KR20200123027A - Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications - Google Patents

Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications Download PDF

Info

Publication number
KR20200123027A
KR20200123027A KR1020200046920A KR20200046920A KR20200123027A KR 20200123027 A KR20200123027 A KR 20200123027A KR 1020200046920 A KR1020200046920 A KR 1020200046920A KR 20200046920 A KR20200046920 A KR 20200046920A KR 20200123027 A KR20200123027 A KR 20200123027A
Authority
KR
South Korea
Prior art keywords
val pro
pro ala
gly val
seq
peptide
Prior art date
Application number
KR1020200046920A
Other languages
Korean (ko)
Other versions
KR102413729B1 (en
Inventor
임동우
강민정
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to US17/604,414 priority Critical patent/US20220331453A1/en
Priority to PCT/KR2020/005176 priority patent/WO2020213993A1/en
Publication of KR20200123027A publication Critical patent/KR20200123027A/en
Application granted granted Critical
Publication of KR102413729B1 publication Critical patent/KR102413729B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2318/00Antibody mimetics or scaffolds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides an anti-angiogenic fusion polypeptide, a fusion protein nanocage having the anti-angiogenic peptide, and application of the same to diagnostics and treatment (theranostics). The fusion protein nanocage of the present invention presents a new path for advanced drug delivery systems to treat angiogenesis-related diseases.

Description

신혈관 생성 억제용 융합 폴리펩타이드, 다가성 신혈관 생성 억제용 펩타이드를 가진 융합단백질 나노케이지 및 이의 테라노스틱스 용도{Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications}Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics. {Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics. applications}

본 발명은 신혈관 생성 억제용 융합 폴리펩타이드, 이 신혈관 생성 억제용 펩타이드를 가진 융합단백질 나노케이지 및 이의 진단 및 치료(테라노스틱스) 용도에 대한 것이다. The present invention relates to a fusion polypeptide for inhibiting neovascularization, a fusion protein nanocage having the peptide for inhibiting neovascularization, and a diagnosis and treatment (theranostics) thereof.

유기체의 단백질은 생물학적 기능을 발휘하기 위해 잘 정렬된(well-ordered) 구조로 자가조립(self-assembly)되며, 자가조립된 구조와 그들의 바이오의학 응용은 활발히 연구되고 있다. 잘 정렬된 단백질 구조는 유전체 패키징(genome packaging), 구조적 지지(structural support), 저장 및 운반의 생물학적 요소 등 세포와 유기체 내의 중요한 기능을 수행한다. 자가조립체는 상향식(bottom-up)으로 단백질 서브유닛을 조립하여 제조되며, 나노섬유, 환형(ring-like), 케이지 구조와 같은 다양한 구조를 가진다. 이러한 구조들을 형성하는 단백질은 본래의 구조 또는 소재 형태로 바이오의학 응용분야에서 연구되고 발전해왔다. 잘 정렬된 단백질 중 하나는 콜라겐(collagen), 아밀로이드(amyloid), 및 튜불린(tubulin)과 같은 선형 단백질로, 나노섬유 구조를 형성한다. 콜라겐과 같은 선형 단백질은 약물 전달 시스템을 위해 필름, 시트 또는 하이드로겔로서 제조된다. 콜라겐 필름 또는 시트는 약물 방출을 조절하기 위해 화학적 콘쥬게이션 또는 물리적 포집(entrapment)에 의해 약물을 코팅하거나 운반한다. 튜불린과 같은 섬유 단백질은 표적 표면에 단백질 구조를 고정시키기 위해 비오틴(biotin)과 융합되거나 표적 단백질을 운반하기 위해 항체와 함께 작용된다. 다른 잘 정렬된 단백질은 β-clamp 또는 TRAP (trp RNA-binding attenuation protein)와 같은 환형 단백질이다. 이러한 환형 단백질의 기능은 단쇄(single stranded) DNA로 풀림(unwinding), 초나선형(supercoiled) DNA의 풀림 및 DNA 수송 또는 DNA 또는 RNA와 결합에 의한 DNA 조작(DNA manipulation)과 연관되어 있다. 다른 단백질 구조는 페리틴(ferritin) 또는 바이러스 캡시드(viral capsid)와 같은 케이지 단백질의 폐쇄된 껍질(closed shell) 구조이다. 케이지 구조는 비어있는 내부에서 소형-반응기나 약물 전달체로 사용되며, 외부 껍질에 작용하기 위해 수용체와 같은 기능적인 펩타이드와 융합된다. 이러한 단백질 구조는 형광 염료(fluoresce dye)나 약물과 같은 다른 기능적인 펩타이드나 화학물과 융합함으로써 첨단 약물 전달 시스템을 위해 개발된다.Proteins in organisms are self-assembled into well-ordered structures to exert biological functions, and self-assembled structures and their biomedical applications are being actively studied. Well-ordered protein structures perform important functions within cells and organisms, such as genome packaging, structural support, and biological elements of storage and transport. Self-assembly is manufactured by assembling protein subunits in a bottom-up manner, and has various structures such as nanofibers, ring-like structures, and cage structures. Proteins that form these structures have been studied and developed in biomedical applications in the form of their original structures or materials. One of the well-ordered proteins is a linear protein such as collagen, amyloid, and tubulin, which forms nanofibrous structures. Linear proteins such as collagen are prepared as films, sheets or hydrogels for drug delivery systems. The collagen film or sheet coats or carries the drug by chemical conjugation or physical entrapment to control drug release. Fibrous proteins, such as tubulin, are fused with biotin to immobilize the protein structure on the target surface, or act with antibodies to carry the target protein. Other well-ordered proteins are circular proteins such as β-clamp or trp RNA-binding attenuation protein (TRAP). The functions of these circular proteins are associated with unwinding into single stranded DNA, unwinding of supercoiled DNA, and DNA transport or DNA manipulation by binding to DNA or RNA. Another protein structure is the closed shell structure of cage proteins such as ferritin or viral capsid. The cage structure is used as a small-reactor or drug carrier in the empty interior, and is fused with a functional peptide such as a receptor to act on the outer shell. These protein structures are developed for advanced drug delivery systems by fusing with other functional peptides or chemicals such as fluorescent dyes or drugs.

단백질-기반 구조는 바이오의약 응용에 있어 생체적합성 및 생분해성의 장점을 가지고 있다. 이러한 단백질 구조 중 하나는 페리틴으로, 4개의 나선형 다발(helix bundle)과 상대적으로 짧은 나선(helix)들의 자가조립된 나노케이지 구조를 가리킨다. 페리틴은 유기체 내 철 저장 단백질 집단(family)이며, 가역적인 pH 반응성을 가진다. 페리틴은 강산 조건(pH 2)에서 분해되며 중성 pH 조건에서 다시 조립된다. 페리틴의 가역적인 pH 반응성은 몇몇 응용 및 새로운 키메라 단백질(chimera proteins)의 제작에 사용된다. 예를 들어, 페리틴을 각각 두 종류의 형광 염료에 화학적으로 콘쥬게이션하면, 두 종류의 다른 화학 염료-콘쥬게이션된 페리틴은 혼합되고 pH 감소에 따라 분해되었다. 그 후 pH가 본래의 케이지 구조로 회복되기 위해 자연(natural) pH로 조정되었다. 두 종류의 다른 염료로 표지된 페리틴 하이브리드 유닛은 페리틴과 분해된 분자로부터 추적 신호를 구별하기 위해 FRET(fluorescence resonance energy transfer)와 함께 프로브로 사용되었다. 페리틴은 다른 주요한 특징은 철 저장 기능이다. 유기체 내에서 본래 페리틴은 철 저장 단백질이다. 한편, 많은 이전 연구는 페리틴이 금, 납, 구리 등 금속 이온을 저장한다는 점을 확인했다. 페리틴 구조의 구멍 내 특정 아미노산은 결합 특이성을 가지며 이온에 따라 아미노산 서열이 다르다. 예를 들어, 금 이온(Au3+)은 Cys48, His49, Met96, His114 및 Cys126와 배위결합했으며, 납 이온(Pd2+)은 Glu45, Cys48, Arg52, Glu53 및 His173의 중심에 축적되었다. 축적된 금속 이온은 케이지 구조 내부 구멍(cavity)의 환원에 의해 금속 나노입자로 환원되고, 페리틴-금속 나노입자 복합체는 촉매나 MRI (magnetic resonance imaging), PET (positron emission tomography)의 이미징 프로브로 활용되었다. 페리틴의 추가적인 기능을 설명하기 위해, 다른 기능적인 펩타이드나 단백질로 페리틴 조각을 대체하거나, 페리틴 외부에 노출되는 표면에 도입하였다. 예를 들어, pH 반응성 펩타이드나 세포 표적 펩타이드는 페리틴과 유전공학적으로 융합되었다. 페리틴이 pH 반응성을 가짐에도 불구하고, 그 pH 범위가 너무 극단의 조건(pH 2)이기 때문에, pH 반응성 펩타이드로서 GALA 펩타이드가 C-말단의 짧은 나선을 대체했다. GALA 펩타이드는 중성 pH 조건에서 임의적인 코일형 모양이며, 산성 조건(pH 6)에서 나선형으로 형태학적 변화가 일어나 케이지 구조를 분해한다. 다른 기능적인 펩타이드는 페리틴의 두 개의 노출 부위에 도입되었는데, N 말단과 4번째 나선형 다발(helical bundle)과 짧은 나선의 중간이다. 지난 연구에서, interleukin-4 receptor (IL-4R)-targeting peptide coil and peptide (AP-1)는 페리틴의 4번째 나선형 다발과 짧은 나선 간에 유전공학적으로 융합되었으며, 융합 페리틴의 IL-4R-발현 세포주, A549로의 결합 및 내재화가 보고되었다. 페리틴은 또한 다른 세포-특이적 표적 펩타이드로서 종양 맥관 구조(tumor vasculature)를 양성 피드백하는 αVβ3와 결합하는 RGD-4C와 유전공학적으로 융합되었다. 한편, 흑색종(melanoma) 세포에 페리틴과 융합한 RGD-4C의 세포-특이적 표적 능력도 확인되었다. Protein-based structures have the advantages of biocompatibility and biodegradability in biomedical applications. One of these protein structures is ferritin, which refers to a self-assembled nanocage structure of four helix bundles and relatively short helixes. Ferritin is a family of iron storage proteins in organisms and has reversible pH reactivity. Ferritin decomposes under strong acid conditions (pH 2) and reassembles under neutral pH conditions. Ferritin's reversible pH reactivity is used in several applications and in the construction of new chimera proteins. For example, if ferritin was chemically conjugated to two kinds of fluorescent dyes, respectively, the two kinds of different chemical dye-conjugated ferritins were mixed and decomposed with decreasing pH. The pH was then adjusted to the natural pH to restore the original cage structure. The ferritin hybrid unit labeled with two different dyes was used as a probe with fluorescence resonance energy transfer (FRET) to discriminate the tracking signal from ferritin and degraded molecules. Another major feature of ferritin is its ability to store iron. In organisms, ferritin is essentially an iron storage protein. Meanwhile, many previous studies have confirmed that ferritin stores metal ions such as gold, lead and copper. Certain amino acids in the pores of the ferritin structure have binding specificities, and the amino acid sequence varies depending on the ion. For example, gold ions (Au 3+ ) coordinated with Cys48, His49, Met96, His114 and Cys126, and lead ions (Pd 2+ ) were accumulated in the center of Glu45, Cys48, Arg52, Glu53 and His173. Accumulated metal ions are reduced to metal nanoparticles by reduction of the cavity inside the cage structure, and the ferritin-metal nanoparticle complex is used as a catalyst, magnetic resonance imaging (MRI), and imaging probe for PET (positron emission tomography). Became. In order to explain the additional function of ferritin, ferritin fragments were replaced with other functional peptides or proteins, or introduced on the surface exposed to the outside of ferritin. For example, a pH-responsive peptide or a cell-targeting peptide has been genetically engineered with ferritin. Despite ferritin's pH-reactivity, its pH range is too extreme (pH 2), so the GALA peptide as a pH-responsive peptide replaced the C-terminal short helix. GALA peptide has an arbitrary coil shape under neutral pH conditions, and morphological changes occur in a spiral shape under acidic conditions (pH 6) to decompose the cage structure. Another functional peptide was introduced at the two exposed sites of ferritin, intermediate the N-terminus and the fourth helical bundle and the short helix. In the previous study, interleukin-4 receptor (IL-4R)-targeting peptide coil and peptide (AP-1) was genetically fused between the fourth helical bundle and short helix of ferritin, and the IL-4R-expressing cell line of fused ferritin. , Binding and internalization to A549 have been reported. Ferritin was also genetically fused with RGD-4C, which binds α V β 3 , which positively feeds back tumor vasculature as another cell-specific targeting peptide. Meanwhile, the cell-specific targeting ability of RGD-4C fused with ferritin to melanoma cells was also confirmed.

엘라스틴은 세포외 기질(extracellular matrix, ECM)의 단백질의 주요 구성성분이며, 탄성중합체 도메인(elastomeric domain)과 교차결합 도메인(crosslinking domain)으로 구성되어 있다. 탄성중합체 도메인은 소수성 아미노산과 VPGG, VPGVG, 및 APGVGV와 같은 반복적인 펩타이드로 이루어진다. 엘라스틴계 폴리펩타이드(elastin-based polypeptides: EBPs)는 탄성중합체 도메인(domain)으로부터 유래된 열 반응 생체고분자들이다. 엘라스틴은 세포외 기질(extracellular matrix, ECM)에서 주요한 단백질 구성요소이다. EBPs는 탄성중합체 도메인을 기반으로 하여 열 감응성(thermal sensitivity)을 가지도록 변형되었고, 5개의 아미노산으로 구성되는 펩타이드인, 펜타펩타이드(pentapeptide)의 반복 단위인 Val-Pro-(Gly 또는 Ala)-Xaa-Gly[VP(G 또는 A)XG]를 갖는다. EBPs는 열-감응성 폴리펩타이드들이고, 이들의 전이 온도는 쉽게 조절되어 약물 전달 나노구조체를 형성한다.Elastin is a major component of proteins in the extracellular matrix (ECM), and is composed of an elastomeric domain and a crosslinking domain. The elastomeric domain consists of hydrophobic amino acids and repetitive peptides such as VPGG, VPGVG, and APGVGV. Elastin-based polypeptides (EBPs) are thermally reactive biopolymers derived from elastomer domains. Elastin is a major protein component in the extracellular matrix (ECM). EBPs were modified to have thermal sensitivity based on the elastomer domain, and Val-Pro-(Gly or Ala)-X, a repeating unit of pentapeptide, a peptide composed of five amino acids. aa -Gly[VP(G or A)XG]. EBPs are heat-sensitive polypeptides, and their transition temperature is easily controlled to form drug delivery nanostructures.

상기 Xaa는 게스트 잔기(guest residue)이고 프롤린(proline)을 제외한 모든 아미노산일 수 있다. 반복 단위의 서열(sequence)에 따라 두 종류의 EBPs로 구분할 수 있는데, 하나는 서열이 Val-Pro-Gly-Xaa-Gly인 탄성을 가지는 엘라스틴-기반 폴리펩타이드(elastin-based polypeptide with elasticity, EBPE)이고, 다른 하나는 서열이 Val-Pro-Ala-Xaa-Gly인 가소성을 가지는 엘라스틴-기반 폴리펩타이드(elastin-based polypeptide with plasticity, EBPP)이다. The X aa is a guest residue and may be any amino acid except proline. Depending on the sequence of the repeating unit, it can be classified into two types of EBPs. One is an elastin-based polypeptide with elasticity (EBPE) whose sequence is Val-Pro-Gly-X aa -Gly. ), and the other is an elastin-based polypeptide with plasticity (EBPP) having a sequence of Val-Pro-Ala-X aa- Gly.

EBPs는 탄성중합체 도메인을 기반으로 자극-반응성, 생체적합성, 생분해성, 및 비면역성을 가지도록 고안되었다. EBPs는 열 반응성이 있는 바이오중합체로서, 많은 '펜타펩타이드 반복 유닛'인 Val-Pro-(Gly or Ala)-Xaa-Gly으로 구성되어 있으며, 이 때 Xaa는 반복적인 상기 유닛에서 4번째 아미노산으로 Pro를 제외한 어떤 아미노산이든 가능하다. EBPs는 하한 임계 용액 온도(lower critical solution temperature, LCST) 거동을 가져 온도에 따라 가역적인 상전이를 보인다. 그들의 LCST 거동은 EBPs의 열적으로 유발되는 상전이를 사용하는, 단백질 정제 방법론에 기초한 역 전이 순환(inverse transition cycling, ITC)이 가능하다는 장점이 있다. EBPs의 용이한 정제와 자극-유발 상전이는 다른 기능적인 단백질 및 펩타이드의 유전적 융합을 가능하게 한다. 예를 들어, EBPs는 자가절단 단백질(self-cleaving protein)인 인테인(intein)과 유전적으로 융합하는 방법으로 친화크로마토그래피(Affinity chromatography) 또는 단백질 가수분해 태그 제거 없이 클로로페니콜 아세틸전달효소(Chloramphenicol acetyl transferase, CAT) 또는 티오레독신(Thioredoxin, Trx)과 같은 표적 단백질의 산출을 증가하기 위해 단백질 정제 태그로서 사용되었다. 가용성의 EBPs는 폴리에틸렌글리콜(poly(ethylene glycol), PEG)과 같은 '비활성의 단백질-기반 바이오재료'와 첨단 약물 전달 체계, 재생의학, 및 조직공학을 위해 약물 또는 다른 기능적인 단백질과 함께 '약물 전달체(drug delivery carriers)'로서 기능한다.EBPs are designed to have stimulus-responsiveness, biocompatibility, biodegradability, and non-immunity based on elastomeric domains. EBPs are thermally reactive biopolymers and are composed of Val-Pro-(Gly or Ala)-X aa -Gly, which are many'pentapeptide repeating units', where X aa is the 4th amino acid in the repetitive unit. It can be any amino acid except Pro. EBPs have a lower critical solution temperature (LCST) behavior and show a reversible phase transition with temperature. Their LCST behavior has the advantage of enabling inverse transition cycling (ITC) based on protein purification methodology using thermally induced phase transitions of EBPs. The easy purification and stimulation-induced phase transition of EBPs allows for the genetic fusion of other functional proteins and peptides. For example, EBPs are genetically fused with intein, a self-cleaving protein, without affinity chromatography or proteolytic tag removal, and chlorophenicol acetyltransferase (Chloramphenicol). acetyl transferase (CAT) or thioredoxin (Thioredoxin, Trx) was used as a protein purification tag to increase the production of target proteins. Soluble EBPs are'inert protein-based biomaterials' such as polyethylene glycol (PEG) and'drugs' along with drugs or other functional proteins for advanced drug delivery systems, regenerative medicine, and tissue engineering. It functions as'drug delivery carriers'.

최근에, 상당 수의 암 관련-질병들은 종양(tumor)에서의 비정상적인 혈관신생에 기인한다고 알려졌다. 생물체에서 생리적 혈관신생은 엄격한 조절에 의한 특이적 조건하에서만 오직 활성화된다. 신생혈관 통제 전략 중 하나는 세포막에서 혈관내피 성장인자(vascular endothelial growth factor, VEGF)를 두 종류의 VEGF 수용체(VEGF receptors, VEGFR)인 VEGFR1 (fms-like tyrosine kinase-1 또는 Flt1) 및 VEGFR2 (kinase insert domain-containing receptor 또는 Flk-1/KDR)에 결합시키고, 혈관내피세포에서 성장신호를 시작하는 것이다. 조절의 붕괴로 인한 혈관의 비정상적인 형성은 암뿐만 아니라 비종양성 질환과 같은 질병들을 야기한다. 따라서, 종양 성장, 암세포 전이, 망막 혈관신생, 맥락막 혈관신생, 당뇨병성 망막증, 천식과 같은 다양한 질병에서 혈관신생을 억제하기 위해, 항-혈관신생(anti-angiogenesis)에 관한 다양한 전략들이 적용되었다. 그 예로는 카페인산(caffeic acid, CA)의 색소상피유래인자(pigment epithelial-derived factor, PEDF)와 같은 혈관신생 억제제를 사용하여 항-혈관신생 신호를 개시하는 것과, 그리고 VEGF가 이의 수용체들(VEGFRs)과 결합하는 것을 방해함으로써 신생혈관 형성 신호를 막는 것이 있다. 각 VEGFRs의 특정 기능이 완전히 밝혀지지 않았음에도 불구하고, VEGFR1 및 VEGFR2가 상이한 효과를 통해 신혈관 생성을 유도한다는 사실이 유전자 삭제(gene deletion) 연구에 의해 확인되었다. VEGF 및 VEGFR1 유전자가 없는 쥐의 경우, 내피세포가 과성장하여(overgrowth) 혈관이 형성되지 않았다. VEGF 및 VEGFR2 유전자가 없는 쥐의 내피세포와 조혈세포는 정상적으로 발달하지 않았다. 내피세포와 조혈세포의 손상 없이 신생혈관을 억제하기 위해서는 VEGFR1에 높은 친화력을 가지는 생체거대분자(biomacromolecule) 또는 펩타이드를 이용하여 VEGF와 VEGFR1의 결합을 방해하는 전략이 개발되었다. 고속대량스크리닝(high throughput screening, HTS) 시스템 중에 하나인 PS-SPCL(positional scanning-synthetic peptide combinatorial library) 탐색을 통해서 확인된 Anti-Flt1 펩타이드는, Gly-Asn-Gln-Trp-Phe-Ile(GNQWFI)의 아미노산 서열을 가지는 헥사펩타이드(hexapeptide)이다. Anti-Flt1 펩타이드는 VEGFR1 특이적 길항제로서 VEGFR1에 특이적으로 결합하며, 그렇게 함으로써 VEGF 뿐만 아니라 태반성장인자(placental growth factor, PIGF) 및 VEGF/PIGF heterodimer를 포함한 모든 VEGFR1 리간드들과 VEGFR1이 상호작용하는 것을 방해한다. 생체 내(in vivo)에서 Anti-Flt1 펩타이드의 반감기를 증가시키기 위해서, Anti-Flt1 펩타이드-하이알루로네이트(hyaluronate, HA) 결합체는 제니스테인(genistein), 덱사메사손(dexamethasone) 또는 타이로신(tyrosine)-특이적 단백질 카이네이즈(kinases) 억제제가 함입된 자가조립 마이셀(micelle) 구조의 형성에서 연구되었다. 비록 HA 중합체와 Anti-Flt1 펩타이드의 콘쥬게이션은 신체 내에서 Anti-Flt1 펩타이드의 반감기를 증가시키지만, 콘쥬게이션 효율 및 마이셀 구조는 다분산 HA 중합체 분자량, 임의 분포(random distribution), 및 HA와 Anti-Flt1 펩타이드의 접합 효율의 비일관성으로 인해 이질적(heterogeneous)인 문제점이 있다.Recently, it has been known that a significant number of cancer-related-diseases are due to abnormal angiogenesis in the tumor. Physiological angiogenesis in organisms is only activated under specific conditions by tight control. One of the strategies for controlling angiogenesis is to convert vascular endothelial growth factor (VEGF) into two types of VEGF receptors (VEGFR), VEGFR1 (fms-like tyrosine kinase-1 or Flt1) and VEGFR2 (kinase). insert domain-containing receptor or Flk-1/KDR) and initiate growth signals in vascular endothelial cells. Abnormal formation of blood vessels due to disruption of regulation causes diseases such as cancer as well as non-neoplastic diseases. Therefore, in order to inhibit angiogenesis in various diseases such as tumor growth, cancer cell metastasis, retinal angiogenesis, choroidal neovascularization, diabetic retinopathy, and asthma, various strategies for anti-angiogenesis have been applied. Examples include initiating anti-angiogenic signaling using angiogenesis inhibitors such as pigment epithelial-derived factor (PEDF) of caffeic acid (CA), and VEGF initiating its receptors ( VEGFRs), thereby blocking angiogenesis signals. Although the specific functions of each VEGFRs have not been fully elucidated, the fact that VEGFR1 and VEGFR2 induce neovascularization through different effects has been confirmed by gene deletion studies. In mice without VEGF and VEGFR1 genes, endothelial cells overgrowth and blood vessels were not formed. Rat endothelial cells and hematopoietic cells without VEGF and VEGFR2 genes did not develop normally. In order to suppress neovascularization without damaging endothelial cells and hematopoietic cells, a strategy was developed to prevent the binding of VEGF and VEGFR1 using a biomacromolecule or peptide having a high affinity for VEGFR1. Anti-Flt1 peptide identified through the search for a positional scanning-synthetic peptide combinatorial library (PS-SPCL), which is one of high throughput screening (HTS) systems, is Gly-Asn-Gln-Trp-Phe-Ile (GNQWFI It is a hexapeptide having an amino acid sequence of ). Anti-Flt1 peptide is a VEGFR1-specific antagonist that specifically binds to VEGFR1, whereby VEGFR1 interacts with all VEGFR1 ligands, including VEGF as well as placental growth factor (PIGF) and VEGF/PIGF heterodimer. Interfere with things. In order to increase the half-life of the Anti-Flt1 peptide in vivo , the Anti-Flt1 peptide-hyaluronate (HA) conjugate is genistein, dexamethasone, or tyrosine. In the formation of self-assembled micelle structures incorporating -specific protein kinases inhibitors. Although the conjugation of the HA polymer with the Anti-Flt1 peptide increases the half-life of the Anti-Flt1 peptide in the body, the conjugation efficiency and micelle structure are the polydispersed HA polymer molecular weight, random distribution, and HA and Anti-Flt1 peptide. There is a problem of being heterogeneous due to the inconsistency of the conjugation efficiency of the Flt1 peptide.

