) Apparatus and method for controlling a vehicle action
JP5414504B2 (en) Exhaust gas purification device for internal combustion engine
KR101610114B1 (en) Control method for maintaining performance of lnt and the control system thereof
JP6888448B2 (en) Deterioration judgment device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant