KR20200112450A - Flexible solar sell module and method of the same - Google Patents

Flexible solar sell module and method of the same Download PDF

Info

Publication number
KR20200112450A
KR20200112450A KR1020190032941A KR20190032941A KR20200112450A KR 20200112450 A KR20200112450 A KR 20200112450A KR 1020190032941 A KR1020190032941 A KR 1020190032941A KR 20190032941 A KR20190032941 A KR 20190032941A KR 20200112450 A KR20200112450 A KR 20200112450A
Authority
KR
South Korea
Prior art keywords
solar cell
thin film
cell module
substrate
disposed
Prior art date
Application number
KR1020190032941A
Other languages
Korean (ko)
Inventor
하일수
Original Assignee
(주)파인드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파인드 filed Critical (주)파인드
Priority to KR1020190032941A priority Critical patent/KR20200112450A/en
Publication of KR20200112450A publication Critical patent/KR20200112450A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a flexible solar cell module capable of increasing bonding property with respect to an outer wall of a building and the like during BIPV construction. The flexible solar cell module includes: at least one substrate selected from the group consisting of a glass fiber substrate, a ceramic substrate, a metal substrate, a polymer substrate, a polyimide substrate, and a combination thereof; a rear surface electrode disposed on the substrate and formed of molybdenum; a light absorbing layer disposed on the rear surface electrode and formed of a p-type semiconductor selected from the group consisting of CuInSe2, Cu(InxGa1-x)Se2, and Cu(InxGa1-x)S; a buffer layer disposed on the p-type semiconductor and formed of either Cds or InxSey; a window layer disposed on the buffer layer, configured as at least one of a ZnO thin film or a double-structure thin film in which an indium tin oxide (ITO) thin film is deposited onto the ZnO thin film, and formed of an n-type semiconductor selected from the group consisting of Zn(O,S,OH)x, In(OH)xSy, ZnInxSey, and ZnSe; an assembly wire through which a current generated from the light absorbing layer flows; and a junction box for storing the current, wherein the buffer layer is disposed on one surface of the window layer, and an adhesive film material formed of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber is disposed on an opposite surface of the window layer.

Description

플렉서블 태양광전지모듈 및 이의 제조방법{FLEXIBLE SOLAR SELL MODULE AND METHOD OF THE SAME} Flexible solar cell module and its manufacturing method {FLEXIBLE SOLAR SELL MODULE AND METHOD OF THE SAME}

본 발명은 플렉서블 태양광전지모듈 및 이의 제조방법에 관련된 기술 분야이다.The present invention is a technical field related to a flexible solar cell module and a method of manufacturing the same.

태양전지의 최소단위인 셀(cell) 1개로부터 나오는 전압은 약 0.5V로 매우 작은데다 외부 환경에 쉽게 영향을 받는다. 태양전지의 모듈(module)은 이러한 셀을 패키지화한 것이다. 즉 상기 태양전지를 필요한 전기용량에 따라 직렬 또는 병렬로 연결한 것을 말한다.The voltage from one cell, the smallest unit of a solar cell, is very small, about 0.5V, and is easily affected by the external environment. The solar cell module is a package of these cells. That is, the solar cells are connected in series or in parallel depending on the required electric capacity.

종래 경질이 하드하여 별도의 철구조물로 이루어진 보강대를 설치가 필수적인 케노피형 태양광전지모듈의 경우 제조공정이 매우 번거롭고, 설치 구조물에 의한 원가 상승 및 철거의 어려움 등의 문제점을 해결하기 위해 플렉시블 태양광전지 모듈이 제안되었다. In the case of a canopy-type solar cell module, which is hard in the prior art and requires installation of a reinforcement frame made of a separate steel structure, the manufacturing process is very cumbersome, and a flexible solar cell module to solve problems such as cost increase and difficulty of removal due to the installation structure. Was suggested.

하지만 플렉시블 태양광전지 모듈의 경우, 모듈의 배면전극과 건물 외벽 등과의 결합력이 떨어지고, 접착제로 인한 변환 효율이 저하되는 또 다른 문제점이 있었다. However, in the case of a flexible solar cell module, there is another problem in that the bonding strength between the rear electrode of the module and the exterior wall of the building decreases, and conversion efficiency due to the adhesive decreases.

이와 관련하여 상기 태양전지모듈의 제조방법은 다양하게 제안되고 있고, 그 중 널리 이용되고 있는 박막태양전지모듈의 제조방법을 도 3을 참조하여 설명한다. In this regard, various methods of manufacturing the solar cell module have been proposed, and a method of manufacturing a thin film solar cell module widely used among them will be described with reference to FIG. 3.

도 3(a)에서는 증착공정 및 레이저 스크라이빙 공정에 따라 글래스(1)-투명전극(TCO)(미도시)-태양광발전막(a-Si, CIGS, CdTe)(3)으로 이루어진 상태에서, 상기 태양광 발전막(3) 위에 버스바(7:도 3(b))를 고정하기 위하여 디스펜서(10)으로 도전성 페이스트(5)를 도포한다. 참고로 상기 태양광 발전막(3)은 상기 TCO를 덮어 띠 모양으로 단위 태양전지층과, 상기 태양전지층을 덮어 띠 모양으로 형성된 금속전극을 포함하여 구성하고 있다.In Fig. 3(a), a state consisting of a glass (1)-a transparent electrode (TCO) (not shown)-a photovoltaic film (a-Si, CIGS, CdTe) (3) according to a deposition process and a laser scribing process In, in order to fix the bus bar 7 (Fig. 3(b)) on the photovoltaic film 3, a conductive paste 5 is applied with a dispenser 10. For reference, the photovoltaic layer 3 includes a unit solar cell layer in a strip shape covering the TCO, and a metal electrode formed in a strip shape by covering the solar cell layer.

도 3(b)에서는 버스바(7)를 형성하고 버스바 및 정션박스 연결을 위한 리본(9)을 배열 및 절연시트(11)로 고정한다.In Fig. 3(b), the bus bar 7 is formed, and the ribbon 9 for connecting the bus bar and the junction box is arranged and fixed with an insulating sheet 11.

