KR20200105122A - 해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법 - Google Patents

해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법 Download PDF

Info

Publication number
KR20200105122A
KR20200105122A KR1020190023827A KR20190023827A KR20200105122A KR 20200105122 A KR20200105122 A KR 20200105122A KR 1020190023827 A KR1020190023827 A KR 1020190023827A KR 20190023827 A KR20190023827 A KR 20190023827A KR 20200105122 A KR20200105122 A KR 20200105122A
Authority
KR
South Korea
Prior art keywords
marine
gene
vector
luciferase
dna
Prior art date
Application number
KR1020190023827A
Other languages
English (en)
Other versions
KR102209087B1 (ko
Inventor
이영미
정지현
김문구
이재성
임보라
Original Assignee
상명대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 상명대학교산학협력단 filed Critical 상명대학교산학협력단
Priority to KR1020190023827A priority Critical patent/KR102209087B1/ko
Publication of KR20200105122A publication Critical patent/KR20200105122A/ko
Application granted granted Critical
Publication of KR102209087B1 publication Critical patent/KR102209087B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/14001Unspecific monooxygenase (1.14.14.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명의 검출용 벡터를 이용하여 형질전환된 형질전환체는 벤조피렌 또는 다이옥신을 포함하는 해양오염물질 검출에 유용하게 사용할 수 있다.

