KR20200102266A - 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법 - Google Patents

에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법 Download PDF

Info

Publication number
KR20200102266A
KR20200102266A KR1020190020693A KR20190020693A KR20200102266A KR 20200102266 A KR20200102266 A KR 20200102266A KR 1020190020693 A KR1020190020693 A KR 1020190020693A KR 20190020693 A KR20190020693 A KR 20190020693A KR 20200102266 A KR20200102266 A KR 20200102266A
Authority
KR
South Korea
Prior art keywords
tio
composite film
powder
composite
tcr
Prior art date
Application number
KR1020190020693A
Other languages
English (en)
Other versions
KR102207355B1 (ko
Inventor
오종민
구상모
이대석
조명연
이동원
김원중
김익수
김용남
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020190020693A priority Critical patent/KR102207355B1/ko
Publication of KR20200102266A publication Critical patent/KR20200102266A/ko
Application granted granted Critical
Publication of KR102207355B1 publication Critical patent/KR102207355B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법이 개시된다. 임베디드 수동 소자용 TiO2/Cu 합성 필름의 실-온 가공이 에어로졸 증착 프로세스를 통해 시도되었다. 내부 미세구조의 XRD 분석 및 관찰에 의해 TiO2/Cu 합성 필름의 내부 미세구조의 치밀화(densification)에 있어서 초기 TiO2 입자 크기의 효과 때문에, 25 nm-크기 TiO2에 비해 500 nm-크기 TiO2를 이용한 TiO2/Cu 합성 필름이 입자들 간의 더 단단한 bonding을 가지는 점을 나타냈다. 그리고 나서, 접합 강도와 저항온도계수(TCR)를 최적화하기 위해, 다른 함량의 TiO2를 갖는 TiO2(500nm)/Cu 합성 필름의 전기 및 기계적 특성이 진보된 복합 막저항으로서의 응용을 위해 평가되었다. 그 결과, TiO2/Cu (50 wt% / 50 wt%) 합성 필름은 에어로졸 증착 동안 형성되는 앵커링 본드와 기계적 인터로킹의 적절한 공존으로부터 이뤄지는 충분한 전기 저항도(electrical resistivity)(5.8x10- 3Ωcm), 탁월한 니어-제로 TCR(-3ppm/℃), 및 개선된 접합 강도(adhesive strength)(~7.37N/mm2)를 가졌다.

Description

에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법{Fabrication of TiO2/Cu hybrid composite films with near zero TCR and high adhesive strength via aerosol deposition}
본 발명은 에어로졸 증착을 통한 니어 제로(near-zero) TCR(저항 온도 계수, temperature coefficient of resistance) 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법에 관한 것이다.
본 연구는 2018년 광운대학교의 연구 보조금에 의해 수행되었으며, 본 결과물은 대한민국 정부(MSIP; 미래창조과학부)에 의해 펀딩된 한국 연구 재단(NRF) (과제번호 2018R1D1A1B07045295) 및 한국 에너지 기술 평가원의 에너지 산업 및 전기자동차용 전력반도체 기술 고급 트랙(과제번호 20174010201290)에 의해 지원되었습니다.
1. 배경 기술
집적 회로(IC) 칩의 성능, 기능성, 및 크기를 최적화하기 위해, IC에 대한 고신뢰성 및 정확도를 구비한 임베디드 수동 소자들(embedded passive components)이 근래에 널리 연구되어 왔다. 특히, 니어-제로(near-zero) 저항온도계수(temperature coefficient of resistance, TCR) 및 높은 기계 특성을 갖는 개선된 막저항(film resistors)이 고-정밀 전자 장치, 아날로그 회로에서의 전류와 전압 제어, 및 자동차와 열-전 장치들(thermos-electrical devices)에서 다양한 종류의 센서들과 같은 광범위한 응용에 이용될 수 있다. 현재까지, RuO2, Ni/Cr 합금, Mn3CuN과 같은 니어-제로 TCR (±10 ppm/K)을 갖는 막저항(film resistors)을 조사하기 위해 광범위한 연구가 수행되어 왔음에도, 이들은 막저항에 부적합한 극도로 낮은 전기저항도(electrical resistivity)(~1.4x10- 3Ω㎝), 큰 구조 변형에 기인하는 열악한 접착, 및 고온(약 700℃)에서의 소결(sintering) 시 금속 표면 상에서의 산화 문제를 보였다. 더욱이, 저항 온도 계수(TCR)는 Cu/Ni 및 Cu/Ta와 같은 합금을 이용하여 감소될 수 있을지라도, 일반적으로 양(+)의 TCR이 유지되기 때문에 near zero TCR(<25 ppm/K)을 달성하는 것은 매우 어렵다. 다행히, 이러한 바람직하지 않은 문제들은, 특히 기존 물질들의 활용 및 특성의 한계의 관점에서, 상이한 기능성 물질들을 이용하여 해결될 수 있다. 세라믹-기반 합성 필름(ceramic-based composite films)이 이종 물질들을 이용하여 가공될 때, 전기 저항도(resistivity) 및 TCR(저항온도계수) 모두가 각 물질의 고유 특성에 의해 또는 입자 크기(grain size)에 의해 용이하게 제어될 수 있다.
그러므로, 우리는 각각 높은 저항도(high resistivity)와 음(-)의 TCR(negative TCR)을 갖는 아나타제 TiO2(anatase TiO2), 및 낮은 저항도(low resistivity)와 양(+)의 TCR(positive TCR)을 구비하는 Cu를 포함하는, 합성 필름용 보완 물질들인, 세라믹(ceramic)과 금속(metal)을 선택하였다. 그러나, 세라믹-금속 결합(ceramic-metal bonding)은 이러한 두 종류의 물질들 간의 열확장 계수(thermal expansion coefficients)의 차이 때문에 많은 연구자들에게 난제였다. 추가로, 반응성 스퍼터링(reactive sputtering), 전자선 증착(electron beam evaporation), 고체-상태 반응(solid-state reaction), 및 열압법 공정(hot-pressing process)과 같은 대부분의 종래의 프로세스들은 복합 합성 필름(hybrid composite films)을 가공하기가 어려운데, 그들이 프로세스 동안 출발 물질의 화학 구성에 있어서 변화를 유도하기 때문이다. 특히, 아나타제(anatase)는 500℃ 이상의 열에서 금홍석(rutile)으로 상변환(phase transformation)을 겪을 것이다. 더욱이, 큰 결정 크기의 아나타제는 열역학적으로 불안정화 및 상전이(phase transition)의 활성화를 야기할 수 있다.
이러한 장애를 극복하기 위해, 우리는 간단하고 경제적인 에어로졸 증착(AD) 프로세스를 시도하였다. 이는 실온에서 신속한 코팅이 가능하여, 세라믹과 금속의 본래 성질을 유지시킬 수 있다. 또한, 이 AD 프로세스는 초미세 입자의 충돌 접착(impact adhesion)에 기초하는 점에서 유리하다. 그러므로, 이는 크랙들(cracks)이나 공극(pores)이 거의 없는 밀한 필름(dense film)을 가공하여, 필름과 기판 간의 강한 접합을 이룰 수 있다. 더욱이, 출발 파우더의 평균 직경이 꽤 클지라도, 충돌 동안 기판 상에서 작은 결정 크기를 갖는 필름을 형성할 수 있다. 이점들과 고유한 증착 특성들로부터, AD 프로세스는 임베디드 수동 소자(embedded passive components), 고속 광학 변조기(high speed optical modulators), 광촉매 필름(photo-catalytic films), 고 플라즈마 저항도(high plasma resistance)를 위한 프로액티브 코팅(proactive coatings), 생체적합성 코팅(biocompatible coatings), 및 환경 센서를 포함하는 다양한 애플리케이션들에 대해 연구되어 왔다.