도 3(c)에서는 글래스(1) 및 표면측 충진재로 이물질이나 수분 등의 침입을 방지하는 EVA(ethylene vinyl acetate) 또는 PVB(poly vinyl butylo)의 보호시트(20)와 후면시트(30)을 순서대로 접합시킨다. 이때 상기 보호시트(20)에서는 후술한 정션박스가 위치할 부분에 테플론 보호시트(20a)가 구성되고, 상기 후면시트(30)에도 상기 정션박스(40, 1e)와 대응되는 위치에 홀(30a)이 형성되어 있다.In FIG. 3(c), the protective sheet 20 and the rear sheet 30 of EVA (ethylene vinyl acetate) or PVB (poly vinyl butylo) to prevent intrusion of foreign matter or moisture with the glass 1 and the surface-side filler. Join them in order. At this time, in the protective sheet 20, a Teflon protective sheet 20a is formed at a portion where the junction box described later will be located, and the rear sheet 30 also has a hole 30a at a position corresponding to the junction box 40, 1e. ) Is formed.

일단 접합된 상태는 도 3(d)와 같다. 또 도 3(d)에서는 접합된 상태에서 정션박스 연결용 전극위에 있는 상기 테플론 보호시트(20a)를 제거하고 있는 상태를 도시하고 있다. Once bonded, it is shown in FIG. 3(d). In addition, Fig. 3(d) shows a state in which the Teflon protective sheet 20a on the junction box connection electrode is removed in a bonded state.

상기 테플론 보호시트(20a)가 제거되면, 도 3(e)에 도시된 바와 같이 정션박스 연결용 전극에 정션박스(40)를 조립하고, 조립된 부분을 실란트(sealant)로 충진한다.When the Teflon protective sheet 20a is removed, as shown in FIG. 3(e), the junction box 40 is assembled to the junction box connection electrode, and the assembled portion is filled with a sealant.

마지막으로 도 3(f)과 같이 프레임(50)을 조립하여 태양전지 모듈(60)을 완성한다.Finally, as shown in Fig. 3(f), the frame 50 is assembled to complete the solar cell module 60.

그와 같이 완성된 태양전지 모듈은, 태양광 발전막에서 전기가 생성되면 버스바를 통하여 상기 금속전극으로 보내지고, 정션박스는 상기 금속전극으로부터 전기를 수집하게 되는 구조를 제공한다.The solar cell module thus completed provides a structure in which electricity is generated from the photovoltaic film and is sent to the metal electrode through a bus bar, and the junction box collects electricity from the metal electrode.

하지만, 상기한 종래기술은 다음과 같은 문제점이 있다.However, the prior art described above has the following problems.

먼저, 태양광발전막(a-Si, CIGS, CdTe)에 버스바 및 정션박스용 리본을 배열 및 고정하는 공정이 현재는 수작업으로 수행되어, 제조의 번거로움과 제조공정의 효율성이 저하되었다. First, the process of arranging and fixing the ribbons for busbars and junction boxes on solar photovoltaic films (a-Si, CIGS, CdTe) is now manually performed, resulting in reduced manufacturing hassle and efficiency of the manufacturing process.

또한 정션박스 전극의 배열 및 정션박스를 연결하기 위해 보호시트 및 후면시트의 일부를 제거하는 공정이 반드시 필요하였다.In addition, in order to arrange the junction box electrodes and connect the junction box, a process of removing part of the protective sheet and the rear sheet was required.

또한 정션박스가 반드시 있어야 하기 때문에 제조단가를 줄일 수 없었다. 그리고, 종래기술에 의해 제조된 박막태양전지모듈을 건물 일체형 태양광발전(BIPV)에 적용할 경우, 정션박스를 통해 배선을 해야하는바 전선이 복잡해지고, 외벽유리로 직접 적용하기가 곤란하였다.In addition, since the junction box must be present, the manufacturing cost could not be reduced. And, when the thin film solar cell module manufactured by the prior art is applied to a building-integrated photovoltaic (BIPV), the wire is complicated because wiring must be performed through a junction box, and it is difficult to directly apply it to the exterior wall glass.

대한민국 공개특허공보 제10-1775977호Republic of Korea Patent Publication No. 10-1775977

따라서, 본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로, 플렉서블 태양광전지모듈을 건물 일체형 태양광발전의 용도로 사용시, 외벽 등과의 접합이 용이하고 변환 효율을 저하시키지 않으면서 장기간 사용이 가능한 접합 효율이 향상된 플렉서블 태양광전지 모듈을 제공하고자 한다.Accordingly, an object of the present invention is to solve the above problems, and when using a flexible solar cell module for a building-integrated photovoltaic power generation, it is easy to bond with an exterior wall, and can be used for a long time without reducing conversion efficiency. It is intended to provide a flexible solar cell module with improved efficiency.

본 발명은 상기와 같은 소기의 목적을 실현하고자 일 견지에 따르면 플렉서블 태양광전지 모듈을 제공한다.The present invention provides a flexible solar cell module according to one aspect to realize the desired object as described above.

상기 플렉시블 태양광전지 모듈은 유리 섬유, 세라믹기판, 금속기판, 폴리머, 폴리이미드 및 이들의 조합으로 이루어진 그룹에서 선택된 적어도 하나인 기판;The flexible solar cell module may include at least one substrate selected from the group consisting of glass fiber, ceramic substrate, metal substrate, polymer, polyimide, and combinations thereof;

상기 기판 상에 배치되고, 몰리브덴으로 이루어진 배면전극;A rear electrode disposed on the substrate and made of molybdenum;

상기 배면전극 상에 배치되고, CuInSe2, Cu(InxGa1-x)Se2, Cu(InxGa1-x)S 로 이루어진 그룹에서 선택된 어느 하나인 p형 반도체로 이루어진 광흡수층; A light absorbing layer disposed on the rear electrode and made of a p-type semiconductor selected from the group consisting of CuInSe2, Cu(InxGa1-x)Se2, and Cu(InxGa1-x)S;

상기 p형 반도체 상에 배치되되, Cds 또는 InxSey 중 어느 하나인 버퍼층;A buffer layer disposed on the p-type semiconductor and including either Cds or InxSey;