Description

해양어류 CYP1A 유전자 프로모터를 이용한 해양오염 물질 검출방법{Detection method of marine pollutants using marine teleost CYP1A gene}
본 발명은 해수 또는 해양퇴적물의 오염도를 분석하기 위한 기술로, 해양오염 물질 검출용 프로모터를 포함하는 유전자, 이를 포함하는 벡터, 형질전환된 형질전환체 및 해양오염물질의 검출 방법에 관한 것이다.
산업 및 도시의 발달로 공장 폐수 및 가정 하수의 배출량이 지속적으로 증가하고 있다. 이에 따른 해양오염 또한 증가하고 있으며 생태 파괴로 이어지고 있다. 해양오염의 심각성이 대두됨에 따라, 해양 오염에 대한 즉각적인 대비책을 마련하기 위해 해양 오염의 정도의 상시 측정이 요구되고 있다.
날로 심각해지는 해수 등의 수질 오염을 평가하고 진단하기 위해 여러 가지 방법이 사용되고 있다. 일반적으로 해수에 존재하는 오염물질의 농도를 화학적으로 분석하는 방법과 해양에서 서식하는 생물의 생화학적 지표를 이용하는 진단방법이 활용되고 있다.
화학적 진단방법은 상당히 복잡한 과정을 거칠 뿐만 아니라, 고가의 분석비용과 분석을 위해 긴 시간이 투자되어야 한다는 단점이 있다. 또한 농약류는 그 화학적 특성으로 인하여 수중 내의 분해가 빨라 분석이 까다로운 단점이 있어, 오염지역 서식 생물의 오염물질로 인한 실제적인 위해성을 평가하기에 어려운 실정이다.
또한 해양에 서식하는 생물을 생화학적 지표로 활용하여 해양오염을 평가하는 방법은, 생물의 오염여부를 판단하기 위해 해양생물 자체의 혈액이나 조직 등을 분획하여 정상상태를 판단하는 방식으로 이루어져 있었기 때문에, 진단하고자 하는 지역마다 생물체를 직접 채집해야 하는 번거로움이 있어 빠르고 간단한 진단이 힘들었다.
한편, 생물은 환경오염, 기후 변화, 미생물 감염 등과 같은 외부환경 변화에 대응하여 항상성을 유지하기 위해 생체방어 기작을 진화시켜왔다. 이 생체방어 기작은 특정한 유전자의 발현량을 조절하는 것으로 나타나다. 따라서 특정한 환경 변화에 따라 특이적으로 발현량이 변화하는 유전자를 모니터링하면, 특정지역의 환경변화 정보뿐만 아니라, 이러한 환경변화가 생명현상에 미치는 영향 및 생태계의 건강에 관한 정보를 얻을 수 있다.
이에 본 발명자는 생물체를 직접 이용하지 않고, 저서성 해양 어류인 넙치의 CYP1A 유전자를 이용하여 해양퇴적물의 오염 평가에 적합하고, 짧은 시간에 많은 샘플을 분석할 수 있는 해양 퇴적물 및 수질 오염 진단 방법을 발명하였다.
대한민국 등록특허 제10-0681410호
본 발명의 해결하고자 하는 과제는 서열번호 7의 CYP1A 유전자 염기서열 또는 이에 상보적인 염기서열을 포함하는 해양오염물질 검출용 프로모터를 포함하는 유전자를 제공하는 것이다.
본 발명의 다른 과제는 상기 유전자를 포함하는 해양오염물질 검출용 벡터를 제공하는 것이다.
본 발명의 다른 과제는 상기 벡터로 형질전환된 해양오염 물질 검출용 형질전환체를 제공하는 것이다.
본 발명의 또 다른 과제는 상기 형질전환체에 해양오염물질을 포함하는 시료를 노출시키는 단계를 포함하는 해양오염물질의 검출방법을 제공하는 것이다.
상기 과제를 해결하기 위한 하나의 양태로서, 서열번호7의 CYP1A 유전자 염기서열 또는 이에 상보적인 염기서열을 포함하는 해양오염물질 검출용 프로모터를 포함하는 유전자를 제공한다.
본 발명의 용어 “CYP1A”는 사이토크롬 p4501A 유전자이다.
본 발명의 용어 “프로모터”는 폴리머라제에 대한 결합부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산 서열을 의미한다.
본 발명의 일실시예에서 넙치 간에서 신규한 CYP1A 유전자의 프로모터를 포함하는 유전자인 염기서열7을 확보하였다.
상기 서열번호 7의 염기서열은 다이옥신 반응 요소(dioxin response element, DRE)과 개시코돈을 포함하는 1928bp의 염기서열로 이루어져 있으며, 개시코돈의 upstream에 3개의 DRE site를 포함하였다.
상기 서열번호 7의 5’말단을 기준으로 1273bp는 넙치의 CYP1A의 프로모터이다.
상기 염기서열 7을 개시코돈(ATG)의 A(+1)을 기준으로 업스트림(upstream)은 ?로 다운스트림(downstream)은 +로 표기하였다. 본 발명의 실시예에서 염기서열7이 -705 내지 -713bp에 위치한 “CTCACGCCA”(DRE 1), -1520 내지 -1527bp에 위치한 “GCACGCAA”(DRE 2) 및 -1569 내지 -1578bp에 위치한 “TCTCACGCAA”(DRE 3)를 확인하였다. 즉, 서열번호7의 5-’말단을 기준으로 227 내지 236bp에 위치한 “TCTCACGCAA”(DRE 3), 278 내지 285bp에 위치한 “GCACGCAA”(DRE 2) 및 1092 내지 1100bp에 위치한 “CTCACGCCA”(DRE 1)를 확인하였다.
또한, 염기서열 7은 넙치 CYP1A 유전자 프로모터 외에 개시 코돈인 “ATG”의 A(+1)을 기준으로 -531 내지 -435 bp 위치한 엑손 0(Exon 0), -34 내지 +49bp에 위치한 엑손 1(Exon1), 엑손 0와 1사이인 -434 내지 -35bp에 위치한 인트론을 확인하였다.
벡터에 삽입되는 유전자의 크기는 벡터의 크기에 따라 상이하다. 본 발명의 실시예에서 사용한 pGL3 베이직 벡터의 경우, 약 2kb가 삽입 가능하다. 따라서, 본 발명의 실시예에서는 넙치의 CYP1A 유전자의 개시코돈(ATG)과 업스트림(upstream) -1804bp을 포함하여 1928bp를 삽입하였다.
프로모터(Promoter) 지역에 위치한 DRE 위치(sites)에 리간드(ligand), 구체적으로 2, 3, 7, 8-테트라클로로디벤조-파라-다이옥신(2,3,7,8-Tetrachlorodibenzodioxin, TCDD) 또는 벤조피렌(Benzo[a]pyrene)가 결합하면, 전사개시부위(ATG) 부근에 RNA 폴리머라아제(polymerase)가 결합하여 프로모터 다운스트림에 위치하는 목적단백질의 유전자 전사가 개시된다.
따라서 본 발명의 서열번호 7의 염기서열 또는 이에 상보적인 염기서열을 이용하여 프로모터로 사용하여 다이옥신 또는 벤조피렌을 검출할 수 있다.
따라서 본 발명의 유전자는 서열번호 7의 염기서열 또는 이에 상보적인 염기서열을 포함한다.
상기 서열번호 7은 개시코돈의 업스트림(upstream)에 3개의 DRE 코어를 포함할 수 있다. 구체적으로 개시 코돈인 “ATG”의 시작인 A(+1)를 기준으로 -705 내지 -713bp에 위치한 “CTCACGCCA”(DRE 1), -1520 내지 -1527bp에 위치한 “GCACGCAA”(DRE 2) 및 -1569 내지 -1578bp에 위치한 “TCTCACGCAA”(DRE 3)을 포함할 수 있다. 또는 5’-말단을 기준으로 227 내지 236bp에 위치한 “TCTCACGCAA”(DRE 3), 278 내지 285bp에 위치한 “GCACGCAA”(DRE 2) 및 1092 내지 1100bp에 위치한 “CTCACGCCA”(DRE 3)를 포함할 수 있다.
본 발명의 염기서열 7은 넙치에서 유래된 것 일수 있다. 구체적으로 넙치의 CYP1A 유전자 프로모터에서 유래된 것일 수 있다.
본 발명에서 “넙치”는 학명이 Paralichthys olivaceus인 저서류로, 몸길이는 60㎝가량이며, 모양은 위아래로 넓적한 긴 타원형이다. 입이 크고 이빨이 잘 발달되어 있으며, 눈은 몸의 왼쪽에 있다. 눈이 있는 쪽은 진한 황갈색 바탕에 흑색 및 백색 반점이 흩어져 있으나, 눈이 없는 쪽은 백색이다. 수심 10-200m연안의 모래나 펄 지역에 서식하며, 2-6월에 산란한다. 우리나라 전 연안에 출현하며, 쿠릴 열도, 일본, 남중국해에 분포한다. 넙적한 체형 때문에 흔히 '광어'라고 부르며, 눈이 왼쪽에 있기 때문에 일반적으로 눈이 오른쪽에 있는 가자미류와 쉽게 구별된다.