[1] Y. Kwon, Trend and prospect for 3dimensional integrated-circuit semiconductor chip, Korean Chem. Eng. Res. 47 (2009) 1-10. [2] I.S. Park, S.Y. Park, G.H. Jeong, S.M. Na, S.J. Suh, Fabrication of Ta3N5-Ag nanocomposite thin films with high resistivity and near-zero temperature coefficient of resistance, Thin Solid Films 516 (2008) 5409-5413. [3] C.L. Au, W.A. Anderson, D.A. Schmitz, J.C. Flassayer, F.M. Collins, Stability of tantalum nitride thin film resistors, J. Mater. Res. 5 (1990) 1224-1232. [4] S.M. Na, I.S. Park, S.Y. Park, G.H. Jeong, S.J. Suh, Electrical and structural properties of Ta-N thin film and Ta/Ta-N multilayer for embedded resistor, Thin Solid Films. 516 (2008) 5465-5469. [5] S. Lin, B.S. Wang, J.C. Lin, Y.N. Huang, W.J. Lu, B.C. Zhao, P. Tong, W.H. Song, Y.P. Sun, Tunable room-temperature zero temperature coefficient of resistivity in antiperovskite compounds Ga1-xCFe3 and Ga1-yAlyCFe3, Appl. Phys. Lett. 101 (2012) 1-5. [6] E.O. Chi, W.S. Kim, N.H. Hur, Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3, Solid State Commun. 120 (2001) 307-310. [7] Y. Sun, C. Wang, L. Chu, Y. Wen, M. Nie, F. Liu, Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound, Scr. Mater. 62 (2010) 686-689. [8] M. Hrovat, D. Belavic, Z. Samardzija, Characterisation of thick film resistor series for strain sensors, J. Eur. Ceram. Soc. 21 (2001) 2001-2004. [9] Y.T. Kim, Achievement of zero temperature coefficient of resistance with RuOx thin film resistors, Appl. Phys. Lett. 70 (1997). [10] B. Fu, L. Gao, Tantalum nitride/copper nanocomposite with zero temperature coefficient of resistance, Scr. Mater. 55 (2006) 521-524. [11] N.M. Phuong, D.-J. Kim, B.-D. Kang, C.S. Kim, S.-G. Yoon, Effect of chromium concentration on the electrical properties of NiCr thin films resistor deposited at room temperature by magnetron cosputtering technique, J. Electrochem. Soc. 153 (2006) G27. [12] M. Jonas, A. Peled, The equivalent temperature coefficient of resistance of thin film resistor-conductor structures, Thin Solid Films 90 (1982) 385-390. [13] J.J. Van Den Broek, J.J.T.M. Donkers, R.A.F. Van Der Rijt, J.T.M. Janssen, Metal film precision resistors: resistive metal films and a new resistor concept, Philips J. Res. 51 (1998) 429-447. [14] O. Kamigaito, What can be improved by nanometer composites? J. Jpn. Soc. Powder Powder Metall. 38 (1991) 315-321. [15] K. Suganuma, T. Okamoto, M. Koizljmi, M. Shimada, Effect of interlayers in ceramic-metal joints with thermal expansion mismatches, J. Am. Ceram. Soc. 67 (1984) (C-256 - C-257).
Figure pat00001
[16] J. Musil, P. Baroch, J. Vlek, K.H. Nam, J.G. Han, Reactive magnetron sputtering of thin films: Present status and trends, in: Thin Solid Films: 2005: pp. 208-218. [17] J.F. Pierson, D. Wiederkehr, A. Billard, Reactive magnetron sputtering of copper, silver, and gold, Thin Solid Films. 478 (2005) 196-205. [18] Y. Lin, X. Chen, Electron beam evaporation deposition, Adv. Nano Depos. Methods (2016) 305-309. [19] K.S. Shamala, L.C.S. Murthy, K. Narasimha Rao, Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method, Mater. Sci. Eng. B. 106 (2004) 269-274. [20] Z. Zhang, Y. Liu, G. Yao, G. Zu, Y. Hao, Synthesis and characterization of NiFe2O4 nanoparticles via solid-state reaction, Int. J. Appl. Ceram. Technol. 10 (2013) 142-149. [21] S. Song, X. Ai, W. Gao, J. Zhao, Repetitious-hot-pressing technique in hot-pressing process, J. Mater. Sci. Technol. 19 (2003). [22] B.J. Reardon, Optimizing the hot isostatic pressing process, Mater. Manuf. Process. 18 (2003) 493-508. [23] H.L. Chen, W.H. Li, S.Q. Yang, S.C. Yang, Research of magnetic abrasive prepared by hot pressing sintering process, in: Proceedings of the 5th IEEE Conference Ind. Electron. Appl. ICIEA 2010: 2010: pp. 776-778. [24] C. Perego, R. Revel, O. Durupthy, S. Cassaignon, J.P. Jolivet, Thermal stability of TiO2-anatase: impact of nanoparticles morphology on kinetic phase transformation, Solid State Sci. 12 (2010) 989-995. [25] H. Zhang, J.F. Banfield, New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles, Am. Mineral. 84 (1999) 528-535. [26] J. Akedo, Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers, J. Am. Ceram. Soc. (2006) 1834-1839. [27] J. Akedo, Aerosol deposition method for room-temperature ceramic coating and its applications, Handb. Adv. Ceram. Mater. Appl. Process. Prop. (2013) 847-860. [28] J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm. Spray. Technol. 17 (2008) 181-198. [29] Y. Imanaka, N. Hayashi, M. Takenouchi, J. Akedo, Aerosol deposition for post-LTCC, J. Eur. Ceram. Soc. 27 (2007) 2789-2795. [30] J.M. Oh, S.M. Nam, Thickness limit of BaTiO3 thin film capacitors grown on SUS substrates using aerosol deposition method, Thin Solid Films 518 (2010) 6531-6536. [31] M. Nakada, H. Tsuda, K. Ohashi, J. Akedo, Aerosol deposition on transparent electro-optic films for optical modulators, IEICE Trans. Electron (2007) 36-40 (E90-C). [32] J. Ryu, D.-S. Park, B.D. Hahn, J.-J. Choi, W.-H. Yoon, K.-Y. Kim, H.-S. Yun, Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature, Appl. Catal. B-Environ. 83 (2008) 1-7. [33] J.H. Jung, B.D. Hahn, W.H. Yoon, D.S. Park, J.J. Choi, J.H. Ryu, J.W. Kim, C.W. Ahn, K.M. Song, Halogen plasma erosion resistance of rare earth oxide films deposited on plasma sprayed alumina coating by aerosol deposition, J. Eur. Ceram. Soc. 32 (2012) 2451-2457. [34] T. Fujihara, M. Tsukamoto, N. Abe, S. Miyake, T. Ohji, J. Akedo, Hydroxyapatite film formed by particle beam irradiation, Vacuum 73 (2004) 629-633. [35] D.W. Lee, M.C. Shin, Y.N. Kim, J.M. Oh, Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition, Ceram. Int. 43 (2017) 1044-1051. [36] J.G. Liang, C. Wang, Z. Yao, M.Q. Liu, H.K. Kim, J.M. Oh, Preparation of ultrasensitive humidity-sensing by aerosol deposition, ACS Appl. Mater. Interfaces 10 (2018) 851-863. [37] J.G. Liang, E.S. Kim, C. Wang, M.Y. Cho, J.M. Oh, Thickness effects of aerosol deposited hygroscopic films on ultra-sensitive humidity sensors, Sens. Actuators B Chem. 265 (2018) 632-643. [38] M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue, Nano-Micro Lett. 3 (2011) 236-241. [39] Y.H. Kim, J.W. Lee, H.J. Kim, Y.H. Yun, S.M. Nam, Silver metallization for microwave device using aerosol deposition, Ceram. Int. 38 (2012) S201-S204. [40] D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, R. Moos, An overview of the aerosol deposition method: process fundamentals and new trends in materials applications, J. Ceram. Sci. Technol. 6 (2015) 147-181. [41] D.-W. Lee, O.-Y. Kwon, W.-J. Cho, J.-K. Song, Y.-N. Kim, Characteristics and mechanism of Cu films fabricated at room temperature by aerosol deposition, Nanoscale Res. Lett. 11 (2016) 162. [42] J. Akedo, Aerosol deposition method for fabrication of nano crystal ceramic layer, Mater. Sci. Forum 449-452 (2004) 43-48. [43] S.H. Cho, Y.J. Yoon, Multi-layer TiO2 films prepared by aerosol deposition method for dye-sensitized solar cells, Thin Solid Films. 547 (2013) 91-94. [44] C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int. 38 (2012) 5621-5627. [45] S.M. Rossnagel, T.S. Kuan, Alteration of Cu conductivity in the size effect regime, J, Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22 (2004) 240. [46] Y.P. Timalsina, A. Horning, R.F. Spivey, K.M. Lewis, T.S. Kuan, G.C. Wang, T.M. Lu, Effects of nanoscale surface roughness on the resistivity of ultrathin epitaxial copper films, Nanotechnology 26 (2015) 75704. [47] V. Timoshevskii, Y. Ke, H. Guo, D. Gall, The influence of surface roughness on electrical conductance of thin Cu films: an ab initio study, J. Appl. Phys. 103 (2008) 9-12. [48] M. Gao, Z. Chen, H. Kang, R. Li, W. Wang, C. Zou, T. Wang, Effects of Nb addition on the microstructures and mechanical properties of a precipitation hardening Cu-9Ni-6Sn alloy, Mater. Sci. Eng. A. 715 (2018) 340-347. [49] O.-Y. Kwon, H.-J. Na, H.-J. Kim, D.-W. Lee, S.-M. Nam, Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett. 7 (2012) 261. [50] A. Kurdi, H. Wang, L. Chang, Effect of nano-sized TiO2 addition on tribological behaviour of poly ether ether ketone composite, Tribol. Int. 117 (2018) 225-235. [51] M.I. Lerner, S.G. Psakhie, A.S. Lozhkomoev, A.F. Sharipova, A.V. Pervikov, I. Gotman, E.Y. Gutmanas, Fe-Cu nanocomposites by high pressure consolidation of powders prepared by electric explosion of wires, Adv. Eng. Mater. (2018). [52] A. Kapitulnik, G. Deutscher, Percolation scale effects in metal-insulator thin films, J. Stat. Phys. 36 (1984) 815-826. [53] C. Durkan, M.E. Welland, Size effects in the electrical resistivity of polycrystalline nanowires, Phys. Rev. B. 61 (2000) 14215-14218. [54] T. Manangan, S. Shawaphun, D. Sangsansiri, Nano-sized titanium dioxides as photocatalysts in degradation of polyethylene and polypropylene packagings, Sci. J. UBU 1 (2010) 14-20. [55] N. von Moos, V.B. Koman, C. Santschi, O.J.F. Martin, L. Maurizi, A. Jayaprakash, P. Bowen, V.I. Slaveykova, Pro-oxidant effects of nano-TiO2 on Chlamydomonas reinhardtii during short-term exposure, RSC Adv. 6 (2016) 115271-115283.