상기 버퍼층 상에 배치되고, 상기 윈도우층은 ZnO 박막 또는 ITO(Indium Tin Oxide) 박막을 ZnO 박막 위에 증착한 2중구조의 박막 중 적어도 어느 하나이되, Zn(O,S,OH)x,In(OH)xSy, ZnInxSey, ZnSe 로 이루어진 그룹에서 선택된 하나인 n형 반도체로 이루어진 윈도우층;It is disposed on the buffer layer, and the window layer is at least one of a ZnO thin film or an ITO (Indium Tin Oxide) thin film deposited on a ZnO thin film with a double structure, Zn(O,S,OH)x,In(OH) ) a window layer made of an n-type semiconductor selected from the group consisting of xSy, ZnInxSey, and ZnSe;

상기 광흡수층으로부터 생산되는 전류가 흐르는 조립배선;Assembly wiring through which current produced from the light absorbing layer flows;

및 상기 전류를 저장하는 정션박스를 포함하는 플렉시블 태양광전지 모듈에 있어서, And in the flexible solar cell module comprising a junction box for storing the current,

상기 윈도우층의 일면은 버퍼층이 배치되고, 타면에는 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 접착성 막재가 배치되는 것을 특징으로 한다. A buffer layer is disposed on one side of the window layer, and an adhesive membrane material made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber is disposed on the other side.

본 발명의 다른 견지에 따르면, 플렉서블 태양광전지 모듈의 제조방법을 제공한다. According to another aspect of the present invention, a method of manufacturing a flexible solar cell module is provided.

상기 제조방법은 기판 상에 몰리브덴을 스퍼터링한 후 레이저로 패터닝하는 제1단계;The manufacturing method includes a first step of sputtering molybdenum on a substrate and then patterning it with a laser;

상기 패터닝된 기판 상에 p형 반도체 소재를 박막증착하여 p형 박막을 형성하는 제2단계;A second step of depositing a p-type semiconductor material on the patterned substrate to form a p-type thin film;

상기 증착된 p형 박막 상에 n형 반도체 소재를 화학적 용액증착법에 의해 n형 박막을 형성한 후 표면을 패터닝하는 제3단계;A third step of patterning a surface after forming an n-type thin film on the deposited p-type thin film by chemical solution deposition of an n-type semiconductor material;

상기 패터닝된 n형 박막 표면 상에 버퍼층을 스퍼터링한 후 버퍼층의 표면을 패터닝하는 제4단계;A fourth step of sputtering a buffer layer on the patterned n-type thin film surface and then patterning the surface of the buffer layer;

상기 버퍼층 상에 윈도우층을 결합한 후, 전도성 접착제를 도포하여 태양전지셀을 형성하는 제5단계; 및A fifth step of forming a solar cell by bonding a window layer on the buffer layer and then applying a conductive adhesive; And

상기 태양전지셀과 조립배선을 연결 후 라미네이션시켜 태양전지모듈을 형성하는 제6단계; 및A sixth step of connecting and laminating the solar cell and the assembly wiring to form a solar cell module; And

상기 태양전지모듈에 접착성 막재를 결합하는 제7단계;를 포함하는 것을 특징으로 한다. And a seventh step of bonding the adhesive film material to the solar cell module.

바람직하게는 상기 제7단계는 상기 태양전지모듈의 배면전극 일면에 접착성 막재를 접합 후, 열융착, 고주파 융착 또는 압착하여 상기 태양전지모듈 및 접착성 막재를 결합하는 것을 특징으로 한다.Preferably, the seventh step is characterized in that after bonding the adhesive film material to one surface of the rear electrode of the solar cell module, heat-sealing, high-frequency fusion bonding or compression bonding the solar cell module and the adhesive film material.

상기와 같이 제시된 본 발명에 의한 플렉서블 태양광전지모듈은 후면시트 또는 보호시트 및 정션박스의 구조를 보다 간단하게 하고, 접합성능이 있는 막재를 추가하여 접착효능을 높이는 것을 특징으로 한다. The flexible solar cell module according to the present invention presented as described above is characterized in that the structure of the rear sheet or the protective sheet and the junction box is simplified, and the adhesion effect is increased by adding a film material having bonding performance.

따라서 장기간 사용시 및/또는 광흡수온도 70℃ 이상에서도 변환효율이 저하되지 않고, BIPV 적용시 외벽 등과의 접착성이 뛰어난 장점이 있다. Therefore, when used for a long time and/or even at a light absorption temperature of 70° C. or higher, the conversion efficiency is not lowered, and when BIPV is applied, there is an advantage of excellent adhesion to an outer wall.

나아가, 접착성이 뛰어나 수명이 길고, 교체 횟수가 줄어들어 비용적인 측면에서 경제적인 장점이 있다.Further, it has excellent adhesiveness, has a long lifespan, and has an economic advantage in terms of cost because the number of replacements is reduced.

도 1은 본 발명에 따른 플렉서블한 박막태양전지모듈의 전체도.
도 2는 종래기술에 따른 태양전지모듈의 제조방법을 보인 공정도.
도 3은 본 발명의 일 실시예에 따른 플렉서블 태양광전지모듈과 건물의 일면의 결합에 사용되는 막재의 다양한 구성도.
도 4는 본 발명의 일 실시예에 따른 플렉서블 태양광전지모듈과 건물의 일면의 결합에 사용되는 막재의 단면 상세도.
도 5는 본 발명의 일 실시예에 따른 플렉서블 태양광전지모듈이 곡면을 갖는 케노피의 표면에 적용된 사용예를 나타내는 사진.
도 6은 본 발명의 일 실시예에 따른 플렉서블 태양광전지모듈이 블라인드에 적용된 사용예를 나타내는 사진.
1 is an overall view of a flexible thin film solar cell module according to the present invention.
2 is a process diagram showing a method of manufacturing a solar cell module according to the prior art.
3 is a view showing various configurations of a makjae used to combine a flexible solar cell module and a surface of a building according to an embodiment of the present invention.
4 is a detailed cross-sectional view of a makjae used for combining a flexible solar cell module and a surface of a building according to an embodiment of the present invention.
5 is a photograph showing an example of use of a flexible solar cell module according to an embodiment of the present invention applied to the surface of a canopy having a curved surface.
6 is a photograph showing an example of use of a flexible solar cell module according to an embodiment of the present invention applied to a blind.