혈관신생 저해를 위한 다른 전략은 항-혈관신생 신호를 활성화하는 것이다. 색소상피 유래인자(PEDF)는 항-혈관신생 신호를 활성화할 뿐만 아니라 혈관신생 저해제로서 혈관신생과의 균형을 유지하는 역할을 하며, 신경영양(neurotrophic) 및 항종양(antitumorigenic) 특성이 있다. PEDF의 두 종류의 펩타이드인 PEDF 44-mer 펩타이드 (잔기 58-101) 및 PEDF 34-mer 펩타이드 (잔기 24-57)와 이들의 기능은 매커니즘과 함께 규명되었다. PEDF 44-mer 펩타이드는 혈관 누출을 막고, 신경영양적 기능을 가진다. 종양 세포에서, PEDF 44-mer 펩타이드는 신경내분비계 분화(neuroendocrine differentiation)와 신경세포 퇴화(neurite outgrowth)를 유발한다. PEDF 34-mer 펩타이드는 다양한 경로로 신혈관 생성 및 종양 세포를 억제하는 기능을 가진다. PEDF 34-mer 펩타이드는 JNK (c-jun-NH2 kinases)를 활성화하고, NFAT (nuclear factor of activated T cells)를 불활성화한다. 활성화된 JNK는 세포사멸(apoptosis)를 위해 내생의 카스페이즈 저해제(endogenous caspase inhibitor) 및 c-FLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein)의 발현을 방해하고 NFAT의 불활성화 상태를 복원한다. 불활성화된 NFAT는 신혈관 생성 억제를 위해 염기성 섬유아세포 성장인자(basic fibroblast growth factor, bFGF) 및 혈관내피 성장인자(VEGF) 유도 전사를 방해한다. PEDF 34-mer 펩타이드는 F1-ATP 합성효소의 catalytic β-subunit과 결합 친화력이 있으며, 이는 ATP 합성효소 활성을 저해하기 위함이다. 세포 표면의 ATP 부족은 종양 성장 및 침입의 제한을 초래한다. PEDF 34-mer 펩타이드는 내피세포막의 라미닌(laminin) 수용체와 결합 친화력이 있다. 라미닌은 내피세포 아래 위치한 기초적인 막 중 하나인 바닥판(basal lamina)의 주요 구성요소이다. 라미닌 수용체를 포함한 PEDF 34-mer 펩타이드는 내피세포의 세포사멸을 야기하고 튜브 형성을 저해한다. Another strategy for inhibiting angiogenesis is to activate anti-angiogenic signals. Pigment epithelial-derived factor (PEDF) not only activates anti-angiogenesis signals, but also plays a role in maintaining balance with angiogenesis as an angiogenesis inhibitor, and has neurotrophic and antitumorigenic properties. Two types of PEDF peptides, PEDF 44-mer peptide (residue 58-101) and PEDF 34-mer peptide (residue 24-57), and their functions were investigated along with the mechanism. PEDF 44-mer peptide prevents vascular leakage and has a neurotrophic function. In tumor cells, the PEDF 44-mer peptide induces neuroendocrine differentiation and neuronal outgrowth. PEDF 34-mer peptide has the function of inhibiting neovascularization and tumor cells through various pathways. PEDF 34-mer peptide activates c-jun-NH2 kinases (JNK) and inactivates nuclear factor of activated T cells (NFAT). Activated JNK interferes with the expression of endogenous caspase inhibitors and c-FLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein) for apoptosis and inhibits the expression of NFAT. Restore the state of inactivation. Inactivated NFAT interferes with basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF)-induced transcription to inhibit neovascularization. The PEDF 34-mer peptide has a binding affinity to the catalytic β-subunit of the F1-ATP synthase, which is to inhibit ATP synthase activity. Lack of ATP on the cell surface leads to restriction of tumor growth and invasion. PEDF 34-mer peptide has a binding affinity to the laminin receptor of the endothelial cell membrane. Laminin is a major component of the basal lamina, one of the basic membranes located under the endothelial cells. PEDF 34-mer peptide, including laminin receptor, causes apoptosis of endothelial cells and inhibits tube formation.

본 발명자들은, 자극반응성 엘라스틴 기반 폴리펩타이드(elastin-based polypeptides, EBPs) 를 헬릭스 기반 케이지 형태의 나노구조체에 도입하는 연구를 계속하여 본 발명을 완성하였다.The present inventors have completed the present invention by continuing the study of introducing stimulus-responsive elastin-based polypeptides (EBPs) into a helix-based cage-type nanostructure.

대한민국 등록특허 제10-1296329호Korean Patent Registration No. 10-1296329

Biomaterials 31 (2010) 5191-5198Biomaterials 31 (2010) 5191-5198

본 발명의 목적은 신혈관 생성 억제용의 새로운 융합 폴리펩타이드를 제공하기 위한 것이다.It is an object of the present invention to provide a novel fusion polypeptide for inhibiting neovascularization.

본 발명의 다른 목적은 상기 융합 폴리펩타이드를 신혈관 생성 억제용 융합 폴리펩타이드를 포함하는 신혈관 생성에 기인한 질환의 치료용 조성물을 제공하기 위한 것이다.Another object of the present invention is to provide a composition for the treatment of diseases caused by neovascularization, including the fusion polypeptide for inhibiting new angiogenesis.

본 발명의 또 다른 목적은, 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지를 제공하기 위한 것이다.Another object of the present invention is to provide a fusion protein nanocage having a peptide for inhibiting neovascularization.

본 발명의 또 다른 목적은 신혈관 생성에 기인한 질환을 위한 테라노스틱스 나노프로브(theranostic nanoprobe)를 제공하기 위한 것이다.Another object of the present invention is to provide a theranostic nanoprobe for diseases caused by the generation of new blood vessels.

본 발명은,The present invention,

i) 항-혈관신생 펩타이드; 상기 펩타이드에 연결되는 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드; 상기 펩타이드에 연결되는 친수성인 엘라스틴 기반 폴리펩타이드(친수성 EBP); 상기 친수성 EBP에 연결되는 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드로 구성되거나, i) anti-angiogenic peptides; A helix-based polypeptide represented by SEQ ID NO: 1 linked to the peptide; A hydrophilic elastin-based polypeptide linked to the peptide (hydrophilic EBP); Consisting of a helix-based polypeptide represented by SEQ ID NO: 2 linked to the hydrophilic EBP, or

ii) 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드; 상기 헬릭스 기반 펩타이드에 연결되는 친수성 EBP; 상기 제1 친수성 EBP에 연결되는 항-혈관신생 펩타이드; 상기 항-혈관신생 펩타이드에 연결되는 제2친수성 EBP; 및 상기 친수성 EBP에 연결되는 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드로 구성되거나, 또는ii) a helix-based polypeptide represented by SEQ ID NO: 1; Hydrophilic EBP linked to the helix-based peptide; An anti-angiogenic peptide linked to the first hydrophilic EBP; A second hydrophilic EBP linked to the anti-angiogenic peptide; And a helix-based polypeptide represented by SEQ ID NO: 2 linked to the hydrophilic EBP, or

iii) 항-혈관신생 펩타이드; 상기 펩타이드에 연결되는 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드; 상기 단백질에 연결되는 친수성 EBP; 상기 친수성 EBP에 연결되는 항-혈관신생 펩타이드; 상기 항-혈관신생 펩타이드에 연결되는 친수성 EBP; 및 상기 친수성 EBP에 연결되는 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드로 구성되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드를 제공한다.iii) anti-angiogenic peptides; A helix-based polypeptide represented by SEQ ID NO: 1 linked to the peptide; Hydrophilic EBP linked to the protein; Anti-angiogenic peptide linked to the hydrophilic EBP; Hydrophilic EBP linked to the anti-angiogenic peptide; And it is composed of a helix-based polypeptide represented by SEQ ID NO: 2 linked to the hydrophilic EBP, it provides a fusion polypeptide for inhibiting new angiogenesis.

상기 항-혈관신생 펩타이드는 항-Flt1 펩타이드[서열번호 3] 또는 PEDF(pigment epithelial-derived factor) 34-mer[서열번호 4]일 수 있으나, 반드시 이로 제한되는 것은 아니다.The anti-angiogenic peptide may be an anti-Flt1 peptide [SEQ ID NO: 3] or PEDF (pigment epithelial-derived factor) 34-mer [SEQ ID NO: 4], but is not limited thereto.

상기 PEDF 34-mer는 PEDF 중 항-혈관신생 기능성 34 개 아미노산 구역으로, 이 기술분야에 이미 알려져 있다. The PEDF 34-mer is an anti-angiogenic functional 34 amino acid region in PEDF, and is already known in the art.

상기 항-Flt1 펩타이드는 혈관내피 성장인자(Vascular Endothelial Growth Factor: VEGF) 수용체인 Flt1에 특이적으로 결합하여 새로운 혈관 생성을 억제한다. PEDF(pigment epithelial-derived factor)는 혈관 생성을 억제하는 펩타이드이다.The anti-Flt1 peptide specifically binds to Flt1, a Vascular Endothelial Growth Factor (VEGF) receptor, and inhibits the creation of new blood vessels. PEDF (pigment epithelial-derived factor) is a peptide that inhibits angiogenesis.

상기 친수성 EBP는, 서열번호 5 내지 14 중 하나로 표시된 것일 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에서 사용가능한 친수성 EBP는 모두 포함할 수 있다.The hydrophilic EBP may be one represented by one of SEQ ID NOs: 5 to 14, but is not necessarily limited thereto, and all hydrophilic EBPs usable in the art may be included.

상기 i)은 [서열번호 3의 항-Flt1 펩타이드]-[서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]로 구성될 수 있다.The i) may be composed of [anti-Flt1 peptide of SEQ ID NO: 3]-[helix-based polypeptide represented by SEQ ID NO: 1]-[hydrophilic EBP]-[helix-based polypeptide represented by SEQ ID NO:2] .

상기 ii)은 [서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]-[친수성 EBP]-[서열번호 4의 PEDF 34-mer]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]로 구성될 수 있다.The ii) is [Helix-based polypeptide represented by SEQ ID NO: 1]-[Hydrophilic EBP]-[PEDF 34-mer of SEQ ID NO:4]-[Hydrophilic EBP]-[Helix-based polypeptide represented by SEQ ID NO:2] It can be composed of.

상기 iii)은 [서열번호 3의 항-Flt1 펩타이드]-[서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]-[친수성 EBP]-[서열번호 4의 PEDF34-mer]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]로 구성될 수 있다. The iii) is [anti-Flt1 peptide of SEQ ID NO: 3]-[Helix-based polypeptide represented by SEQ ID NO: 1]-[hydrophilic EBP]-[PEDF34-mer of SEQ ID NO:4]-[hydrophilic EBP]-[sequence Helix-based polypeptide represented by number 2].

상기 i)은 서열번호 16, 상기 ii)는 서열번호 17, 그리고 상기 iii)은 서열번호 18로 표시될 수 있다.I) may be represented by SEQ ID NO: 16, ii) may be represented by SEQ ID NO: 17, and iii) may be represented by SEQ ID NO: 18.

다른 측면에서 본 발명은, 상기 언급한 신혈관 생성 억제용 융합 폴리펩타이드를 포함하는 신혈관 생성에 기인한 질환의 치료용 조성물을 제공한다. In another aspect, the present invention provides a composition for the treatment of diseases caused by neovascularization, including the above-mentioned fusion polypeptide for inhibiting neovascularization.

상기 신혈관 생성에 기인한 질환은, 당뇨병성 망막증(diabetic retinopathy), 조숙아의 망막증, 황반부변성증, 맥락막 신생혈관생성증, 신생혈관성 녹내장, 각막혈관신생에 의한 안구질환, 각막 이식 시의 거부반응, 각막 부종, 각막 혼탁, 암(cancer), 혈관종, 혈관섬유종, 류마티스 관절염(rheumatoid arthritis), 및 건선 중에서 선택된 어느 하나 이상일 수 있으나, 반드시 이로 제한되는 것은 아니다.Diseases caused by neovascularization include diabetic retinopathy, retinopathy of premature infants, macular degeneration, choroidal neovascularization, neovascular glaucoma, ocular disease due to corneal angiogenesis, rejection during corneal transplantation, Corneal edema, corneal opacity, cancer (cancer), hemangioma, hemangiofibroma, rheumatoid arthritis (rheumatoid arthritis), and may be any one or more selected from psoriasis, but is not limited thereto.

또 다른 측면에서 본 발명은, 상기 언급한 신혈관 생성 억제용 융합 폴리펩타이드에서, 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드와 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드가 자가조립함으로써 제조되는 것인, 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지를 제공한다. In another aspect, the present invention is prepared by self-assembling a helix-based polypeptide represented by SEQ ID NO: 1 and a helix-based polypeptide represented by SEQ ID NO: 2 in the aforementioned fusion polypeptide for inhibiting neovascularization. , It provides a fusion protein nanocage having a peptide for inhibiting neovascularization.

상기 나노케이지는 다가(multivalent)의 신혈관 생성 억제용 융합 폴리펩타이드를 가질 수 있다. The nanocage may have a multivalent fusion polypeptide for inhibiting new angiogenesis.

본 발명의 일 실시예에서는 항-Flt 펩타이드와 PEDF 34-mer를 동시에 가진다.In one embodiment of the present invention, it has an anti-Flt peptide and PEDF 34-mer at the same time.

또 다른 측면에서 본 발명은,In another aspect, the present invention,

형광 염료; 및 Fluorescent dyes; And

상기 언급한 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지;를 포함하여 이루어지고, 상기 형광 염료는 상기 나노케이지 안에 들어 있는 것인, 신혈관 생성에 기인한 질환을 위한 테라노스틱스 나노프로브(theranostic nanoprobe)를 제공한다.A fusion protein nanocage having a peptide for inhibiting neovascularization as mentioned above; consisting of, wherein the fluorescent dye is contained in the nanocage, a theranostic nanoprobe for diseases caused by neovascularization ( theranostic nanoprobe).

또 다른 측면에서 본 발명은,In another aspect, the present invention,

라만 염료가 결합된 금속 나노입자; 및Metal nanoparticles bound with Raman dye; And

상기 언급한 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지;를A fusion protein nanocage having the aforementioned peptide for inhibiting neovascularization;

포함하여 이루어지고, 상기 라만 염료가 결합된 금속 나노입자는 상기 나노케이지 안에 들어 있는 것인, 신혈관 생성에 기인한 질환을 위한 테라노스틱스 나노프로브를 제공한다.It comprises, and the Raman dye is bound metal nanoparticles are contained in the nanocage, providing a theranostic nanoprobe for diseases caused by the generation of new blood vessels.

상기 신혈관 생성에 기인한 질환은, 당뇨병성 망막증(diabetic retinopathy), 조숙아의 망막증, 황반부변성증, 맥락막 신생혈관생성증, 신생혈관성 녹내장, 각막혈관신생에 의한 안구질환, 각막 이식 시의 거부반응, 각막 부종, 각막 혼탁, 암(cancer), 혈관종, 혈관섬유종, 류마티스 관절염(rheumatoid arthritis), 및 건선 중에서 선택된 어느 하나 이상일 수 있으나, 반드시 이로 제한되는 것은 아니다.Diseases caused by neovascularization include diabetic retinopathy, retinopathy of premature infants, macular degeneration, choroidal neovascularization, neovascular glaucoma, ocular disease due to corneal angiogenesis, rejection during corneal transplantation, Corneal edema, corneal opacity, cancer (cancer), hemangioma, hemangiofibroma, rheumatoid arthritis (rheumatoid arthritis), and may be any one or more selected from psoriasis, but is not limited thereto.

본 발명에서 사용되는 용어 "항-혈관신생 펩타이드"란, 새로운 혈관 생성을 억제하는 펩타이드를 말한다. 구체적인 예로, 항-Flt1 펩타이드는 혈관내피 성장인자(Vascular Endothelial Growth Factor: VEGF) 수용체인 Flt1에 특이적으로 결합하여 새로운 혈관 생성을 억제한다. PEDF(pigment epithelial-derived factor) 34-mer는 혈관 생성을 억제하는 펩타이드이다. The term "anti-angiogenic peptide" as used in the present invention refers to a peptide that inhibits the formation of new blood vessels. As a specific example, the anti-Flt1 peptide specifically binds to Flt1, a Vascular Endothelial Growth Factor (VEGF) receptor, to inhibit new blood vessel generation. PEDF (pigment epithelial-derived factor) 34-mer is a peptide that inhibits angiogenesis.

본 발명의 융합 폴리펩타이드는 새로운 혈관의 생성을 억제하는 작용을 한다. The fusion polypeptide of the present invention acts to inhibit the generation of new blood vessels.

본 발명에서 사용되는 용어 "아미노산"은 천연 아미노산 또는 인공 아미노산을 의미하며, 바람직하게는 천연 아미노산을 의미한다. 예컨대 상기 아미노산은 글리신, 알라닌, 세린, 발린, 류신, 이소류신, 메티오닌, 글루타민, 아스파라진, 시스테인, 히스티딘, 페닐알라닌, 아르기닌, 타이로신 또는 트립토판 등을 의미한다. The term "amino acid" used in the present invention means natural   amino acid   or artificial   amino acid, and preferably natural   amino acid. For example, the amino acid refers to glycine, alanine, serine, valine, leucine, isoleucine, methionine, glutamine, asparagine, cysteine, histidine, phenylalanine, arginine, tyrosine, or tryptophan.

상기 아미노산의 성질은 이 기술분야에 널리 공지되어 있다. 구체적으로 친수성(음전하성 또는 양전하성)을 나타내거나 소수성을 나타내고, 지방족 또는 방향족의 성질도 나타낸다. The properties of these amino acids are well known in the art. Specifically, it exhibits hydrophilicity (negative charge or positive charge) or hydrophobicity, and also exhibits aliphatic or aromatic properties.

본 명세서에서 사용하는 Gly(G), Ala(A) 등의 약어는 아미노산 약어이다. Gly는 글라이신의, Ala는 알라닌의 약어이다. 또한 글라이신은 G, 알라닌은 A라고도 표현한다. 상기 약어는 이 기술분야에서 널리 사용되는 표현이다.Abbreviations such as Gly (G) and Ala (A) used in the present specification are amino acid abbreviations. Gly stands for glycine and Ala stands for alanine. Glycine is also expressed as G, and alanine is expressed as A. The abbreviation is a widely used expression in this technical field.

본 발명에서 "친수성 아미노산"이란, 친수성 성질을 나타내는 아미노산으로, 리신, 아르기닌 등이 있다. In the present invention, the term "hydrophilic amino acid" refers to an amino acid exhibiting hydrophilic properties, such as lysine and arginine.

본 명세서에 사용된 "폴리펩타이드"란 용어는 아미노산의 임의의 중합체 체인을 의미한다. "펩타이드" 및 "단백질"이란 용어는 폴리펩타이드란 용어와 혼용할 수 있는 것으로서, 이 역시 아미노산의 중합체 체인을 의미한다. "폴리펩타이드"란 용어는 천연 또는 합성 단백질, 단백질 단편 및 단백질 서열의 폴리펩타이드 유사체를 포함한다. 폴리펩타이드는 단량체 또는 중합체일 수 있다. The term "polypeptide" as used herein refers to any polymeric chain of amino acids. The terms "peptide" and "protein" can be used interchangeably with the term "polypeptide", which also refers to a polymer chain of amino acids. The term "polypeptide" includes natural or synthetic proteins, protein fragments, and "polypeptide" analogs of protein sequences. Polypeptides can be monomeric or polymeric.

본 발명의 "엘라스틴-기반 폴리펩타이드(elastin-based polypeptides: EBPs)"는 "엘라스틴-유사 폴리펩타이드(ealstin-like polypeptieds: ELP)"라고도 불린다. 본 발명의 기술분야에서 널리 사용되는 용어이다. "Elastin-based polypeptides (EBPs)" of the present invention are also referred to as "elastin-like polypeptieds (ELPs)". It is a term widely used in the technical field of the present invention.

본 명세서에서, 상기 Xaa(또는 X) "게스트 잔기"라고 칭한다. 상기 Xaa를 다양하게 도입하여 본 발명에 따른 다양한 종류의 EBP를 제조할 수 있다.In the present specification, the X aa (or X) is referred to as "guest residue". Various types of EBP according to the present invention can be prepared by introducing variously X aa .

상기 EBP는, 전이 온도(transition temperature: Tt)라고도 칭하는 하한 임계 용액 온도(lower critical solution temperature: LCST)에서 가역 상 전이를 거친다. 이들은, Tt 미만에서 수용성이 크지만, 온도가 Tt를 초과하면 불용성으로 된다. The EBP undergoes a reversible phase transition at a lower critical solution temperature (LCST) also referred to as a transition temperature (T t ). These have high water solubility below T t , but become insoluble when the temperature exceeds T t .

본 발명에서, EBP의 물리화학적 특성들은 펜타펩타이드 반복 단위인 Val-Pro-(Gly 또는 Ala)-Xaa-Gly의 조합에 의해 주로 제어된다. 구체적으로, 그 반복 단위의 3번째 아미노산은 상대적 기계적 특성을 결정한다. 예를 들어, 본 발명에서, 3번째 아미노산인 Gly 는 탄성(elasticity)을, 또는 Ala는 가소성(plasticity) 결정한다. 상기 탄성 또는 가소성은 전이 이후에 나타나는 성질이다.In the present invention, the physicochemical properties of EBP are mainly controlled by the combination of the pentapeptide repeating unit Val-Pro-(Gly or Ala)-X aa- Gly. Specifically, the third amino acid of the repeating unit determines the relative mechanical properties. For example, in the present invention, the third amino acid, Gly, determines elasticity, or Ala determines plasticity. The elasticity or plasticity is a property that appears after transition.

한편, 4번째 아미노산인 게스트 잔기 Xaa의 소수성과 펜타펩타이드 반복 단위의 중합화(multimerization)는, 모두, Tt에 영향을 끼친다. On the other hand, the hydrophobicity of the guest residue X aa , which is the fourth amino acid, and the polymerization of the pentapeptide repeating unit, both affect T t .

본 발명에 따른 EBP는 펜타펩타이드가 반복된 폴리펩타이드일 수 있고, 이 반복된 폴리펩타이드는 폴리펩타이드 블럭(EBP 블럭)을 형성할 수 있다. 구체적으로 친수성 EBP 블럭 또는 소수성 EBP 블럭을 형성할 수 있다. 본 발명의 EBP 블럭의 친수성 또는 소수성의 성질은 EBP의 전이온도가 깊은 관련성이 있다. The EBP according to the present invention may be a polypeptide in which a pentapeptide is repeated, and the repeated polypeptide may form a polypeptide block (EBP block). Specifically, a hydrophilic EBP block or a hydrophobic EBP block may be formed. The hydrophilic or hydrophobic property of the EBP block of the present invention is closely related to the transition temperature of EBP.

EBP의 전이온도는 또한 아미노산 서열 및 이의 분자량에 달려 있다. EBP 서열과 Tt의 상관 관계에 대해서는 Urry 등이 많은 연구를 수행하였다(Urry D.W., Luan C.-H., Parker T.M., Gowda D.C., Parasad K.U., Reid M.C., and Safavy A. 1991. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc. 113: 4346-4348.). Urry 등은 Val-Pro-Gly-Val-Gly의 펜타펩타이드에서, 4번째 아미노산인 "게스트 잔기"를 Val 보다 더 친수성을 나타내는 잔기로 치환하는 경우, 원래 서열과 비교하여 Tt가 올라가고, 반대로 Val보다 소수성인 잔기로 게스트 잔기를 치환하면 원래 서열보다 Tt가 낮아진다는 것을 발견하였다. 즉, 친수성 EBP는 Tt가 높고 소수성 EBP는 상대적으로 Tt가 낮다는 것을 발견하였다. 이러한 발견을 통해, EBP 서열의 게스트 잔기로 어떤 아미노산을 사용할지 결정하고, 게스트 잔기의 조성 비율에 변화를 줌으로써 특정 Tt를 가지는 EBP를 제조할 수 있게 되었다(Protein-Protein Interactions: A Molecular Cloning Manual, 2002, Cold Spring Harbor Laboratory Press, Chapter 18. pp. 329-343). The transition temperature of EBP also depends on the amino acid sequence and its molecular weight. Urry et al. performed many studies on the correlation between EBP sequence and T t (Urry DW, Luan C.-H., Parker TM, Gowda DC, Parasad KU, Reid MC, and Safavy A. 1991. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity.J. Am. Chem. Soc. 113: 4346-4348.). Urry et al. In the pentapeptide of Val-Pro-Gly-Val-Gly, when the 4th amino acid "guest residue" is substituted with a residue more hydrophilic than Val, T t increases compared to the original sequence, and conversely, more hydrophobic than Val It was found that substituting a guest residue with a residue lowered the T t than the original sequence. That is, it was found that hydrophilic EBP has a high T t and hydrophobic EBP has a relatively low T t . Through these findings, it was possible to prepare EBP having a specific T t by determining which amino acid to use as a guest residue of the EBP sequence and changing the composition ratio of the guest residue (Protein-Protein Interactions: A Molecular Cloning Manual). , 2002, Cold Spring Harbor Laboratory Press, Chapter 18. pp. 329-343).

앞서 설명한 바와 같이, Tt가 높으면 친수성을 나타내고 Tt가 낮으면 소수성을 나타낸다. 본 발명에 따른 EBP 블럭들도 게스트 잔기를 포함하는 아미노산 서열과 분자량에 변화를 줌으로써 Tt를 올리거나 낮출 수 있다. 그리하여 친수성 EBP 블럭 또는 소수성 EBP 블럭의 제조가 가능하다. As described above, the high t T represents the hydrophilic represents a hydrophobic if T t is low. EBP blocks according to the present invention can also raise or lower T t by changing the amino acid sequence and molecular weight including guest residues. Thus, it is possible to prepare a hydrophilic EBP block or a hydrophobic EBP block.

참고로, 체온보다 낮은 Tt를 가지는 EBP는 소수성 블럭으로 사용될 수 있고, 체온 보다 높은 Tt를 가지는 EBP 는 친수성 블럭으로 사용될 수 있다. EBP가 가지는 이러한 성질로 인해, EBP의 친수성과 소수성의 성질은 생체공학적으로 응용할 때에는 상대적으로 정의할 수 있다.For reference, EBP having a T t lower than body temperature may be used as a hydrophobic block, and EBP having a T t higher than body temperature may be used as a hydrophilic block. Due to these properties of EBP, the hydrophilic and hydrophobic properties of EBP can be relatively defined when applied bioengineering.