본 발명의 유전자는 해양오염물질 검출용 프로모터를 포함하며, 프로모터 활성을 보유하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도할 수 있다. 이러한 서열 변이를 통하여 천연 프로모터와 동일한 활성을 나타낼 수 있으나, 바람직하게는 활성이 증가된 프로모터, 유도제에 대한 특이성이 증가된 프로모터 등 목적에 적합하게 프로모터의 기능을 개선시킬 수 있다.
본 발명의 유전자는 목적 유전자의 발현을 유도하는 벡터의 프로모터 성분으로 제공되고, 상기 유전자를 이용한 다양한 벡터의 변형은 본 발명의 범주에 포함된다.
본 발명에서 용어“해양오염물질”은 벤조피렌 또는 다이옥신을 포함할 수 있다.
본 발명에서 용어“벤조피렌(benzopyrene)”은 환경호르몬의 일종으로 화석연료의 불완전연소 과정에서 생성되는 방향족 탄화수소의 한 종류이며 인체에 축적될 경우 각종 암을 유발하고 돌연변이를 일으킨다.
본 발명에서 용어 “다이옥신(dioxin)”은 2개의 산소원자로 2개의 벤젠고리가 연결되어 있고, 그 이외의 염소가 결합되어 있는 방향족 화합물, 또는 이와 유사한 구조를 가지는 퓨란 류를 의미하고, 주로 유기물과 염소가 수반되는 열공정에서 불완전연소 또는 화학반응의 결과로 비의도적으로 발생 또는 배출된다. 다이옥신은 폴리염화 디벤조디옥신(polychlorinated dibenzodioxins: PCDD)류와 폴리염화 디벤조퓨란(ploychlorinated dibenzofuranes: PCDF)류 두 가지 형태의 물질을 포함하며, 이 두 가지 물질이 혼합된 협동물질의 형태로 존재 또는 노출된다. 다이옥신은 염소원자의 수와 치환된 위치에 따라 이론적으로 210 종의 이성질체가 존재할 수 있는데, 현재 환경 중에서 130여종이 검출되고 있다.
본 발명의 다이옥신은 화학식 1의 2, 3, 7, 8-테트라클로로디벤조-파라-다이옥신(2,3,7,8-Tetrachlorodibenzodioxin, TCDD)를 포함한다.
Figure pat00001
다이옥신의 독성 연구는 TCDD 중심으로 진행되었으며, TCDD가 축적되면 피부질환, 면역력 감소, 기형아 출산, 성기 이상 및 암 유발 등이 나타나는 것으로 알려져 있다.
본 발명의 실시예에서 상기 서열번호7의 염기서열을 루시퍼라아제 벡터에 삽입하고, 상기 벡터로 형질전환된 인간배아 신장세포에 다이옥신 또는 벤조피렌을 처리하였다. 다이옥신 또는 벤조피렌 처리 후 24시간, 48시간 뒤에 루시퍼라아제의 활성을 분석한 결과, 다이옥신 처리 후 24시간 째에 루시퍼아제의 활성이 다이옥신 처리 농도에 따라 증가함을 확인하였으며, 벤조피렌 처리 후 48시간 째에 벤조피렌 처리 농도에 따라 루시퍼라아제의 활성이 증가함을 확인하였다. 또한, 해양오염 시료를 비교 분석한 결과 청정 지역의 시료와 비교하여 오염지역 시료에서 루시퍼라아제의 활성이 높게 나타남을 확인하였다.
상기 실시예에서 본 발명의 유전자를 포함하는 벡터를 이용하여 형질전환된 형질전환체를 이용하여 벤조피렌, 다이옥신 또는 해양오염 시료를 검출할 수 있음을 확인하였는바, 본 발명에 따른 유전자는 해양오염물질 검출용으로 이용할 수 있다.
상기 과제를 해결하기 위한 다른 양태로서, 상기 유전자를 포함하는 해양오염물질 검출용 벡터를 제공한다.
본 발명에서 해양오염물질에 대한 설명은 전술한 바와 같다.
본 발명에서 용어 "벡터"는 시험관 내, 생체 외 또는 생체 내에서 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제 가능한, 임의의 유전적 단위(예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 말한다.
본 발명의 벡터는 서열번호 7의 유전자를 프로모터로 이용하는 벡터로서 프로모터는 목적 유전자의 발현을 유도하도록 작동 가능하게 연결될 수 있으며, 벡터는 숙주세포의 게놈내로 통합되어 있는 형태일 수 있다.
본 발명에서 “작동 가능하게 연결된”은 일반적 기능을 수행하도록 해양오염물질 검출용 서열과 목적하는 유전자를 코딩하는 뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조될 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용한다.
또한, 벡터가 복제 가능한 경우, 복제가 개시되는 특정서열인 복제원점을 포함할 수 있다.
또한 벡터는 선택마커를 포함할 수 있다. 선택마커는 벡터로 형질전환된 세포를 선별하기 위한 것으로, 약물 내성, 영양 요구성, 세포독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제가 처리된 환경에서 선별마커를 발현하는 세포만 생존하므로 형질전환된 세포를 선별 가능하다.
상기 벡터로 목적 단백질을 코딩하는 핵산서열이 프로모터 하위에 삽입되어 발현된다. 상기 벡터로 삽입 가능한 목적 단백질은 특별히 제한되지 않는다.
상기 목적 단백질은 리포터 단백질의 일종으로 루시퍼라아제, 녹색형광단백질, 알칼라인 포스파타아제, CAT 또는 갈락토시다아제를 포함할 수 있다.
본 발명의 실시예에서 목적단백질로 루시퍼라아제(luciferase)를 이용하였다. 따라서 본 발명의 벡터의 목적단백질은 구체적으로 루시퍼라아제일 수 있다.
상기 과제를 해결하기 위한 다른 양태로서, 본 발명은 상기 해양오염물질 검출용 벡터로 형질전환된 형질전환체를 제공한다.
본 발명에서 벡터, 해양오염물질에 대한 설명은 전술한 바와 같다.
본 발명에서 용어, “형질전환”은 외부로부터 주어진 DNA에 의하여 생물의 유전적인 성질이 변하는 것으로, 즉 생물의 어떤 계통의 세포에서 추출된 핵산의 일종인 DNA를 다른 계통의 살아있는 세포에 도입했을 때 상기 DNA가 그 세포에 들어가서 유전형질이 변화하는 현상으로 형질변환이라고도 한다.
본 발명에서 용어, “형질전환체”는 형질전환으로 인해 생성된 형질전환식물 또는 형질전환동물을 의미하며, 유전자 재조합 기술을 이용하여 특정 유전자의 변형 또는 변이가 유발되어 생성된 유전자 재조합체를 포함한다. 본 발명의 형질전환체는 당업계에 공지된 형질전환에 이용될 수 있는 세포이면 제한없이 당업자에 의해 적절하게 선택되어 사용될 수 있으며, 인간을 제외한 형질전환체로, 미생물 유래의 형질전환체일 수 있다.
전술한 실시예에서 상기 형질전환체를 해양오염물질의 일종인 벤조피렌 또는 다이옥신에 노출시키자 루시퍼라아제의 활성이 증가하는 것을 확인하였다. 따라서 본 발명의 형질전환체는 벤조피렌 또는 다이옥신을 포함하는 해양오염물질 검출용으로 활용할 수 있다.
상기 과제를 해결하기 위한 또 다른 양태로 본 발명은 상기 형질전환체에 해양오염물질을 포함하는 시료를 노출시키는 단계를 포함하는 해양오염물질의 검출방법을 제공한다.
본 발명에서 용어 “형질전환체”, “해양오염물질”은 상기에서 설명한 바와 같다.
본 발명의 해양오염물질 검출 방법은 해양오염물질을 포함하는 시료를 형질전환체에 노출시키는 단계를 포함한다.
본 발명에서 “시료”는, 해양오염물질이 포함되었을 것으로 예측되는 바다 또는 해안에서 채취한 시료를 의미하며, 구체적으로 해수, 퇴적물(모래, 펄 등)을 포함한다.
상기 오염도 측정대상을 12 내지 50시간 노출시키는 것일 수 있다. 노출시간이 12시간 미만인 경우, 노출시간이 충분하지 않아 측정의 정확도가 떨어지며, 노출시간이 50시간 초과인 경우 빠른 검출 방법이라고 하기 어렵다.
본 발명의 실시예에서 형질전환체에 벤조피렌 또는 다이옥신을 처리하였을 때, 농도 의존적으로 루시퍼라아제의 활성이 증가하는 것을 확인하였다. 또한 청정지역 시료와 오염 지역의 시료를 비교 분석한 결과, 오염지역 시료에서 루시퍼라아제 활성이 증가함을 확인하였다.
따라서 본 발명의 해양오염물질의 검출방법은 상기 오염도 측정대상에 노출된 형질전환체에서 루시퍼라아제의 활성을 분석하는 단계를 더 포함할 수 있다. 구체적으로 오염물질이 포함되지 않은 시료와 비교하여 루시퍼라아제 활성이 증가하는 경우, 해양오염물질이 검출되는 것일 수 있으며, 루시퍼라아제 활성이 높을수록 오염도가 높은 것으로 판단하는 단계를 더 포함할 수 있다.