본 발명은 외벽 등과 접합 성능을 높인 플렉시블 태양광전지 모듈에 관한 것으로서, 기판, 배면전극, p형 반도체로 이루어진 광흡수층, 버퍼층, n형 반도체로 이루어진 윈도우층, 조립배선, 정션박스를 포함하는 플렉시블 태양광전지 모듈에 있어서, 상기 윈도우층의 일면은 버퍼층이 배치되고, 타면에는 접착성 막재가 배치되는 플렉서블 태양광전지모듈에 관한 것이다.The present invention relates to a flexible solar cell module with improved bonding performance to an outer wall, etc., comprising: a substrate, a back electrode, a light absorbing layer made of a p-type semiconductor, a buffer layer, a window layer made of an n-type semiconductor, assembly wiring, and a junction box. In the photovoltaic module, it relates to a flexible solar cell module in which a buffer layer is disposed on one side of the window layer and an adhesive film material is disposed on the other side.

이하 본 발명의 실시예를 도시한 도면 2 내지 4를 참고하여 본 발명을 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to FIGS. 2 to 4 showing an embodiment of the present invention.

본 발명에 의한 플렉시블 태양광전지 모듈(이하, ‘모듈’이라고 칭함)은 윈도우층의 일면에 접착성 막재가 결합되어 접착력을 향상시킴으로써 건물 일체형 태양광발전시스템(BIPV)의 수명을 연장하기 위한 용도로 사용된다.The flexible solar cell module (hereinafter referred to as'module') according to the present invention is used to extend the life of a building-integrated photovoltaic system (BIPV) by improving adhesion by bonding an adhesive film material to one side of the window layer. Used.

즉 본 발명의 플렉시블 태양광전지 모듈은 거시적으로 기판, 배면전극, p형 반도체로 이루어진 광흡수층, 버퍼층, n형 반도체로 윈도우층, 조립배선 및 정션박스를 포함하여 이루어진다. 특히 상기 윈도우층의 일면은 버퍼층이 배치되고, 타면에는 접착성 막재가 배치되는 것을 특징으로 한다. That is, the flexible solar cell module of the present invention macroscopically comprises a substrate, a rear electrode, a light absorbing layer made of a p-type semiconductor, a buffer layer, a window layer made of an n-type semiconductor, an assembly wiring, and a junction box. In particular, a buffer layer is disposed on one side of the window layer, and an adhesive film material is disposed on the other side.

이를 위해 상기 기판은 유리 섬유, 세라믹기판, 금속기판, 폴리머, 폴리이미드 및 이들의 조합으로 이루어진 그룹에서 선택된 적어도 하나를 사용할 수 있다. For this, the substrate may be at least one selected from the group consisting of glass fiber, ceramic substrate, metal substrate, polymer, polyimide, and combinations thereof.

플렉시블 태양광전지 모듈의 기판은 일반적으로 유리가 사용된다. 그 외에 세라믹 기판, 구리테이프 같은 금속기판, 폴리머 등이 사용될 수 있다. 나아가 폴리이미드와 같은 유연성 있는 고분자 재질 등의 기판이 사용될 수 있어 플렉시블한 태양광전지모듈을 구성할 수 있다. Glass is generally used as the substrate of the flexible solar cell module. In addition, ceramic substrates, metal substrates such as copper tape, polymers, and the like may be used. Further, a substrate made of a flexible polymer material such as polyimide can be used, thereby constructing a flexible solar cell module.

상기 배면적극은 몰리브덴으로 이루어진 것을 특징으로 한다. 플렉시블 태양광전지 모듈의 배면전극은 높은 전기전도도, 고온안정성이 요구되며, 스퍼터링 방법에 의해 박막을 형성할 수 있다. 나아가 스퍼터링법에 의한 박막 형성 시 아르곤의 분압이 낮을수록 저항은 낮아지나 박리현상이 발생할 수 있는바, 몰리브덴의 양과 분압을 적절한 비로 조절하여 배면전극을 형성하는 것이 바람직하다.The rear electrode is characterized in that it is made of molybdenum. The rear electrode of the flexible solar cell module is required to have high electrical conductivity and high temperature stability, and can form a thin film by a sputtering method. Furthermore, when forming a thin film by sputtering, the lower the partial pressure of argon, the lower the resistance, but peeling may occur. Therefore, it is preferable to form the rear electrode by adjusting the amount and partial pressure of molybdenum to an appropriate ratio.

한편 상기 버퍼층은 p형 반도체 상면에 배치되되, Cds 또는 InxSey 중 어느 하나인 것을 사용할 수 있다.Meanwhile, the buffer layer is disposed on the upper surface of the p-type semiconductor, and any one of Cds or InxSey may be used.

상기 버퍼층은 p형 반도체와 n형 반도체의 양호한 접합을 형성하기 위해 사용되며, p형 반도체 박막 소재와 n형 반도체 박막 소재 간 격자상수와 에너지 밴드갭의 차이를 적절히 조절할 수 있는 것을 사용하는 것이 바람직하다. The buffer layer is used to form a good junction between the p-type semiconductor and the n-type semiconductor, and it is preferable to use one capable of appropriately adjusting the difference in the lattice constant and energy band gap between the p-type semiconductor thin film material and the n-type semiconductor thin film material. Do.

특히 상기와 같이 p, n형 두 물질의 격자상수와 에너지 밴드갭 차이를 이용해 전압을 형성하는바, 에너지 밴드갭이 미미한 경우 저전압에 의해 전류 발생 효율이 저하되며, 에너지 밴드갭이 지나치게 큰 경우 고전압에 의해 오류발생 가능성이 있는바 Cds 또는 InxSey 중 어느 하나를 사용하는 것이 바람직하다.In particular, as described above, a voltage is formed by using the difference between the lattice constants and energy band gaps of the two p and n-type materials. If the energy band gap is insignificant, the current generation efficiency is lowered by the low voltage, and if the energy band gap is too large, the high voltage It is preferable to use either Cds or InxSey because there is a possibility that an error may occur.