본 발명의 EBP 서열을 예로 들면, Val-Pro-Ala-Xaa-Gly의 가소성 펜타펩타이드 가 반복되는 가소성 폴리펩타이드 블럭과 Val-Pro-Gly-Xaa-Gly의 탄성 펜타펩타이드 반복되는 탄성 폴리펩타이드 블럭을 비교하였을 때, 3번째 아미노산인 Gly이 Ala보다 높은 친수성을 보인다. 따라서 가소성 폴리펩타이드 블럭(Elastin-based polypeptide with plasticity: EBPP)이 탄성 폴리펩타이드 블럭(Elastin-based polypeptide with elasticity: EBPE)보다 Tt가 낮게 나타난다.For example, the EBP sequence of the present invention is a plastic polypeptide block in which the plastic pentapeptide of Val-Pro-Ala-X aa- Gly is repeated and the elastic pentapeptide of Val-Pro-Gly-X aa- Gly is repeated elastic polypeptide. When comparing the blocks, the third amino acid, Gly, shows higher hydrophilicity than Ala. Therefore, the plasticity polypeptide block (Elastin-based polypeptide with plasticity: EBPP) appears to have a lower T t than the elastic polypeptide block (Elastin-based polypeptide with elasticity: EBPE).

본 발명에 따른 EBP들은 앞서 설명한 바와 같이, Tt를 조절하여, 친수성 또는 소수성의 성질을 나타낼 수 있는 것이다. As described above, EBPs according to the present invention are capable of exhibiting hydrophilic or hydrophobic properties by controlling T t .

본 발명의 "헬릭스 기반 폴라펩타이드"란 나선형의 폴리펩타이드를 의미하며, 구체적으로는 페리틴(ferritin)에서 유래하였다. The "helix-based polypeptide" of the present invention means a helical polypeptide, specifically derived from ferritin.

페리틴은 단백질은 세포내 단백질의 일종으로 철을 저장하고, 방출하는 역할을 한다. 페리틴은 자가조립하여 단백질 케이지를 만든다. 케이지(cage) 단백질은 저분자량 단일체들의 정밀한 자가조립 성질에 의하여 단일체 분자량의 수십에서 수백 배의 거대분자를 형성할 수 있는 단백질이다. 페리틴은 일반적으로 생체내에서 속이 빈 구형의 케이지(cage) 형태를 하고 있으며, 나선형 다발(페리틴 A, B, C, D)과 짧은 5번째 나선(페리틴 E)으로 구성되어 있다. Ferritin is a protein in the cell that stores and releases iron. Ferritin self-assembles to create a protein cage. Cage protein is a protein capable of forming a macromolecule of tens to hundreds of times the molecular weight of a monolith by the precise self-assembly property of low molecular weight monoliths. Ferritin is generally in the form of a hollow spherical cage in vivo, and consists of a spiral bundle (ferritin A, B, C, D) and a short fifth helix (ferritin E).

본 발명의 헬릭스 기반 폴리펩타이드는 "HPC(helix-based protein cage)"로도 기재하며, 나선형 다발(페리틴 A, B, C, D)인 서열번호 1(실시예에서 'HPC4'로 표시함) 및, 짧은 5번째 나선(페리틴 E)인 서열번호 2(실시예에서 'HPC5'로 표시함)로 표시된다.The helix-based polypeptide of the present invention is also described as "HPC (helix-based protein cage)", and SEQ ID NO: 1 (indicated as'HPC4' in the examples), which is a spiral bundle (ferritin A, B, C, D), and , Is represented by the short fifth helix (ferritin E), SEQ ID NO: 2 (indicated as'HPC5' in the examples).

본 발명에서 "테라노스틱스 나노프로브(theranostic nanoprobe)"란 치료(therapy)와 진단(diagnostic)이 동시에 가능한 나노 크기의 프로브를 의미한다. In the present invention, the term "theranostic nanoprobe" refers to a nano-sized probe capable of simultaneously performing therapy and diagnosis.

상기 "나노"란 이 기술분야의 통상의 기술자들이 이해하는 정도의 크기 범위를 포함한다. 구체적으로 상기 크기 범위는 0.1 에서 1000 nm의 크기일 수 있으며, 더 구체적으로는 10 에서 1000 nm, 더욱 바람직하게는 20 에서 500 nm, 더 더욱 바람직하게는 40 에서 250 nm 일 수 있다.The term "nano" includes a size range that is understood by those skilled in the art. Specifically, the size range may be 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, and even more preferably 40 to 250 nm.

본 발명에서 "라만 염료"란 표면 증강 라만 산란(Surface-enhanced Raman scattering, SERS)"에 기반한 측정법에 이용되는 유기화합물을 의미한다. 상기 라만 염료가 부착된 금속 나노입자를 이용하여 SERS 기반으로 라만 신호를 측정한다. 이는 널리 이 기술분야에 널리 알려긴 기술이다. In the present invention, the term "Raman dye" refers to an organic compound used in a measurement method based on surface-enhanced Raman scattering (SERS). Using the metal nanoparticles to which the Raman dye is attached, the Raman dye is based on SERS based on Raman. Measure the signal, a technique widely known in the art.

상기 “라만 염료”는 이 기술분야에서 널리 사용되는 것이라면 어느 것이나 제한없이 사용할 수 있다. 구체적인 예를 들면, 로다민6G, 로다민 B 이소티오시아네이트(RBITC), 아데닌, 4-아미노-피라졸(3,4-d)피리미딘, 2-플루오로아데닌, N6-벤조일아데닌, 키네틴, 디메틸-알릴-아미노-아데닌, 제아틴(zeatin), 브로모-아데닌, 8-아자-아데닌, 8-아자구아닌, 6-머캅토퓨린, 4-아미노-6-머캅토피라졸로(3,4-d)피리민딘, 8-머캅토아데닌, 및 9-아미노-아크리딘 등을 들 수 있으나 반드시 이로 제한되는 것은 아니다.The "Raman   dye" can be used without limitation, as long as it is widely used in this technical field. Specific examples include rhodamine 6G, rhodamine B isothiocyanate (RBITC), adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-fluoro adenine, N6-benzoyl adenine, kinetine , Dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 6-mercaptopurine, 4-amino-6-mercaptopyrazolo (3,4 -d) pyrimidine, 8-mercaptoadenin, and 9-amino-acridine, but are not necessarily limited thereto.

본 발명에서 "다가성 신혈관 생성 억제용 펩타이드를 가진 융합단백질 나노케이지"란, 1 개 이상의 신혈관 생성 억제용 펩타이드를 포함한 융합폴리펩타이드를 포함하고 있는 나노케이지 구조체를 말한다. 구체적으로, 혈관내피 성장인자(Vascular Endothelial Growth Factor: VEGF) 수용체(Flt1 또는 Flk-1/KDR)에 특이적으로 결합하는 펩타이드와 혈관 생성 억제인자인 색소상피유래인자(pigment epithelial-derived factor, PEDF)를 모두 포함한 융합폴리펩타이드를 포함한 나노구조체를 의미한다.In the present invention, the term "fusion protein nanocage having a peptide for inhibiting multivalent new angiogenesis" refers to a nanocage structure containing a fusion polypeptide including one or more peptides for inhibiting new angiogenesis. Specifically, a peptide that specifically binds to the Vascular Endothelial Growth Factor (VEGF) receptor (Flt1 or Flk-1/KDR) and a pigment epithelial-derived factor (PEDF) that is an angiogenesis inhibitor ) Means a nanostructure containing a fusion polypeptide containing all of them.

본 발명에서 "융합단백질 나노케이지"는 "융합 단백질 케이지"라고도 표현한다.In the present invention, "fusion protein nanocage" is also referred to as "fusion protein cage".

본 발명에 따른 융합 폴리펩타이드는 도 1에 모식적으로 나타내었다. The fusion polypeptide according to the present invention is schematically shown in FIG. 1.

본 발명은 비크로마토그래피 정제와 치료용 도메인의 노출을 위해 자극반응성 엘라스틴 기반 폴리펩타이드(elastin-based polypeptides, EBPs)의 특정 클라스(class)를 페리틴 나노구조체에 도입한 것이다. The present invention introduces a specific class of stimulatory elastin-based polypeptides (EBPs) into ferritin nanostructures for non-chromatographic purification and exposure of therapeutic domains.

구체적인 예를 들어 설명하면, [서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]의 N말단에 [서열번호 3의 항-Flt1 펩타이드]가 연결되고, [서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]의 다른 말단에 [친수성 EBP]-[서열번호 4의 PEDF 34-mer]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]가 순서대로 연결되었다. For a specific example, [anti-Flt1 peptide of SEQ ID NO: 3] is linked to the N-terminus of [helix-based polypeptide represented by SEQ ID NO: 1], and the helix-based polypeptide represented by SEQ ID NO: 1 At the other end, [Hydrophilic EBP]-[PEDF 34-mer of SEQ ID NO: 4]-[Hydrophilic EBP]-[Helix-based polypeptide represented by SEQ ID NO:2] were sequentially linked.

본 발명은, 통제되지 않는 혈관신생 의존 질환들을 치료하기 위해 다가성 이중 신생혈관 억제용 펩타이드를 가진 융합 단백질 케이지를 유전공학적으로 개발한 것이다. 융합 폴리펩타이드는 자가조립을 위한 헬릭스 기반 단백질 케이지(helix base protein cage, HPC), 열 민감성 EBP, 두 종류의 항-혈관신생 펩타이드(Anti-Flt1 펩타이드 및 PEDF 34-mer 펩타이드)로 구성되었다. HPC는 4개의 나선형 다발(서열번호 1)과 상대적으로 짧은 나선으로 구성된 페리틴(서열번호 2)으로부터 유래되었다. 두 개의 상이한 항-혈관신생 펩타이드는 각각 HPC 및 EBP의 노출 부위에 놓이며, PEDF 34-mer 펩타이드의 효과적인 노출 및 비크로마토그래피 정제를 위해 도입되었다. 두 개의 EBP 단일블럭(monoblock)은 효과적으로 PEDF 34-mer 펩타이드를 노출시키기 위해 PEDF 34-mer 펩타이드 사이에 융합되었다. EBP-PEDF 34-mer-EBP 삼중블럭 공폴리펩타이드(copolypeptide)는 HPC의 4번째 나선과 5번?? 나선 사이에 위치되었다. 항-Flt1 펩타이드는 다른 노출 부위인 HPC의 N-말단에 위치했다. 융합 폴리펩타이드는 다가성 이중 신생혈관 억제 효능을 가진 나노케이지 구조로 자가조립되었다. 우리는 Anti-Flt1 펩타이드의 VEGFR 결합 친화력과 HPC의 철 저장 및 pH 반응성이라는 특성을 이용하여 융합 단백질 케이지의 응용 분야를 개발했다.The present invention genetically engineered a fusion protein cage having a multivalent double angiogenesis inhibitory peptide to treat uncontrolled angiogenesis dependent diseases. The fusion polypeptide was composed of a helix base protein cage (HPC) for self-assembly, a heat sensitive EBP, and two types of anti-angiogenic peptides (Anti-Flt1 peptide and PEDF 34-mer peptide). HPC was derived from ferritin (SEQ ID NO: 2) consisting of four helical bundles (SEQ ID NO: 1) and relatively short spirals. Two different anti-angiogenic peptides were placed at the exposure sites of HPC and EBP, respectively, and introduced for effective exposure and non-chromatographic purification of the PEDF 34-mer peptide. Two EBP monoblocks were effectively fused between the PEDF 34-mer peptides to expose the PEDF 34-mer peptide. EBP-PEDF 34-mer-EBP triple-block copolypeptide is the 4th helix and 5th of HPC?? It was located between the spirals. The anti-Flt1 peptide was located at the N-terminus of the HPC, another site of exposure. The fusion polypeptide was self-assembled into a nanocage structure with a multivalent double angiogenesis inhibitory effect. We developed the application field of a fusion protein cage using the properties of VEGFR binding affinity of Anti-Flt1 peptide and iron storage and pH reactivity of HPC.

표면증강 라만산란법(surface enhanced Raman scattering, SERS) 기반 센싱을 위해 HPC에 형광(라만) 염료를 콘쥬게이션하고 금 나노입자(AuNP)를 HPC 내부에 합성함으로써 융합 단백질에 세포 이미징 및 센싱 기능을 추가했다. 형광 염료가 콘쥬게이션된 융합 단백질 케이지는 세포막에서 VEGFR(vascular endothelial growth factor receptor)에 결합되고, 신생혈관 억제 효과와 세포 이미징을 동시에 보여주었다. Cell imaging and sensing functions are added to the fusion protein by conjugating a fluorescent (Raman) dye to HPC and synthesizing gold nanoparticles (AuNP) inside the HPC for surface enhanced Raman scattering (SERS) based sensing. did. The fusion protein cage conjugated with a fluorescent dye was bound to a vascular endothelial growth factor receptor (VEGFR) at the cell membrane, and showed both angiogenesis inhibitory effect and cell imaging.

HPC에서 축적된 금 이온이 AuNP로 환원되고, AuNP의 표면에 라만 염료를 도입함으로써 융합 단백질 케이지가 SERS 기반 센싱 프로브로서 개발되었다. 라만 염료는 융합 단백질 케이지가 산성 조건에서 풀린 상태일 때 투과하여 AuNP 표면에 도입되고, 중성 조건에서 케이지 구조는 회복된다. 융합 단백질 케이지의 자가조립과 응집(aggregation)은 시간에 따른 동적 광산란(dynamic light scattering, DLS)에 의해 확인되었다. 융합 단백질의 항-혈관신생과 세포 이미징은 모두 체외에서(in vitro) 인간 탯줄 정맥 내피세포(human umbilical vein endothelial cells, HUVEC) 조사에 의해 연구되었다.A fusion protein cage was developed as a SERS-based sensing probe by reducing the gold ions accumulated in HPC to AuNP and introducing Raman dye to the surface of AuNP. Raman dye penetrates when the fusion protein cage is released under acidic conditions and is introduced to the AuNP surface, and the cage structure is restored under neutral conditions. The self-assembly and aggregation of the fusion protein cage was confirmed by dynamic light scattering (DLS) over time. Both anti-angiogenesis and cellular imaging of the fusion protein were studied in vitro by human umbilical vein endothelial cells (HUVEC) investigations.

본 발명의 신혈관 생성 억제용 융합 폴리펩타이드를 포함하는 치료용 조성물은 약학적 조성물이다. 상기 약학적 조성물은 상기 융합 폴리펩타이드를 포함하고 생체내(in vivo)에서 신생 혈관 생성 억제의 용도로 사용되는 것을 방해하지 않는 다른 물질들을 포함할 수 있다. 이러한 다른 물질들은 제한되지 않으며 희석제, 부형제, 담체 및/또는 다른 신생 혈관 생성 억제 물질들을 포함할 수 있다.The therapeutic composition comprising the fusion polypeptide for inhibiting neovascularization of the present invention is a pharmaceutical composition. The pharmaceutical composition may contain the fusion polypeptide and may contain other substances that do not interfere with use for the purpose of inhibiting angiogenesis in vivo. These other substances are not limited and may include diluents, excipients, carriers and/or other angiogenesis inhibitory substances.

일부 실시태양에서, 본 발명의 신혈관 생성 억제용 융합 폴리펩타이드는 예를 들어, 살균수와 일반적인 식염수를 포함하는, 적절한 희석액과 함께 제제화함으로써, 통상적인 인체 투여를 위해 제제화된다.In some embodiments, the fusion polypeptide for inhibiting neovascularization of the present invention is formulated for routine human administration, for example by formulation with an appropriate diluent comprising sterile water and normal saline.

본 발명에 따른 치료용 조성물의 투여 또는 전달은 표적 조직이 그 경로를 통해 이용할 수 있는 한 임의의 경로를 통할 수 있다. 예를 들어, 투여는 국소 또는 피내, 피하, 근육내, 복강내, 동맥내, 관상동맥내, 경막내 또는 정맥내 주사, 또는 안구 유리체 주사 (intravitreal injection) 등과 같은 표적 조직(예를 들어, 심장 조직) 내로의 직접 주사에 의할 수 있다. 본 발명에 개시된 융합 폴리펩타이드의 안정성 및/또는 효력은 피하, 피내, 정맥내 및 근육내를 포함하는 편리한 투여 경로를 고려한다. Administration or delivery of the therapeutic composition according to the present invention may be through any route as long as the target tissue is available through that route. For example, administration can be administered to a target tissue such as topical or intradermal, subcutaneous, intramuscular, intraperitoneal, intraarterial, coronary, intrathecal or intravenous injection, or intravitreal injection, etc. Tissue) by direct injection. The stability and/or potency of the fusion polypeptides disclosed herein allows for convenient routes of administration, including subcutaneous, intradermal, intravenous and intramuscular.

본 발명은 융합 폴리펩타이드를 (예를 들어, 본 발명에 기술된 조성물 또는 제제의 일부로서) 세포로 전달하는 방법, 및 대상에서 질환의 진행을 치료, 경감, 또는 예방하는 방법을 제공한다. 본 발명에 사용된 용어 "대상" 또는 "환자"는 인간 및 다른 영장류(예를 들어, 침팬지 및 다른 유인원 및 원숭이 종), 농장 동물(예를 들어, 소, 양, 돼지, 염소 및 말), 가정용 포유류(예를 들어, 개 및 고양이), 실험실 동물(예를 들어, 생쥐, 쥐 및 기니 피그와 같은 설치류) 및 새(예를 들어, 닭, 칠면조 및 가금류와 같은 가정용, 야생용 및 경기용 새, 오리, 거위 등)를 포함하나 이에 제한되지 않는 임의의 척추동물을 의미한다. 일부 실시태양에서, 대상은 포유류이다.The present invention provides methods of delivering a fusion polypeptide to a cell (eg, as part of a composition or formulation described herein), and methods of treating, alleviating, or preventing the progression of a disease in a subject. As used herein, the term “subject” or “patient” refers to humans and other primates (eg chimpanzees and other ape and monkey species), farm animals (eg cows, sheep, pigs, goats and horses), Household mammals (e.g., dogs and cats), laboratory animals (e.g., rodents such as mice, rats and guinea pigs) and birds (e.g., domestic, wild and competitive use such as chickens, turkeys and poultry) Birds, ducks, geese, etc.), including, but not limited to, any vertebrate animal. In some embodiments, the subject is a mammal.

다른 실시태양에서, 포유류는 인간이다.In another embodiment, the mammal is human.

본 발명의 융합 폴리펩타이드 또는 약학적 조성물은 표적 세포(예를 들어, 포유류 세포)와 in vitro 또는 in vivo로 접촉될 수 있다. The fusion polypeptide or pharmaceutical composition of the present invention may be contacted with a target cell (eg, a mammalian cell) in vitro or in vivo.

다른 측면에서, 본 발명은 따른 치료용 조성물을 개체에 투여하는 단계를 포함하는, 신생 혈관 생성에 기인한 질환의 치료 또는 예방하는 방법을 제공한다.In another aspect, the present invention provides a method of treating or preventing a disease caused by angiogenesis, comprising administering to an individual the composition for treatment according to the present invention.

임상적 사용을 위해, 본 발명의 융합 폴리펩타이드는 원하는 치료 결과를 달성하는데 효과적인 임의의 적합한 투여 경로를 통해 단독으로 투여되거나 약학적 조성물로 제형화될 수 있다. 본 발명의 올리고뉴클레오타이드의 투여 "경로" 는 경장, 비경구 및 국소 투여 또는 흡입을 의미할 것이다. 본 발명의 융합 폴리펩타이드의 경장 투여 경로는 구강, 위장, 창자, 및 직장을 포함한다. 비경구 경로는 안구 주입, 정맥내, 복강내, 근육내, 척추강내, 피하, 국소 주입, 질, 국소, 비강, 점막 및 폐 투여를 포함한다. 본 발명의 융합 폴리펩타이드의 국소 투여 경로는 표피, 구강 및 귀, 눈 및 코 내로의 올리고뉴클레오타이드의 외부 적용을 나타낸다.For clinical use, the fusion polypeptides of the present invention can be administered alone or formulated into a pharmaceutical composition via any suitable route of administration effective to achieve the desired therapeutic outcome. The “route” of administration of the oligonucleotides of the present invention will mean enteral, parenteral and topical administration or inhalation. The enteral route of administration of the fusion polypeptide of the present invention includes the oral cavity, the stomach, the intestines, and the rectum. Parenteral routes include ocular infusion, intravenous, intraperitoneal, intramuscular, intrathecal, subcutaneous, topical infusion, vaginal, topical, nasal, mucosal and pulmonary administration. The route of topical administration of the fusion polypeptides of the present invention refers to the external application of oligonucleotides into the epidermis, oral cavity and ear, eye and nose.

상기 치료용 조성물은 비경구, 경구, 경피, 지속된 방출, 제어된 방출, 지연된 방출, 좌약, 카테터 또는 설하 투여에 의해 투여될 수 있다.The therapeutic composition may be administered by parenteral, oral, transdermal, sustained release, controlled release, delayed release, suppository, catheter or sublingual administration.

상기 치료용 조성물 내 융합 폴리펩타이드는 다른 약물들과 병용 투여할 때 정맥 주사 시 (intravenous injection) 15mg/kg 이하의 양으로 투여될 수 있고, 안구유리체 주사 시 (intravitreal injection) 2.5 mg 이하의 양으로 투여될 수 있다.The fusion polypeptide in the therapeutic composition can be administered in an amount of 15 mg/kg or less during intravenous injection when administered in combination with other drugs, and in an amount of 2.5 mg or less during intravitreal injection. Can be administered.

본 발명은 제한적인 것으로 해석되지 않아야 하는 다음 추가예에 의해 추가로 설명된다. 통상의 기술자는, 본 발명의 관점에서, 본 발명의 취지와 범위를 벗어나지 않고 개시된 특정 실시태양에 대한 여러 변화가 가능할 수 있고 동등한 또는 유사한 결과를 얻을 수 있다는 것을 이해해야한다.The invention is further illustrated by the following additional examples which should not be construed as limiting. It should be understood by those skilled in the art that, in view of the present invention, various changes to the specific embodiments disclosed may be possible and equivalent or similar results may be obtained without departing from the spirit and scope of the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다. Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by an expert skilled in the art to which the present invention belongs. In general, the nomenclature used in this specification is well known and commonly used in the art.

본 발명의 항-혈관신생 및 신생혈관 세포 이미징 기능을 가지는 자가조립된 융합 단백질 케이지는 망막, 각막, 맥락막 혈관신생, 종양 성장, 암세포 전이, 당뇨병성 망막증, 및 천식과 같은 혈관싱생 관련 질환들을 치료하기 위한 첨단 약물 전달 시스템의 새로운 길을 제시한다.The self-assembled fusion protein cage having anti-angiogenic and neovascular cell imaging functions of the present invention treats angiogenesis-related diseases such as retina, cornea, choroidal neovascularization, tumor growth, cancer cell metastasis, diabetic retinopathy, and asthma. It presents a new path for advanced drug delivery systems.