본 발명의 해양 어류 CYP1A 유전자 프로모터를 포함하는 벡터를 이용하여 형질전환된 형질전환체는 벤조피렌 또는 다이옥신을 포함하는 해양오염물질 검출에 유용하게 사용할 수 있다.
도 1은 Universal Genome Walker 2.0를 이용하여 중합효소 연쇄반응(polymerase chain reaction, PCR)을 수행한 결과이다. 구체적으로 도 1a는 1차(primary) PCR 결과이고, 도 1b는 2차 PCR 결과이다.
M은 DNA ladder(사이즈 마커)이고 lane 1은 gDNA를 제한효소인 DraI로 절단(digestion) 반응시킨 것이다. Lane 2는 gDNA를 제한효소인 EcoRV로 절단(digestion) 반응시킨 것이다. lane 3은 gDNA를 제한효소인 PvuII 로 절단(digestion) 반응시킨 것이다. Lane 4는 gDNA를 제한효소인 StuI로 절단(digestion) 반응시킨 것이다
도 2는 CYP1A 유전자의 PCR 결과이다.
도 3는 DNA과 루시퍼라아제 벡터(L)와 CYP 프로모터(DNA)를 제한효소인 KpnI과 XhoI로 절단한 결과이다. 박스로 표기된 부분을 이용하여 라이게이션하였다.
도 4는 본 발명의 실시예에 따른 형질전환용 벡터의 구조로 pGL3 리포터 베이직 벡터를 이용하며 개시코돈(ATG)의 5’ 업 스트림의 CYP1A 유전자의 프로모터를 포함한다. 노란 화살표는 CYP 유전자의 DRE 코어를 나타낸다.
도 5는 CYP-루시퍼라아제 벡터로 형질전환된 HEK293T 세포를 TCDD에 24시간 동안 노출시킨 후, 상대적인 루시퍼라아제 활성을 분석한 결과이다.
도 6은 CYP-루시퍼라아제 벡터로 형질전환된 HEK293T 세포를 B[a]P에 48시간 동안 노출시킨 후, 상대적인 루시퍼라아제 활성을 분석한 결과이다.
도 7은 CYP-루시퍼라아제 벡터로 형질전환된 HEK293T 세포를 침전물 10㎎/㎖에 24시간 동안 노출시킨 후, 상대적인 루시퍼라아제 활성을 분석한 결과이다. 참조(reference)는 가막만, J2는 진해만2, Y2는 영일만2(Youngil Bay2), Y5는 영일만(Youngil Bay5) 시료를 사용하였다. 영일만 2(Y2)와 영일만(Y5)는 영일만의 각기 다른 장소에서 채집된 시료이다.
이하, 본 발명에 대하여 실시예 및 실험예를 통하여 보다 상세히 설명한다. 그러나 이들이 본 발명의 범위를 제한하는 것은 아니다.
<실험방법>
가. Promoter 서열 확보
(1) 넙치 genomic DNA(gDNA) 라이브러리(Library) 구축
넙치(Oliva flounder, Paralichthys olivaceus) 간 조직 30㎎을 QIAamp DNA 미니 키트(Qiagen, Hilden, 독일)를 이용하여 gDNA를 추출하였다. 0.6% 아가로스 겔(Sigma, St. Louis, MO)을 이용하여 gDNA 크기 및 순도를 확인 하였고, NanoDrop™ One (Thermo Fisher Scientific, Waltham, MA)으로 gDNA 농도 측정 후, 100 ng/㎕으로 희석하였다. 추출한 gDNA 25 ㎕ (100 ng/㎕)를 Universal GenomeWalker Components (Clontech, Mountain view, CA)를 이용하여, DraI, EcoRV, PvuII, StuI의 제한효소로 37℃에서 16 내지 18 시간동안 각각의 gDNA를 절단하였다. NucleoSpin Gel 과 PCR 클린-업 키트(Macherey-nagel, Duren, 독일)로 절단한 gDNA를 정제하였고, Universal Genome Walker Components를 이용하여 16℃에서, 16 내지 18시간동안 절단하고 정제한 gDNA에 어댑터(adaptor)를 부착하였다.
(2) Genome Walking 및 프로모터 서열 확보
이전 RNA-seq 분석을 통하여 얻은 CYP1A 서열을 참고하여 유전자 특이적 프라이머(Gene specific primer, GSP)를 제작하였다(표 1). 정제, 절단 및 어댑터(adaptor) 부착된 gDNA를 Advantage 2 PCR 키트(Clontech)와 GSP1, adaptor primer1(AP1, 표 1)을 이용하여 1차 PCR을 수행하였다. 50배 희석한 1차 PCR 산물, GSP2 및 AP2를 이용하여 2차 PCR을 진행하였고, 아가로스 겔로 산물 확인 후 타겟 밴드를 선택하였고, QIA quick Gel Extraction 키트 (Qiagen)로 DNA를 추출하였다(도 1). 추출한 DNA로 클로닝(TOPO® TA Cloning® Kit, Invitrogen, Carlsbad, CA), 형질전환(Transformation)(ECOS™ 101 Competent cells[DH5a], Yeastern Biotech Co., 타이완)을 하였고, 암피실린 선별(ampicillin selection), 블루-화이트 어세이(blue-white assay)를 통하여 형질전환(transformation)된 콜로니(colony)를 획득하였다. 이후, 콜로니를 액체배지에 배양하여, 플라스미드(plasmid)를 추출하였고, 제한효소 EcoRI으로 절단하여 DNA 삽입여부를 확인하였다. DNA가 삽입된 플라스미드를 제노텍(대전, 대한민국)을 통하여 서열 분석을 진행하였다. BLASTn을 통하여 분석한 서열이 NCBI에 등록된 넙치 CYP1A 서열(XM_020080232.1; AJ132353.1)과 일치함을 확인하였다. 이 후, 분석된 서열을 토대로 넙치 genome 데이터로부터 CYP1A 유전자 서열을 찾았으며, 프로모터 서열을 확보하였다.
서열번호 유전자명 염기서열
서열번호1 GSP1 5'-GCTGAGTTATTGTCGGAGTTTGCTCTCT-3'
서열번호2 AP1 5'-GTAATACGACTCACTATAGGGC-3'
서열번호3 GSP2 5'-GTCGGAGTTTGCTCTCTTAATGTTTCAA-3'
서열번호4 AP2 5'-ACTATAGGGCACGCGTGGT-3'
표 1은 본 실험에서 사용한 CYP1A 유전자 특이적 프라이머(Gene specific primers, GSP) 및 어댑터 프라이머(adaptor primers, AP)의 유전자 염기서열을 나타낸 것이다.
나. Luciferase 벡터의 구축
(1) 프로모터 서열의 PCR을 통한 DNA 산물 확보
확보한 CYP1A 프로모터 서열을 포함하면서, 다이옥신 반응 요소(dioxin response element, DRE)과 개시 코돈 서열을 포함한 서열을 얻기 위해 프라이머(primer)를 제작하였다.
서열번호 5은 상기 루시퍼라아제 벡터(Luciferase vector)에 삽입되는 CYP1A 유전자 프로모터의 전방향 프라이머의 염기서열이며, 서열번호 6은 이의 역방향 프라이머의 염기서열이다.
서열번호 5: 전방향 프라이머(Forward Primer)
5'- TAAACCCCACGAATCAAACC -3'
서열번호 6: 역방향 프라이머(Reverse Primer)
5'- GCCCTTTGGGAATATCAGTG - 3'
gDNA를 이용하여 PCR(TaKaRa Ex Taq™, TaKaRa, 일본)을 진행하여 PCR 산물을 획득하였다(도 2). 이후, 2 kb 크기의 밴드로부터 DNA를 추출 (QIA quick Gel Extraction Kit (Qiagen))하여 PCR 산물(DNA)를 획득하였다.
추출한 산물을 클로닝 (TOPO® TA Cloning® Kit, Invitrogen), 형질전환(Transformation) (ECOS™ 101 Competent cells[DH5a], Yeastern Biotech Co.), ampicillin selection, blue-white assay를 통하여 형질전환된 콜로니(colony)를 획득하였다. 이후, 콜로니를 액체배지에 배양하여 플라스미드(plasmid)를 추출하였고, 제한효소 EcoRI으로 절단하여 DNA 삽입여부를 확인하였다. DNA가 삽입된 플라스미드를 제노텍 (Daejeon, Korea)을 통하여 서열분석을 진행하여, 프로모터 PCR 산물(DNA)의 서열을 확인하였다(서열번호7).