상기 광흡수층은 CuInSe2, Cu(InxGa1-x)Se2, Cu(InxGa1-x)S 로 이루어진 그룹에서 선택된 어느 하나인 것을 특징으로 한다. The light absorption layer may be any one selected from the group consisting of CuInSe2, Cu(InxGa1-x)Se2, and Cu(InxGa1-x)S.

삼원화합물인 CuInSe2는 단락전류가 높은 특징이 있어, 광흡수층으로 사용될 수 있으며, Cu(InxGa1-x)Se2, Cu(InxGa1-x)S의 경우 개방전압이 높아 높은 효율을 얻을 수 있는 특징이 있다. 나아가, CuInSe2는 밴드갭이 약 1.5eV로, Ga이 첨가된 Cu(InxGa1-x)Se2 화합물 반도체의 밴드갭은 Ga 첨가량에 따라 밴드갭을 조절할 수 있는 특징이 있다. CuInSe2, a ternary compound, has a high short-circuit current and can be used as a light absorbing layer. In the case of Cu(InxGa1-x)Se2, Cu(InxGa1-x)S, high open-circuit voltage is high and high efficiency can be obtained. . Further, CuInSe2 has a band gap of about 1.5 eV, and the band gap of the Cu(InxGa1-x)Se2 compound semiconductor to which Ga is added can control the band gap according to the amount of Ga added.

나아가 광흡수층의 에너지 밴드갭이 클 경우 개방전압은 증가하지만, 오히려 단락전류가 감소하므로 Ga의 적정한 함량조절을 하는 것이 바람직하다. Furthermore, when the energy band gap of the light absorbing layer is large, the open-circuit voltage increases, but the short-circuit current decreases. Therefore, it is preferable to properly control the Ga content.

상기 윈도우층은 ZnO 박막 또는 ITO(Indium Tin Oxide) 박막을 ZnO 박막위에 증착한 2중구조의 박막 중 적어도 어느 하나이되, Zn(O,S,OH)x,In(OH)xSy, ZnInxSey, ZnSe 로 이루어진 그룹에서 선택된 하나인 것을 특징으로 한다. The window layer is at least one of a ZnO thin film or a double-structured thin film in which an ITO (Indium Tin Oxide) thin film is deposited on a ZnO thin film, and is composed of Zn(O,S,OH)x,In(OH)xSy, ZnInxSey, and ZnSe. It is characterized in that it is one selected from the group consisting of.

상기 윈도우층은 투명전극으로서의 기능을 하기 때문에 높은 광투과율과 전기전도성이 요구되는바, 약 80% 이상의 높은 광투과도를 갖으며, 에너지 밴드갭이 약 3.3eV 인 ZnO 또는 ZnO이 포함된 물질을 박막으로 형성시키는 것이 바람직하다.Since the window layer functions as a transparent electrode, high light transmittance and electrical conductivity are required, and a material containing ZnO or ZnO having a high light transmittance of about 80% or more and an energy band gap of about 3.3 eV is used as a thin film. It is preferable to form.

나아가 박막의 결정성이 향상되어 높은 전기전도도와 증대되는 광투과율 효과가 있어 전기광학적 특성이 뛰어난 ITO(indium tin oxide) 박막을 ZnO 박막위에 증착한 2중구조를 사용할 수 있다. Furthermore, since the crystallinity of the thin film is improved, there is a high electrical conductivity and an increased light transmittance effect, so that a double structure in which an indium tin oxide (ITO) thin film having excellent electro-optical properties is deposited on a ZnO thin film can be used.

한편 상기 접착성 막재는 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 것을 사용할 수 있다.Meanwhile, the adhesive film material may be made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber.

상기 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 막재의 경우 열에 의한 접착 특성이 있따. 즉 윈도우층 상단에 접착제를 도포하여 상기 막재를 배치하고, 열융착, 고주파융착 또는 압착 등을 하여 윈도우층과 막재를 결합시킬 수 있다.In the case of a membrane material made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber, there is an adhesive property by heat. That is, an adhesive is applied to the top of the window layer to arrange the makjae, and heat fusion, high frequency fusion, or compression may be performed to bond the window layer and the makjae.

상기 접착제와 같은 별도의 중간 매개체 없이도, 윈도우층 상단에 상기 조합의 막재를 안착시킨 후, 열에 의한 융착, 고주파 융착 등으로 경화를 시도할 수 있다. Even without a separate intermediate medium such as the adhesive, after mounting the combination of the film material on the top of the window layer, curing may be attempted by fusion by heat or high frequency fusion.

상기 접착성 막재는 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 것을 특징으로 한다. The adhesive film material is characterized in that it is made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber.

플렉서블 태양광전지 모듈의 경우 후면부가 플렉서블하며, 플렉서블 전지의 경우 후면부가 접착테이프 방식이어서 기존 건축 마감재에 부착해도 되지만, 후면부 및 건물 외벽 등의 소재 특성상 접착성이 저하되는 것이 일반적인바, 건축마감재에 부착될 수 있는 마감재를 따로 정해 놓는 것이 바람직하다.In the case of a flexible solar cell module, the rear part is flexible, and in the case of a flexible battery, the back part is an adhesive tape method, so it can be attached to the existing building finishing material. It is desirable to set aside a finishing material that can be used.

이를 위해 상기 접착성 막재는 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 것을 사용할 수 있다. 상기 소재를 이용하여 박막태양전지모듈을 건물 외벽 등에 고정시킬 수 있다. To this end, the adhesive film material may be made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber. The thin film solar cell module may be fixed to the exterior wall of a building using the above material.

특히 상기 모듈을 건물 외벽 등에 직접 고정하는 것이 아니라, 모듈과 막재를 결합 후, 막재의 일면이 건물 외벽 등에 고정되는 구조인바, 후면부 및 건물 외벽 등 고정체의 소재 특성에 따라 막재의 소재를 다양하게 제조할 수 있다.In particular, the module is not directly fixed to the outer wall of the building, but is a structure in which one side of the makjae is fixed to the outer wall of the building after combining the module and the makjae. Can be manufactured.