도 1(A) anti-Flt1 peptide, PEDF 34-mer, 및 EBPP[A1G4I1]1의 아미노산 서열 (B)와 (C) anti-Flt1-HPC-EBPP[A1G4I1]12-PEDF 34-mer 융합 폴리펩타이드의 블럭 디자인 및 응용의 전략. (B) (a) anti-Flt1 peptide는 N-말단에 위치하며 EBPP[A1G4I1]6-PEDF 34-mer-EBPP[A1G4I1]6 삼중블럭은 HPC의 4번째, 5번째 나선의 중간에 위치했다. (b) 융합 폴리펩타이드의 자가조립체 구조는 바이오이미징 및 바이오센싱을 위해 변형되었다. 형광 염료는 바이오이미징을 위해 케이지 내 표지되었고, 금 나노입자는 케이지 구조 내부에서 합성되고, 바이오센싱을 위해 라만 염료와 콘쥬게이션되었다. (C) 융합 단백질 케이지는 두 메커니즘에 의해 항-혈관신생 기능이 유도되었다. Anti-Flt1 펩타이드는 세포 내 혈관신생 신호를 저해했고, PEDF 34-mer는 항-혈관신생 신호를 활성화했다.
도 2는, (a) HPC4-EBPP[A1G4I1]12-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 (A) 아가로스 젤(1 %) 및 (B) SDS-PAGE 젤 이미지. (A) 상기 융합 단백질을 암호화하는 변형된 pET21-a(+) 플라스미드는 Xba I 및 AcuI 제한효소 처리되었다. 융합 단백질 케이지를 포함하는 유전자 조각의 길이는 유전자 조각 아래에 표지되었다. (B) 융합 단백질 케이지는 E. coli에서 발현되고, ITC에 의해 정제되었다. 젤은 구리 염색에 의해 시각화되었다. 예상되는 분자량은 밴드 아래에 제시했다.
도 3은, (a) HPC4-EBPP[A1G4I1]12-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer-EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 열 민감도. 0.01 M PBS에서 25 μM (a) HPC4-EBPP[A1G4I1]12-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4-EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 (A) 혼탁도 프로파일(Turbidity profile) 및 (B) 유체역학적 반경(hydrodynamic radius). 350 nm에서의 흡광도와 유체역학적 반경은 1 ℃/min 속도로 가열되면서 측정되었다.
도 4는 (A) 형광 현미경 이미지 및, 0.01 nM - 10 uM의 (a) HPC4-EBPP[A1G4I1]12-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5가 처리된 (B) calcein-AM 표지된 HUVECs의 튜브 형성 정도(tube formation degree). 이는 (A) 이미지로부터 정량화되었다.
도 5는 (A) SDS-PAGE에서 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 콘쥬게이션된 형광 염료의 시각화. (a) 형광 염료 콘쥬게이션 전의 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 구리 용액에 염색된 SDS-PAGE의 젤과 (b) 형광 염료 켠쥬게이션 후, 형광 스캐너 하에서 UV 광선에 노출된 후의 겔의 모습. (B) (a) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 및 (b) 형광 염료가 콘쥬게이션된 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 의 형광 스펙트럼. (C) 1 또는 10 nM의 염료 콘쥬게이션 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5이 15, 30, 및 60분동안 처리된 HUVEC 형광 이미지 및 명시야의 병합된 이미지. (C)에서 크기 바는 200 um이다.
도 6은 (A) 유체역학적 반경 및 (B) (a) 금 이온 처리 전, (b) 금 시드 합성 후 및 (c) 금 나노입자 성장에서 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 자외선 흡광 스펙트럼. (C) 융합 단백질 케이지 내부 금 나노입자의 TEM 이미지. (D) 융합 단백질 케이지에서 라만 염료와 콘쥬게이션된 금 나노입자의 라만 스펙트럼.
1(A) amino acid sequences of anti-Flt1 peptide, PEDF 34-mer, and EBPP[A 1 G 4 I 1 ] 1 (B) and (C) anti-Flt1-HPC-EBPP[A 1 G 4 I 1] ] 12- PEDF 34-mer fusion polypeptide block design and application strategy. (B) (a) The anti-Flt1 peptide is located at the N-terminus and EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 triple block is the fourth HPC , Located in the middle of the 5th spiral. (b) The self-assembled structure of the fusion polypeptide was modified for bioimaging and biosensing. Fluorescent dyes were labeled in the cage for bioimaging, gold nanoparticles were synthesized inside the cage structure, and conjugated with Raman dyes for biosensing. (C) The fusion protein cage was induced anti-angiogenic function by two mechanisms. Anti-Flt1 peptide inhibited intracellular angiogenesis signal, and PEDF 34-mer activated anti-angiogenic signal.
Figure 2 shows (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (b) anti-Flt1-HPC4-EBPP [A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4- EBPP [A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF (A) Agarose gel (1%) and (B) SDS-PAGE gel images of 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5. (A) The modified pET21-a(+) plasmid encoding the fusion protein was treated with Xba I and AcuI restriction enzymes. The length of the gene segment containing the fusion protein cage was labeled under the gene segment. (B) The fusion protein cage was expressed in E. coli and purified by ITC. The gel was visualized by copper staining. The expected molecular weight is presented below the band.
3 shows (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (b) anti-Flt1-HPC4-EBPP [A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4- EBPP [A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF Thermal sensitivity of 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5. 25 μM in 0.01 M PBS (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (b) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4 -EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 (A) Turbidity profile and (B) hydrodynamic radius of -HPC5. The absorbance and hydrodynamic radius at 350 nm were measured while heating at 1 °C/min.
Figure 4 shows (A) fluorescence microscopy images and 0.01 nM-10 uM of (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (b) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4 -EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5-treated (B) calcein-AM-labeled HUVECs tube formation degree . This was quantified from the (A) image.
Figure 5 shows (A) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5 conjugated fluorescent dye in SDS-PAGE. Visualization. (a) Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -SDS stained in copper solution of HPC5 before conjugation with fluorescent dye PAGE of the gel and (b) the appearance of the gel after irradiation with a fluorescent dye and exposure to UV light under a fluorescent scanner. (B) (a) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 and (b) fluorescent dye conjugated Fluorescence spectrum of anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5. (C) 1 or 10 nM dye conjugation anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5 is 15, 30, And HUVEC fluorescence images processed for 60 minutes and merged images of bright field. In (C), the size bar is 200 um.
Figure 6 shows (A) hydrodynamic radius and (B) (a) before gold ion treatment, (b) after gold seed synthesis and (c) anti-Flt1-HPC4-EBPP[A 1 G 4 I] in gold nanoparticle growth. 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 Ultraviolet absorption spectrum of -HPC5. (C) TEM image of gold nanoparticles inside the fusion protein cage. (D) Raman spectra of gold nanoparticles conjugated with Raman dye in a fusion protein cage.

실시예 1: 재료Example 1: Materials

pET-21a (+) 벡터 및 BL21 (DE3) E. Coli 세포는 Novagen Inc. (Madison, WI, U.S.)사의 제품을 사용했다. Top10 competent cells 및 Calcein-AM은 Invitrogen (Carlsbad, CA, U.S.)사에서, HUVECs는 Lonza (Basel, Switzerland)사에서 구매했다. 모든 주문제작 올리고뉴클레오타이드는 Cosmo Gene Tech (Seoul, South Korea)사에서 합성했으며, 인간 재조합 VEGF-165 (rhVEGF165)는 R&D SYSTEMS (Minneapolis, U.S.) 사의 제품을 사용했다. CIP(Calf intestinal alkaline phosphatase), BamHI 및 XbaI는 Thermo Fisher Scientific (Waltham, Massachusetts, U.S.) 사의 제품을 사용했다. AcuI 및 BseRI는 New England Biolabs (Ipswich, MA, U.S.)사에서 구매했다. T4 DNA ligase는 Elpis Bio-tech (Taejeon, South Korea)사의 제품을 사용했다. DNA miniprep, gel extraction, 및 PCR purification kits는 Geneall Biotechnology (Seoul, South Korea)사의 제품을 사용했다. Dyne Agarose High는 DYNE BIO, Inc. (Seongnam, South Korea)사의 제품을 사용했다. Top10 cells은 MO BIO Laboratories, Inc. (Carlsbad. CA, U.S.)사에서 구매한 TB DRY media에서 배양했다. BL21(DE3) 세포는 MP Biomedicals (Solon, OH, U.S.)사에서 구매한 Circle Grow media에서 배양했다. HUVECs는 Lonza (Basel, Switzerland)사에서 구매한 EGM-2 Bullet Kit 및 EBM-2에서 키웠다. The Ready Gels, Tris - HCl 2 - 20 % precast gels은 Bio-Rad (Hercules, CA, U.S.)사에서 구매했다. PBS (phosphate buffered saline, pH 7.4) 및 앰피실린은 Sigma-Aldrich (St Louis, MO, U.S.)사의 제품을 사용했다. 마트리겔(Matrigel)은 BD Biosciences (San Diego, CA, U.S.)사에서 구매했다. 인간 재조합 VEGF165 단백질 및 인간 재조합 VEGF R1/Flt-1 Fc은 R&D System (Minneapolis, MN, U.S.)사에서 구매했다. Gold(III) chloride trihydrate, sodium borohydride, ascorbic acid, 및 malachite Green isothiocyanate는 Sigma-Aldrich (St Louis, MO, U.S.)사에서 구매했다.pET-21a (+) vector and BL21 (DE3) E. Coli cells were manufactured by Novagen Inc. (Madison, WI, US) products were used. Top 10 competent cells and Calcein-AM were purchased from Invitrogen (Carlsbad, CA, US), and HUVECs were purchased from Lonza (Basel, Switzerland). All custom-made oligonucleotides were synthesized by Cosmo Gene Tech (Seoul, South Korea), and human recombinant VEGF-165 (rhVEGF 165 ) was used by R&D SYSTEMS (Minneapolis, US). CIP (Calf intestinal alkaline phosphatase), BamHI and XbaI were manufactured by Thermo Fisher Scientific (Waltham, Massachusetts, US). AcuI and BseRI were purchased from New England Biolabs (Ipswich, MA, US). T4 DNA ligase was used by Elpis Bio-tech (Taejeon, South Korea). DNA miniprep, gel extraction, and PCR purification kits were manufactured by Geneall Biotechnology (Seoul, South Korea). Dyne Agarose High is owned by DYNE BIO, Inc. (Seongnam, South Korea) products were used. Top 10 cells are manufactured by MO BIO Laboratories, Inc. It was cultured in TB DRY media purchased from (Carlsbad. CA, US). BL21(DE3) cells were cultured in Circle Grow media purchased from MP Biomedicals (Solon, OH, US). HUVECs were raised in EGM-2 Bullet Kit and EBM-2 purchased from Lonza (Basel, Switzerland). The Ready Gels, Tris-HCl 2-20% precast gels were purchased from Bio-Rad (Hercules, CA, US). PBS (phosphate buffered saline, pH 7.4) and ampicillin were manufactured by Sigma-Aldrich (St Louis, MO, US). Matrigel was purchased from BD Biosciences (San Diego, CA, US). Human recombinant VEGF 165 protein and human recombinant VEGF R1/Flt-1 F c were purchased from R&D System (Minneapolis, MN, US). Gold(III) chloride trihydrate, sodium borohydride, ascorbic acid, and malachite Green isothiocyanate were purchased from Sigma-Aldrich (St Louis, MO, US).

실시예 2: 서로 다른 EBP 블럭들과 이들의 블럭 폴리펩타이드에 대한 표기Example 2: Marking of different EBP blocks and their block polypeptides

펜타펩타이드 반복 단위인 Val-Pro-(Gly 또는 Ala)-Xaa-Gly[VP(G 또는 A)XG]를 갖는 서로 다른 EBP들은 다음과 같이 명명한다. 상기 Xaa는 Pro를 제외한 임의의 아미노산일 수 있다. 첫째, 가소성이 있는 Val-Pro-Ala-Xaa-Gly(VPAXG)의 펜타펩타이드 반복은 가소성이 있는 엘라스틴계 폴리펩타이드(elastin-based polypeptide with plasticity: EBPP)라고 정의한다. 한편 Val-Pro-Gly-Xaa-Gly(VPGXG)의 펜타펩타이드 반복은 탄성이 있는 엘라스틴계 폴리펩타이드(the elastin-based polypeptide with elasticity: EBPE)라 칭한다. 둘째, [XiYjZk]n에서, 괄호 내의 대문자들은 게스트 잔기의 단글자 아미노산 코드, 즉, EBP 펜타펩타이드의 4번째 위치(Xaa 또는 X)에서의 아미노산이고, 이들의 해당하는 아래 첨자는 반복 단위로서 EBP 모노머 유전자의 게스트 잔기의 비율(ratio)을 나타낸다. [XiYjZk]n (i+j+k=6)의 아래 첨자 수 n은 본 발명의 EBP인 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] 또는 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG]의 EBP의 반복 횟수의 총 수를 나타낸다. 예를 들어, EBPP[A1G4I1]6는 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] 의 단위가 6번 반복되어 이루어진 EBPP 블럭이며, 여기서 4번째 게스트 잔기 위치(Xaa)에서의 Ala, Gly 및 Ile의 비는 1:4:1이다. 마지막으로, EBPP와 다른 펩타이드의 다이블럭 폴리펩타이드는 EBPP[A1G4I1]6-HPC5와 같이 블럭들 사이 하이픈과 함께 꺽쇠 괄호들에서 각각의 블럭의 구성에 따라 명명된다.Different EBPs having the pentapeptide repeating unit Val-Pro-(Gly or Ala)-X aa- Gly[VP(G or A)XG] are named as follows. X aa may be any amino acid except Pro. First, the pentapeptide repeat of Val-Pro-Ala-X aa- Gly (VPAXG) with plasticity is defined as an elastin-based polypeptide with plasticity (EBPP). Meanwhile, the pentapeptide repeat of Val-Pro-Gly-X aa- Gly (VPGXG) is called the elastin-based polypeptide with elasticity (EBPE). Second, in [X i Y j Z k ] n , the capital letters in parentheses are the single letter amino acid code of the guest residue, that is, the amino acid at the 4th position (X aa or X) of the EBP pentapeptide, and the corresponding lower The subscript indicates the ratio of the guest residues of the EBP monomer gene as a repeating unit. The number of subscripts n of [X i Y j Z k ] n (i+j+k=6) is the repetition of the EBP of [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] or [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG], the EBP of the present invention Shows the total number of times. For example, EBPP[A 1 G 4 I 1 ] 6 is an EBPP block consisting of 6 repeats of units of [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG], where Ala, Gly at the 4th guest residue position (X aa ) And the ratio of Ile is 1:4:1. Finally, the diblock polypeptides of EBPP and other peptides are named according to the configuration of each block in square brackets with a hyphen between blocks, such as EBPP[A 1 G 4 I 1 ] 6 -HPC5.

실시예 3: 이음매가 없는 (seamless) 유전자 클로닝을 위한 변형된 pET-21a 벡터의 제조Example 3: Preparation of a modified pET-21a vector for seamless gene cloning

pET-21a 벡터를 FastDigest buffer에서 37℃, 20분간 XbaI, BamHI 및 CIP 처리하고 탈인산화(dephosphorylation)했다. 제한효소 처리된 플라스미드 DNA를 PCR purification kit를 이용해 정제하며, 탈이온수로 용출했다. XbaI 및 BamHI의 스티키 말단을 포함하며 양립할 수 있는 두 올리고뉴클레오타이드는 다음과 같이 고안되었다. The pET-21a vector was treated with XbaI, BamHI and CIP in FastDigest buffer at 37° C. for 20 minutes, followed by dephosphorylation. Restriction enzyme-treated plasmid DNA was purified using a PCR purification kit, and eluted with deionized water. Two compatible oligonucleotides containing the sticky ends of XbaI and BamHI were designed as follows.

5′-ctagaaataattttgtttaactttaagaaggaggagtacatatgggctactgataatgatcttcag-3′(서열번호 19)5′-ctagaaataattttgtttaactttaagaaggaggagtacatatgggctactgataatgatcttcag-3′ (SEQ ID NO: 19)

5′-gatcctgaagatcattatcagtagcccatatgtactcctccttcttaaagttaaacaaaattattt-3′(서열번호 20)5′-gatcctgaagatcattatcagtagcccatatgtactcctccttcttaaagttaaacaaaattattt-3′ (SEQ ID NO: 20)

T4 DNA ligase 버퍼에서 두 올리고뉴클레오타이드를 95℃, 2분간 가열함으로써 어닐링(annealing)하고, 이후 상온에서 3시간동안 천천히 냉각시켰다. 어닐링된 이중가닥 DNA(dsDNA)와 선형화된 벡터를 T4 DNA ligase buffer에서 T4 DNA ligase 처리하고 37℃에서 30분동안 배양함으로써 pET-21a 벡터의 다중 클로닝 부위(multiple cloning site, MCS)에 DNA 삽입유전자(insert)를 라이게이션(ligation)했다. 완벽한 클로닝과 발현을 위해 유전자 재조합 pET-21a (mpET-21a) 벡터를 Top10 컴피턴트 세포(competent cell)에 형질전환(transformation)했고, 이후 50 μg/ml의 앰피실린이 처리된 SOC(super optimal broth with catabolite repression) 플레이트에 도말했다. mpET-21a 벡터의 DNA 염기서열은 fluorescent dye terminator DNA sequencing (Applied Biosystems Automatic DNA Sequencer ABI 3730)에 의해 입증되었다.The two oligonucleotides were annealed by heating at 95° C. for 2 minutes in T4 DNA ligase buffer, and then slowly cooled at room temperature for 3 hours. The annealed double-stranded DNA (dsDNA) and the linearized vector are treated with T4 DNA ligase in T4 DNA ligase buffer and incubated at 37°C for 30 minutes to place the DNA transgene into the multiple cloning site (MCS) of pET-21a vector (insert) was ligated. For complete cloning and expression, the recombinant pET-21a (mpET-21a) vector was transformed into Top10 competent cells, and then 50 μg/ml of ampicillin was treated SOC (super optimal broth). with catabolite repression) on the plate. The DNA sequence of the mpET-21a vector was verified by fluorescent dye terminator DNA sequencing (Applied Biosystems Automatic DNA Sequencer ABI 3730).

실시예 4: EBP 유전자 단위체 합성 및 이의 올리고머화Example 4: Synthesis of EBP gene unit and oligomerization thereof

4번째 잔기로서 Ala, Gly, 및 Ile가 1:4:1의 비율인 '펜타펩타이드 반복 유닛'인 Val-Pro-Ala -Xaa-Gly을 포함하는 EBPP 염기서열은 생리학적 온도보다 낮은 Tt를 최적화하기 위해 고안되었다. T4 DNA ligase buffer에서 EBPP[A1G4I1]1를 암호화하기 위한 올리고뉴클레오타이드 한 쌍을 95℃, 3분간 가열함으로써 어닐링(annealing)하고, 이후 상온에서 3시간 동안 천천히 냉각시켰다. mpET-21a 클로닝 벡터를 37℃에서 30분간 BseRI 및 CIP 처리하고 탈인산화했다. 제한효소 처리된 플라스미드 DNA를 PCR purification kit를 이용해 정제하며, 탈이온수로 용출했다. 어닐링된 dsDNA와 선형화된 mpET-21a 클로닝 벡터를 T4 DNA ligase buffer에서 T4 DNA ligase 처리하고 16℃에서 30분동안 배양함으로써 라이게이션했다. 라이게이션된 플라스미드를 Top10 화학적 컴피턴트 세포에 형질전환했고, 이후 50 μg/ml의 앰피실린이 처리된 SOC 플레이트에 도말했다. DNA 염기서열은 DNA 시퀀싱(DNA sequencing)을 통해 확인되었다. 반복 횟수가 6, 즉 EBPP[A1G4I1]6이 될 때까지 유전자를 제작했다.The EBPP sequence containing Val-Pro-Ala -X aa -Gly, which is a'pentapeptide repeating unit' in a ratio of 1:4:1 as the fourth residue, Ala, Gly, and Ile, is T t lower than the physiological temperature. It is designed to optimize. A pair of oligonucleotides for encoding EBPP[A 1 G 4 I 1 ] 1 in T4 DNA ligase buffer was annealed by heating at 95° C. for 3 minutes, and then slowly cooled at room temperature for 3 hours. The mpET-21a cloning vector was subjected to BseRI and CIP treatment at 37° C. for 30 minutes and dephosphorylated. Restriction enzyme-treated plasmid DNA was purified using a PCR purification kit, and eluted with deionized water. The annealed dsDNA and the linearized mpET-21a cloning vector were ligated by treatment with T4 DNA ligase in T4 DNA ligase buffer and incubation at 16° C. for 30 minutes. The ligated plasmid was transformed into Top10 chemical competent cells, and then plated on SOC plates treated with 50 μg/ml of ampicillin. The DNA sequence was confirmed through DNA sequencing. Genes were constructed until the number of repetitions was 6, that is, EBPP[A 1 G 4 I 1 ] 6 .

4번째 잔기들이 서로 다른 몰비로 가변되는 펜타펩타이드 반복 단위인 Val-Pro-(Gly 또는 Ala)-Xaa-Gly를 갖는 EBP 서열을 DNA 레벨에서 설계하여 생리적 온도 미만으로 Tt를 최적화하였다. 다양한 펜타펩타이드 반복 단위들을 갖는 EBP들의 아미노산 서열을 표 1에 나타내었다. The EBP sequence having Val-Pro-(Gly or Ala)-X aa- Gly, which is a pentapeptide repeating unit in which the fourth residues are varied at different molar ratios, was designed at the DNA level to optimize T t below physiological temperature. Table 1 shows the amino acid sequences of EBPs having various pentapeptide repeat units.

[표 1] EBP 아미노산 서열[Table 1] EBP amino acid sequence

Figure pat00001
Figure pat00001

실시예 5: PCR에 의해 클로닝 벡터에서 PEDF 34-mer 암호화 유전자의 제조Example 5: Preparation of PEDF 34-mer coding gene in cloning vector by PCR

PEDF cDNA 단편 34-mer (130-231)는 인간 PEDF cDNA 절편으로부터 다음과 같은 프라이머와 함께 PCR에 의해 증폭되었다.The PEDF cDNA fragment 34-mer (130-231) was amplified from human PEDF cDNA fragments by PCR with the following primers.

5'-AAAGGATCCCCCTACTGGTAATGCTCTTCAGTCTAGAGAT-3' (forward)(서열번호 21)5'-AAAGGATCCCCCTACTGGTAATGCTCTTCAGTCTAGAGAT-3' (forward) (SEQ ID NO: 21)

5'-CACGACCAACGGCTACTGATAGTGATCTTCAGCTAGCGAT-3' (reverse)(서열번호 22)5'-CACGACCAACGGCTACTGATAGTGATCTTCAGCTAGCGAT-3' (reverse) (SEQ ID NO: 22)

정방향 프라이머는 3'말단에 XbaI 제한효소 사이트가 있고, 역방향 프라이머는 5'말단에 NheI 제한효소 사이트가 있었다. 양 프라이머는 EBPP[A1G4I1]n를 포함하는 유전자의 매끄러운 클로닝을 위해 중간에 AcuI 제한효소 및 인식 사이트를 가지고 있었다. PEDF 34-mer의 증폭된 유전자 절편에 CutSmart 버퍼에서 37℃, 2시간동안 XbaI 및 NheI을 처리하여 삽입유전자를 제작했다. 처리 후, 생성물을 아가로스 젤에 전기영동하고, 삽입 유전자를 겔 추출 키트(gel extraction kit)를 사용하여 정제했다. pET-21a 클로닝 벡터에 37℃, 1시간동안 XbaI 및 CIP를 처리하고 탈인산화했다. 제한효소 처리된 DNA를 PCR purification kit를 사용하여 정제하고 탈이온수에 용출했다. 제한효소 처리된 PEDF 34-mer 유전자 절편과 선형화된 pET-21a 클로닝 벡터를 T4 DNA ligase buffer에서 T4 DNA ligase 처리하고 16℃에서 30분동안 배양함으로써 라이게이션했다. 라이게이션된 생성물을 Top10 화학적 컴피턴트 세포에 형질전환하고, 50 μg/mL의 앰피실린이 처리된 SOC 플레이트에 도말했다. 형질전환체는 초반에 진단적인 제한효소 처리에 의해 아가로스 젤 위에서 스크리닝되었으며, 상기 언급된 DNA 시퀀싱에 의해 추가로 확인되었다.The forward primer had an XbaI restriction site at the 3'end, and the reverse primer had a NheI restriction site at the 5'end. Both primers had an AcuI restriction enzyme and a recognition site in the middle for smooth cloning of the gene containing EBPP[A 1 G 4 I 1 ] n . The amplified gene fragment of PEDF 34-mer was treated with XbaI and NheI in CutSmart buffer at 37° C. for 2 hours to generate the transgene. After treatment, the product was electrophoresed on an agarose gel, and the inserted gene was purified using a gel extraction kit. The pET-21a cloning vector was treated with XbaI and CIP at 37° C. for 1 hour, followed by dephosphorylation. Restriction enzyme-treated DNA was purified using a PCR purification kit and eluted with deionized water. The restriction enzyme-treated PEDF 34-mer gene fragment and the linearized pET-21a cloning vector were ligated by treatment with T4 DNA ligase in T4 DNA ligase buffer and incubation at 16° C. for 30 minutes. The ligated product was transformed into Top10 chemical competent cells, and plated on SOC plates treated with 50 μg/mL of ampicillin. Transformants were initially screened on agarose gels by diagnostic restriction enzyme treatment, and further confirmed by the aforementioned DNA sequencing.

실시예 6: 클로닝 벡터에서 HPC(helix-based protein cage )암호화 유전자 제작Example 6: HPC (helix-based protein cage) encoding gene production from cloning vector

나선형 다발(페리틴 A, B, C, D)과 짧은 5번째 나선(페리틴 E) 사이에서 다른 펩타이드의 유전자들과 융합하기 위해 4개의 나선형 다발을 암호화하는 유전자와 5번째 나선을 암호화하는 유전자를 mPET-21a에 클로닝했다. 양 말단에 XbaI 및 BamHI 제한효소 사이트를 가진 4개의 나선형 다발을 암호화하는 유전자를 pUCIDT 벡터에 전달했다. 4개의 나선형 다발을 포함하는 플라스미드를 CutSmart buffer에서 37℃, 2시간 동안 10 U의 XbaI 및 10 U의 BamHI 처리하여 삽입유전자를 제작했다. 처리 후, 생성물을 아가로스 젤에 전기영동하고, 삽입 유전자를 겔 추출 키트를 사용하여 정제했다. 총 4 μg의 mpET-21a 클로닝 벡터에 제한효소 처리했으며, 15 U의 XbaI, 10 U의 BamHI 및 10 U의 FastAP 열민감성 알칼린 포스파테이즈(thermosensitive alkaline phosphatase)로 37℃, 1시간 동안 탈인산화했다. 플라스미드 DNA를 PCR purification kit를 사용하여 정제했으며, 40 μL의 증류수이자 탈이온수에 용출했다. 90 pmol의 4개의 나선형 다발 유전자 조각과 30pmol의 선형화된 mpET-21a 클로닝 벡터를 T4 DNA 버퍼에서 함께 1U의 T4 DNA ligase 처리하고 16℃, 30분 동안 배양함으로써 라이게이션했다. 라이게이션된 생성물을 Top10 컴피턴트 세포에 형질전환하고, 50 μg/mL의 앰피실린이 처리된 SOC 플레이트에 도말했다. 형질전환체는 초반에 진단적인 제한효소 처리에 의해 아가로스 젤 위에서 스크리닝되었으며, 상기 언급된 DNA 시퀀싱에 의해 추가로 확인되었다 GG-5' 및 3'-CC의 스티키 말단(sticky ends)을 가지는 5번째 나선을 암호화하는 57bp 크기의 유전자를 혼성화(hybridization)를 통해 제작했다. 5번째 나선을 암호화하는 올리고뉴클레오타이드 한 쌍을 95℃, 3분동안 T4 DNA ligase buffer에서 50 μL의 2 μM 올리고뉴클레오타이드 농도로 가열하고, 이후 상온에서 3시간 이상 천천히 냉각했다. 총 4 μg의 mpET-21a 클로닝 벡터를 처리했고, 37℃, 30분동안 15 U의 BseRI 및 열민감성 알칼린 포스파테이즈(thermosensitive alkaline phosphatase)로서 10 U의 FastAP로 탈인산화했다. 플라스미드 DNA를 PCR purification kit를 사용하여 정제한 후 40 μL의 증류수이자 탈이온수로 용출했다. 90 pmol의 어닐링된 이중가닥 DNA(dsDNA)와 30pmol의 선형화된 mpET-21a 클로닝 벡터를 T4 DNA buffer에서 함께 1U의 T4 DNA ligase 처리하고 16℃, 30분동안 배양함으로써 라이게이션했다. 라이게이션된 플라스미드를 Top10 화학적 컴피턴트 세포에 형질전환했고, 이후 50 μg/mL의 앰피실린이 처리된 SOC plates에 도말했다. DNA 서열은 DNA 시퀀싱에 의해 확인되었다. In order to fuse with genes of other peptides between the helical bundle (ferritin A, B, C, D) and the short fifth helix (ferritin E), mPET the gene encoding the 4 helical bundles and the gene encoding the 5th helix. Cloned to -21a. Genes encoding four helical bundles with XbaI and BamHI restriction sites at both ends were transferred to the pUCIDT vector. Plasmids containing four helical bundles were treated with 10 U of XbaI and 10 U of BamHI in CutSmart buffer at 37° C. for 2 hours to generate the transgene. After treatment, the product was electrophoresed on an agarose gel, and the inserted gene was purified using a gel extraction kit. A total of 4 μg of mpET-21a cloning vector was treated with restriction enzymes, and dephosphorylated at 37°C for 1 hour with 15 U of XbaI, 10 U of BamHI and 10 U of FastAP thermosensitive alkaline phosphatase. did. Plasmid DNA was purified using a PCR purification kit, and eluted in 40 μL of distilled and deionized water. 90 pmol of four helical bundle gene fragments and 30 pmol of linearized mpET-21a cloning vector were ligated by treatment with 1U of T4 DNA ligase together in T4 DNA buffer and incubation at 16° C. for 30 minutes. The ligated product was transformed into Top10 competent cells, and plated on SOC plates treated with 50 μg/mL of ampicillin. Transformants were initially screened on agarose gels by diagnostic restriction enzyme treatment, and were further identified by the aforementioned DNA sequencing 5 with sticky ends of GG-5' and 3'-CC. The 57bp-sized gene encoding the first helix was constructed through hybridization. A pair of oligonucleotides encoding the fifth helix was heated at 95° C. for 3 minutes in a T4 DNA ligase buffer to a concentration of 50 μL of 2 μM oligonucleotides, and then slowly cooled at room temperature for 3 hours or more. A total of 4 μg of mpET-21a cloning vector was treated, and dephosphorylated with 15 U of BseRI and 10 U of FastAP as a thermosensitive alkaline phosphatase at 37° C. for 30 minutes. After the plasmid DNA was purified using a PCR purification kit, it was eluted with 40 μL of distilled water and deionized water. 90 pmol of the annealed double-stranded DNA (dsDNA) and 30 pmol of the linearized mpET-21a cloning vector were ligated by treatment with 1U of T4 DNA ligase in T4 DNA buffer and incubation at 16° C. for 30 minutes. The ligated plasmid was transformed into Top 10 chemical competent cells, and then plated on SOC plates treated with 50 μg/mL of ampicillin. DNA sequence was confirmed by DNA sequencing.