서열번호 7은 루시퍼라아제 벡터(Luciferase vector)에 삽입되는 CYP1A 유전자 프로모터를 포함하는 유전자의 염기서열이다.
상기 서열번호 7의 5’말단을 기준으로 1273bp는 넙치의 CYP1A의 프로모터 부분이다. 넙치의 CYP1A의 프로모터는 3개의 DRE를 포함한다. 개시 코돈인 “ATG”의 시작인 A(+1)를 기준으로 업스트림(upstream)인 -705 내지 -713bp에 위치한 “CTCACGCCA”(DRE 1), -1520 내지 -1527bp에 위치한 “GCACGCAA”(DRE 2) 및 -1569 내지 -1578bp에 위치한 “TCTCACGCAA”(DRE 3)를 확인하였다.
즉, 서열번호 7의 5-’말단을 기준으로 227 내지 236bp에 위치한 “TCTCACGCAA”(DRE 3), 278 내지 285bp에 위치한 “GCACGCAA”(DRE 2) 및 1092 내지 1100bp에 위치한 “CTCACGCCA”(DRE 1)를 확인하였다
또한, 개시 코돈인 “ATG”을 기준으로 엑손 0 (Exon 0)를 -532 내지 -436 bp 위치에 가지며, 엑손 1 (Exon1)은 -34 내지 +49bp에 위치하며 개시코돈 ATG의 시작을 +1로 두었다. 엑손 0과 1사이에 인트론 -435 내지 -35 bp에 위치하였다.
(3) DNA- 루시퍼라아제 벡터(Luciferase vector) 생성
서열번호 7의 유전자(DNA)가 삽입된 플라스미드와 pGL3 Luciferase Reporter Basic Vector(Luciferase vector, Promega, Madison, WI)를 제한효소 KpnI로 2시간동안 37℃로 절단 후, XhoI으로 37℃로 2시간 이상 절단하였다(도 3). 절단된 산물 모두 1.2% 아가로스 겔을 통하여 DNA 및 루리퍼라아제(Luciferase vector, L)의 사이즈를 확인하였으며, QIA quick Gel Extraction Kit (Qiagen)을 통하여 gel로부터 DNA 및 Luciferase vector를 추출하였다. Luciferase 벡터: DNA (1:3) 의 비율로 T4 DNA 리가아제(Ligase) (Promega)를 이용하여 DNA(서열번호 7)를 Luciferase vector에 삽입하여 DNA-luciferase 벡터 플라스미드를 획득하였다(도 4).
상기 DNA-luciferase 벡터 플라스미드를 DH5a(ECOS™ 101 Competent cells)에 형질전환(transformation, Yeastern Biotech Co.)시켜 획득한 콜로니를 액체배지에 배양하여 플라스미드를 추출하였고, 제한효소 KpnI와 XhoI으로 절단하여 DNA 삽입여부를 확인하였다. DNA가 삽입된 플라스미드를 제노텍(대전, 대한민국)을 통하여 서열분석을 진행하여, DNA 삽입 여부 및 방향을 확인하였다.
(4) 대량 배양 및 Maxi 플라스미드 추출
올바른 방향으로 서열번호 7의 유전자가 삽입된 DNA-루시퍼라아제 벡터 플라스미드를 암피실린(ampicillin)이 첨가된 LB 고체배지(BD Difco™, Franklin Lakes, NJ)에 도말(streaking)하여 37℃에서 12 내지 16시간 동안 배양 후, 단일콜로니를 암피실린이 첨가된 LB 액체배지(Broth) 3㎖에 접종하고 37℃에서 8시간동안 진탕(shaking) 배양하였다. 이후 배양액 250㎕를 암피실린이 첨가된 LB 액체배지 250㎖에 접종하여 37℃ 12 내지 16시간 동안 진탕 배양하였다. 배양액 250㎖을 QIAGEN HiSpeed Plasmid Maxi Kit(Qiagen)을 이용, 추출하여 대량 DNA-루시퍼라아제 벡터 플라스미드를 획득하였다.
다. Luciferase assay
(1) 세포의 접종(Cell seeding)
HEK293T 세포(인간 배아 신장세포)를 6 웰 플레이트에 2 X 105/웰로 접종(seeding)하였다. 배지는 10% FBS와 1% 항생제-항진균제(antibiotics-antimycotics)가 포함된 DMEM(high glucose)를 사용하였다.
(2) 형질전환(Transfection)
세포를 접종한 후 37℃, 5% CO2 배양기에서 24시간 배양 후 형질전환을 수행하였다. DNA-luciferase 벡터 플라스미드를 TransIT-X2 Reagent(Mirus, #MIR6000) 이용하여 형질전환 하였다. DNA-luciferase 벡터 플라스미드와 베타-갈락토시다아제 벡터 플라스미드를 공동 형질주입(co-transfection) 하였다. 이때 DNA-luciferase 벡터 플라스미드는 0.2㎍/㎖, 베타-갈락토시다아제 벡터 플라스미드는 0.1㎍/㎖로 이용하였다.
(3) 화학물질 노출(Chemical exposure)
형질전환 후 37℃, 5% CO2 배양기에서 24시간 배양 후 오염물질에 해당하는화합물(Chemical)을 처리하였다. Chemical 처리 전 1% FBS 와 1% 항생제-항진균제가 포함된 DMEM(high-glucose)에 1시간 동안 안정화 시킨 후 화합물(Chemical)을 처리하였다. 화합물(Chemical)은 모두 DMSO를 용매로 사용하였으며 DMSO의 최종농도는 0.1%로 처리하였다. 각 실험은 3반복으로 진행하였다.
(3-1) 2, 3, 7, 8-테트라클로로디벤조-파라-다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD)
TCDD는 0.0003ppb 내지 3 ppb (parts per billion)의 농도로 처리하였으며 처리 후 37℃, 5% CO2 배양기에서 24시간, 48시간 배양 후에 루시퍼라아제 분석(luciferase assay)를 진행하였다(도 5).
(3-2) 벤조(a)피렌(Benzo(a)pyrene, B[a]P)
B[a]P는 100 nM, 300 nM, 500 nM, 1000nM 농도로 처리하였으며 37℃, 5% CO2 배양기에서 24시간, 48시간 배양 후에 루시퍼라아제 분석(luciferase assay)를 진행하였다(도 6).
(3-3) 해양 퇴적물 시료
청정지역(Reference) 시료로 가막만에서 채취한 퇴적물을 이용하였고, 오염지역의 시료는 진해만(J2)과 영일만(Y2, Y5)에서 채취한 퇴적물을 이용하였다.
영일만 2(Y2)와 영일만(Y5)는 영일만의 각기 다른 장소에서 채집된 시료이다.
각 시료는 DMSO로 최종 희석하여 준비하였다. 시료는 각각 10㎎/㎖로 처리하였다. 37℃, 5% CO2 배양기에서 24시간 배양 후에 루시퍼라아제 분석(luciferase assay)를 수행하였다(도 7).
(4)루시퍼라아제 분석(Luciferase assay)
(4-1) Cell lysis
1X Reporter Lysis Buffer(promega)로 세포 용해(cell lysis)를 수행하였다. 버퍼를 웰-플레이트에 넣은 후 스크레퍼(scrapper)로 세포를 프렙(prep)한 후 12000g에서 5분간 원심분리(centrifuge)하여 상층액만 분석에 사용하였다.
(4-2) 루시퍼라아제 분석(Luciferase assay)
Luciferase assay는 Luciferase Assay 시스템 키트(promega #E1500)를 이용하였다. White 96웰 플레이트(Nunc)를 이용하였고, THE SPARK® MULTIMODE MICROPLATE READER(Tecan)를 이용하여 측정하였다. Luciferase activity는 시료의 Luminescence값을 베타-갈락토시다아제 효소 활성(promega #E2000 이용하여 측정) 값으로 보정하여 대조군(control)을 비교하여 배수변화도(fold change) 값으로 나타내었다.