상기한 문제점을 해결하기 위한 본 발명의 목적은 에어로졸 증착을 통한 near zero TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법을 제공한다.
본 연구의 목적은 실온 AD 프로세스를 통해 TiO2/Cu 합성 필름(TiO2/Cu composite films)을 제조하고 전기적 기계적 특성을 조사함으로써 높은 접합 강도(high adhesive strength)를 갖는 near zero TCR(±10 ppm/K)을 달성하는 것이다. 증착(deposition) 전에, 출발 입자 크기가 우리의 두 가지 요점들(TCR 및 접합 강도)에 현저한 영향을 미치기 때문에, 우리는 다른 입자 크기(25nm, 500nm)의 TiO2로써 AD 프로세스를 수행하여 에어로졸-증착 필름(aerosol deposited film)의 추가적인 치밀화를 위한 적절한 매트릭스 TiO2를 선택하였다. 필름의 미세구조(microstructures of films), 결정 크기(crystallite size), 표면 모폴로지(surface morphologies), 및 전기 저항도(electrical resistivity)를 관찰함으로써, 우리는 형성 매커니즘을 감안하여 TiO2/Cu 합성 필름의 접합 강도(adhesive strength) 및 TCR의 특성을 조사하였다.
본 발명의 목적을 달성하기 위해, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법은, (a) AD 시스템에서, TiO2 파우더와 Cu 파우더는 AD 프로세스에 전에 5, 10, 30, 및 50 wt% 다른 중량비로 TiO2 파우더가 사전-혼합되는 단계; (b) 실온에서 상기 AD 시스템에 의해 다른 입자 크기를 갖는 두 종류의 TiO2 파우더를 사용하여 에어로졸 증착에 의해, 기판 상에 니어 제로 TCR 및 고접합 강도를 갖는 밀한 TiO2/Cu 합성 필름을 형성하는 단계; 및 (c) 상기 기판에 증착된 TiO2/Cu 합성 필름의 표면 모폴로지와 RMS 거칠기, 전기 저항도, 접합 강도와 저항온도계수(TCR)을 측정하여 분석되는 단계를 포함한다.
본 발명에 따른 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법을 제공하였다. 임베디드 수동 소자용 TiO2/Cu 합성 필름의 실온 가공이 에어로졸 증착 프로세스를 통해 시도되었다. 내부 미세구조의 XRD 분석 및 관찰에 따라 TiO2/Cu 합성 필름의 내부 미세구조의 치밀화(densification)에 있어서 초기 TiO2 입자 크기의 효과 때문에, 25 nm-크기 TiO2에 비해 500 nm-크기 TiO2를 이용한 TiO2/Cu 합성 필름이 입자들 간의 더 단단한 bonding을 가지는 점을 나타냈다. 그리고, 접합 강도(adhesive strength)와 저항온도계수(TCR)를 최적화하기 위해, 다른 함량의 TiO2를 갖는 TiO2(500nm)/Cu 합성 필름의 전기 및 기계적 특성이 진보된 복합 막저항으로서의 응용을 위해 평가되었다. 그 결과, TiO2/Cu (50 wt% / 50 wt%) 합성 필름은 에어로졸 증착 동안 형성되는 앵커링 본드와 기계적 인터로킹의 적절한 공존으로부터 이뤄지는 충분한 전기 저항도(electrical resistivity)(5.8x10- 3Ωcm), 탁월한 니어-제로 TCR(-3ppm/℃), 및 개선된 접합 강도(adhesive strength)(~7.37N/mm2)를 가졌다.
도 1은 (a) 500 nm TiO2 particles 및 (b) 25 nm TiO2 particles을 사용한 TiO2 /Cu (50 wt%/50 wt%) 복합 합성 필름의 Cross-sectional SEM 이미지 현미경 사진.
도 2는 (a) 500 nm TiO2 particles 및 (b) 25 nm TiO2 particles을 사용한 TiO2 /Cu 복합 합성 필름의 X 선 회절 패턴(X-ray diffraction patterns of TiO2/Cu composite films).
도 3은 각각 25 nm TiO2 분말(검정 선) 및 500 nm TiO2 분말을 사용할 때의 분말(빨강 선)을 사용할 때 TiO2 분말(TiO2 powder)의 함유량에 따른 TiO2 /Cu 복합 합성 필름의 결정 크기.
도 4는 다른 TiO2 함유량을 갖는 TiO2 /Cu 복합 합성 필름의 표면 SEM 이미지 현미경 사진(Surface SEM micrographs) : (a) 5wt %, (b) 10wt %, (c) 30wt % 및 (d) 50wt %.
도 5는 (a) 5wt %, (b) 10wt %, (c) 30wt %, (d) 50wt %의 다른 TiO2 함유량을 갖는 TiO2 /Cu 복합 합성 필름의 표면 형태(surface morphologies) 및 평균 표면 거칠기(average surface roughness). 원자 현미경(atomic force microscopy, AFM)에 의해 결정된다.
도 6은 EDS 맵핑(EDS mapping)으로부터 (a) 5wt % (b) 10wt %, (c) 30wt % 및 (d) 50wt % 다른 TiO2 함량을 가진 TiO2 /Cu 복합 합성 필름의 각 성분 분포(주황색 점은 TiO2 이고, 녹색 점은 Cu이다)
도 7은 TiO2 함량이 증가되면서 TiO2 /Cu 복합 합성 필름의 전기 저항도(electrical resistivity)의 변화.
도 8은 다른 TiO2 함유량을 갖는 TiO2 /Cu 복합 합성 필름을 위한 저항 온도 계수(temperature coefficient of resistance, TCR) 경향.
도 9는 10wt %, 30wt % 및 50wt %에서 TiO2 함유량을 갖는 TiO2 /Cu 복합 합성 필름(TiO2 /Cu composite films)의 접착 강도(adhesive strength).
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 발명의 구성 및 동작을 상세하게 설명한다.
에어로졸 증착(aerosol deposition, AD)을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법이 개시된다.
본 발명의 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법은, (a) AD 시스템에서, TiO2 파우더와 Cu 파우더는 AD 프로세스에 전에 5, 10, 30, 및 50 wt% 다른 중량비로 TiO2 파우더가 사전-혼합되는 단계; (b) 23℃ 실온에서 상기 AD 시스템에 의해 다른 입자 크기를 갖는 두 종류의 TiO2 파우더를 사용하여 에어로졸 증착에 의해, 기판 상에 near zero TCR 및 기판과 필름의 기계적인 인터로킹을 형성함으로써 고접합 강도를 갖는 밀한 TiO2/Cu 합성 필름의 코팅층을 형성하는 단계; 및 (c) 상기 기판에 증착된 TiO2/Cu 합성 필름의 표면 모폴로지와 RMS 거칠기(RMS roughness), 전기 저항도(electrical resistivity)와 접합 강도(adhesive strength)와 저항온도계수(TCR)를 측정하여 분석되는 단계를 포함한다.
상기 기판은 기판과 밀한 TiO2/Cu 합성 필름과의 기계적 인터로킹을 형성하여 강한 접착 강도를 갖는 알루미나(Al2O3) 기판이 사용하였다.
2㎛의 평균 입자 직경을 갖는 Cu 파우더(Nippon Atomized Metal Powders co., Ltd., Japan)가 사용되었다. 개선된 막저항(film resistor)에 적용가능한 상이한 입자 크기(25nm, 500nm)를 갖는 anatase 타입의 세라믹 TiO2 파우더들(Sigma Aldrich co., Ltd., Korea)이 사용되었다. TiO2와 Cu 파우더는 AD 프로세스에 앞서 다른 비율(5, 10, 30, 및 50 wt%)로 사전-혼합되었다. TiO2/Cu 합성 필름과 기판 간의 기계적 인터로킹을 형성함으로써 강한 접착 강도를 갖도록 세라믹 중 탁월한 경도를 갖는 알루미나(Al2O3)가 기판이 사용되었다.