실시예 7: 항-Flt1-HPC4-EBP-PEDF 34-mer-HPC5 융합 단백질 케이지의 유전자 제작Example 7: Gene production of anti-Flt1-HPC4-EBP-PEDF 34-mer-HPC5 fusion protein cage

VEGFR1의 안타고니스트(antagonist) 역할을 하는 항-Flt1 펩타이드를 암호화하는 올리고뉴클레오타이드 한 쌍을 Cosmo Genetech (Seoul, Korea)에서 화학적으로 합성했고, AcuI 및 BseRI의 결합가능한 부분이 있는 올리고뉴클레오타이드 카세트(oligonucleotide cassette)가 되도록 어닐링했다. 매끄러운(seamless) 클로닝을 위해 항-Flt1 펩타이드를 암호화하는 올리고뉴클레오타이드 카세트는 BseRI, XbaI, AcuI 및 BamHI 인식 부위 없이 합리적으로 고안되었다. BseRI, XbaI, AcuI 및 BamHI 인식부위를 가지는 EBPP[A1G4I1]6, PEDF 34-mer, HPC의 4개의 나선형 다발 조각 및 HPC의 5번째 나선 조각을 포함하는 각각의 플라스미드와 올리고뉴클레오타이드 카세트는 항-Flt1- 4개의 나선형 번들(HPC4)-EBPP[A1G4I1]6-PEDF 34-mer-EBPP[A1G4I1]6-5번째 나선(HPC5)의 융합 폴리펩타이드 라이브러리를 위한 유전자를 제작하기 위해 사용되었다. 융합 폴리펩타이드 라이브러리를 암호화하기 위해, 5번?? 나선을 암호화하는 플라스미드 벡터를 CutSmart buffer에서 37℃, 1시간동안 15 U의 BseRI를 처리했다. 제한효소 처리된 플라스미드 DNA를 PCR purification kit를 이용하여 정제하고, CutSmart buffer에서 37℃, 1시간 동안 열민감성 알칼린 포스파테이즈로서 10 U의 FastAP를 처리하여 탈인산화했다. 제한효소 처리되고 탈인산화된 플라스미드 DNA를 PCR purification kit를 사용하여 정제하고, 40 μL의 증류수이자 탈이온수로 용출했다. 삽입 유전자 제작을 위해 4 mg의 EBPP[A1G4I1]6 유전자에 CutSmart buffer 하에서 37℃, 1시간동안 10 U의 BseRI 및 15 U의 AcuI를 처리했다. 처리 후, 생성물을 아가로스 젤에 전기영동하고, 삽입 유전자를 gel extraction kit를 사용하여 정제했다. 90 pmol의 정제된 삽입 유전자와 30 pmol의 선형화된 벡터를 T4 DNA ligase buffer에서 1 U의 T4 DNA ligase 처리하여 16℃, 30분동안 배양함으로써 라이게이션했다. 라이게이션한 생성물을 Top10 화학적 컴피턴트 세포에 형질전환하고 50 μg/mL의 앰피실린이 처리된 SOC 플레이트에 도말했다. 형질전환체는 초반에 진단적인 제한효소 처리에 의해 아가로스 젤 위에서 스크리닝되었으며, DNA 시퀀싱에 의해 추가로 확인되었다. 삽입 DNA를 포함하는 플라스미드 벡터가 상기 방법을 통해 제작되었다. 삽입 유전자 제작을 위해, 상술한 바와 같이 PCR과 제한효소 처리를 통해 PEDF 34-mer를 제작했고, 항-Flt1 펩타이드를 암호화하는 올리고뉴클레오타이드 카세트가 삽입유전자로서 사용되었다. 4개의 나선형 다발의 삽입 유전자는 EBPP[A1G4I1]6 삽입유전자와 함께 동일한 방법으로 제작되었다. 라이게이션은 상술한바와 같이 진행되었다.A pair of oligonucleotides encoding an anti-Flt1 peptide that acts as an antagonist of VEGFR1 was chemically synthesized by Cosmo Genetech (Seoul, Korea), and an oligonucleotide cassette with a binding portion of AcuI and BseRI It was annealed so that it might become. Oligonucleotide cassettes encoding anti-Flt1 peptides for seamless cloning were reasonably designed without BseRI, XbaI, AcuI and BamHI recognition sites. Each plasmid and oligonucleotide including EBPP[A 1 G 4 I 1 ] 6 , PEDF 34-mer, 4 helical bundle fragments of HPC and 5 helical fragments of HPC with recognition sites for BseRI, XbaI, AcuI and BamHI Cassettes consist of anti-Flt1- 4 helical bundles (HPC4)-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -5 helical fusion poly(HPC5) It was used to create genes for peptide libraries. To encode the fusion polypeptide library, number 5?? The plasmid vector encoding the helix was treated with 15 U of BseRI at 37° C. for 1 hour in CutSmart buffer. Restriction enzyme-treated plasmid DNA was purified using a PCR purification kit, and dephosphorylated by treatment with 10 U FastAP as heat-sensitive alkaline phosphatase in CutSmart buffer at 37° C. for 1 hour. Restriction enzyme-treated and dephosphorylated plasmid DNA was purified using a PCR purification kit, and eluted with 40 μL of distilled and deionized water. For the production of the inserted gene, 4 mg of EBPP[A 1 G 4 I 1 ] 6 gene was treated with 10 U of BseRI and 15 U of AcuI for 1 hour at 37° C. in CutSmart buffer. After treatment, the product was electrophoresed on an agarose gel, and the inserted gene was purified using a gel extraction kit. 90 pmol of the purified insert gene and 30 pmol of the linearized vector were ligated by treatment with 1 U of T4 DNA ligase in T4 DNA ligase buffer and incubation at 16° C. for 30 minutes. The ligated product was transformed into Top10 chemical competent cells and plated on SOC plates treated with 50 μg/mL of ampicillin. Transformants were initially screened on agarose gels by diagnostic restriction enzyme treatment, and further confirmed by DNA sequencing. A plasmid vector containing the inserted DNA was constructed through the above method. For the production of the inserted gene, PEDF 34-mer was prepared through PCR and restriction enzyme treatment as described above, and an oligonucleotide cassette encoding the anti-Flt1 peptide was used as the insertion gene. The four helical bundles of the inserted genes were constructed in the same way with the EBPP[A 1 G 4 I 1 ] 6 transgene. The ligation proceeded as described above.

실시예 8: EBPs와 융합 단백질 케이지의 유전자 발현 및 정제 Example 8: Gene expression and purification of EBPs and fusion protein cage

EBPs 및 융합 단백질 케이지를 포함하는 각각의 벡터를 E. coli strain BL21(DE3) cells에 형질전환했고, 이후 50 μg/mL ampicillin가 처리된 CircleGrow media 50mL에 접종했다. 사전배양(preculture)은 진탕배양기(shaking incubator)에서 37℃에서 200rpm으로 밤새 이루어졌다. 이후, TB DRY media 50ml를 50 μg/mL ampicillin가 처리된 CircleGrow media 500 mL에 접종하고, 진탕배양기에서 37℃에서 200rpm으로 16시간동안 배양했다. 600 nm에서 흡광도(optical density) (OD600)가 1.0에 도달했을 때, 최종 1 mM이 되도록 IPTG를 첨가함으로써 폴리펩타이드의 과발현(over-expression)이 유도되었다. 세포들을 4500 rpm으로 4℃에서 10분간 원심분리했다. 발현된 EBPs 및 그들의 블럭 폴리펩타이들은 상술한 바와 같이 ITC를 이용하여 정제했다. EBPs를 포함하는 세포 펠렛(cell pellet)을 30 mL의 PBS buffer에 재현탁하고, EBPs를 PBS 조건에서 정제했다. 융합 단백질 케이지를 포함하는 세포 펠렛을 3 M 요소가 첨가된 30 mL의 PBS에 재현탁하고, NPC의 나선형 구조를 변성시키기 위해 3 M 요소가 첨가된 PBS에 정제했다. 세포를 10초동안 초음파분해(sonication) (VC-505, Sonic and materials Inc, Danbury, CT) 후 20초 쉬면서 얼음수조(ice bath)에서 세포를 용해시켰다. 세포용해액을 50mL 원심분리 튜브에 담아 불용성의 잔해물을 침전시키기 위해 13000 rpm으로 4℃ 15분동안 원심분리했다. 용해된 EBPs를 포함하는 상청액을 새로운 50mL 원심분리 튜브에 담고, 핵산 오염물을 침전시키기 위해 PEI 0.5 % w/v, 13000 rpm으로 4℃, 15분동안 원심분리했다. EBPs의 역상전이(inverse phase transition)는 최종 농도 3 M이 되도록 NaCl을 첨가함으로써 유발되며, 응집된 EBPs는 용해액으로부터 13000 rpm으로 4℃에서 15분동안 원심분리함으로써 분리되었다. 응집된 EBPs를 차가운 버퍼에 재현탁하고, 응집된 단백질 오염물을 제거하기 위해 13000 rpm으로 4℃에서 15분동안 원심분리했다. 이러한 응집과 재현탁 과정은 EBP의 순도가 SDS-PAGE 로 결정했을 때 약 95%에 도달할 때까지 5-10번 반복되었다.Each vector including EBPs and fusion protein cages was transformed into E. coli strain BL21(DE3) cells, and then inoculated into 50 mL of CircleGrow media treated with 50 μg/mL ampicillin. Preculture was performed overnight at 200 rpm at 37°C in a shaking incubator. Thereafter, 50 ml of TB DRY media was inoculated into 500 ml of CircleGrow media treated with 50 μg/mL ampicillin, and incubated for 16 hours at 37° C. at 200 rpm in a shaking incubator. When the optical density (OD 600 ) reached 1.0 at 600 nm, the over-expression of the polypeptide was induced by adding IPTG to a final 1 mM. Cells were centrifuged for 10 minutes at 4° C. at 4500 rpm. The expressed EBPs and their block polypeptides were purified using ITC as described above. Cell pellets containing EBPs were resuspended in 30 mL of PBS buffer, and EBPs were purified under PBS conditions. The cell pellet containing the fusion protein cage was resuspended in 30 mL of PBS to which 3 M urea was added, and purified in PBS to which 3 M urea was added to denature the helical structure of NPC. The cells were sonicated for 10 seconds (VC-505, Sonic and materials Inc, Danbury, CT), and then the cells were lysed in an ice bath while resting for 20 seconds. The cell lysate was placed in a 50 mL centrifuge tube and centrifuged at 13000 rpm for 15 minutes at 4° C. in order to precipitate insoluble debris. The supernatant containing the dissolved EBPs was placed in a new 50 mL centrifuge tube, and centrifuged for 15 minutes at 4° C. at 13000 rpm with PEI 0.5% w/v to precipitate nucleic acid contaminants. The inverse phase transition of EBPs was induced by adding NaCl to a final concentration of 3 M, and the agglomerated EBPs were separated from the solution by centrifugation at 13000 rpm for 15 minutes at 4°C. Aggregated EBPs were resuspended in cold buffer and centrifuged at 13000 rpm for 15 minutes at 4° C. to remove aggregated protein contaminants. This aggregation and resuspension process was repeated 5-10 times until the purity of EBP reached about 95% as determined by SDS-PAGE.

도 1은 항-Flt1 펩타이드, PEDF 34-mer 펩타이드, 및 EBPP[A1G4I1]1의 아미노산 서열, EBPP[A1G4I1]12-PEDF 34-mer 융합 폴리펩타이드의 블럭 디자인을 위한 전략, 융합 폴리펩타이드의 자가조립, 바이오이미징 및 바이오센싱을 위한 자가조립체 구조의 변형과, 자가조립 융합 단백질 케이지의 두 메커니즘에 따른 항-혈관신생 기능을 보여준다. HPC의 아미노산 서열(서열번호 1 및 2), 항-Flt1 펩타이드(서열번호 3), PEDF 34-mer 펩타이드(서열번호 4), EBPP[A1G4I1] (서열번호 6), 는 표 2 및 도 1(A)에 개시되어 있다. 1 is a block diagram of the anti-peptide -Flt1, PEDF 34-mer peptides, and EBPP [A 1 G 4 I 1 ] 1 in amino acid sequence, EBPP [A 1 G 4 I 1] 12 -PEDF 34-mer fusion polypeptide Design The anti-angiogenic function according to the two mechanisms of self-assembly, the self-assembly structure for bioimaging and biosensing, and the self-assembled fusion protein cage are shown. The amino acid sequence of HPC (SEQ ID NO: 1 and 2), anti-Flt1 peptide (SEQ ID NO: 3), PEDF 34-mer peptide (SEQ ID NO: 4), EBPP[A 1 G 4 I 1 ] (SEQ ID NO: 6), is in Table 2 and Fig. 1(A).

[표 2][Table 2]

Figure pat00002
Figure pat00002

도 1(B)는 (a) 항-Flt1-HPC- EBPP[A1G4I1]12-PEDF 34-mer 융합 폴리펩타이드의 블럭 디자인 및 (b) 자가조립체 구조, 형광염료 콘쥬게이션에 의한 구조의 변형, 및 바이오이미징 및 바이오센싱을 위한 금 나노입자(AuNP)에 콘쥬게이션된 라만 염료의 합성을 위한 전략을 보여준다. HPC는 4개의 나선형 다발(이하, 'HPC4'로 표시함)과 상대적으로 짧은 나선(알파-헬릭스, 이하, 'HPC5'로 표시함)으로 구성되고 이것이 나노케이지로 자가조립되는데, N-말단과 4 번째와 5번째 나선 사이에 각각 노출 부위가 있다. 두 항-혈관신생 펩타이드(항-Flt1 펩타이드와 PEDF 34-mer 펩타이드)는 HPC의 각 노출 부위에 융합되었다. 항-Flt1 펩타이드는 HPC의 N-말단에 위치했으며, EBPP[A1G4I1]6-PEDF 34-mer-EBPP[A1G4I1]6는 4번??, 5번째 나선의 사이에 위치했다. EBP 블럭은 PEDF 34-mer 펩타이드를 효과적으로 노출하고 비크로마토그래피 방법으로 융합 폴리펩타이드를 정제하기 위해 도입되었다. 융합 단백질 케이지는 시스테인(cysteine)에서 티올-말레이미드(thiol-maleimide) 반응에 의해 형광 염료와 콘쥬게이션되었다. 표면증강 라만산란법(SERS) 기반 응용을 위해, AuNP는 HPC 구조 내부에 금 이온 축적 및 환원에 의해 합성되었다. AuNP 포함 구조체는 AuNP 표면에 라만 염료를 도입하기 위해 부분적으로 파괴되었고, 그들의 본래 구조를 회복했다. 항-혈관신생 기능을 위해, 융합 폴리펩타이드는 항-혈관신생을 위해 상이한 메커니즘을 가진 항-Flt1 펩타이드 및 PEDF 34-mer로 구성되었다(도 1(C)). 항-Flt1 펩타이드는 VEGFR1 (Flt1)에 결합함으로써 세포 내 혈관신생 신호를 저해하고, VEGF와 VEGFR1간의 상호작용을 방해했다. PEDF의 항-혈관신생 기능적인 영역인 PEDF 34-mer은 세포 내 항-혈관신생 신호를 유발했다. 항-Flt1 펩타이드 및 PEDF 34-mer에 따른 융합 단백질 케이지의 항-혈관신생 기능을 연구하기 위해, 4종류의 융합 폴리펩타이드, 항-Flt1 펩타이드 및 PEDF 34-mer가 없는 융합 폴리펩타이드, 항-Flt1 펩타이드 또는 PEDF 34-mer를 포함하는 융합 폴리펩타이드, 및 항-Flt1 펩타이드 및 PEDF 34-mer를 포함하는 융합 폴리펩타이드가 고안되었다.Figure 1(B) is a block design of (a) anti-Flt1-HPC-EBPP[A 1 G 4 I 1 ] 12- PEDF 34-mer fusion polypeptide and (b) self-assembly structure, by fluorescent dye conjugation. A strategy for the modification of the structure, and the synthesis of Raman dyes conjugated to gold nanoparticles (AuNPs) for bioimaging and biosensing is shown. HPC consists of four spiral bundles (hereinafter referred to as'HPC4') and relatively short spirals (alpha-helix, hereinafter referred to as'HPC5'), which are self-assembled into a nanocage, and the N-terminal and There is an exposed area between the 4th and 5th helix respectively. Two anti-angiogenic peptides (anti-Flt1 peptide and PEDF 34-mer peptide) were fused to each exposed site of HPC. The anti-Flt1 peptide was located at the N-terminus of HPC, and EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 is the 4th??, of the 5th helix. Was located between. The EBP block was introduced to effectively expose the PEDF 34-mer peptide and to purify the fusion polypeptide by a non-chromatographic method. The fusion protein cage was conjugated with a fluorescent dye by a thiol-maleimide reaction in cysteine. For surface-enhanced Raman scattering (SERS)-based applications, AuNPs were synthesized by accumulation and reduction of gold ions inside the HPC structure. The AuNP-containing structures were partially destroyed to introduce the Raman dye to the AuNP surface, and their original structure was restored. For anti-angiogenic function, the fusion polypeptide consisted of anti-Flt1 peptide and PEDF 34-mer with different mechanisms for anti-angiogenesis (Fig. 1(C)). The anti-Flt1 peptide inhibited intracellular angiogenesis signal by binding to VEGFR1 (Flt1) and interfered with the interaction between VEGF and VEGFR1. PEDF 34-mer, the anti-angiogenic functional region of PEDF, triggered intracellular anti-angiogenic signals. In order to study the anti-angiogenic function of the fusion protein cage according to the anti-Flt1 peptide and PEDF 34-mer, four kinds of fusion polypeptides, anti-Flt1 peptides and fusion polypeptides without PEDF 34-mer, anti-Flt1 A fusion polypeptide comprising a peptide or PEDF 34-mer, and a fusion polypeptide comprising an anti-Flt1 peptide and PEDF 34-mer have been designed.

실시예 9: EBPs 및 항-Flt1-HPC4-EBP-PEDF 34-mer-HPC5 융합 단백질 케이지의 특성화Example 9: Characterization of EBPs and anti-Flt1-HPC4-EBP-PEDF 34-mer-HPC5 fusion protein cage

EBPs 및 융합 단백질 케이지의 순도는 SDS-PAGE에 의해 결정되었다. PBS에서 25 μM의 EBPs 및 융합 단백질 케이지의 역상전이에 대한 온도의 효과는 10 ~ 85 ℃, 1℃/min 속도로 다중-셀 열전기 조절기(multi-cell thermoelectric temperature controller, Varian Instruments, Walnut Creek, CA)와 함께 Cary 100 Bio UV/Vis 스펙트로미터를 이용하여 OD350을 측정하여 확인하였다. 융합 단백질 케이지의 케이지 구조로의 자가조립 및 케이지 구조의 열 민감성은 온도 조절 Nano ZS90 (ZEN3690) 동적 광산란(dynamic light scattering, DLS) 장비(Malvern instruments, Worcestershire, UK)로 확인하였다. 25 μM의 PBS에서 그들의 유체역학적 반경(hydrodynamic radius, RH)은 25 μM의 PBS에서, 20 ~ 60 ℃의 온도, 1℃/min의 가열 속도로 각 온도마다 11회 측정되었다. 그들의 Tt는 상전이의 시작 온도로 규명되었으며, 각 DLS 플롯(plot)에 의해 계산되었다. The purity of EBPs and fusion protein cages was determined by SDS-PAGE. The effect of temperature on the reverse phase transition of 25 μM EBPs and fusion protein cages in PBS was 10 to 85°C, 1°C/min at a multi-cell thermoelectric temperature controller (Varian Instruments, Walnut Creek, CA). ) And the OD 350 was measured using a Cary 100 Bio UV/Vis spectrometer. The self-assembly of the fusion protein cage into the cage structure and the thermal sensitivity of the cage structure were confirmed with a temperature-controlled Nano ZS90 (ZEN3690) dynamic light scattering (DLS) equipment (Malvern instruments, Worcestershire, UK). Their hydrodynamic radius (R H ) in 25 μM PBS was measured 11 times at each temperature at a temperature of 20 to 60° C. and a heating rate of 1° C./min in 25 μM PBS. Their T t was identified as the starting temperature of the phase transition, and was calculated by each DLS plot.

실시예 10: 융합 단백질 케이지를 이용한 HUVECs의 Example 10: of HUVECs using a fusion protein cage In vitroIn vitro 튜브 형성 조사 Tube formation investigation

융합 단백질 케이지를 사용하여 HUVECs의 체외에서(in vitro) 튜브 형성 조사(tube formation assay)는 내피세포의 성장(proliferation), 이동(migration) 및 튜브 형성에 대한 그들의 효과를 평가하기 위해 수행되었다. 48 웰 플레이트에 200 μL의 마트리겔을 코팅시키기 위해 37℃에서 30분 배양시켜 마트리겔을 굳혔다. 형광 표지를 위해 HUVECs를 37℃에서 15분간 0.5 μM calcein-AM에 배양했다. 내피세포의 성장, 이동 및 튜브 형성이 어떻게 자극되는지 측정하기 위해 4 Х 104 cells/well의 calcein-표지된 HUVECs가 마트리겔-코팅된 웰에 뿌려졌고, 37℃, 4시간 동안 상이한 농도로 50 ng/ml 인간 재조합 rhVEGF165 및 융합 단백질 케이지와 함께 배양되었다. HUVECs의 튜브 형성은 마이크로매니퓰레이터(micromanipulator, ZEISS, Oberkochen, Germany)하에 촬영되었으며, Image J lab 소프트웨어의 신혈관 생성 분석기로 웰마다 세 개의 임의 구역의 전체 튜브 길이를 측정함으로써 정량화했다. 그들의 튜브 형성은 세 번의 복제로 수행되었다.In vitro tube formation assay of HUVECs using fusion protein cages was performed to evaluate their effects on endothelial cell growth (proliferation), migration (migration) and tube formation. In order to coat 200 μL of Matrigel on a 48-well plate, the Matrigel was solidified by incubating at 37°C for 30 minutes. For fluorescent labeling, HUVECs were incubated in 0.5 μM calcein-AM for 15 minutes at 37°C. To measure how the growth, migration and tube formation of endothelial cells are stimulated, 4 Х 10 4 cells/well of calcein-labeled HUVECs were sprinkled on matrigel-coated wells, at 37° C., at different concentrations for 4 hours. Incubated with ng/ml human recombinant rhVEGF 165 and fusion protein cage. The tube formation of HUVECs was photographed under a micromanipulator (ZEISS, Oberkochen, Germany) and was quantified by measuring the total tube length of three random zones per well with a neovascularization analyzer of Image J lab software. Their tube formation was performed in three replicates.