또한 막재의 소재에 따라 고정체에 고정하는 방법도 다양하게 선택할 수 있는 장점이 있다. Also, depending on the material of the makjae, there is an advantage of being able to select various methods of fixing to the fixture.

상기 모듈 상에 상기 막재소재를 배치시키고, 접착제 도포 후 열융착, 고주파 융착 등을 이용하여, 모듈과 막재를 결합시킬 수 있을 뿐 아니라, 막재 소재에 따라 별도로 접착제를 도포하지 않고도, 열융착, 고주파융착, 압착 등의 방법을 이용해 모듈과 막재를 결합할 수 있어, 간단하게 모듈의 일면에 접착성을 부여할 수 있는 특징이 있다. By placing the makjae material on the module and applying the adhesive, heat fusion, high frequency fusion, etc., not only can the module and makjae be bonded together, but also heat fusion, high frequency fusion without separately applying an adhesive depending on the makjae material. Since the module and the film material can be combined using methods such as fusion bonding and compression bonding, there is a characteristic that adhesiveness can be easily imparted to one surface of the module.

본 발명의 다른 견지에 따르면 상기 플렉시블 태양광전지 모듈의 제조방법을 제공한다.Another aspect of the present invention provides a method of manufacturing the flexible solar cell module.

상기 제조방법에 따르면 기판 상에 몰리브덴을 스퍼터링한 후 레이저로 패터닝하는 제1단계, 상기 패터닝된 기판 상에 p형 반도체 소재를 박막증착하여 p형 박막을 형성하는 제2단계, 상기 증착된 p형 박막 상에 n형 반도체 소재를 화학적 용액증착법에 의해 n형 박막을 형성한 후 표면을 패터닝하는 제3단계, 상기 패터닝된 n형 박막 표면 상에 버퍼층을 스퍼터링한 후 버퍼층의 표면을 패터닝하는 제4단계, 상기 버퍼층 상에 윈도우층을 결합한 후, 전도성 접착제를 도포하여 태양전지셀을 형성하는 제5단계 및 상기 태양전지셀과 조립배선을 연결 후 라미네이션시켜 태양전지모듈을 형성하는 제6단계;를 포함한다.According to the manufacturing method, a first step of sputtering molybdenum on a substrate and then patterning with a laser, a second step of forming a p-type thin film by depositing a p-type semiconductor material on the patterned substrate, and the deposited p-type A third step of forming an n-type thin film on the thin film by chemical solution deposition of an n-type semiconductor material and then patterning the surface, and a fourth step of sputtering the buffer layer on the patterned n-type thin film surface and then patterning the surface of the buffer layer. Steps, after bonding the window layer on the buffer layer, a fifth step of forming a solar cell by applying a conductive adhesive, and a sixth step of forming a solar cell module by laminating after connecting the solar cell and the assembly wiring; Include.

상기 제1단계의 경우 기판은 유리기판을 사용할 수 있고, 세라믹 기판, 구리테이프와 같은 금속기판, 폴리머 등이 사용될 수 있다. 나아가 폴리이미드와 같은 유연성이 있는 고분자 재질등이 사용될 수 있다.In the first step, a glass substrate may be used as the substrate, and a ceramic substrate, a metal substrate such as copper tape, a polymer, and the like may be used. Furthermore, a flexible polymer material such as polyimide may be used.

상기 기판상에 몰리브덴을 스퍼터링하여 배면 전극을 형성시킬 수 있다. 상기 몰리브덴은 높은 전기전도도 및 고온 안정성을 갖으며, 스퍼터링 방법에 의한 박막 형성이 용이한 특성이 있다. 다만 스퍼터링 시 아르곤 분압이 낮을수록 저항은 낮아지나 박막의 접착특성이 저하되어 박리현상이 발생할 가능성이 있는바, 아르곤의 분압을 적절히 조절하는 것이 바람직하다. Molybdenum may be sputtered on the substrate to form a rear electrode. The molybdenum has high electrical conductivity and high temperature stability, and it is easy to form a thin film by a sputtering method. However, the lower the partial pressure of argon during sputtering, the lower the resistance, but there is a possibility that peeling may occur due to a decrease in the adhesive properties of the thin film. Therefore, it is desirable to properly control the partial pressure of argon.

상기 이후 p형 반도체가 화학적 용액증착법에 의해 증착되는데, 전류가 흐를 수 있는 특정한 패턴을 형성하기 위해 배면 전극상에 레이저로 패터닝하는 단계를 수행할 수 있다.After the above, the p-type semiconductor is deposited by a chemical solution deposition method, and a step of patterning with a laser on the rear electrode may be performed to form a specific pattern through which electric current can flow.

상기 제2단계는 패터닝된 상기 배면전극 상에 p형 반도체 소재를 박막증착하여 p형 박막을 형성하는 단계이다. 상기 p형 반도체 소재는CuInSe2, Cu(InxGa1-x)Se2, Cu(InxGa1-x)S 로 이루어진 그룹에서 선택된 어느 하나인 것을 사용하여 박막증착시킬 수 있다. 나아가, 상기 p형 반도체 소재는 Ga의 적정한 함량 조절에 의해 개방전압 및 단락전류를 조절할 수 있다. The second step is a step of forming a p-type thin film by depositing a thin film of a p-type semiconductor material on the patterned back electrode. The p-type semiconductor material may be deposited using any one selected from the group consisting of CuInSe2, Cu(InxGa1-x)Se2, and Cu(InxGa1-x)S. Further, the p-type semiconductor material can control the open-circuit voltage and the short-circuit current by controlling an appropriate amount of Ga.

상기 제3단계는 p형 박막 표면 상에 버퍼층을 스퍼터링한 후 버퍼층의 표면을 패터닝하는 단계이다. 상기 버퍼층은 Cds 또는 InxSey 중 어느 하나로 이루어진다. 일반적으로 버퍼층은 p, n형 박막을 이루는 두 물질의 격자상수와 에너지밴드갭의 차이를 조절하기 위하여 p, n형 박막 사이에 위치한다. The third step is a step of patterning the surface of the buffer layer after sputtering the buffer layer on the surface of the p-type thin film. The buffer layer is made of either Cds or InxSey. In general, the buffer layer is positioned between the p and n-type thin films to control the difference between the lattice constant and the energy band gap of the two materials constituting the p and n-type thin films.