<실험결과>
가. 화합물 처리에 따른 루시퍼라아제 분석결과
(1) 다이옥신(2, 3, 7, 8-테트라클로로디벤조-파라-다이옥신, TCDD)
CYP1A 유전자는 다이옥신에 특이적으로 반응하는 유전자이다. 이에 CYP1A 재조합 벡터를 포함하는 세포에 TCDD를 0.003ppb, 0.03ppb, 0.3ppb, 3ppb의 농도로 노출시킨 후 24시간 뒤에 세포의 루시퍼라아제 활성을 분석하였다.
도 5에서, 대조군인 DMSO와 비교하여 TCDD를 처리한 세포의 루시퍼라아제 활성이 증가하였으며, TCDD의 농도가 증가함에 따라 루시퍼라아제의 활성도 증가함을 확인하였다.
(2) 벤조(a)피렌
다음으로 CYP1A 재조합 벡터를 포함하는 세포에 벤조(a)피렌을 100 nM, 300 nM, 500 nM의 농도로 노출시키고 48시간 뒤에 루시퍼라아제의 활성을 분석하였다.
도 6에서 벤조(a)피렌의 농도가 증가함에 따라 루시퍼라아제의 활성도 증가함을 확인하였다.
(3) 해양오염시료
마지막으로 청정지역 시료와, 오염지역의 침전물 시료를 비교 분석하였다.
도 7에서 청정지역 시료(reference)와 비교하여 오염지역의 시료(J2,Y2, Y5)에서 루시퍼라아제의 활성이 높게 나타났다. 따라서 본 발명의 CYP1A 유전자의 프로모터를 이용하여 환경 모니터링 생물대체 실험 방법으로 적용이 가능하다.
<110> Sangmyung University Industry-Academy Cooperation Foundation <120> Detection method of marine pollutants using marine teleost CYP1A gene <130> DP20190008 <160> 7 <170> KoPatentIn 3.0 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Gene specific primer1 <400> 1 gctgagttat tgtcggagtt tgctctct 28 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> adaptor primer1 <400> 2 gtaatacgac tcactatagg gc 22 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Gene specific primer2 <400> 3 gtcggagttt gctctcttaa tgtttcaa 28 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> adaptor primer2 <400> 4 actatagggc acgcgtggt 19 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A Forward Primer <400> 5 taaaccccac gaatcaaacc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A Reverse Primer <400> 6 gccctttggg aatatcagtg 20 <210> 7 <211> 1928 <212> DNA <213> Paralichthys olivaceus <220> <221> promoter <222> (1)..(1273) <223> CYP1A promoter <400> 7 taaaccccac gaatcaaacc agcgcaatga cacagattcc tcttgaagtg agggggtgct 60 gtgcgtaaaa actgatctgt gggtttaaaa gatttaaaaa aggttagaaa atggacgagg 120 aatggtaatt aactcatcta ccctttatct caaacagtgc agcccgatca ccctctccct 180 ccccagcatc ctcctgaaag gggaggtgag ggtttgatca ctgcgctctc acgcaactgg 240 tcaatcttta actccagcgg agagccaaca ggtacaagca cgcaatggca tttgtctgtt 300 ttataaggag ttgaagctgt ccgggtggct gctgcgtgtg gcaagctgtc ccaatctcat 360 attttcaaac ctagatctct gttgcacgag gacgaaggtt gtgtgactga ggtcagacag 420 taacgcagtt atgtatatat acacacacaa tgtataaatt gtgtgtggtt ctttagatta 480 cattatatgg aataatctcc cttatttctc ctcttatgct gcacaatatt attttatatg 540 ttccttgata tttacattat ttcctttaag gacgattgta gtcatgagtc gaaatattca 600 taatattgtt gaccatttaa atacattttc aattatttaa aaaccatttc gcacgatcag 660 catataaact cctttacatt tatttataaa tcaataaaat ttcattcatc gaatatttgg 720 gaaactttat tttgcactac aaaagttact ctaccaattt gattatatgt gggaatgttt 780 gatgacagaa gattcctgca tcggcacaga tgaggtcaaa gcgctatttt aaacatggcg 840 taaaactcaa aaagcacgag tgcttttgca aacctcctgc ggagcatcaa agtaaactgt 900 tttatagtgg tcgaagttat acttgcccat gatggttatc atgtcttatc tgtccataaa 960 aatgaagcat atacaccgca gagctattag gtcctgatgg tttcaaactt tgccttaaca 1020 actgggaaat gtacaaatta tgcgcacaaa tgtcgttcca cactatatca gtaatcactt 1080 agccaagtac actcacgcca cacacacaca cacacacaca cccctacact tttcccctgc 1140 actaaacttc attcatgaca agagagggag agagacacga agagagagag agattacgtc 1200 atgtgcagca gccaatgaag ctgtggagcg cactataaag ccagagccca ttctctgttt 1260 tgaaacatta agagagcaaa ctccgacaat aactcagctg aactattaat atttttttac 1320 aaagaacttt ttggatcgcg ttatcgttcc tctttcaccg tttcactgag gtaagctcaa 1380 catgcgcaga aatggcgaca gactgagtta tcatgtcaga gcaaaagttc cgagattttt 1440 tctgcaggag aaacttgttt gcgtttgagt ttggtctttg cagttgcagc tttgaatatc 1500 ctccttattt ttaaatgtct ggtttcattt attggttctc tgtgtgtcaa tgtgttgtgg 1560 tcataaactt tatcactttg catggaccat cacctttaaa taagtgttgc atgtaagccc 1620 atagaatcag gttaacaaca agcaaatact ttgtgatctg tgagtctcta gtaactttaa 1680 actttatagt gcatatagtc aacatgttgc acaacacctt ttctcctccc tgtcttcact 1740 actctaatgc cccacctatt tcatttccag attgtgctga agacagaaaa aaagagtcgt 1800 cattatggtg ctaatgatac ttccattcat tggatccgtg tctgtatccg agagtttggt 1860 ggccatgaca acggtgtgtc tggtctacct gatactcaag ttcttccaca ctgatattcc 1920 caaagggc 1928