실시예 11: 융합 단백질 케이지에 콘쥬게이션된 형광 염료를 이용한 HUVEC 이미징Example 11: HUVEC imaging using fluorescent dye conjugated to a fusion protein cage

융합 단백질 케이지는 체외에서(in vitro) 세포 이미징을 위해 알렉사 플루오르 488 C5 말레이미드로 표지되었다. 50 uM의 융합 단백질 케이지는 500 uM의 알렉사 플루오르 C5 말레이미드와 함께 상온에서 2시간동안 3 M 요소 및 10 mM DTT를 포함하는 0.01 M의 PBS에서 배양되었다. 남아있는 말레이미드 488 C5 말레이미드는 PBS에 대해 투석함으로써 제거되었다. 표지는 형광 스펙트럼(Ex: 480 ; Em: 500-550, Ex slit 10 nm; Em slit 5 nm) 및 형광 단백질로 염색없이 SDS-PAGE에서 특성화되었다. 4 Х 104 cells/well에서 HUVECs를 48 웰 플레이트에 뿌리고 밤새 배양했다. HUVEC는 50 ng/ml 인간 재조합 rhVEGF165 및 염료 콘쥬게이션된 융합 단백질 케이지와 함께 37℃에서 15, 30, 및 60분마다 상이한 농도로 배양되었다. HUVECs는 마이크로매니퓰레이터 (ZEISS, Oberkochen, Germany)의 명시야(bright field) 및 FITC의 형광에서 촬영되었다. The fusion protein cage was labeled with Alexa Fluor 488 C5 maleimide for cell imaging in vitro . The 50 uM fusion protein cage was incubated in 0.01 M PBS containing 3 M urea and 10 mM DTT for 2 hours at room temperature with 500 uM Alexa Fluor C5 maleimide. The remaining maleimide 488 C5 maleimide was removed by dialysis against PBS. Labels were characterized on SDS-PAGE without staining with fluorescence spectra (Ex: 480; Em: 500-550, Ex slit 10 nm; Em slit 5 nm) and fluorescent protein. HUVECs were sprayed onto 48 well plates at 4 Х 10 4 cells/well and incubated overnight. HUVECs were incubated with 50 ng/ml human recombinant rhVEGF 165 and dye conjugated fusion protein cages at 37° C. at different concentrations every 15, 30, and 60 minutes. HUVECs were photographed in the bright field of a micromanipulator (ZEISS, Oberkochen, Germany) and fluorescence of FITC.

실시예 12: 융합 단백질 케이지의 케이지 구조에서 금 나노입자의 합성 및 금 나노입자에 콘쥬게이션된 라만 염료Example 12: Synthesis of gold nanoparticles in the cage structure of a fusion protein cage and a Raman dye conjugated to gold nanoparticles

25 uM 융합 단백질 케이지를 0.2 mM HAuCl4와 함께 3시간 동안 상온, 0.01 M PBS에서 배양하고, PBS로 2번 세척하여 표면에 글리세롤이 제거된 원심분리기로 결합되지 않은 HAuCl4를 제거했다. 금 시드(gold seed)에 1 mM NaBH4를 첨가하여 금 이온을 제거했다. 이 때 용액은 엷은 노랑(pare-yellow)이었다. 3시간동안 물 담금질(water quench) 후, 0.2 mM HAuCl4를 추가적으로 처리하고 1시간 동안 배양했다. 금 시드가 금 나노입자(AuNP)로 성장하도록 1 mM ascorbic acid를 첨가했다. 이 때 최종 용액은 루비색(ruby red)이었다. 단백질 케이지 내부에 합성된 나노입자는 350-900 nm에서 흡광도 및 TEM image를 측정함으로써 특성화되었다.A 25 uM fusion protein cage was incubated with 0.2 mM HAuCl 4 at room temperature for 3 hours in 0.01 M PBS, washed twice with PBS to remove unbound HAuCl 4 with a centrifuge from which glycerol was removed from the surface. Gold ions were removed by adding 1 mM NaBH 4 to the gold seed. At this time, the solution was pale-yellow. After water quench for 3 hours, 0.2 mM HAuCl 4 was additionally treated and incubated for 1 hour. 1 mM ascorbic acid was added to grow gold seeds into gold nanoparticles (AuNPs). At this time, the final solution was ruby red. The nanoparticles synthesized inside the protein cage were characterized by measuring absorbance and TEM images at 350-900 nm.

단백질 케이지 구조 내에서 금 나노입자(AuNP)에 콘쥬게이션된 라만 염료에 대해서, AuNP-단백질을 포함하는 0.01 M PBS 버퍼의 pH는 HCl을 첨가함에 따라 융합 단백질의 pI인 6.029보다 낮은 pH 6.0까지 감소했다. pH 6.0의 0.01M PBS 버퍼에 10 uM MGITC를 첨가했으며, 버퍼의 pH는 1시간 배양 후 NaOH를 첨가함에 따라 pH 7.4까지 증가했다. 라만 측정은 라만 스펙트로스코프(Renishaw 2000, Renishaw, UK)를 이용하여 수행되었다. For Raman dyes conjugated to gold nanoparticles (AuNPs) within the protein cage structure, the pH of 0.01 M PBS buffer containing AuNP-protein decreased to pH 6.0, which is lower than the pI of 6.029 of the fusion protein as HCl was added. did. 10 uM MGITC was added to a 0.01M PBS buffer at pH 6.0, and the pH of the buffer increased to 7.4 by adding NaOH after 1 hour incubation. Raman measurements were performed using a Raman spectroscope (Renishaw 2000, Renishaw, UK).

결과result

항-Flt1-펩타이드, PEDF 34-mer, EBP로 구성되는 융합 단백질 케이지는 융합 단백질 케이지를 암호화하는 유전자 클로닝 및 IPTG 유도에 의한 융합 단백질 케이지의 과발현에 의해 제작되었다. 융합 단백질 케이지를 암호화하는 유전자는 EBPP[A1G4I1]6, PEDF 34-mer, HPC의 4개의 나선, 및 항-Flt1 펩타이드를 암호화하는 유전자를 HPC의 5번째 나선을 포함하는 플라스미드에 순차적으로 삽입함으로써 제작되었다. 각 유전자의 삽입은 XbaI 및 AcuI 제한효소 처리, 아가로스 젤 전기영동, 및 DNA 시퀀싱에 의해 확인되었다. 제작된 4종류의 융합 단백질 케이지를 암호화하는 유전자, (a) HPC4-EBPP[A1G4I1]12-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 도 2(A)에 도시되었다. 융합 단백질 케이지를 암호화하는 유전자는 XbaI 및 AcuI 처리되었고, 이러한 DNA 조각들의 길이는 아가로스 젤상에 각 유전자마다 표지되었다. (a) HPC4-EBPP[A1G4I1]12-HPC5-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5를 암호화하는 각 유전자의 DNA 길이는 각각 1614, 1632, 1719, 및 1737 bp였다. XbaI 제한효소 사이트가 융합 단백질 케이지의 유전자 내에 존재하기 때문에, 아가로스 젤상 각 유전자에 표지된 DNA 조각들의 길이는 본래의 유전자보다 큰 37bp였다.The fusion protein cage composed of anti-Flt1-peptide, PEDF 34-mer, and EBP was constructed by cloning the gene encoding the fusion protein cage and overexpression of the fusion protein cage by IPTG induction. The gene encoding the fusion protein cage is EBPP[A 1 G 4 I 1 ] 6 , PEDF 34-mer, the four helices of HPC, and the gene encoding the anti-Flt1 peptide in a plasmid containing the fifth helix of HPC. It was made by sequentially inserting. Insertion of each gene was confirmed by XbaI and AcuI restriction enzyme treatment, agarose gel electrophoresis, and DNA sequencing. Genes encoding the prepared four types of fusion protein cages, (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (b) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is shown in Fig. 2(A). The genes encoding the fusion protein cage were treated with XbaI and AcuI, and the lengths of these DNA fragments were labeled for each gene on an agarose gel. (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5-HPC5, (b) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34- The DNA lengths of each gene encoding mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 were 1614, 1632, 1719, and 1737 bp, respectively. Since the XbaI restriction site was present in the gene of the fusion protein cage, the length of the DNA fragments labeled for each gene on the agarose gel was 37bp, which is larger than the original gene.

융합 단백질 케이지는 E. coli에서 발현되었고, 역전이 순환(ITC)에 의해 정제되었다. 정제된 융합 단백질 케이지의 순도 및 분자량은 단백질 밴드를 시각화하기 위해 구리로 염색된 SDS-PAGE에 의해 확인되었다(도 2(B)). (a) HPC4-EBPP[A1G4I1]12-HPC5, (b) 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, (c) HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 (d) 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 예상되는 분자량은 하기 밴드에 제시되어 있고(48.6, 49.4, 52.4, and 53.1 kDa (왼쪽부터 오른쪽)) SDS-PAGE 겔의 가장 오른쪽 레인은 표준 단백질 사이즈 마커의 이동을 보여준다. 표준 단백질 사이즈 마커 및 이론적인 분자량과 비교하여, 융합 단백질 케이지의 이동은 단백질 표준 마커의 이동과 일치하지 않았다. 4종류의 융합 단백질 케이지는 이론적인 분자량보다 많이 이동했고, 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5는 HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5보다 더 높은 곳에 위치했다. SDS-PAGE에서 EBP가 이론적인 분자량보다 약 20% 더 많이 이동했다는 점은 이전에 보고된 바 있다(McPherson, D. T.; Xu, J.; Urry, D. W. Protein Expression Purif. 1996, 7 (1), 51-7.; Meyer, D. E.; Chilkoti, A. Biomacromolecules 2002, 3 (2), 357-367.; McDaniel, J. R.; MacKay, J. A.; Quiroz, F. G.; Chilkoti, A. Biomacromolecules 2010, 11 (4), 944-952.). 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5는 EBPP[A1G4I1]6 두 블럭을 가진 HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5보다 더 긴 EBP 블럭을 가졌기 때문에, 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5는 HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5보다 더 높은 곳에 위치했다. The fusion protein cage was expressed in E. coli and purified by reverse transfer cycle (ITC). The purity and molecular weight of the purified fusion protein cage were confirmed by SDS-PAGE stained with copper to visualize the protein band (Fig. 2(B)). (a) HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (b) anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, (c) HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and (d) anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- The expected molecular weight of EBPP[A 1 G 4 I 1 ] 6 -HPC5 is shown in the bands below (48.6, 49.4, 52.4, and 53.1 kDa (left to right)) and the rightmost lane of the SDS-PAGE gel is the standard protein. Shows the movement of the size marker. Compared to the standard protein size marker and the theoretical molecular weight, the movement of the fusion protein cage did not match the movement of the protein standard marker. The four types of fusion protein cages moved more than the theoretical molecular weight, and anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 was HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34- mer- EBPP[A 1 G 4 I 1 ] 6 is located higher than -HPC5. It has been previously reported that EBP shifted about 20% more than the theoretical molecular weight on SDS-PAGE (McPherson, DT; Xu, J.; Urry, DW Protein Expression Purif. 1996, 7 (1), 51) -7.; Meyer, DE; Chilkoti, A. Biomacromolecules 2002, 3 (2), 357-367.; McDaniel, JR; MacKay, JA; Quiroz, FG; Chilkoti, A. Biomacromolecules 2010, 11 (4), 944 -952.). Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 is EBPP[A 1 G 4 I 1 ] 6 Two-block HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer -EBPP[A 1 G 4 I 1 ] 6 -Since it has a longer EBP block than -HPC5, anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 is HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 It was located higher than -HPC5.

융합 단백질 케이지의 열적 민감도는 온도가 증가함에 따라 폴리펩타이드 용액의 흡광도를 측정함으로써 상전이를 관찰하기 위해 특성화되었다. 혼탁도 프로파일(Turbidity profiles)은 1 ℃/min 속도로 가열하면서 10 mM PBS에서 25 μM 융합 단백질 케이지의 흡광도를 350nm에서 측정함으로써 작성되었다(Figure 3(A)). 상전이 온도 (Tt)는 도 3(A)에 도시된 각 열적 플롯(thermal plot)의 변곡점(inflection point)로 규명되었고, 표 3에 요약되었다. The thermal sensitivity of the fusion protein cage was characterized to observe the phase transition by measuring the absorbance of the polypeptide solution with increasing temperature. Turbidity profiles were prepared by measuring the absorbance of a 25 μM fusion protein cage at 350 nm in 10 mM PBS while heating at 1 °C/min (Figure 3(A)). The phase transition temperature (T t ) was identified as an inflection point of each thermal plot shown in FIG. 3(A), and is summarized in Table 3.

[표 3][Table 3]

Figure pat00003
Figure pat00003

Tt에서의 혼탁도는 융합 단백질 케이지의 자가조립된 케이지 구조에 의한 것으로, Tt이상 온도에서 흡광도가 증가했다. HPC4-EBPP[A1G4I1]12-HPC5, 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 Tt는 각각 55.12, 52.24, 44.17, 및 44.37℃였다. 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5는 HPC4-EBPP[A1G4I1]12-HPC5의 Tt보다 2.85℃ 감소했다. 하지만, HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 및 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 Tt는 별다른 차이를 보이지 않았다. PEDF 34-mer를 포함하는 융합 단백질 케이지는 PEDF 34-mer를 포함하지 않는 융합 단백질 케이지보다 더 낮은 Tt를 가졌다. HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 및 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 HPC4-EBPP[A1G4I1]12-HPC5 및 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5의 Tt보다 각각 10.85℃ 및 7.90℃ 낮았다. HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 및 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 삼중블럭의 EBPP[A1G4I1]6-PEDF 34-mer-EBPP[A1G4I1]6를 가지며 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5는 단일블럭의 EBPP[A1G4I1]12를 가졌다. 심지어 융합 단백질 케이지의 EBP 길이가 동일하다고 하더라도, 삼중블럭의 EBPP[A1G4I1]6-PEDF 34-mer-EBPP[A1G4I1]6의 EBP 블럭 수가 단일블럭의 EBPP[A1G4I1]12보다 2배 많았다. EBP 블럭이 분할되고 PEDF 34-mer이 삽입됨에 따라 융합 폴리펩타이드의 Tt는 감소했다. The turbidity at T t is due to the self-assembled cage structure of the fusion protein cage, and the absorbance increased at a temperature above T t . HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34- mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 The T t of were 55.12, 52.24, 44.17, and 44.37°C, respectively. Wherein -Flt1-HPC4-EBPP [A 1 G 4 I 1] 12 -HPC5 is HPC4-EBPP [A 1 G 4 I 1] decreased 2.85 ℃ than 12 -HPC5 T t. However, HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 and anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6- The T t of PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 showed no significant difference. The fusion protein cage with PEDF 34-mer had a lower T t than the fusion protein cage without PEDF 34-mer. HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 and anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34 -mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is a combination of HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 and anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5. It was 10.85 °C and 7.90 °C lower than the T t , respectively. HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 and anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34 -mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 has triple-block EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 and has anti-Flt1 -HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 had a single block of EBPP[A 1 G 4 I 1 ] 12 . Even if the EBP length of the fusion protein cage is the same, the number of EBP blocks of the triple block EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 of the single block EBPP[ A 1 G 4 I 1 ] 2 times more than 12 . As the EBP block was split and PEDF 34-mer was inserted, the T t of the fusion polypeptide decreased.

융합 단백질 케이지에 기반을 둔 HPC는 Tt보다 낮은 온도에서 케이지 구조로 자가조립되었고, Tt보다 높은 온도에서 응집되었다. 그들의 자가조립과 응집은 동적 광산란(DLS)에 의해 특성화되었다. 10 mM PBS에서 25 μM 융합 단백질 케이지의 유체역학적 반경(RH)은 25 ~ 60 ℃ 온도 범위에서, 1℃/min의 가열속도로 각 온도에서 11회 측정되었다. 그들의 Tt는 도 3(B)의 각 열적 플롯의 변곡점으로서 규명되었고, 표 2에 요약되었다. Tt보다 낮은 온도에서 HPC4-EBPP[A1G4I1]12-HPC5, 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5, HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5, 및 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 RH는 각각 20.97, 26.27, 42.90, 및 28.93 nm였다. 이전에 보고된 자가조립된 케이지 구조의 반경은 12 nm였다. 융합 단백질 케이지의 RH는 노출 부위의 EBP 때문에 HPC 케이지 구조의 보고된 크기보다 더 큰 것으로 나타났다. 가용성의 유니머(unimer) EBP의 크기는 약 10 nm로 보고되었다. 융합 단백질 케이지 구조의 측정된 RH는 20 nm보다 더 컸으며, 이는 가용성 EBP를 가진 자가조립된 케이지 구조의 예상되는 RH(16~ nm)와 일치한다. Tt 이상의 온도에서, 그들의 RH는 순간적으로 응집값(value of aggregation)인 1000nm 넘게 증가했다. 융합 단백질 케이지는 Tt보다 낮은 온도에서 자가조립되었고, Tt보다 높은 온도에서 응집되었다는 결과는 혼탁도 프로파일 결과와 일치한다.HPC-based fusion protein was assembled cage itself to the cage structure at a temperature below T t, aggregation was at a temperature above T t. Their self-assembly and aggregation were characterized by dynamic light scattering (DLS). The hydrodynamic radius (R H ) of the 25 μM fusion protein cage in 10 mM PBS was measured 11 times at each temperature at a heating rate of 1° C./min in a temperature range of 25 to 60° C. Their T t was identified as the inflection point of each thermal plot in Fig. 3(B) and is summarized in Table 2. HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, HPC4- EBPP[A 1 G 4 I 1 ] at a temperature lower than T t ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5, and anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 The R H of I 1 ] 6 -HPC5 were 20.97, 26.27, 42.90, and 28.93 nm, respectively. The previously reported self-assembled cage structure had a radius of 12 nm. The R H of the fusion protein cage was found to be larger than the reported size of the HPC cage structure due to the EBP at the exposed site. The size of the soluble unmer EBP was reported to be about 10 nm. The measured R H of the fusion protein cage structure was greater than 20 nm, which is consistent with the expected R H (16-nm) of the self-assembled cage structure with soluble EBP. At temperatures above T t , their R H instantaneously increased above 1000 nm, the value of aggregation. Fusion protein was assembled cage woman at a temperature lower than T t, the result was aggregated at a temperature above T t is turbidity corresponds to the profile results.

융합 단백질 케이지의 항-혈관신생 기능은 체외에서(in vitro) HUVECs의 세포 이동 및 튜브 형성 조사에 의해 연구되었다. HUVECs의 세포 이동 및 튜브 형성 저해 효과를 연구하기 위해, calcein-표지된 HUVECs에 50 ng/ml의 인간 재조합 VEGF-165 (rhVEGF165)가 첨가된 마트리겔에서 융합 단백질 케이지를 상이한 농도로 4시간 동안 처리했다. 각 신생혈관 억제용 펩타이드(항-Flt1 펩타이드 및 PEDF 34-mer)와 농도와의 관계를 평가하기 위해, 0.01 nM, 0.1nM, 1 nM, 10 nM, 0.1 uM, 1 uM, 및 1 uM의 HPC4-EBPP[A1G4I1]12-HPC5가 제외된 융합 단백질 케이지를 HUVECs와 함께 배양했다. 대조군으로서, 신생혈관 억제용 펩타이드가 없는 HPC4-EBPP[A1G4I1]12-HPC5가 4종류의 농도(0.01 nM, 1 nM, 0.1 uM)로 HUVECs에 처리되었다. 각 조건에서 HUVECs의 튜브 형성 저해는 도 4(A)에 도시되었고, 각 융합 단백질 케이지의 정량화된 저해 효과는 도 4(A)의 형광 이미지에서 HUVECs의 튜브 길이로부터 계산된 도 4(B)에 도시되었다. 기타 처리 없는 배지에서 배양한 HUVECs의 튜브 길이를 0 %로 설정하고, 세포 이동 및 튜브 형성을 유발하기 위해 rhVEGF165를 처리한 HUVECs의 튜브 길이를 100%로 설정하여, 각 농도에서의 튜브 길이를 정상화했다.The anti-angiogenic function of the fusion protein cage was studied by investigating the cell migration and tube formation of HUVECs in vitro . To study the cell migration and tube formation inhibitory effects of HUVECs, fusion protein cages were treated at different concentrations for 4 hours in Matrigel with 50 ng/ml of human recombinant VEGF-165 (rhVEGF165) added to calcein-labeled HUVECs. did. To evaluate the relationship between each angiogenesis inhibitory peptide (anti-Flt1 peptide and PEDF 34-mer) and concentration, 0.01 nM, 0.1 nM, 1 nM, 10 nM, 0.1 uM, 1 uM, and 1 uM of HPC4 -EBPP[A 1 G 4 I 1 ] 12 -HPC5-excluded fusion protein cages were incubated with HUVECs. As a control, HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 without angiogenesis inhibitory peptide was treated with HUVECs at four concentrations (0.01 nM, 1 nM, 0.1 uM). The inhibition of tube formation of HUVECs in each condition is shown in Fig. 4(A), and the quantified inhibitory effect of each fusion protein cage is shown in Fig. 4(B) calculated from the tube length of HUVECs in the fluorescence image of Fig. 4(A). Was shown. The tube length of HUVECs cultured in a medium without other treatments was set to 0%, and the tube length of HUVECs treated with rhVEGF165 was set to 100% to induce cell migration and tube formation, and the tube length at each concentration was normalized. did.

HPC4-EBPP[A1G4I1]12-HPC5를 처리한 HUVECs는 HPC4-EBPP[A1G4I1]12-HPC5의 농도에 상관없이, rhVEGF165와 배양한 HUVECs와 튜브 길이가 유사하다는 결과를 보였다. 이는 HPC4-EBPP[A1G4I1]12-HPC5가 HUVECs의 튜브 형성에 대해서 아무런 효과가 없다는 점을 의미한다. HPC4-EBPP[A1G4I1]12-HPC5를 제외하고, 다른 세 융합 단백질 케이지는 다양한 범위의 농도에서 저해효과를 보였다. 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5와 함께 배양한 HUVECs의 튜브 형성은 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5의 농도가 100 nM - 1 uM 범위로 증가함에 따라 감소했다. HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 항-Flt1-HPC4-EBPP[A1G4I1]12-HPC5가 HUVECs 튜브 형성에 대해 아무런 효과가 없는 0.01 nM-0.1nM 농도 범위에서 HUVECs의 튜브 형성을 저해했다. 1 nM 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5를 처리한 HUVECs는 가장 낮은 튜브 형성을 보였고, 그들의 튜브 형성은 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 농도가 0.01 nM - 1 nM로 증가함에 따라 감소했다. 항 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 본 발명에서 대부분의 넓은 범위의 농도에서 효과적으로 HUVECs 튜브 형성을 저해했다. 융합 단백질 케이지의 농도가 효과적인 농도 범위보다 더 높은 경우, PEDF 34-mer 펩타이드를 포함하는 융합 단백질 케이지를 처리한 HUVECs는 rhVEGF165와 함께 배양한 HUVECs와 비슷한 튜브 형성 정도를 보였다. 이전 보고에서는, PEDF 34-mer 펩타이드는 염기성 섬유아세포 성장인자(bFGF) 및 혈관내피 성장인자(VEGF)의 형질전환을 저해하기 위한 NFAT (nuclear factor of activated T cells)의 불활성화와 JNK (c-jun N-terminal kinase)의 활성화를 통한 내생적인 카스페이즈 저해제(endogenous caspase inhibitor) 및 c-FLIP (FLICE-like inhibitory protein)의 발현을 방해함으로써 신생혈관 억제를 유발했다. 한편, JNK는 내피세포(endothelial cell, EC)에서 혈관 신생의 양성조절자(positive regulator)로 보고되었다. JNK의 저해는 3D 모세관 스프라우트 배양(3D capillary sprout culture)에서 EC의 스프라우트 성장(sprout growth)를 희석시켰고, EC의 세포 성장 및 이동을 축소시켰으며, 세포 성장 및 이동에 관여하는 유전자 조절자인 전사인자 Egr-1의 단백질 수준을 감소시켰다. 이러한 보고는 HUVECs 튜브 형성 조사에서 PEDF 34-mer를 포함하는 융합 단백질 케이지가 보다 높은 농도에서 효과가 없는 이유에 대한 설명을 제공한다. HPC4-EBPP [A 1 G 4 I 1] HUVECs treated with 12 -HPC5 is HPC4-EBPP [A 1 G 4 I 1] that, regardless of the concentration of 12 -HPC5, similar to that of the HUVECs with the tube length and the culture rhVEGF165 Showed results. This means that HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 has no effect on tube formation of HUVECs. Except for HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5, the other three fusion protein cages showed inhibitory effects in a wide range of concentrations. Wherein -Flt1-HPC4-EBPP [A 1 G 4 I 1] Tube formation of HUVECs incubated with 12 -HPC5 anti -Flt1-HPC4-EBPP [A 1 G 4 I 1] 100 nM concentration of 12 -HPC5 -Decreased with increasing to 1 uM range. HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 12 -HPC5 is Tube formation of HUVECs was inhibited in the concentration range of 0.01 nM-0.1 nM, which had no effect on HUVECs tube formation. HUVECs treated with 1 nM anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 showed the lowest tube formation, and their tubes Formation decreased as the concentration of anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 increased to 0.01 nM-1 nM. . Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 effectively forms HUVECs tubes in a wide range of concentrations in the present invention Inhibited. When the concentration of the fusion protein cage was higher than the effective concentration range, the HUVECs treated with the fusion protein cage containing the PEDF 34-mer peptide showed a degree of tube formation similar to that of the HUVECs cultured with rhVEGF165. In a previous report, PEDF 34-mer peptide was used to inhibit the transformation of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), and inactivation of nuclear factor of activated T cells (NFAT) and JNK (c- jun N-terminal kinase) inhibited the expression of endogenous caspase inhibitors and c-FLIP (FLICE-like inhibitory protein), thereby inducing angiogenesis. On the other hand, JNK has been reported as a positive regulator of angiogenesis in endothelial cells (EC). Inhibition of JNK dilutes sprout growth of EC in 3D capillary sprout culture, reduces cell growth and migration of EC, and is a gene regulator involved in cell growth and migration. The protein level of the transcription factor Egr-1 was reduced. This report provides an explanation for why fusion protein cages containing PEDF 34-mer are ineffective at higher concentrations in the investigation of HUVECs tube formation.