를 위해 상기 버퍼층은 p, n형 박막을 이루는 두 물질의 격자상수와 에너지밴드갭의 차이를 조절하기 위해 Cds 또는 InxSey 중 어느 하나로 이루어지는데, Cds의 경우 높은 효율의 태양전지에 사용될 수 있으며, 화학적 용액성장법(CBD, chemical bath deposition)에 의해 박막이 형성된다. For the purpose, the buffer layer is made of either Cds or InxSey to control the difference between the lattice constant and the energy band gap of the two materials forming the p and n-type thin film. A thin film is formed by a solution growth method (CBD, chemical bath deposition).

아가 광특성이 양호하고, 제조 장치의 호환이 가능하며, 물리적 박막공정으로 제조가능한 InxSey을 사용할 수 있다. Agar has good optical properties, is compatible with manufacturing equipment, and can use InxSey, which can be manufactured by a physical thin film process.

기 제7단계는 상기 태양전지모듈의 배면전극 일면에 접착성 막재를 접합 후, 열융착, 고주파 융착 또는 압착하여 상기 태양전지모듈 및 접착성 막재를 결합하는 단계이다.The seventh step is a step of bonding the solar cell module and the adhesive membrane material by bonding the adhesive membrane material to one surface of the rear electrode of the solar cell module, followed by thermal bonding, high frequency bonding, or compression bonding.

상기 막재는 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 것을 소재로 사용할 수 있다. 특히, 상기 소재의 경우, 가온 및/또는 가압에 의해 접착성을 발휘하는바, 배면전극 일면에 별도의 접착제를 도포하지 않더라도 간단한 공정에 의해 모듈의 일면에 접착성을 부여한다. 따라서, 건물 외벽 등에 용이하게 결합시킬 수 있는 장점이 있다. The membrane material may be made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber as a material. In particular, in the case of the material, since it exhibits adhesiveness by heating and/or pressing, adhesiveness is imparted to one surface of the module through a simple process even without applying a separate adhesive to one surface of the rear electrode. Therefore, there is an advantage that can be easily coupled to the exterior wall of a building.

나아가 상기 가온 및/또는 가압의 조건은, 상기 막재의 소재로 선택한 소재의 특성에 따라 적절히 조절할 수 있고, 특히 제한하지 않는다. Further, the heating and/or pressurization conditions may be appropriately adjusted according to the characteristics of the material selected as the material of the makjae, and are not particularly limited.

본 발명에 의한 플렉시블 태양광전지 모듈은 배면전극의 일면에 접착성을 발휘하는 막재를 결합하여, BIPV 에 태양광전지 모듈을 부착시, 간단한 공정만으로 건물 외벽과의 결합성능을 높일 수 있다.The flexible solar cell module according to the present invention combines a membrane material that exhibits adhesiveness to one side of the rear electrode, and when attaching the solar cell module to the BIPV, it is possible to increase the bonding performance with the outer wall of the building with only a simple process.

나아가, 상기 막재의 소재에 의해 변환 효율이 저하되지 않으며, 장기간 사용이 가능한바, 모듈의 교체 횟수를 최소화 시킬 수 있어, 비용 측면에서 경제적인 장점이 있다.Further, conversion efficiency is not lowered by the material of the makjae, and since it can be used for a long period of time, the number of replacement of the module can be minimized, and thus there is an economic advantage in terms of cost.

또한 막재와 배면 전극의 결합 공정이 매우 간단하며, 다양한 소재를 사용할 수 있어, 막재를 이용해 고정체에 고정하는 방법 또한 다양하게 선택할 수 있는 장점이 있다.In addition, the bonding process of the makjae and the rear electrode is very simple, and various materials can be used, so there is an advantage of being able to select various methods of fixing to the fixture using makjae.

본 발명은 플렉시블 태양광전지 모듈을 BIPV 에 적용시, 건물 외벽 등과 모듈의 접착성을 향상시키기 용도를 포함한다. The present invention includes a use of a flexible solar cell module to improve the adhesion of the module, such as the exterior wall of a building when applied to BIPV.

Claims (3)