Claims (7)

  1. 서열번호7의 CYP1A 유전자 염기서열 또는 이에 상보적인 염기서열을 포함하는 해양오염물질 검출용 프로모터를 포함하는 유전자.
  2. 제 1항에서,
    상기 해양오염물질은 벤조피렌 또는 다이옥신을 포함하는 것인, 유전자.
  3. 제 1항의 유전자를 포함하는 해양오염물질 검출용 벡터.
  4. 제 3항의 벡터로 형질전환된 해양오염물질 검출용 형질전환체.
  5. 제 4항의 형질전환체에 해양오염물질 포함하는 시료를 노출시키는 단계를 포함하는, 해양오염물질의 검출방법.
  6. 제 5항에서
    상기 해양오염물질을 12 내지 50시간 노출시키는 것인, 해양오염물질의 검출방법.
  7. 제 5항에서,
    상기 해양오염물질에 노출된 형질전환체의 루시퍼라아제의 활성을 분석하는 단계를 더 포함하는, 해양오염물질의 검출방법.
KR1020190023827A 2019-02-28 2019-02-28 해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법 KR102209087B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190023827A KR102209087B1 (ko) 2019-02-28 2019-02-28 해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190023827A KR102209087B1 (ko) 2019-02-28 2019-02-28 해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법