가장 효과적인 항-혈관신생 기능을 보인 항 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 이미징 프로브(imaging probe)로서 형광 염료와 콘쥬게이션되었다. 말레이미드 개질화된 형광염료는 HPC에서 티올에 콘쥬게이션되었고, 폴리펩타이드에 대한 형광 염료의 콘쥬게이션은 SDS-PAGE에 의해 질적으로 확인되었고, 도 5(A)에 도시되었다. 형광 염료가 콘쥬게이션된 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 SDS-PAGE에서 젤 염색 없이 UV 광선 노출에 의해 시각화되었다. 도 5(A)(b)에서 UV light 하 염료-콘쥬게이션된 폴리펩타이드의 위치를 명시야에서 마커와 비교했으며, 그 위치는 구리 염색한 SDS-PAGE 겔상에서 염료-콘쥬게이션 전인 융합 폴리펩타이드(도 5(A)(a))와 일치했다. 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5에 대한 염료 콘쥬게이션은 형광 스펙트럼에 의해 확인되었는데, 형광 염료-콘쥬게이션된 융합 단백질 케이지는 형광 스펙트럼을 보인 반면, 콘쥬게이션 전인 융합 단백질 케이지는 아무런 형광 신호를 보이지 않았다(도 5(B)). HUVEC은 45-웰 플레이트에 뿌려지고, 표면에 부착되어 밤새 배양되었다. HUVEC은 1uM 또는 10 uM 염료-콘쥬게이션된 폴리펩타이드와 함께 15, 30, 및 60분동안 배양되었다. 도 5(C)는 염료-콘쥬게이션된 폴리펩타이드가 처리된 HUVEC의 형광 이미지 및 명시야의 병합된 이미지를 보여준다. HUVECs의 모양은 염료-콘쥬게이션된 폴리펩타이드의 농도 및 배양시간이 길어질수록 둥글어지며, 둥근 세포는 형광 신호를 나타낸다. 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 항-Flt1펩타이드는 HUVEC 막에서 VEGFR1 (Flt1)에 결합되며, VEGF가 VEGFR1에 결합하는 것을 방해하여 세포 내 혈관신생 신호를 저해한다. VEGFR1에 의해 유발되는 세포 내 혈관신생 신호 중 하나는 PI-3K (phosphatidylinositol 3-kinase) 경로로, 라멜리도피아(lamellipodia) 돌출(protrude) 및 세포 신장을 위해 액틴-조절 단백질(actin-regulating protein)을 조정함으로써 세포 이동동안 내피세포의 운동성(motility)을 조절한다. 도 5(C)에 도시된 HUVEC의 형광 이미지에서, 고농도의 염료-콘쥬게이션된 폴리펩타이가 장시간 처리된 HUVEC는 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 항-Flt1와 더 많이 상호작용했고, HUVECs은 둥글어져 형광 신호를 나타냈다. Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5, which showed the most effective anti-angiogenic function, is an imaging probe. ) As a fluorescent dye. The maleimide-modified fluorescent dye was conjugated to thiol in HPC, and the conjugation of the fluorescent dye to the polypeptide was qualitatively confirmed by SDS-PAGE, and is shown in FIG. 5(A). Fluorescent dye-conjugated anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is UV light without gel staining on SDS-PAGE. Visualized by exposure. In Figure 5 (A) (b), the position of the dye-conjugated polypeptide under UV light was compared with the marker in the bright field, and the position was on a copper-stained SDS-PAGE gel before dye-conjugation. It coincided with Fig. 5(A)(a)). The dye conjugation to anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 was confirmed by fluorescence spectra, a fluorescent dye- The conjugated fusion protein cage showed a fluorescence spectrum, whereas the fusion protein cage before conjugation showed no fluorescence signal (Fig. 5(B)). HUVECs were sprinkled on 45-well plates, attached to the surface and incubated overnight. HUVECs were incubated for 15, 30, and 60 minutes with 1 uM or 10 uM dye-conjugated polypeptide. Figure 5(C) shows a fluorescent image of a dye-conjugated polypeptide-treated HUVEC and a merged image of a bright field. The shape of HUVECs becomes rounder as the concentration and incubation time of the dye-conjugated polypeptide increases, and round cells show a fluorescent signal. Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 The anti-Flt1 peptide of -HPC5 binds to VEGFR1 (Flt1) in the HUVEC membrane and , VEGF inhibits the binding of VEGFR1 to inhibit intracellular angiogenesis signals. One of the intracellular angiogenesis signals induced by VEGFR1 is the PI-3K (phosphatidylinositol 3-kinase) pathway, an actin-regulating protein for lamellipodia protrude and cell elongation. ) To regulate endothelial cell motility during cell migration. In the fluorescence image of HUVECs shown in FIG. 5(C), HUVECs treated with a high concentration of dye-conjugated polypeptide for a long time were anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34- mer-EBPP[A 1 G 4 I 1 ] 6 interacted more with anti-Flt1 of -HPC5, and HUVECs rounded up to show a fluorescent signal.

세포 이미징 프로브(cell imaging probe)로서 융합 폴리펩타이드의 응용은 형광 HUVEC 이미지를 통해 연구되었다. 융합 폴리펩타이드의 다른 응용으로는 케이지 구조 내부에서 금 나노입자(AuNP)를 합성하여 라만 센싱(Raman sensing)을 위해 라만 염료에 도입하는 것이다. 융합 단백질 케이지의 HPC는 금 이온을 포함하는 무기 이온 결합 부위를 가졌다. 가장 효과적으로 혈관신생을 저해하여 세포 이미징 프로브로서 잠재력이 있는 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5는 HPC에 배위결합되기 위해 금 이온과 배양되었다. HPC에 배위결합된 금 이온은 환원제에 의해 금 시드로 환원되었고, 금 시드는 금 이온과 환원제의 첨가에 따라 금 나노입자로 성장했다. 도 6(A)는 (a) 금 이온과 배양되기 전, (b) 금 이온 첨가 및 첫번째 환원 후, 및 (c) 두번째 환원 후 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5의 크기를 보여준다. 각 단계에서 UV-VIS 흡광도는 도 6(B)에 도시되어 있다. 배위결합된 금 이온은 환원되고, HPC 내부에 시드를 형성했으며, 시드는 빈 구멍이 채워질 때까지 성장했다. 융합 단백질 케이지의 크기는 도 6(A)에 도시된 바와 같이 AuNP 합성동안 일정했다. AuNP의 합성은 흡광 스펙트럼에 의해 입증되었으며, 두번째 환원 이후 오직 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5만이 AuNP로부터 520 nm에서 흡광도를 보였다(도 6(B)). 도 6(C)는 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 내부에서 AuNP의 TEM 이미지를 도시했다. AuNP의 크기는 약 10 nm로, 보고된 HPC의 내부 구멍의 반경과 일치했다. AuNP- 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 복합체를 라만 프로브(Raman probe)로서 평가하기 위해, 라만 염료인 MGITC (Malachite Green isothiocyanate)를 HPC의 pH 반응성을 이용하여 AuNP 표면에 도입했다. HPC는 가역적인 pH 반응성을 가져 산성 조건에서 구조가 붕괴되고, 자연 pH에서 본래 구조로 회복된다. AuNP- 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5복합체의 HPC는 AuNP 표면에 MGITC를 도입하기 위해 pH를 6으로 감소시킴에 따라 느슨해졌고, pH 7.4로 적응시킴에 따라 구조를 회복했다. 10 nM MGITC와 배양된 AuNP- 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 복합체는 도 6(D)에서 의미 있는 라만 스펙트럼을 보여줬다. 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 의 세포 이미징 및 라만 프로브로서의 잠재력은 상기 HUVEC 이미징 및 라만 스펙트럼을 통해 증명되었다.The application of the fusion polypeptide as a cell imaging probe has been studied through fluorescence HUVEC images. Another application of the fusion polypeptide is to synthesize gold nanoparticles (AuNPs) inside the cage structure and introduce them to Raman dyes for Raman sensing. The HPC of the fusion protein cage had an inorganic ion binding site containing gold ions. Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is HPC, which has the most effective inhibition of angiogenesis and has the potential as a cell imaging probe. It was incubated with gold ions to coordinate The gold ions coordinated to the HPC were reduced to gold seeds by a reducing agent, and the gold seeds grew into gold nanoparticles by the addition of gold ions and a reducing agent. Figure 6(A) shows (a) before incubation with gold ions, (b) after addition of gold ions and first reduction, and (c) after second reduction, anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 Shows the size of -HPC5. UV-VIS absorbance at each step is shown in Fig. 6(B). Coordinated gold ions were reduced, seeded inside the HPC, and the seed grew until the empty pores were filled. The size of the fusion protein cage was constant during AuNP synthesis as shown in Fig. 6(A). The synthesis of AuNP was verified by the absorption spectrum, after the second reduction, only anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5 The absorbance was shown at 520 nm from AuNP (Fig. 6(B)). 6(C) shows a TEM image of AuNP in the anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5. The size of the AuNP was about 10 nm, consistent with the radius of the reported inner hole of the HPC. To evaluate the AuNP-anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 complex as a Raman probe, Raman The dye MGITC (Malachite Green isothiocyanate) was introduced on the AuNP surface using the pH reactivity of HPC. HPC has reversible pH reactivity, so the structure collapses under acidic conditions and restores its original structure at natural pH. AuNP- anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC of HPC5 complex adjusts the pH to introduce MGITC to the AuNP surface. It loosened as it decreased to 6, and the structure was restored upon adapting to pH 7.4. AuNP-anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5 complex incubated with 10 nM MGITC is shown in FIG. 6(D) It showed a meaningful Raman spectrum. The potential of anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5 as a cell imaging and Raman probe is based on the HUVEC imaging and Raman spectrum. Proved through.

다가성 이중 신생혈관 억제용 펩타이드를 가진 융합 단백질 케이지인 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 는 케이지 구조로 자가조립하는 것을 방해하지 않으면서 항-혈관신생 펩타이드인 항-Flt1 펩타이드 및 PEDF 34-mer를 노출시키기 위해 유전적 수준에서 정확히 통제되었다. 두 종류의 항-혈관신생 펩타이드인 항-Flt1 펩타이드 및 PEDF 34-mer는 신생혈관 억제를 위한 상이한 메커니즘을 가졌으며, 이는 세포 내 신호와 연관되어 있었다. 항-Flt1-펩타이드는 혈관신생을 위한 세포 내 신호를 저해했고, PEDF 34-mer는 항-혈관신생 신호를 유발했다. 이러한 상이한 메커니즘은 체외(in vitro) 튜브 형성 조사에서 융합 단백질 케이지의 투여량(dose)에 영향을 미쳤다. HUVECs의 체외 튜브 형성 조사에서, 융합 단백질 케이지는 폴리펩타이드의 농도가 항-혈관신생 펩타이드의 종류에 따라 증가함에 따라 점진적으로 HUVECs의 튜브 형성을 감소시켰다. 항-Flt1 펩타이드를 가진 융합 단백질 케이지는 uM 범위에서 항-혈관신생 효과를 보인 반면, PEDF 34-mer를 가진 융합 단백질 케이지는 nM 범위에서 HUVEC의 튜브 형성을 저해했다. 두 항-혈관신생 펩타이드를 포함하는 융합 단백질 케이지인 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 는 대부분의 넓은 농도 범위에서 가장 큰 저해효과를 보였다. 형광 염료-콘쥬게이션된 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 는 HUVEC 이미징에 의해 조사된 세포 신장(cell extension) 저해에 대해서 세포 이미징 프로브(cell imaging probe)로서의 능력을 보였다. AuNP- 항-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 는 AuNP 표면에 MGITC를 도입함으로써 라만 스펙트럼(Raman spectra)을 제안했다. 본 발명에 따른 두 상이한 항-혈관신생 펩타이드 및 HPC를 포함하는 융합 단백질 케이지는 항-혈관신생을 위한 치료용 펩타이드이자, 항-혈관신생 관련 질환의 과정을 추적하는 데 엄청난 잠재력이 있다.Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is a cage with a multivalent double angiogenesis inhibitory peptide. It was precisely controlled at the genetic level to expose anti-angiogenic peptides, anti-Flt1 peptide and PEDF 34-mer, without interfering with self-assembly into structures. Two types of anti-angiogenic peptides, anti-Flt1 peptide and PEDF 34-mer, had different mechanisms for angiogenesis inhibition, which were associated with intracellular signaling. Anti-Flt1-peptide inhibited intracellular signals for angiogenesis, and PEDF 34-mer triggered anti-angiogenic signals. These different mechanisms influenced the dose of the fusion protein cage in the in vitro tube formation investigation. In the investigation of in vitro tube formation of HUVECs, the fusion protein cage gradually decreased tube formation of HUVECs as the concentration of the polypeptide increased with the type of anti-angiogenic peptide. The fusion protein cage with anti-Flt1 peptide showed anti-angiogenic effects in the uM range, while the fusion protein cage with PEDF 34-mer inhibited the tube formation of HUVECs in the nM range. Anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer-EBPP[A 1 G 4 I 1 ] 6 -HPC5, a fusion protein cage containing two anti-angiogenic peptides It showed the greatest inhibitory effect in a wide concentration range. Fluorescent dye-conjugated anti-Flt1-HPC4-EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is the cell elongation irradiated by HUVEC imaging ( Cell extension) inhibition, showed the ability as a cell imaging probe. AuNP- anti-Flt1-HPC4- EBPP[A 1 G 4 I 1 ] 6 -PEDF 34-mer- EBPP[A 1 G 4 I 1 ] 6 -HPC5 is Raman spectra by introducing MGITC to the AuNP surface. Suggested. The fusion protein cage comprising two different anti-angiogenic peptides and HPCs according to the present invention is a therapeutic peptide for anti-angiogenesis, and has tremendous potential for tracking the course of anti-angiogenic related diseases.

자가조립 단백질 나노구조체(self-assembled protein nanostructures)는 테라노스틱스 및 나노메디슨에 이용하기 위해 기능적인 펩타이드와의 융합에 의해 연구되어 왔다. 본 발명에서는 혈관내피 성장인자 수용체 타겟팅 펩타이드(vascular endothelial growth factor receptor (VEGFR) targeting peptide), 혈관생성억제용 상피유래인자 34-mer 펩타이드(functional 34-mer peptide of pigment epithelial-derived factor, PEDF), 온도 반응성을 가지는 엘라스틴 기반 폴리펩타이드(elastin-based polypeptide, EBP), 및 헬릭스 기반 단백질 케이지(helix-based protein cage, HPC)로 구성된 융합 폴리펩타이드를 유전공학적으로 제조한 후, E. coli에서 과발현하고, 비크로마토그래피 방법의 일환으로서 역전이 순환(inverse transition cycling, ITC)로 정제하였다. VEGFR 타겟팅 펩타이드 및 신혈관 생성 억제능(anti-angiogenic)이 있는 PEDF 34-mer 펩타이드는 자가조립된 단백질 케이지에 노출되었으며, EBPs는 비크로마토그래피 정제 태그로서 도입되었다. 다가성 이중 신생혈관 억제용 펩타이드를 가진 융합 단백질 케이지의 물리화학적 성질과 DySA (Dynamic self-assembly)가 특성화되었다. 융합 단백질 케이지는 마트리겔(matrigel)에서 세포 이동과 인간 탯줄 정맥 내피세포(human umbilical vein endothelial cells, HUVECs)의 튜브 형성을 저해했으며, 이는 신생혈관 억제를 위한 나노단위 바이오 의약품으로서의 가능성을 보여주었다. 융합 단백질 케이지는 신생혈관 억제 효과를 가지므로, 형광 염료를 단백질 케이지 또는 금속 나노입자(metallic nanoparticles, MNPs)에 화학적으로 콘쥬게이션(conjugation)함으로써 융합 단백질 케이지가 형광 나노프로브(fluorescent nanoprobes) 또는 무기-유기 하이브리드 표면증강 라만산란법 나노프로브(inorganic-organic hybrid SERS nanoprobes)로 제조되었다. 예를 들어 금, 은, 구리, 및 철 나노입자가 라만 염료(Raman dye)와 화학적으로 콘쥬게이션되어 테라노스틱스 및 나노메디슨 응용을 위해 표지하는데 활용될 수 있다. 본 발명은 다가성 이중 신생혈관 억제용 펩타이드를 가진 융합 단백질 케이지가, 통제되지 않는 망막, 각막, 및 맥락막 신생혈관 질환, 종양 성장, 암세포 전이, 당뇨병성 망막증, 및 천식의 치료제이자 동시에 그들의 성장에 대한 바이오이미징 및 바이오센싱으로서 테라노스틱스 및 나노메디슨 분야에 이용될수 있다는 것을 보여준다.Self-assembled protein nanostructures have been studied by fusion with functional peptides for use in theranostics and nanomedicines. In the present invention, a vascular endothelial growth factor receptor (VEGFR) targeting peptide, a functional 34-mer peptide of pigment epithelial-derived factor (PEDF) for inhibiting angiogenesis, After genetically engineering a fusion polypeptide consisting of an elastin-based polypeptide (EBP) having temperature reactivity and a helix-based protein cage (HPC), it was overexpressed in E. coli . , As part of a non-chromatographic method, it was purified by inverse transition cycling (ITC). The VEGFR targeting peptide and the anti-angiogenic PEDF 34-mer peptide were exposed to the self-assembled protein cage, and EBPs were introduced as non-chromatographic purification tags. The physicochemical properties and DySA (Dynamic self-assembly) of a fusion protein cage with a multivalent double angiogenesis inhibitory peptide were characterized. The fusion protein cage inhibited cell migration and tube formation of human umbilical vein endothelial cells (HUVECs) in the matrigel, which showed the potential as a nano-unit biopharmaceutical for the inhibition of angiogenesis. Since the fusion protein cage has an angiogenesis inhibitory effect, a fluorescent dye is chemically conjugated to the protein cage or metallic nanoparticles (MNPs), so that the fusion protein cage can be converted into fluorescent nanoprobes or inorganic- The organic hybrid surface-enhanced Raman scattering method was prepared with nanoprobes (inorganic-organic hybrid SERS nanoprobes). For example, gold, silver, copper, and iron nanoparticles can be chemically conjugated with a Raman dye to be used to label for teranostic and nanomedicine applications. The present invention is a fusion protein cage having a multivalent double angiogenesis inhibitory peptide, a therapeutic agent for uncontrolled retinal, corneal, and choroidal neovascular disease, tumor growth, cancer cell metastasis, diabetic retinopathy, and asthma, and at the same time for their growth It shows that it can be used in the field of teranostics and nanomedicine as bioimaging and biosensing for Korea.