임베디드 수동 소자용 TiO2/Cu 합성 필름의 실온 가공이 에어로졸 증착(AD) 프로세스를 통해 시도되었다. 내부 미세구조의 XRD 분석 및 관측은 내부 미세구조의 치밀화(densification)에 있어서 초기 TiO2 입자 크기의 효과 때문에, 25 nm-크기 TiO2에 비해 500 nm-크기 TiO2를 이용한 TiO2/Cu 합성 필름이 입자들 간의 더 단단한 bonding을 가짐이 나타냈다. 접합 강도와 저항온도계수(TCR)를 최적화하기 위해, 5,10,30, 50wt% 다른 함량의 TiO2를 갖는 TiO2(500nm)/Cu 합성 필름의 전기 및 기계적 특성이 진보된 복합 막 저항으로서의 응용을 위해 평가되었다.
그 결과, TiO2/Cu (50 wt% / 50 wt%) 합성 필름은 에어로졸 증착 동안 형성되는 앵커링 본드와 기계적 인터로킹의 적절한 공존으로부터 이뤄지는 충분한 전기 저항도(electrical resistivity)(5.8x10-3Ωcm), 탁월한 니어-제로 TCR(-3ppm/℃), 및 개선된 접합 강도(adhesive strength)(~7.37N/mm2)를 가졌다.
참고로, AD 시스템은 에어로졸 챔버(aerosol chamber)와 증착 챔버(deposition chamber)로 구비되며, 상기 에어로졸 챔버는 가스 유량을 제어할 수 있는 유량 제어기(mass flow controller)가 구비된다.
2㎛의 평균 입자 직경을 갖는 Cu 파우더(Cu powder)와 다른 입자 크기(25nm, 500nm)를 갖는 anatase 타입의 세라믹 TiO2 파우더(TiO2 powder)가 준비되었으며,
준비된 파우더(powder)가 먼저 에어로졸 챔버에 로딩된다. 에어로졸 챔버는 가스 유량(gas flow rate)을 제어할 수 있는 유량 제어기(mass flow controller)에 직접 접속되었다. 캐리어 가스는 99.99%의 순도를 갖는 헬륨 가스를 사용하였다.
캐리어 가스(carrier gas, 헬륨 가스)가 에어로졸 챔버에 공급되었을 때, Cu 파우더들과 TiO2 파우더들은 캐리어 가스를 사용한 혼합 및 휘젓기에 의해 에어로졸화 되었다. 실험은 유량 제어기에 의해 다양한 가스 유량(8-9 L/min)을 사용하여 전기 저항도(electrical resistivity)에 대한 가스 소모(gas consumption)를 측정할 수 있다.
캐리어 가스(He, 헬륨 가스)가 상기 에어로졸 챔버에 공급되었을 때, 2㎛의 평균 입자 직경을 갖는 Cu 파우더(Cu powder)와 다른 입자 크기(25nm, 500nm)를 갖는 anatase 타입의 세라믹 TiO2 파우더(TiO2 powder)는 캐리어 가스를 이용한 혼합 및 휘젓기에 의해 에어로졸화 되며, 에어로졸화 된 파우더는 테프런 튜브를 통해 주입된 헬륨 가스에 의해 슬릿(slit) 노즐로 전송되고, 증착 챔버에 분사되었다. 에어로졸을 생성하기 전에, 증착 챔버는 로터리 펌프와 기계 부스터 펌프로써 미리 비워져 가속된 에어로졸로부터 공기 저항을 제거하였다.
2. 실험 방법
AD 프로세스는 실온 충격 고화(room temperature impact consolidation, RTIC)에 기초한다. 로(raw) 파우더가 전기로 내에서 150℃에서 건조되고 체를 통해 걸러져 어떠한 불순물이나 수분이 없는 정제된 에어로졸을 형성한다. 에어로졸 챔버 내에 놓여지는 이러한 파우더들이 유량계(mass flow controller)에 의해 조절되는 헬륨 가스류(flow)에 의해 에어로졸화되었다. 더 능동적으로 에어로졸을 생성하기 위해, 에어로졸의 양은 헬륨가스 외에 300rpm의 속도로 바이브레이터를 이용하여 제어되었다. 그후 불어진 에어로졸이 튜브를 통해 0.8 x 0.8mm2의 원형 오리피스를 갖는 노즐로 전송되었다. 그후 8-9 L/min의 헬륨 캐리어 가스에 의해, 노즐로부터 분사되는 입자들의 감속을 완화시키기 위해 로터리 펌프와 기계 부스터 펌프에 의해 비워진, 증착 챔버로 가속되었다. 캐리어 가스는 99.99%의 순도를 갖는 헬륨(He) 가스가 사용되었다. 이렇게 가속된 입자들은 노즐로부터 5mm 떨어져 위치하는 기판과 충돌하였다. 그후 이들은 입자와 기판 간의 강한 접합을 갖는 밀한 필름(dense film with strong bonds)을 형성하였다. 기판의 증착 면적은 20 x 20 mm2였다.
금속 출발 파우더로서, 2㎛의 평균 입자 직경을 갖는 Cu 파우더(Nippon Atomized Metal Powders co., Ltd., Japan)가 사용되었다. 개선된 막저항에 적용가능한 다른 입자 크기(25nm, 500nm)를 갖는 anatase 타입의 세라믹 TiO2 파우더들(Sigma Aldrich co., Ltd., Korea)이 준비되었다. 세 가지 상이한 상(phase)의 TiO2가 존재한다: 금홍석(rutile), 아나타제(anatase), 브루카이트(brookite). 이들을 막저항으로 사용하기 위해, 구조적 차이에 의해 다른 것들보다 높은 저항을 갖는 아나타제(anatase) 타입의 TiO2가 선택되었다. 그후 TiO2와 Cu 파우더는 AD 프로세스에 앞서 다른 비율(5, 10, 30, 및 50 wt%)로 사전-혼합되었다. 세라믹 중 탁월한 경도를 갖는 알루미나(Al2O3) 기판이 사용되었으며, 이는 필름과 기판 간의 기계적 인터로킹을 형성함으로써 강한 접착 강도를 갖기 때문이다.
TiO2/Cu 합성 필름 코팅층의 표면 및 내부 미세구조는 5kV에서 필드 방사 주사형 전자현미경(FE-SEM, S-470, HITACHI Ltd., Japan)으로 조사되었다. 에너지 분산 분광기(Energy dispersive spectroscopy, EDS)를 사용하여 TiO2/Cu 합성 필름 표면의 화학 구성을 결정하였다. 원자 현미경(AFM, XE-100, Park system, Korea)을 활용하여 표면 모폴로지와 RMS 거칠기(RMS roughness)를 정밀하게 조사하였다. 전기 저항도는 4-포인트 프로브 시스템(Mitsubishi Chemical Corporation, Loresta-GP MCP-T600, Japan)으로 조사하였다. X-선 회절(X-ray diffraction(XRD), X'Pert PRO diffactometer, PANalytical, USA) 분석을 수행하여 20-80°의 2θ 범위에 걸쳐 Cu Κα방사(~1.54056Å)을 사용한 출발 물질의 다른 입자 크기들로써 내부 미세-변형과 결정 크기의 변동을 확인하였다. 23℃ 실온에서 AD 프로세스에 의해 Al2O3 알루미나 기판 상에 TiO2 /Cu 합성 필름이 증착된 후, 증착-상태의 TiO2 /Cu 합성 필름과 Al2O3 기판 간의 접합 강도(adhesive strength)는 만능 시험기(DUT-300CM, Daekyung engineering Corp., Korea)을 사용하여 측정되었다.
TiO2/Cu 합성 필름의 저항온도계수(temperature coefficient of resistance, TCR)는 자동 온도 조절 챔버(thermostatic chamber:Temperature&Humidity Chamber, ACS, Challenge 250)에서 -20~120℃로부터 온도를 변화시킴으로써 4-포인트 프로브 시스템(4-point probe system)을 이용하여 측정되었다.
3. 결과
3.1 TiO2 입자 크기에 따른 TiO2/Cu 합성 필름의 미세구조 및 결정성
TiO2/Cu 합성 필름이 다른 크기(25 nm, 500 nm)를 갖는 두 종류의 TiO2 파우더를 사용하여 실험 파라미터를 최적화하기 위해 23℃ 실온에서 AD 프로세스에 의해 알루미나 기판 상에 증착되었다.
500 nm TiO2 파우더를 사용하여, 다공성이 없는 밀한 TiO2/Cu (50 wt%/50wt%) 합성 필름이 성공적으로 23℃ 실온에서 가공되었다. 그러나, 밀한 TiO2/Cu 합성 필름은 25 nm TiO2/Cu 파우더가 이용될 때는 가공될 수 없었다.
도 1은 이러한 두 종류의 TiO2 입자 크기들을 사용한 TiO2/Cu 합성 필름의 절단면 SEM 이미지를 나타낸다.
도 1(a)에 도시된 바와 같이, 500 nm TiO2 파우더를 사용하는 경우, TiO2 입자들 간에 유기적으로 견고한 결합을 형성하여 다공성 없으며 상대적으로 낮은 공극률을 갖고 강한 접찹력을 갖는 밀한 TiO2/Cu 합성 필름이 성장하는 것으로 추정되었다.