유리 섬유, 세라믹기판, 금속기판, 폴리머, 폴리이미드 및 이들의 조합으로 이루어진 그룹에서 선택된 적어도 하나인 기판;
상기 기판 상에 배치되고, 몰리브덴으로 이루어진 배면전극;
상기 배면전극 상에 배치되고, CuInSe2, Cu(InxGa1-x)Se2, Cu(InxGa1-x)S 로 이루어진 그룹에서 선택된 어느 하나인 p형 반도체로 이루어진 광흡수층;
상기 p형 반도체 상에 배치되되, Cds 또는 InxSey 중 어느 하나인 버퍼층;
상기 버퍼층 상에 배치되고, 상기 윈도우층은 ZnO 박막 또는 ITO(Indium Tin Oxide) 박막을 ZnO 박막 위에 증착한 2중구조의 박막 중 적어도 어느 하나이되, Zn(O,S,OH)x,In(OH)xSy, ZnInxSey, ZnSe 로 이루어진 그룹에서 선택된 하나인 n형 반도체로 이루어진 윈도우층;
상기 광흡수층으로부터 생산되는 전류가 흐르는 조립배선;및
상기 전류를 저장하는 정션박스를 포함하는 플렉시블 태양광전지 모듈에 있어서,
상기 윈도우층의 일면은 버퍼층이 배치되고, 타면에는 염화비닐수지, PND, PNDF, 폴리에스터, 유리섬유의 조합으로 이루어진 접착성 막재가 배치되는 플렉서블 태양광전지모듈.
At least one substrate selected from the group consisting of glass fiber, ceramic substrate, metal substrate, polymer, polyimide, and combinations thereof;
A rear electrode disposed on the substrate and made of molybdenum;
A light absorbing layer disposed on the rear electrode and made of a p-type semiconductor selected from the group consisting of CuInSe2, Cu(InxGa1-x)Se2, and Cu(InxGa1-x)S;
A buffer layer disposed on the p-type semiconductor and including either Cds or InxSey;
It is disposed on the buffer layer, and the window layer is at least one of a ZnO thin film or an ITO (Indium Tin Oxide) thin film deposited on a ZnO thin film with a double structure, Zn(O,S,OH)x,In(OH) ) a window layer made of an n-type semiconductor selected from the group consisting of xSy, ZnInxSey, and ZnSe;
Assembly wiring through which current produced from the light absorption layer flows; And
In the flexible solar cell module comprising a junction box for storing the current,
A flexible solar cell module in which a buffer layer is disposed on one side of the window layer, and an adhesive film material made of a combination of vinyl chloride resin, PND, PNDF, polyester, and glass fiber is disposed on the other side.
기판 상에 몰리브덴을 스퍼터링한 후 레이저로 패터닝하는 제1단계;
상기 패터닝된 기판 상에 p형 반도체 소재를 박막증착하여 p형 박막을 형성하는 제2단계;
상기 증착된 p형 박막 상에 n형 반도체 소재를 화학적 용액증착법에 의해 n형 박막을 형성한 후 표면을 패터닝하는 제3단계;
상기 패터닝된 n형 박막 표면 상에 버퍼층을 스퍼터링한 후 버퍼층의 표면을 패터닝하는 제4단계;
상기 버퍼층 상에 윈도우층을 결합한 후, 전도성 접착제를 도포하여 태양전지셀을 형성하는 제5단계;
상기 태양전지셀과 조립배선을 연결 후 라미네이션시켜 태양전지모듈을 형성하는 제6단계; 및
상기 태양전지모듈에 접착성 막재를 결합하는 제7단계;를 포함하는 플렉서블 태양광전지모듈 제조방법.
A first step of sputtering molybdenum on a substrate and then patterning it with a laser;
A second step of depositing a p-type semiconductor material on the patterned substrate to form a p-type thin film;
A third step of patterning a surface after forming an n-type thin film on the deposited p-type thin film by chemical solution deposition of an n-type semiconductor material;
A fourth step of sputtering a buffer layer on the patterned n-type thin film surface and then patterning the surface of the buffer layer;
A fifth step of forming a solar cell by bonding a window layer on the buffer layer and then applying a conductive adhesive;
A sixth step of connecting and laminating the solar cell and the assembly wiring to form a solar cell module; And
A method for manufacturing a flexible solar cell module comprising a seventh step of bonding an adhesive film material to the solar cell module.
상기 제2항에 있어서,
상기 제7단계는 상기 태양전지모듈의 배면전극 일면에 접착성 막재를 접합 후, 열융착, 고주파 융착 또는 압착하여 상기 태양전지모듈 및 접착성 막재를 결합하는 플렉서블 태양광전지모듈 제조방법.
The method of claim 2,
The seventh step is a flexible solar cell module manufacturing method of bonding the solar cell module and the adhesive membrane material by bonding the adhesive membrane material to one surface of the rear electrode of the solar cell module, followed by thermal bonding, high frequency bonding, or compression bonding.
KR1020190032941A 2019-03-22 2019-03-22 Flexible solar sell module and method of the same KR20200112450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190032941A KR20200112450A (en) 2019-03-22 2019-03-22 Flexible solar sell module and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190032941A KR20200112450A (en) 2019-03-22 2019-03-22 Flexible solar sell module and method of the same

Publications (1)

Publication Number Publication Date
KR20200112450A true KR20200112450A (en) 2020-10-05

Family

ID=72809453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190032941A KR20200112450A (en) 2019-03-22 2019-03-22 Flexible solar sell module and method of the same

Country Status (1)

Country Link
KR (1) KR20200112450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786723A (en) * 2021-01-27 2021-05-11 重庆神华薄膜太阳能科技有限公司 Flexible thin-film solar cell module and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775977B1 (en) 2016-03-30 2017-09-20 (재)한국나노기술원 Manufacturing method of flexible solar cell module and flexible solar cell module thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775977B1 (en) 2016-03-30 2017-09-20 (재)한국나노기술원 Manufacturing method of flexible solar cell module and flexible solar cell module thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786723A (en) * 2021-01-27 2021-05-11 重庆神华薄膜太阳能科技有限公司 Flexible thin-film solar cell module and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3618802B2 (en) Solar cell module
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
JP3740251B2 (en) Manufacturing method of solar cell module
EP1619728A1 (en) Solar cell
US20090255565A1 (en) Thin film solar cell string
KR101703829B1 (en) Method for manufacturing photovoltaic cells with multiple junctions and multiple electrodes
EP2761674B1 (en) Photovoltaic cell interconnect
KR19980070676A (en) Photovoltaic devices
JPH11186572A (en) Photoelectromotive force element module
JPH0955524A (en) Solar battery module
KR101652607B1 (en) Thin film solar module having series connection and method for the series connection of thin film solar cells
KR101590685B1 (en) Solar module having a connecting element
US20140345675A1 (en) Photovoltaic cell interconnect
WO2015126918A1 (en) Flexible solar cells and method of producing same
KR20100006205A (en) Cigs solarcells module and manufacturing method thereof
CN103390672A (en) Integrated thin-film solar battery component and preparation method thereof
CN104347741A (en) Flexible light transmitting photovoltaic assembly and preparation method thereof
KR20200112450A (en) Flexible solar sell module and method of the same
KR20200112449A (en) Flexible sorla cell module and method of the same
JPH06204544A (en) Solar cell module and solar cell
EP2789019B1 (en) A photovoltaic article comprising a photovoltaic cell with electrical connection elements
KR20200112452A (en) Thin film solar sell midule and method of the same
KR20200112448A (en) Adhesive membrane and thin film solar sell midule using the same
JPH11214734A (en) Solar battery module, its manufacture and execution method and solar battery power generation system
KR20140066238A (en) Solar module with ribbon cable, and a method for the manufacture of same

Legal Events

Date Code Title Description
WITB Written withdrawal of application