<110> Industry-University Cooperation Foundation Hanyang University ERICA Campus <120> Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications <130> DHP19-253P <150> KR 19/0045484 <151> 2019-04-18 <160> 22 <170> KoPatentIn 3.0 <210> 1 <211> 156 <212> PRT <213> Artificial Sequence <220> <223> helix-based protein cage <400> 1 Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala Val 1 5 10 15 Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu Ser 20 25 30 Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val Ser 35 40 45 His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu Arg 50 55 60 Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln Asp 65 70 75 80 Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala Met 85 90 95 Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu Asp 100 105 110 Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp Phe 115 120 125 Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys Met 130 135 140 Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly 145 150 155 <210> 2 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> helix-based protein cage <400> 2 Pro Glu Ala Gly Leu Gly Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys 1 5 10 15 His Asp <210> 3 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Anti-Flt1 peptide <400> 3 Gly Asn Gln Trp Phe Ile 1 5 <210> 4 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> PEDF 34-mer <400> 4 Asp Pro Phe Phe Lys Val Pro Val Asn Lys Leu Ala Ala Ala Val Ser 1 5 10 15 Asn Phe Gly Tyr Asp Leu Tyr Arg Val Arg Ser Ser Thr Ser Pro Thr 20 25 30 Thr Asn <210> 5 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 5 Val Pro Gly Gly Gly Val Pro Gly Ala Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 6 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 6 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 7 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> helix-based protein cage <400> 7 Val Pro Gly Gly Gly Val Pro Gly Lys Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 8 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 8 Val Pro Ala Gly Gly Val Pro Ala Lys Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 9 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 9 Val Pro Gly Gly Gly Val Pro Gly Asp Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 10 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 10 Val Pro Ala Gly Gly Val Pro Ala Asp Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 11 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 11 Val Pro Gly Gly Gly Val Pro Gly Glu Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 12 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 12 Val Pro Ala Gly Gly Val Pro Ala Glu Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 13 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 13 Gly Asn Gln Trp Phe Ile 1 5 <210> 14 <211> 360 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 14 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 20 25 30 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 35 40 45 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 50 55 60 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 65 70 75 80 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 85 90 95 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 100 105 110 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 115 120 125 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 130 135 140 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 145 150 155 160 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 165 170 175 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 180 185 190 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 195 200 205 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 210 215 220 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 225 230 235 240 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 245 250 255 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 260 265 270 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 275 280 285 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 290 295 300 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 305 310 315 320 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 325 330 335 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 340 345 350 Ala Ile Gly Val Pro Ala Gly Gly 355 360 <210> 15 <211> 534 <212> PRT <213> Artificial Sequence <220> <223> HPC4-EBPP[A1G4I1]12-HPC5 <400> 15 Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala Val 1 5 10 15 Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu Ser 20 25 30 Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val Ser 35 40 45 His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu Arg 50 55 60 Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln Asp 65 70 75 80 Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala Met 85 90 95 Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu Asp 100 105 110 Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp Phe 115 120 125 Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys Met 130 135 140 Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly Val Pro Ala Gly 145 150 155 160 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 165 170 175 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 180 185 190 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 195 200 205 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 210 215 220 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 225 230 235 240 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 245 250 255 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 260 265 270 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 275 280 285 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 290 295 300 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 305 310 315 320 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 325 330 335 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 340 345 350 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 355 360 365 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 370 375 380 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 385 390 395 400 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 405 410 415 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 420 425 430 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 435 440 445 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 450 455 460 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 465 470 475 480 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 485 490 495 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 500 505 510 Pro Ala Gly Gly Pro Glu Ala Gly Leu Gly Glu Tyr Leu Phe Glu Arg 515 520 525 Leu Thr Leu Lys His Asp 530 <210> 16 <211> 540 <212> PRT <213> Artificial Sequence <220> <223> Anti-Flt1-HPC4-EBPP[A1G4I1]12-HPC5 <400> 16 Gly Asn Gln Trp Phe Ile Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr 1 5 10 15 Asp Val Glu Ala Ala Val Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala 20 25 30 Ser Tyr Thr Tyr Leu Ser Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val 35 40 45 Ala Leu Glu Gly Val Ser His Phe Phe Arg Glu Leu Ala Glu Glu Lys 50 55 60 Arg Glu Gly Tyr Glu Arg Leu Leu Lys Met Gln Asn Gln Arg Gly Gly 65 70 75 80 Arg Ala Leu Phe Gln Asp Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly 85 90 95 Lys Thr Pro Asp Ala Met Lys Ala Ala Met Ala Leu Glu Lys Lys Leu 100 105 110 Asn Gln Ala Leu Leu Asp Leu His Ala Leu Gly Ser Ala Arg Thr Asp 115 120 125 Pro His Leu Cys Asp Phe Leu Glu Thr His Phe Leu Asp Glu Glu Val 130 135 140 Lys Leu Ile Lys Lys Met Gly Asp His Leu Thr Asn Leu His Arg Leu 145 150 155 160 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 165 170 175 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 180 185 190 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 195 200 205 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 210 215 220 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 225 230 235 240 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 245 250 255 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 260 265 270 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 275 280 285 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 290 295 300 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 305 310 315 320 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 325 330 335 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 340 345 350 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 355 360 365 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 370 375 380 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 385 390 395 400 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 405 410 415 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 420 425 430 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 435 440 445 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 450 455 460 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 465 470 475 480 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 485 490 495 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 500 505 510 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Pro Glu Ala Gly Leu Gly 515 520 525 Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys His Asp 530 535 540 <210> 17 <211> 568 <212> PRT <213> Artificial Sequence <220> <223> HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 <400> 17 Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala Val 1 5 10 15 Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu Ser 20 25 30 Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val Ser 35 40 45 His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu Arg 50 55 60 Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln Asp 65 70 75 80 Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala Met 85 90 95 Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu Asp 100 105 110 Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp Phe 115 120 125 Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys Met 130 135 140 Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly Val Pro Ala Gly 145 150 155 160 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 165 170 175 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 180 185 190 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 195 200 205 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 210 215 220 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 225 230 235 240 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 245 250 255 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 260 265 270 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 275 280 285 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 290 295 300 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 305 310 315 320 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 325 330 335 Asp Pro Phe Phe Lys Val Pro Val Asn Lys Leu Ala Ala Ala Val Ser 340 345 350 Asn Phe Gly Tyr Asp Leu Tyr Arg Val Arg Ser Ser Thr Ser Pro Thr 355 360 365 Thr Asn Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 370 375 380 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 385 390 395 400 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 405 410 415 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 420 425 430 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 435 440 445 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 450 455 460 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 465 470 475 480 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 485 490 495 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 500 505 510 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 515 520 525 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 530 535 540 Gly Val Pro Ala Gly Gly Pro Glu Ala Gly Leu Gly Glu Tyr Leu Phe 545 550 555 560 Glu Arg Leu Thr Leu Lys His Asp 565 <210> 18 <211> 574 <212> PRT <213> Artificial Sequence <220> <223> Anti-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 <400> 18 Gly Asn Gln Trp Phe Ile Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr 1 5 10 15 Asp Val Glu Ala Ala Val Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala 20 25 30 Ser Tyr Thr Tyr Leu Ser Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val 35 40 45 Ala Leu Glu Gly Val Ser His Phe Phe Arg Glu Leu Ala Glu Glu Lys 50 55 60 Arg Glu Gly Tyr Glu Arg Leu Leu Lys Met Gln Asn Gln Arg Gly Gly 65 70 75 80 Arg Ala Leu Phe Gln Asp Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly 85 90 95 Lys Thr Pro Asp Ala Met Lys Ala Ala Met Ala Leu Glu Lys Lys Leu 100 105 110 Asn Gln Ala Leu Leu Asp Leu His Ala Leu Gly Ser Ala Arg Thr Asp 115 120 125 Pro His Leu Cys Asp Phe Leu Glu Thr His Phe Leu Asp Glu Glu Val 130 135 140 Lys Leu Ile Lys Lys Met Gly Asp His Leu Thr Asn Leu His Arg Leu 145 150 155 160 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 165 170 175 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 180 185 190 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 195 200 205 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 210 215 220 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 225 230 235 240 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 245 250 255 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 260 265 270 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 275 280 285 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 290 295 300 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 305 310 315 320 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 325 330 335 Gly Val Pro Ala Gly Gly Asp Pro Phe Phe Lys Val Pro Val Asn Lys 340 345 350 Leu Ala Ala Ala Val Ser Asn Phe Gly Tyr Asp Leu Tyr Arg Val Arg 355 360 365 Ser Ser Thr Ser Pro Thr Thr Asn Val Pro Ala Gly Gly Val Pro Ala 370 375 380 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 385 390 395 400 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 405 410 415 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 420 425 430 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 435 440 445 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 450 455 460 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 465 470 475 480 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 485 490 495 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 500 505 510 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 515 520 525 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 530 535 540 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Pro Glu Ala Gly 545 550 555 560 Leu Gly Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys His Asp 565 570 <210> 19 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide <400> 19 ctagaaataa ttttgtttaa ctttaagaag gaggagtaca tatgggctac tgataatgat 60 cttcag 66 <210> 20 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide <400> 20 gatcctgaag atcattatca gtagcccata tgtactcctc cttcttaaag ttaaacaaaa 60 ttattt 66 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 21 aaaggatccc cctactggta atgctcttca gtctagagat 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 22 cacgaccaac ggctactgat agtgatcttc agctagcgat 40 <110> Industry-University Cooperation Foundation Hanyang University ERICA Campus <120> Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications <130> DHP19-253P <150> KR 19/0045484 <151> 2019-04-18 <160> 22 <170> KoPatentIn 3.0 <210> 1 <211> 156 <212> PRT <213> Artificial Sequence <220> <223> helix-based protein cage <400> 1 Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala Val 1 5 10 15 Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu Ser 20 25 30 Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val Ser 35 40 45 His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu Arg 50 55 60 Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln Asp 65 70 75 80 Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala Met 85 90 95 Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu Asp 100 105 110 Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp Phe 115 120 125 Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys Met 130 135 140 Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly 145 150 155 <210> 2 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> helix-based protein cage <400> 2 Pro Glu Ala Gly Leu Gly Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys 1 5 10 15 His Asp <210> 3 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Anti-Flt1 peptide <400> 3 Gly Asn Gln Trp Phe Ile 1 5 <210> 4 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> PEDF 34-mer <400> 4 Asp Pro Phe Phe Lys Val Pro Val Asn Lys Leu Ala Ala Ala Val Ser 1 5 10 15 Asn Phe Gly Tyr Asp Leu Tyr Arg Val Arg Ser Ser Thr Ser Pro Thr 20 25 30 Thr Asn <210> 5 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 5 Val Pro Gly Gly Gly Val Pro Gly Ala Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 6 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 6 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 7 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> helix-based protein cage <400> 7 Val Pro Gly Gly Gly Val Pro Gly Lys Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 8 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 8 Val Pro Ala Gly Gly Val Pro Ala Lys Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 9 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 9 Val Pro Gly Gly Gly Val Pro Gly Asp Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 10 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 10 Val Pro Ala Gly Gly Val Pro Ala Asp Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 11 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 11 Val Pro Gly Gly Gly Val Pro Gly Glu Gly Val Pro Gly Gly Gly Val 1 5 10 15 Pro Gly Gly Gly Val Pro Gly Ile Gly Val Pro Gly Gly Gly 20 25 30 <210> 12 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 12 Val Pro Ala Gly Gly Val Pro Ala Glu Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 20 25 30 <210> 13 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 13 Gly Asn Gln Trp Phe Ile 1 5 <210> 14 <211> 360 <212> PRT <213> Artificial Sequence <220> <223> Elastin-based peptide <400> 14 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 1 5 10 15 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 20 25 30 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 35 40 45 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 50 55 60 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 65 70 75 80 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 85 90 95 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 100 105 110 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 115 120 125 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 130 135 140 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 145 150 155 160 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 165 170 175 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 180 185 190 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 195 200 205 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 210 215 220 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 225 230 235 240 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 245 250 255 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 260 265 270 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 275 280 285 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 290 295 300 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 305 310 315 320 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 325 330 335 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 340 345 350 Ala Ile Gly Val Pro Ala Gly Gly 355 360 <210> 15 <211> 534 <212> PRT <213> Artificial Sequence <220> <223> HPC4-EBPP[A1G4I1]12-HPC5 <400> 15 Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala Val 1 5 10 15 Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu Ser 20 25 30 Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val Ser 35 40 45 His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu Arg 50 55 60 Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln Asp 65 70 75 80 Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala Met 85 90 95 Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu Asp 100 105 110 Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp Phe 115 120 125 Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys Met 130 135 140 Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly Val Pro Ala Gly 145 150 155 160 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 165 170 175 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 180 185 190 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 195 200 205 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 210 215 220 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 225 230 235 240 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 245 250 255 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 260 265 270 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 275 280 285 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 290 295 300 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 305 310 315 320 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 325 330 335 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 340 345 350 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 355 360 365 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 370 375 380 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 385 390 395 400 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 405 410 415 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 420 425 430 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 435 440 445 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 450 455 460 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 465 470 475 480 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 485 490 495 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 500 505 510 Pro Ala Gly Gly Pro Glu Ala Gly Leu Gly Glu Tyr Leu Phe Glu Arg 515 520 525 Leu Thr Leu Lys His Asp 530 <210> 16 <211> 540 <212> PRT <213> Artificial Sequence <220> <223> Anti-Flt1-HPC4-EBPP[A1G4I1]12-HPC5 <400> 16 Gly Asn Gln Trp Phe Ile Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr 1 5 10 15 Asp Val Glu Ala Ala Val Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala 20 25 30 Ser Tyr Thr Tyr Leu Ser Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val 35 40 45 Ala Leu Glu Gly Val Ser His Phe Phe Arg Glu Leu Ala Glu Glu Lys 50 55 60 Arg Glu Gly Tyr Glu Arg Leu Leu Lys Met Gln Asn Gln Arg Gly Gly 65 70 75 80 Arg Ala Leu Phe Gln Asp Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly 85 90 95 Lys Thr Pro Asp Ala Met Lys Ala Ala Met Ala Leu Glu Lys Lys Leu 100 105 110 Asn Gln Ala Leu Leu Asp Leu His Ala Leu Gly Ser Ala Arg Thr Asp 115 120 125 Pro His Leu Cys Asp Phe Leu Glu Thr His Phe Leu Asp Glu Glu Val 130 135 140 Lys Leu Ile Lys Lys Met Gly Asp His Leu Thr Asn Leu His Arg Leu 145 150 155 160 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 165 170 175 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 180 185 190 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 195 200 205 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 210 215 220 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 225 230 235 240 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 245 250 255 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 260 265 270 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 275 280 285 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 290 295 300 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 305 310 315 320 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 325 330 335 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 340 345 350 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 355 360 365 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 370 375 380 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 385 390 395 400 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 405 410 415 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 420 425 430 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 435 440 445 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 450 455 460 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 465 470 475 480 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 485 490 495 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 500 505 510 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Pro Glu Ala Gly Leu Gly 515 520 525 Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys His Asp 530 535 540 <210> 17 <211> 568 <212> PRT <213> Artificial Sequence <220> <223> HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 <400> 17 Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala Val 1 5 10 15 Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu Ser 20 25 30 Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val Ser 35 40 45 His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu Arg 50 55 60 Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln Asp 65 70 75 80 Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala Met 85 90 95 Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu Asp 100 105 110 Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp Phe 115 120 125 Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys Met 130 135 140 Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly Val Pro Ala Gly 145 150 155 160 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 165 170 175 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 180 185 190 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 195 200 205 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 210 215 220 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 225 230 235 240 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 245 250 255 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 260 265 270 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 275 280 285 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 290 295 300 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 305 310 315 320 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 325 330 335 Asp Pro Phe Phe Lys Val Pro Val Asn Lys Leu Ala Ala Ala Val Ser 340 345 350 Asn Phe Gly Tyr Asp Leu Tyr Arg Val Arg Ser Ser Thr Ser Pro Thr 355 360 365 Thr Asn Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 370 375 380 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 385 390 395 400 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 405 410 415 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 420 425 430 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 435 440 445 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 450 455 460 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 465 470 475 480 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 485 490 495 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 500 505 510 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 515 520 525 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 530 535 540 Gly Val Pro Ala Gly Gly Pro Glu Ala Gly Leu Gly Glu Tyr Leu Phe 545 550 555 560 Glu Arg Leu Thr Leu Lys His Asp 565 <210> 18 <211> 574 <212> PRT <213> Artificial Sequence <220> <223> Anti-Flt1-HPC4- EBPP[A1G4I1]6-PEDF 34-mer- EBPP[A1G4I1]6-HPC5 <400> 18 Gly Asn Gln Trp Phe Ile Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr 1 5 10 15 Asp Val Glu Ala Ala Val Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala 20 25 30 Ser Tyr Thr Tyr Leu Ser Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val 35 40 45 Ala Leu Glu Gly Val Ser His Phe Phe Arg Glu Leu Ala Glu Glu Lys 50 55 60 Arg Glu Gly Tyr Glu Arg Leu Leu Lys Met Gln Asn Gln Arg Gly Gly 65 70 75 80 Arg Ala Leu Phe Gln Asp Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly 85 90 95 Lys Thr Pro Asp Ala Met Lys Ala Ala Met Ala Leu Glu Lys Lys Leu 100 105 110 Asn Gln Ala Leu Leu Asp Leu His Ala Leu Gly Ser Ala Arg Thr Asp 115 120 125 Pro His Leu Cys Asp Phe Leu Glu Thr His Phe Leu Asp Glu Glu Val 130 135 140 Lys Leu Ile Lys Lys Met Gly Asp His Leu Thr Asn Leu His Arg Leu 145 150 155 160 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 165 170 175 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 180 185 190 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 195 200 205 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 210 215 220 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 225 230 235 240 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly 245 250 255 Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly 260 265 270 Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val 275 280 285 Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro 290 295 300 Ala Ile Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala 305 310 315 320 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 325 330 335 Gly Val Pro Ala Gly Gly Asp Pro Phe Phe Lys Val Pro Val Asn Lys 340 345 350 Leu Ala Ala Ala Val Ser Asn Phe Gly Tyr Asp Leu Tyr Arg Val Arg 355 360 365 Ser Ser Thr Ser Pro Thr Thr Asn Val Pro Ala Gly Gly Val Pro Ala 370 375 380 Ala Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile 385 390 395 400 Gly Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly 405 410 415 Val Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val 420 425 430 Pro Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro 435 440 445 Ala Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala 450 455 460 Gly Gly Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly 465 470 475 480 Gly Val Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly 485 490 495 Val Pro Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val 500 505 510 Pro Ala Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Val Pro 515 520 525 Ala Gly Gly Val Pro Ala Ala Gly Val Pro Ala Gly Gly Val Pro Ala 530 535 540 Gly Gly Val Pro Ala Ile Gly Val Pro Ala Gly Gly Pro Glu Ala Gly 545 550 555 560 Leu Gly Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys His Asp 565 570 <210> 19 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide <400> 19 ctagaaataa ttttgtttaa ctttaagaag gaggagtaca tatgggctac tgataatgat 60 cttcag 66 <210> 20 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide <400> 20 gatcctgaag atcattatca gtagcccata tgtactcctc cttcttaaag ttaaacaaaa 60 ttattt 66 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 21 aaaggatccc cctactggta atgctcttca gtctagagat 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 22 cacgaccaac ggctactgat agtgatcttc agctagcgat 40

Claims (14)

i) 항-혈관신생 펩타이드; 상기 펩타이드에 연결되는 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드; 상기 헬릭스 기반 펩타이드에 연결되는 친수성인 엘라스틴 기반 폴리펩타이드(친수성 EBP); 상기 친수성 EBP에 연결되는 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드로 구성되거나,
ii) 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드; 상기 펩타이드에 연결되는 친수성 EBP; 상기 제1 친수성 EBP에 연결되는 항-혈관신생 펩타이드; 상기 항-혈관신생 펩타이드에 연결되는 제2친수성 EBP; 및 상기 친수성 EBP에 연결되는 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드로 구성되거나, 또는
iii) 항-혈관신생 펩타이드; 상기 펩타이드에 연결되는 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드; 상기 헬릭스 기반 폴리펩타이드에 연결되는 친수성 EBP; 상기 친수성 EBP에 연결되는 항-혈관신생 펩타이드; 상기 항-혈관신생 펩타이드에 연결되는 친수성 EBP; 및 상기 친수성 EBP에 연결되는 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드로 구성되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드.
i) anti-angiogenic peptides; A helix-based polypeptide represented by SEQ ID NO: 1 linked to the peptide; A hydrophilic elastin-based polypeptide (hydrophilic EBP) linked to the helix-based peptide; Consisting of a helix-based polypeptide represented by SEQ ID NO: 2 linked to the hydrophilic EBP, or
ii) a helix-based polypeptide represented by SEQ ID NO: 1; Hydrophilic EBP linked to the peptide; An anti-angiogenic peptide linked to the first hydrophilic EBP; A second hydrophilic EBP linked to the anti-angiogenic peptide; And a helix-based polypeptide represented by SEQ ID NO: 2 linked to the hydrophilic EBP, or
iii) anti-angiogenic peptides; A helix-based polypeptide represented by SEQ ID NO: 1 linked to the peptide; Hydrophilic EBP linked to the helix-based polypeptide; Anti-angiogenic peptide linked to the hydrophilic EBP; Hydrophilic EBP linked to the anti-angiogenic peptide; And that consisting of a helix-based polypeptide represented by SEQ ID NO: 2 linked to the hydrophilic EBP, a fusion polypeptide for inhibiting new angiogenesis.
제1항에 있어서,
상기 항-혈관신생 펩타이드는 항-Flt1 펩타이드[서열번호 3] 또는PEDF(pigment epithelial-derived factor) 34-mer [서열번호 4]인, 신혈관 생성 억제용 융합 폴리펩타이드.
The method of claim 1,
The anti-angiogenic peptide is an anti-Flt1 peptide [SEQ ID NO: 3] or PEDF (pigment epithelial-derived factor) 34-mer [SEQ ID NO: 4], a fusion polypeptide for inhibiting new angiogenesis.
제1항에 있어서,
상기 친수성 EBP는,
서열번호 5 내지 14 중 하나로 표시되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드.
The method of claim 1,
The hydrophilic EBP,
Which is represented by one of SEQ ID NOs: 5 to 14, the fusion polypeptide for inhibiting the generation of new blood vessels.
제1항에 있어서,
상기 i)은 [서열번호 3의 항-Flt1 펩타이드]-[서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]로 구성되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드.
The method of claim 1,
The i) is composed of [anti-Flt1 peptide of SEQ ID NO: 3]-[helix-based polypeptide represented by SEQ ID NO: 1]-[hydrophilic EBP]-[helix-based polypeptide represented by SEQ ID NO:2] , Fusion polypeptide for inhibiting the generation of new blood vessels.
제1항에 있어서,
상기 ii)은 [서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]-[친수성 EBP]-[서열번호 4의 PEDF 34-mer]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]로 구성되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드.
The method of claim 1,
The ii) is [Helix-based polypeptide represented by SEQ ID NO: 1]-[Hydrophilic EBP]-[PEDF 34-mer of SEQ ID NO:4]-[Hydrophilic EBP]-[Helix-based polypeptide represented by SEQ ID NO:2] Consisting of, a fusion polypeptide for inhibiting new angiogenesis.
제1항에 있어서,
상기 iii)은
[서열번호 3의 항-Flt1 펩타이드]-[서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드]-[친수성 EBP]-[서열번호 4의 PEDF 34-mer]-[친수성 EBP]-[서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드]로 구성되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드.
The method of claim 1,
Iii) above
[Anti-Flt1 peptide of SEQ ID NO: 3]-[Helix-based polypeptide represented by SEQ ID NO: 1]-[Hydrophilic EBP]-[PEDF 34-mer of SEQ ID NO:4]-[Hydrophilic EBP]-[SEQ ID NO:2] Helix-based polypeptide shown] that is composed of, a fusion polypeptide for inhibiting the generation of new blood vessels.
제1항에 있어서,
상기 i)은 서열번호 16, 상기 ii)는 서열번호 17, 그리고 상기 iii)은 서열번호 18로 표시되는 것인, 신혈관 생성 억제용 융합 폴리펩타이드.
The method of claim 1,
The i) is SEQ ID NO: 16, ii) is SEQ ID NO: 17, and iii) is represented by SEQ ID NO: 18, the fusion polypeptide for inhibiting neovascularization.
제1항 내지 제7항 중 어느 한 항에 따른 신혈관 생성 억제용 융합 폴리펩타이드를 포함하는 신혈관 생성에 기인한 질환의 치료용 조성물.
A composition for the treatment of diseases caused by neovascularization, comprising the fusion polypeptide for inhibiting neovascularization according to any one of claims 1 to 7.
제8항에 있어서,
상기 신혈관 생성에 기인한 질환은, 당뇨병성 망막증(diabetic retinopathy), 조숙아의 망막증, 황반부변성증, 맥락막 신생혈관생성증, 신생혈관성 녹내장, 각막혈관신생에 의한 안구질환, 각막 이식 시의 거부반응, 각막 부종, 각막 혼탁, 암(cancer), 혈관종, 혈관섬유종, 류마티스 관절염(rheumatoid arthritis), 및 건선 중에서 선택된 어느 하나 이상인 신혈관 생성에 기인한 질환의 치료용 조성물.
The method of claim 8,
Diseases caused by neovascularization include diabetic retinopathy, retinopathy of premature infants, macular degeneration, choroidal neovascularization, neovascular glaucoma, ocular disease due to corneal angiogenesis, rejection during corneal transplantation, Corneal edema, corneal opacity, cancer (cancer), hemangioma, hemangiofibroma, rheumatoid arthritis (rheumatoid arthritis), and any one or more selected from psoriasis, a composition for the treatment of diseases caused by neovascularization.
제1항 내지 제7항 중 어느 한 항에 따른 신혈관 생성 억제용 융합 폴리펩타이드에서, 서열번호 1로 표시되는 헬릭스 기반 폴리펩타이드와 서열번호 2로 표시되는 헬릭스 기반 폴리펩타이드가 자가조립함으로써 제조되는 것인, 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지.
In the fusion polypeptide for inhibiting neovascularization according to any one of claims 1 to 7, a helix-based polypeptide represented by SEQ ID NO: 1 and a helix-based polypeptide represented by SEQ ID NO: 2 are prepared by self-assembly. That is, a fusion protein nanocage having a peptide for inhibiting neovascularization.
제10항에 있어서,
상기 나노케이지는 다가(multivalent)의 신혈관 생성 억제용 융합 폴리펩타이드를 가지는 것을 특징으로 하는, 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지.
The method of claim 10,
The nanocage is a fusion protein nanocage having a peptide for inhibiting new angiogenesis, characterized in that it has a multivalent fusion polypeptide for inhibiting new angiogenesis.
형광 염료; 및
제10항에 따른 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지;를
포함하여 이루어지고,
상기 형광 염료는 상기 나노케이지 안에 들어 있는 것인, 신혈관 생성에 기인한 질환을 위한 테라노스틱스 나노프로브(theranostic nanoprobe).
Fluorescent dyes; And
A fusion protein nanocage having a peptide for inhibiting new angiogenesis according to claim 10;
Including,
The fluorescent dye is contained in the nano-cage, a teranostic nanoprobe for diseases caused by neovascularization.
라만 염료가 결합된 금속 나노입자; 및
제10항에 따른 신혈관 생성 억제용 펩타이드를 가진 융합 단백질 나노케이지;를
포함하여 이루어지고,
상기 라만 염료가 결합된 금속 나노입자는 상기 나노케이지 안에 들어 있는 것인, 신혈관 생성에 기인한 질환을 위한 테라노스틱스 나노프로브.
Metal nanoparticles bound with Raman dye; And
A fusion protein nanocage having a peptide for inhibiting new angiogenesis according to claim 10;
Including,
The Raman dye-coupled metal nanoparticles are contained in the nanocage, and theranostic nanoprobe for diseases caused by neovascularization.
제12항 또는 제 13항에 있어서,
상기 신혈관 생성에 기인한 질환은, 당뇨병성 망막증(diabetic retinopathy), 조숙아의 망막증, 황반부변성증, 맥락막 신생혈관생성증, 신생혈관성 녹내장, 각막혈관신생에 의한 안구질환, 각막 이식 시의 거부반응, 각막 부종, 각막 혼탁, 암(cancer), 혈관종, 혈관섬유종, 류마티스 관절염(rheumatoid arthritis), 및 건선 중에서 선택된 어느 하나 이상인 테라노스틱스 나노프로브.

The method of claim 12 or 13,
Diseases caused by neovascularization include diabetic retinopathy, retinopathy of premature infants, macular degeneration, choroidal neovascularization, neovascular glaucoma, ocular disease due to corneal angiogenesis, rejection during corneal transplantation, Corneal edema, corneal opacity, cancer (cancer), hemangioma, hemangiofibroma, rheumatoid arthritis (rheumatoid arthritis), and any one or more selected from psoriasis theranostic nanoprobe.

KR1020200046920A 2019-04-18 2020-04-17 Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications KR102413729B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/604,414 US20220331453A1 (en) 2019-04-18 2020-04-17 Fusion polypeptides for inhibiting angiogenesis, fusion protein nanocages having multivalent peptides for inhibiting angiogenesis, and theranostic use thereof
PCT/KR2020/005176 WO2020213993A1 (en) 2019-04-18 2020-04-17 Fusion polypeptides for inhibiting angiogenesis, fusion protein nanocages having multivalent peptides for inhibiting angiogenesis, and theranostic use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190045484 2019-04-18
KR20190045484 2019-04-18

Publications (2)

Publication Number Publication Date
KR20200123027A true KR20200123027A (en) 2020-10-28
KR102413729B1 KR102413729B1 (en) 2022-06-29

Family

ID=73018369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200046920A KR102413729B1 (en) 2019-04-18 2020-04-17 Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications

Country Status (1)

Country Link
KR (1) KR102413729B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060056582A (en) * 2004-11-22 2006-05-25 주식회사 녹십자홀딩스 Peptide with a enhanced inhibitory activity against vegfr1 and a remedy thereof
KR101296329B1 (en) 2011-05-16 2013-08-14 포항공과대학교 산학협력단 Drug delivery system using hyaluronic acid-peptide conjugate micelle
KR20170115929A (en) * 2016-04-07 2017-10-18 한양대학교 에리카산학협력단 Vascular Endothelial Growth Factor Receptor Targeting Peptide-elastin Fusion Polypeptides and Their Self-assembled Nanostructures
KR101906494B1 (en) * 2017-06-08 2018-12-05 인제대학교 산학협력단 Pharmaceutical composition for preventing or treating angiogenic diseases comprising collagen type Ι and pigemented epithelium derived factor peptide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060056582A (en) * 2004-11-22 2006-05-25 주식회사 녹십자홀딩스 Peptide with a enhanced inhibitory activity against vegfr1 and a remedy thereof
KR101296329B1 (en) 2011-05-16 2013-08-14 포항공과대학교 산학협력단 Drug delivery system using hyaluronic acid-peptide conjugate micelle
KR20170115929A (en) * 2016-04-07 2017-10-18 한양대학교 에리카산학협력단 Vascular Endothelial Growth Factor Receptor Targeting Peptide-elastin Fusion Polypeptides and Their Self-assembled Nanostructures
KR101906494B1 (en) * 2017-06-08 2018-12-05 인제대학교 산학협력단 Pharmaceutical composition for preventing or treating angiogenic diseases comprising collagen type Ι and pigemented epithelium derived factor peptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biomaterials 31 (2010) 5191-5198

Also Published As

Publication number Publication date
KR102413729B1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
EP3424948B1 (en) Vascular endothelial growth factor targeting peptide-elastin fusion polypeptide and self-assembling nanostructure, which are for inhibiting angiogenesis
KR101375026B1 (en) Peptides effective in the treatment of tumors and other conditions requiring the removal or destruction of cells
JP6470740B2 (en) Biomimetic peptides and biodegradable delivery platforms for the treatment of angiogenesis and lymphangiogenesis-dependent diseases
CN109563151A (en) Method and composition for treating cancer
US6740524B1 (en) Nucleic acid transfer phage
JP3282130B2 (en) Novel neurophilic growth factor containing homeobox peptide
CN102666845A (en) Inhibitors of phosphatase and tensin homolog (PTEN) compositions, uses and methods
CN110317243B (en) RAGE (receptor for activating receptor) antagonistic polypeptide and application thereof
US20220331453A1 (en) Fusion polypeptides for inhibiting angiogenesis, fusion protein nanocages having multivalent peptides for inhibiting angiogenesis, and theranostic use thereof
KR102413729B1 (en) Anti-angiogenic fusion polypeptides, fusion protein cages with multivalent dual anti-angiogenic peptides, and their theranostics applications
CN112920258B (en) CD44 antagonistic polypeptide, derivative and application thereof
CN110627905B (en) VEGF (vascular endothelial growth factor) -EGFR (epidermal growth factor receptor) -targeted bifunctional fusion protein and application thereof
KR102647526B1 (en) Protein-Polymer Hybrid Nanostructures prepared by Polymerization-induced Self-Assembly for Anti-angiogenesis and their pharmaceutical compositions
US20090022785A1 (en) Permeable Capsules
WO2024075767A1 (en) Method for introducing nucleic acid into mitochondrion
US10376603B2 (en) Engineered fluorinated biomaterials
CN113717252A (en) CD44 antagonistic polypeptide and derivative and application thereof
JP2003506047A (en) Source of microencapsulated nitric oxide synthase
JP2024507901A (en) Artificial protein cage containing guest cargo encapsulated within it
JP5661148B2 (en) Bio-optical imaging probe
KR20200123026A (en) Multi-stimuli responsive block copolypeptide-based drug delivery systems
CN114539381A (en) Ferritin light chain subunit-based conjugates and uses thereof
KR20190101350A (en) Drug Delivery System with Cell Targeting and Drug Release Function
KR20190083503A (en) Drug Delivery System with Cell Targeting and Drug Release Function
CN107709354A (en) Integrin targeting proteins and its application method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)