반면, 도 1(b)에 도시된 바와 같이, TiO2/Cu 합성 필름의 내부 미세구조는 25 nm TiO2 파우더가 사용될 때 다공성이었다. Cu 입자들은 충돌 후에조차 소성 변형 되지 않았다. 즉, 25 nm TiO2 입자들의 작은 충돌 에너지가 견고한 본딩(bonding)에 지장을 주어, 결과적으로 알루미나 기판 상에 축적되었다.
TiO2 입자 크기의 기본적인 차이가 AD 프로세스의 충돌 매커니즘(collision mechanism)과 Cu 입자들의 기계적 특성에 기여하였을 수 있다. 노즐로부터 주입되는 500nm-크기 TiO2 입자가 25 nm-크기 TiO2보다 상당히 더 큰 운동 에너지(larger kinetic energy)를 갖기 때문에, 이후의 충격 입자들은 증착된 Cu 입자들에게 큰 충격을 전달하여 결과적으로 소성 변형(plastic deformation)을 받거나 Cu 입자와 알루미나 기판 간의 기계적 인터로킹(mechanical interlocking)을 담당할 수 있는 연신된 형태(elongated shape)로 왜곡될 수 있다. 그러므로, 낮은 공극률을 갖는 밀한 필름(dense film with low porosity)이 형성되어, 강한 접착력(strong adhesion)을 달성할 수 있다.
반면, 25 nm-크기 TiO2 입자가 사용될 때는, 기판과 강하게 충돌할지라도, 대부분 잘 파쇄되지 못하고 에어로졸 본딩 매커니즘(aerosol bonding mechanism)을 충족하지 않은채 기판 상에 축적된다. 이는 500 nm-크기 TiO2 입자 보다 상대적으로 25 nm-크기 TiO2 입자의 낮은 운동 에너지와 축적된-증착으로부터의 약한 본딩(weak bonding from low kinetic energy)이 다공성 내부 구조(porous internal structure)를 형성하여, Cu 입자의 소성 변형이나 파쇄를 저해하였을 수 있다.
다른 크기의 TiO2 입자들의 증착 거동(deposition behavior of TiO2 particles)을 더 상세히 조사하기 위해, X-선을 이용하여 에어로졸-증착 TiO2/Cu 합성 필름(aerosol-deposited TiO2/Cu composite films)의 결정성(crystallinity)을 측정하였다. 도 2(a) 및 (b)는 다른 TiO2 입자 크기(500nm 및 25nm)를 이용한 두 종류의 TiO2/Cu (50wt%/50wt%) 합성 필름의 대표적인 XRD 패턴을 나타낸다.
TiO2 (500nm)/Cu 필름과 TiO2 (25nm)/Cu 필름의 반치전폭(Full width at half-maximum, FWHM) 값은 상당한 차이를 보이지 않았는데, 이는 초기 500 nm TiO2 입자가 25nm TiO2 입자보다 상당히 클지라도, 미세 나노결정 TiO2가 엄청난 분쇄를 통해 알루미나 기판 상에 형성되었음을 나타낸다. 즉, 500 nm TiO2 입자는 매우 작은 필름을 달성하기 위해, 이 조건이 1마이크로 미만 크기의 입자를 나노결정으로 분쇄하도록 알루미나 기판에 충분한 모멘텀(momentum)을 기여하였을 수 있다. 월등한 접착이 기판과 필름 간에 형성되었다고 추론될 수 있다. 그러므로, 도 3에 도시된 바와 같이, TiO2/Cu 합성 필름 내의 500nm TiO2의 함량이 증가되었을 때, 입자의 분쇄와 경화가 더 활발하여, 입자 파편의 상호 결합에 의해 추가적인 밀집화를 이룰 수 있는 더 작은 결정 크기를 형성하였다.
대조적으로, 25nm TiO2 파우더가 사용되었을 때, TiO2/Cu 합성 필름의 TiO2 결정 크기는, TiO2의 함량이 증가되었을 때조차 변화를 보이지 않았다. 이는 크기 25nm로 구성되는 작은 형태의 TiO2 파우더가 충분한 분쇄(crushing)가 제한되어, AD 프로세스 동안의 그 거동이 기판 상에서의 국부적 파우더 축적(local powders accumulation)에 대부분 관여하여, 상대적으로 500 nm TiO2 보다 낮은 접착력을 갖는 느슨하게-패킹된 TiO2/Cu 합성 필름(loosely-packed TiO2/Cu composite films with low adhesion)을 이룬다.
단면 SEM 이미지, XRD, 및 TiO2 결정 크기의 분석으로부터, 세라믹 출발 물질의 크기 영향은 밀한(dense) 에어로졸-증착 필름의 형성에 큰 영향을 주었다. 500 nm TiO2 입자들(500 nm TiO2 particles)이 계면 접착 강화(reinforce interfacial adhesion)에 25nm TiO2 입자보다 더 적합함이 발견되었다.
3.2 TiO2 함량에 따른 TiO2/Cu 합성 필름의 표면 모폴로지
섹션 3.1에서 도출된 결과로부터, 우리는 500 nm-크기 TiO2 파우더를 채택하여 5, 10, 30, 및 50wt%의 다른 중량비의 TiO2 함량을 갖는 에어로졸-증착 TiO2/Cu 합성 필름의 표면 특성을 조사하였다.
도 4는 TiO2의 다른 중량비를 갖는 TiO2 (500nm)/Cu 합성 필름의 상면 SEM 현미경 사진을 나타낸다. TiO2 /Cu 합성 필름의 표면 모폴로지는 TiO2 함량이 증가되었을 때 비-균일하고 거친 표면을 나타냈다. 그 이유는 딱딱한 Al2O3 세라믹 알루미나 기판 상에서 성장할 때 TiO2와 Cu 입자들의 상이한 증착 거동 때문일 것이다. 세라믹이 기판에 증착될 때, 대부분의 TiO2 입자들이 AD 프로세스 동안 분쇄 및 성장을 하게 됨에도, 일부는 에칭에 기여할 수 있다. 이러한 차후의 TiO2 입자들의 반복적 프로세스는 평활한 표면의 형성을 부분적으로 방해하여, 거친 표면을 갖는 필름을 초래한다. 반면, 연성을 갖는 Cu 입자들(Cu particles with a ductile property)은, 충돌(collision)에 의해 충격을 받을 때 분쇄(pulverization)보다는 기판 상에서 소성 변형(plastic deformation) 되기 때문에, TiO2 입자들의 에칭 효과를 완화시키는 경향이 있다.
또한, 원자 현미경 AFM에 의한 TiO2/Cu 합성 필름의 표면 모폴로지가 도 5에 도시된다. 5wt% 및 10wt%의 TiO2 샘플들이 유사한 RMS(root mean square) 거칠기(RMS roughness)를 가질지라도, 30wt%를 초과하는 TiO2 함량의 필름은 기복이 심한 형태로 변형되고 도 5(d)에 도시된 바와 같이 50wt%의 TiO2 함량에서 최고 RMS 거칠기가 확인되었다. 그럼에도 불구하고, 50 wt%의 TiO2 함량에서 표면 열화(surface deterioration)는 막저항(film resistors)에는 좋은 요인일 수 있다. 일반적으로, 거친 표면을 갖는 필름은 전기 저항도(resistivity)를 증대시킬 수 있다. 몇몇 연구자들에 의해 보고된 바와 같이, 전기 저항도는 표면 산란(surface scattering)을 일으킬 수 있는 거친 필름 특성(rough film properties) 때문에 약 50% 만큼 감소됨을 검증하였다. 현격한 표면 변동이 급경사를 가지므로, 표면 상에서의 전자의 후방산란(backward scattering of electrons on the surface)을 위한 기회를 주고 전자 전달(electron transport)을 방해하는데, 이는 전기 저항도를 높인다. 더욱이, Matthiessen's rule에 따르면, 전체 저항은 표면 상에서의 산란의 저항 파라미터(resistivity parameters of scattering on the surface)에 의해 상당히 영향을 받는다는 점이 입증되었다. 그러므로, 전자 경로(electron path)를 적절히 막을 수 있는 거친 표면을 가진 TiO2 (50wt%)/Cu 합성 필름은 높은 저항을 요구하는 막 저항(film resistors)으로서의 응용에 적합하다.