Publications (2)

Publication Number Publication Date
KR20200105122A true KR20200105122A (ko) 2020-09-07
KR102209087B1 KR102209087B1 (ko) 2021-01-28

Family

ID=72472383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190023827A KR102209087B1 (ko) 2019-02-28 2019-02-28 해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법

Country Status (1)

Country Link
KR (1) KR102209087B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854010A (en) * 1997-03-10 1998-12-29 Denison; Michael S. Bioassay for detecting 2,3,7,8-tetrachlorodibenzo-para-dioxin and TCDD-like compounds and novel recombinant cell line useful therefor
KR100681410B1 (ko) 2005-10-13 2007-02-15 한국해양연구원 해양퇴적물 및 수질 오염 진단키트 및 이를 이용한 오염진단방법
KR20150027333A (ko) * 2013-08-29 2015-03-12 전남대학교산학협력단 환경오염물질인 AhR 리간드를 검출할 수 있는 형질전환 제브라피쉬
CN105755106A (zh) * 2016-03-23 2016-07-13 厦门大学 一种二噁英类持久性有机污染物检测方法
CN106086202A (zh) * 2016-07-12 2016-11-09 广西大学 用cyp1a基因监测水中菲污染的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854010A (en) * 1997-03-10 1998-12-29 Denison; Michael S. Bioassay for detecting 2,3,7,8-tetrachlorodibenzo-para-dioxin and TCDD-like compounds and novel recombinant cell line useful therefor
KR100681410B1 (ko) 2005-10-13 2007-02-15 한국해양연구원 해양퇴적물 및 수질 오염 진단키트 및 이를 이용한 오염진단방법
KR20150027333A (ko) * 2013-08-29 2015-03-12 전남대학교산학협력단 환경오염물질인 AhR 리간드를 검출할 수 있는 형질전환 제브라피쉬
CN105755106A (zh) * 2016-03-23 2016-07-13 厦门大学 一种二噁英类持久性有机污染物检测方法
CN106086202A (zh) * 2016-07-12 2016-11-09 广西大学 用cyp1a基因监测水中菲污染的方法

Also Published As

Publication number Publication date
KR102209087B1 (ko) 2021-01-28

Similar Documents

Publication Publication Date Title
Ho et al. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter
Barucca et al. Analysis of vitellogenin gene induction as a valuable biomarker of estrogenic exposure in various Mediterranean fish species
Olsson et al. Functional comparison of the metal-regulated transcriptional control regions of metallothionein genes from cadmium-sensitive and tolerant fish species
EP1747287B1 (en) Genotoxic testing
WO2018151875A2 (en) Biosensor exhibiting sensitivity to trinitrotoluene
CA2755985A1 (en) Genotoxicity testing
Cho et al. Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon
US8697388B2 (en) Heavy metal biosensor
Boldrin et al. MTT2, a copper-inducible metallothionein gene from Tetrahymena thermophila
Zhang et al. Transcriptional response of zebrafish larvae exposed to lindane reveals two detoxification genes of ABC transporter family (abcg5 and abcg8)
Aslan et al. Evaluation of the host specificity of Bacteroides thetaiotaomicron alpha‐1‐6, mannanase gene as a sewage marker
Plewa et al. Development of quantitative comparative cytotoxicity and genotoxicity assays for environmental hazardous chemicals
Epping et al. Echinococcus multilocularis: molecular characterization of EmSmadE, a novel BR-Smad involved in TGF-β and BMP signaling
KR102209087B1 (ko) 해양어류 cyp1a 유전자 프로모터를 이용한 해양오염 물질 검출방법
CN113544257A (zh) 中国仓鼠卵巢细胞中内源性逆转录病毒的表征及灭活
Scudiero et al. Structural and functional analysis of metal regulatory elements in the promoter region of genes encoding metallothionein isoforms in the Antarctic fish Chionodraco hamatus (icefish)
Kim et al. Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) expression in Baikal seal (Pusa sibirica) and association with 2, 3, 7, 8-TCDD toxic equivalents and CYP1 expression levels
Maroni et al. Effects of heavy metals on Drosophila larvae and a metallothionein cDNA.
Bittencourt-Oliveira et al. Toxic cyanobacteria in reservoirs in northeastern Brazil: detection using a molecular method
Baker-Austin et al. Application of mitochondrial DNA analysis for microbial source tracking purposes in shellfish harvesting waters
WO2012162260A2 (en) Transgenic biosensors
Sellek et al. Recovery of Francisella tularensis from soil samples by filtration and detection by real-time PCR and cELISA
US8273549B2 (en) Compositions and methods for the expression of selenoproteins in eukaryotic cells
Menike et al. Tapetis challenge
Lee et al. Gene structure and estrogen-responsive mRNA expression of a novel choriogenin H isoform from a marine medaka Oryzias dancena

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right