도 6은 에어로졸-증착 TiO2/Cu 합성 필름의 화학 구성을 나타내는 EDS 맵핑 이미지(EDS mapping images)를 나타낸다. TiO2 및 Cu 파우더들(TiO2 및 Cu powders)이 균일하게 혼합되고 에어로졸 챔버에 놓여졌을지라도, 증착 필름에서 TiO2 비율이 혼합 파우더에서보다 더 높은 것으로 광학적으로 관찰되었다. 도 6(d)에 도시된 바와 같이, 두 가지 종류가 AD 프로세스에 앞서 50 wt%의 동일비로 준비되었을지라도, TiO2 성분이 Cu 성분보다 TiO2/Cu 합성 필름의 표면의 절반을 넘게 차지하였다. 그 차이에 관한 주된 이유는 표면 에너지(surface energy)와 밀도(density)에 있어서의 차이인 것으로 알려진다. 그러나, 두 물질들 간의 표면 에너지에 관하여 차이가 거의 없기에, 우리는 혼합 파우더의 중량비(weight percentage)와 증착 필름의 중량비의 차이가 각 파우더에 대한 내재적인 밀도에 원인이 있는 것으로 생각하였다. 아나타제 TiO2 파우더(anatase TiO2 powder, 밀도: ~3.9g/cm- 3)가 Cu 파우더(밀도: ~8.9G/cm-3) 보다 낮은 밀도를 갖기 때문에, 헬륨 가스가 제2 에어로졸 챔버로 주입될 때 잘 불어져 흩어질 수 있으며, 이는 TiO2의 에어로졸화가 활발하게 일어남을 의미한다. 반면, Cu 입자는 아나타제 TiO2 파우더보다 상대적으로 높은 밀도를 갖는다. 그러므로, 이들은 에어로졸 생성을 제한할 수 있다.
3.3 TiO2/Cu 합성 필름의 전기 및 기계적 특성에 대한 TiO2 함량의 영향
막 저항(film resistors)으로서의 응용을 위한 최적 조건을 조사하기 위해, 다른 TiO2 함량(5, 10, 30, 및 50wt%)을 갖는 네 종류의 TiO2/Cu 합성 필름의 전기 저항이 4-점 프로브 시스템을 이용하여 측정되었다. AD 프로세스가 각 물질의 고유 특성을 유지할 수 있기 때문에, 높은 저항을 갖는 TiO2와 낮은 저항을 갖는 Cu의 함량이 적절히 제어되며 다양한 전기 저항도(electrical resistivity)를 나타낼 수 있다. 500 nm-크기 TiO2를 이용한 TiO2/Cu 합성 필름에 대한 전기 저항도의 측정에 앞서, 우리는 먼저 25nm-크기 TiO2로 만들어지는 필름의 전기 저항도를 측정하였다. 그러나, 그 값들은 모든 샘플에 대해서는 획득될 수 없었다. 전술한 TiO2 (25nm)/Cu 합성 필름의 AD 매커니즘을 고려하면, 이러한 입자들은 전자 전달 프로세스를 방해하고 절연 특성에 영향을 미치는, 낮은 충격 에너지에 의해 야기되는 약한 흡착 때문에 잘 연결되지 않았다.
그후 TiO2(500nm)/Cu 합성 필름의 저항도(resistivity)가 측정 및 평가되었다. 도 7에 도시된 바와 같이, 5, 10, 30, 및 50 wt%의 TiO2 함량을 갖는 TiO2(500nm)/Cu 합성 필름은 각각 3.5x10-5, 7.9x10-5, 7.5x10-4, 및 5.8x10- 3Ω㎝의 전기 저항도를 나타냈다. 해당 그래프는 전기 저항도의 기울기가 TiO2 함량의 증가에 따라 급격히 증가함을 보였다. 금속-절연체 합성물에 대해, 이 기울기의 변화율의 차이는 삼투 효과(percolation effect)에 의해 설명될 수 있다. 전기 저항도 ρ과 금속 농도(concentration) p 간의 상관은 식(1)에 의해 주어진다.
ρ=ρ 0(p-p c )- μ (1)
5, 10, 30, 50 wt% TiO2 파우더 중에 낮은 중량비의 TiO2에서, TiO2/Cu 합성 필름은 많은 양의 Cu 입자들 간의 잘-형성된 접합 때문에 Cu 입자들 간의 접합으로부터 형성되는 다수의 무한 클러스터에 의해 낮은 전기 저항도(electrical resistivity)를 가졌다. 반면, TiO2/Cu 합성 필름이 어떠한 양의 TiO2를 포함한다면, 증착된 TiO2는 Cu 섬 합체(coalesce)와 간섭할 수 있으며, 이는 전기 전도성(electrical conductivity)의 감소를 초래한다. 또한, 기울기의 차이는 높은 함량의 TiO2가 많은 분쇄 프로세스를 받을 때, 그레인 크기(grain size)가 감소되고, 그레인 경계(grain boundaries)는 증가되어, 증강된 전기 저항도를 달성하게 된다.
열처리 후의 TiO2 (500nm)/Cu 합성 필름의 열 안정성을 확인하기 위해, 전기 저항도 변동에 따르는 것으로 알려진 TCR이 120℃에서 측정되었다. 식 ρ 0 -1(dρ/dT)로부터 유도되는 Cu 필름만의 TRC 값은 786 ppm/℃였다.
도 8에 보이는 바와 같이, TiO2 함량의 함수로서 TCR 변화율은 점차적으로 감소되었다. 이는 TiO2의 산화-촉진제 행동에 따른 것일 수 있다. 우리의 에어로졸-증착 TiO2/Cu 합성 필름에서, TiO2는 Cu의 산화에 촉매작용(TiO2 catalyzed the oxidation of Cu)을 하여, Cu 보다 3배 높은 TCR을 갖는 CuO의 형성을 유도하였다. 그러므로, Cu로부터 전환된 CuO는 TiO2 함량을 증가시킴에 따른 TCR 기울기 비율을 완화시켰으며, 이는 Cu를 더 산화시킬 높은 가능성을 나타낸다. 아나타제 TiO2의 TCR이 매우 낮은 값을 갖기 때문에, 50 wt%의 TiO2는 명백하게 많은 Cu 입자들을 산화시켜, 음의 TCR 값으로의 급격한 감소를 효과적으로 저지하였을 것이다. 결과적으로, TiO2 (50wt%)/Cu 합성 필름은 최저 저항 변동율 (-3ppm/℃)을 보였으며 온도를 증가시킨 후에도 저항(resistor)으로서 열적 안정성(thermal stability)을 보였다.
결과적으로, 우리는 도 9에 도시된 바와 같이 TiO2(500nm)/Cu 합성 필름과 Al2O3 기판 간의 접합 강도(adhesive strength)를 조사하였다. 접합 강도를 측정하는 프로세스는 다음과 같다. 에폭시 레진(Epoxy resin)과 원주형 막대(cylindrical rod)가 순차적으로 TiO2/Cu 합성 필름에 부착되었고, 막대는 TiO2/Cu 합성 필름이 기판으로부터 분리될 때까지 당겨졌다. 결과적으로, 10, 30, 및 50 wt%에 대응하는 접합 강도 값들은 각각 4.77, 5.86, 및 7.37 N/mm2인 것으로 측정되었다. 이전 연구에서, 알루미나 기판 상에서 에어로졸-증착 Cu 필름의 4.23N/mm2과 비교하여, 접합 강도는 TiO2의 증분에 따라 증가한다고 확인되었다. TiO2 함량이 10wt%였을 때, 충격 동안 Cu의 소성 변형과 충돌 완화 프로세스는 약한 결합력(weak bonding force)을 갖는 TiO2의 작은 모멘텀(momentum)을 유도하였다. 이 현상은 Cu 입자들과 기판 간의 기계적 인터로킹(mechanical interlocking)의 지배적 구성 때문이었을 수 있다. TiO2-30wt%의 경우, 상대적으로 증가된 TiO2 분쇄 프로세스는 약간 앵커링 결합을 형성하여, 기판과의 접합 강도를 증가시켰다. TiO2와 Cu의 함량이 동일하게 50wt%일 때, 알루미나 기판(alumina substrate)과 TiO2 간의 앵커링층(anchoring layer)이 강화되고 증가되어 다른 샘플들과 비교하여 월등한 접합력이 얻어질 수 있었다.
4. 결론
우리는 니어 제로 TCR 및 높은 접합 강도를 위해 AD 프로세스를 이용하여 23℃ 실온에서 TiO2/Cu 합성 필름을 가공하였다. 기판 상에 접합에 대한 TiO2 입자 크기의 효과를 조사하기 위해, 두 개의 다른 크기(25nm, 500nm)에서 TiO2 입자가 준비되고 XRD 및 단면 SEM 이미지들에 의해 조사되었다. 25nm-크기 TiO2가 충분한 분쇄 프로세스를 거치지 않았기 때문에, 입자 일관성은 극도로 불량했다. 반면, 큰 모멘텀을 갖는 500nm-크기 TiO2는 충격 동안 기판과 견고하게 접합한다. 그러므로, TiO2(500nm)/Cu 합성 필름의 기계 및 전기적 특성이 광범위하게 조사되었다. 표면 모폴로지(surface morphologies)를 관측함으로써, TiO2 비율의 증가는 이전의 연구 결과들을 참조하면 막 저항으로서의 응용에 좋은 요인일 수 있는 표면 열화(surface deterioration)를 가져왔다. TiO2/Cu 합성 필름의 전기저항도(resistivity of TiO2/Cu composite films)를 측정한 후, 막 저항(film resistivity)은 높은 전기저항도(high resistivity)를 갖는 TiO2 함량을 높임으로써 증가됨이 확인되었다. 50wt% TiO2 함량을 갖는 합성 필름이 최고 전기저항도를 나타냈다. 또한, 그 TCR 값도 zero에 가까운 것으로 측정되었는데, 이는 전기 저항도의 변동율이 고온에서조차 매우 작았음을 나타낸다. 더욱이, TiO2/Cu (50wt% : 50wt%) 합성 필름에 대해, TiO2에 의해 적절히 형성된 앵커링 결합(anchoring bonds)과 Cu에 의한 기계적 인터로킹(mechanical interlocking)은 높은 접합 강도(high adhesive strength)를 보였으며, 이는 외부 충격에 의한 강건성을 증진시킬 것으로 예상된다.
본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진자가 하기의 특허청구범위에 기재된 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. AD 시스템에서, TiO2 파우더와 Cu 파우더는 AD 프로세스에 전에 5, 10, 30, 및 50 wt% 다른 중량비로 TiO2 파우더가 사전-혼합되는 단계;
    실온에서 상기 AD 시스템에 의해 다른 입자 크기를 갖는 두 종류의 TiO2 파우더를 사용하여 에어로졸 증착에 의해, 기판 상에 니어 제로 TCR 및 고접합 강도를 갖는 밀한 TiO2/Cu 합성 필름을 형성하는 단계; 및
    상기 기판에 증착된 TiO2/Cu 합성 필름의 표면 모폴로지와 RMS 거칠기, 전기 저항도, 접합 강도와 저항온도계수(TCR)를 측정하여 분석되는 단계;
    를 포함하는 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  2. 제1항에 있어서,
    상기 AD 시스템은 에어로졸 챔버와 증착 챔버로 구비되며, 상기 에어로졸 챔버는 가스 유량을 제어할 수 있는 유량 제어기가 구비되며,
    2㎛의 평균 입자 직경을 갖는 Cu 파우더와, 25nm, 500nm 다른 입자 크기를 갖는 anatase 타입의 세라믹 TiO2 파우더가 먼저 상기 에어로졸 챔버에 로딩되며, 에어로졸 챔버는 가스 유량을 제어할 수 있는 상기 유량 제어기에 직접 접속되며,
    캐리어 가스는 헬륨 가스를 사용하였으며, 상기 캐리어 가스가 에어로졸 챔버에 공급되었을 때, Cu 파우더들과 TiO2 파우더들은 상기 캐리어 가스를 사용한 혼합 및 휘젓기에 의해 에어로졸화 되며, 에어로졸화 된 파우더는 테프런 튜브를 통해 주입된 헬륨 가스에 의해 슬릿 노즐로 전송되고 증착 챔버에 분사되며, 에어로졸을 생성하기 전에, 증착 챔버는 로터리 펌프와 기계 부스터 펌프로써 미리 비워져 가속된 에어로졸로부터 공기 저항을 제거하는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  3. 제1항에 있어서,
    상기 단계(a)에서, 상기 TiO2 파우더와 상기 Cu 파우더는
    각각 2㎛의 평균 입자 직경을 갖는 Cu 파우더와, 25nm, 500nm 다른 입자 크기를 갖는 anatase 타입의 세라믹 TiO2 파우더를 사용하며,
    상기 TiO2 파우더와 상기 Cu 파우더는 AD 프로세스에 전에 5, 10, 30, 및 50 wt% 다른 중량비로 사전에-혼합되는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  4. 제1항에 있어서,
    상기 기판은
    기계적 인터로킹을 형성하여 강한 접착 강도를 갖는 알루미나(Al2O3) 기판이 사용되는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  5. 제1항에 있어서,
    상기 TiO2/Cu 합성 필름은 25 nm, 500 nm 다른 입자 크기를 갖는 두 종류의 TiO2 파우더를 사용하여 23℃ 실온에서 AD 프로세스에 의해 알루미나 기판 상에 증착되었으며, 25 nm-크기 TiO2에 비해 상대적으로 500 nm-크기 TiO2를 이용한 TiO2/Cu 합성 필름이 입자들 간의 더 단단한 bonding을 가지는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  6. 제5항에 있어서,
    500 nm TiO2 파우더를 사용하면, TiO2 입자들 간에 견고한 결합을 형성하여 다공성 없으며 상대적으로 낮은 공극률을 갖고 강한 접찹력을 갖는 상기 밀한 TiO2/Cu (50 wt%/50wt%) 합성 필름이 성공적으로 실온에서 가공되었으며,
    반면, 25 nm TiO2/Cu 파우더가 사용되면, 상기 밀한 TiO2/Cu 합성 필름은 가공될 수 없었으며, TiO2/Cu 합성 필름의 내부 미세구조는 25 nm TiO2 파우더가 이용될 때 다공성이었으며 Cu 입자들은 충돌 후에조차 소성 변형되지 않았으나, 즉, 25 nm TiO2 입자들은 상대적으로 500 nm-크기 TiO2 입자 보다 작은 충돌 에너지가 견고한 본딩(bonding)에 지장을 주어, 알루미나 기판 상에 축적 증착되며, 25 nm-크기 TiO2 입자들은 상기 기판과 강하게 충돌할지라도, 대부분 잘 파쇄되지 못하고 에어로졸 본딩 매커니즘(aerosol bonding mechanism)을 충족하지 않은채 상기 기판 상에 축적되며, 이는 500 nm-크기 TiO2 입자 보다 상대적으로 25 nm-크기 TiO2 입자의 낮은 운동 에너지와 축적된-증착으로부터의 약한 본딩(weak bonding from low kinetic energy)이 다공성(porous) 내부 구조를 형성하여, Cu 입자의 소성 변형이나 파쇄를 저해하는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  7. 제1항에 있어서,
    상기 TiO2/Cu 합성 필름 내의 500nm TiO2의 함량이 증가되었을 때, 입자의 분쇄와 경화가 더 활발하여, 입자 파편의 상호 결합에 의해 추가적인 밀집화를 이룰 수 있는 더 작은 결정 크기를 형성하였으며,
    대조적으로, 25nm TiO2 파우더가 사용되었을 때, 상기 TiO2/Cu 합성 필름의 TiO2 결정 크기는, TiO2의 함량이 증가되었을 때조차 변화를 보이지 않았으며, 이는 크기 25nm로 구성되는 작은 형태의 TiO2 파우더가 충분한 분쇄(crushing)가 제한되어, AD 프로세스 동안의 그 거동이 기판 상에서의 국부적 파우더 축적(local powders accumulation)에 대부분 관여하여, 상대적으로 낮은 접착력을 갖는 느슨하게-패킹된 TiO2/Cu 합성 필름이 형성되는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  8. 제1항에 있어서,
    상기 밀한 TiO2/Cu 합성 필름은 500nm 크기 TiO2/Cu 합성 필름의 전기 저항도(resistivity)가 측정하였으며,
    5, 10, 30, 및 50 wt%의 다른 중량비를 가진 TiO2 함량을 갖는 TiO2(500nm)/Cu 합성 필름은 각각 3.5x10-5, 7.9x10-5, 7.5x10-4, 및 5.8x10- 3Ω㎝의 전기 저항도를 나타냈으며, 전기 저항도의 기울기가 TiO2 함량의 증가에 따라 급격히 증가하였으며,
    5, 10, 30, 50 wt% TiO2 파우더 중에 낮은 중량비의 TiO2에서, TiO2/Cu 합성 필름은 Cu 입자들의 접합으로부터 형성되는 다수의 무한 클러스터에 의해 낮은 전기 저항도(electrical resistivity)를 가졌으며,
    또한, 상대적으로 높은 중량비의 50 wt%, 즉 높은 함량의 TiO2가 많은 분쇄 프로세스를 받을 때, 그레인 크기(grain size)가 감소되고, 그레인 경계(grain boundaries)는 증가되어, 증강된 전기 저항도를 달성하는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  9. 제1항에 있어서,
    열처리 후의 TiO2 (500nm)/Cu 합성 필름의 열 안정성을 확인하기 위해, 전기 저항도 변동에 따르는 것으로 알려진 TCR이 120℃에서 측정되었으며 식 ρ 0 -1(dρ/dT)로부터 유도되는 Cu 필름만의 TRC 값은 786 ppm/℃ 측정되었으며,
    TiO2 함량의 함수로서 TCR 변화율은 점차적으로 감소되었고, 이는 TiO2의 산화-촉진제 행동에 따른 것일 수 있으며, 에어로졸-증착 TiO2/Cu 합성 필름에서, TiO2는 Cu의 산화에 촉매작용(TiO2 catalyzed the oxidation of Cu)을 하여, Cu 보다 3배 높은 TCR을 갖는 CuO의 형성을 유도하였으며, 그러므로, Cu로부터 전환된 CuO는 TiO2 함량을 증가시킴에 따른 TCR 기울기 비율을 완화시켰으며, 이는 Cu를 더 산화시킬 높은 가능성을 나타내며, 아나타제 TiO2의 TCR이 매우 낮은 값을 갖기 때문에, 50 wt%의 TiO2는 명백하게 많은 Cu 입자들을 산화시켜, 음의 TCR 값으로의 급격한 감소를 효과적으로 저지하였으며, 결과적으로, TiO2 (50wt%)/Cu 합성 필름은 최저 저항 변동율(-3ppm/℃)을 보였으며 온도를 증가시킨 후에도 저항(resistor)으로서 열적 안정성(thermal stability)을 제공하는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  10. 제1항에 있어서,
    TiO2(500nm)/Cu 합성 필름과 Al2O3 기판 간의 접합 강도(adhesive strength)는 10, 30, 및 50 wt% TiO2 입자들에 대응하는 접합 강도 값들은 각각 4.77, 5.86, 및 7.37 N/mm2인 것으로 측정되었으며, 이전 연구에서, 알루미나 기판 상에서 에어로졸-증착 Cu 필름의 4.23N/mm2과 비교하여, 접합 강도는 TiO2의 증분에 따라 증가된다고 확인되었으며,
    TiO2 - 10wt%였을 때, 충격 동안 Cu의 소성 변형과 충돌 완화 프로세스는 약한 결합력(weak bonding force)을 갖는 TiO2의 작은 모멘텀(momentum)을 유도하였으며, 이 현상은 Cu 입자들과 기판 간의 기계적 인터로킹(mechanical interlocking)을 제공하며,
    TiO2 - 30wt%의 경우, 상대적으로 증가된 TiO2 분쇄 프로세스는 상대적으로 약간 앵커링 결합을 형성하여, 상기 기판과의 접합 강도를 증가시켰으며,
    TiO2와 Cu의 함량이 동일하게 50wt%일 때, 알루미나 기판과 TiO2 간의 앵커링층(anchoring layer)이 강화되고 증가되어 다른 샘플들과 비교하여 상대적으로 월등한 접합력을 갖는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  11. 제1항에 있어서,
    원자 현미경 AFM에 의한 TiO2/Cu 합성 필름의 표면 모폴로지를 측정하였으며, 5wt% 및 10wt%의 TiO2 샘플들이 유사한 RMS 거칠기(RMS roughness)를 가질지라도, 30wt%를 초과하는 TiO2 함량의 필름은 기복이 심한 형태로 변형되고 50wt%의 TiO2 함량에서 최고 RMS 거칠기가 확인되었으며 그럼에도 불구하고, 50 wt%의 TiO2 함량에서 표면 열화(surface deterioration)는 막저항(film resistors)에는 좋은 요인일 수 있으며, 일반적으로 거친 표면을 갖는 필름은 전기 저항도(resistivity)를 증대시킬 수 있으므로, 전기 저항도는 표면 산란(surface scattering)을 일으킬 수 있는 거친 필름 특성(rough film properties) 때문에 50% 만큼 감소됨을 검증하였으며, 현격한 표면 변동이 급경사를 가지므로, 표면 상에서의 전자의 후방산란(backward scattering of electrons)을 위한 기회를 주고 전자 전달(electron transport)을 방해하는데, 이는 전기 저항도를 높인이며, Matthiessen's rule에 따르면, 전체 저항은 표면 상에서의 산란의 저항 파라미터(resistivity parameters of scattering on the surface)에 의해 상당히 영향을 받는다는 점이 입증되었으며, 전자 경로(electron path)를 적절히 막을 수 있는 거친 표면을 가진 TiO2 (50wt%)/Cu 합성 필름은 막 저항(film resistors)으로서의 응용에 적합한, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
  12. 제1항에 있어서,
    상기 TiO2/Cu 복합 합성 필름에서
    TiO2/Cu (50 wt% / 50 wt%) 합성 필름은 에어로졸 증착 동안 형성되는 앵커링 본드와 기계적 인터로킹에 의해 전기 저항도 5.8x10- 3Ωcm, 니어-제로 TCR -3ppm/℃, 및 개선된 접합 강도 ~7.37N/mm2를 가지는, 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법.
KR1020190020693A 2019-02-21 2019-02-21 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법 KR102207355B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190020693A KR102207355B1 (ko) 2019-02-21 2019-02-21 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190020693A KR102207355B1 (ko) 2019-02-21 2019-02-21 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법

Publications (2)

Publication Number Publication Date
KR20200102266A true KR20200102266A (ko) 2020-08-31
KR102207355B1 KR102207355B1 (ko) 2021-01-22

Family

ID=72234115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190020693A KR102207355B1 (ko) 2019-02-21 2019-02-21 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법

Country Status (1)

Country Link
KR (1) KR102207355B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091968A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 単結晶製造方法、及び当該方法によって製造される単結晶
KR101613704B1 (ko) * 2015-01-16 2016-04-29 부산대학교 산학협력단 아나타제상 이산화티탄 광촉매 코팅층의 형성방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091968A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 単結晶製造方法、及び当該方法によって製造される単結晶
KR101613704B1 (ko) * 2015-01-16 2016-04-29 부산대학교 산학협력단 아나타제상 이산화티탄 광촉매 코팅층의 형성방법

Non-Patent Citations (55)

* Cited by examiner, † Cited by third party
Title
A. Kapitulnik, G. Deutscher, Percolation scale effects in metal-insulator thin films, J. Stat. Phys. 36 (1984) 815-826.
A. Kurdi, H. Wang, L. Chang, Effect of nano-sized TiO2 addition on tribological behaviour of poly ether ether ketone composite, Tribol. Int. 117 (2018) 225-235.
B. Fu, L. Gao, Tantalum nitride/copper nanocomposite with zero temperature coefficient of resistance, Scr. Mater. 55 (2006) 521-524.
B.J. Reardon, Optimizing the hot isostatic pressing process, Mater. Manuf. Process. 18 (2003) 493-508.
C. Durkan, M.E. Welland, Size effects in the electrical resistivity of polycrystalline nanowires, Phys. Rev. B. 61 (2000) 14215-14218.
C. Perego, R. Revel, O. Durupthy, S. Cassaignon, J.P. Jolivet, Thermal stability of TiO2-anatase: impact of nanoparticles morphology on kinetic phase transformation, Solid State Sci. 12 (2010) 989-995.
C.L. Au, W.A. Anderson, D.A. Schmitz, J.C. Flassayer, F.M. Collins, Stability of tantalum nitride thin film resistors, J. Mater. Res. 5 (1990) 1224-1232.
C.W. Kim, J.H. Choi, H.J. Kim, D.W. Lee, C.Y. Hyun, S.M. Nam, Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films, Ceram. Int. 38 (2012) 5621-5627.
D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, R. Moos, An overview of the aerosol deposition method: process fundamentals and new trends in materials applications, J. Ceram. Sci. Technol. 6 (2015) 147-181.
D.W. Lee, M.C. Shin, Y.N. Kim, J.M. Oh, Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition, Ceram. Int. 43 (2017) 1044-1051.
D.-W. Lee, O.-Y. Kwon, W.-J. Cho, J.-K. Song, Y.-N. Kim, Characteristics and mechanism of Cu films fabricated at room temperature by aerosol deposition, Nanoscale Res. Lett. 11 (2016) 162.
E.O. Chi, W.S. Kim, N.H. Hur, Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3, Solid State Commun. 120 (2001) 307-310.
H. Zhang, J.F. Banfield, New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles, Am. Mineral. 84 (1999) 528-535.
H.L. Chen, W.H. Li, S.Q. Yang, S.C. Yang, Research of magnetic abrasive prepared by hot pressing sintering process, in: Proceedings of the 5th IEEE Conference Ind. Electron. Appl. ICIEA 2010: 2010: pp. 776-778.
I.S. Park, S.Y. Park, G.H. Jeong, S.M. Na, S.J. Suh, Fabrication of Ta3N5-Ag nanocomposite thin films with high resistivity and near-zero temperature coefficient of resistance, Thin Solid Films 516 (2008) 5409-5413.
J. Akedo, Aerosol deposition method for fabrication of nano crystal ceramic layer, Mater. Sci. Forum 449-452 (2004) 43-48.
J. Akedo, Aerosol deposition method for room-temperature ceramic coating and its applications, Handb. Adv. Ceram. Mater. Appl. Process. Prop. (2013) 847-860.
J. Akedo, Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers, J. Am. Ceram. Soc. (2006) 1834-1839.
J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm. Spray. Technol. 17 (2008) 181-198.
J. Musil, P. Baroch, J. Vlek, K.H. Nam, J.G. Han, Reactive magnetron sputtering of thin films: Present status and trends, in: Thin Solid Films: 2005: pp. 208-218.
J. Ryu, D.-S. Park, B.D. Hahn, J.-J. Choi, W.-H. Yoon, K.-Y. Kim, H.-S. Yun, Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature, Appl. Catal. B-Environ. 83 (2008) 1-7.
J.F. Pierson, D. Wiederkehr, A. Billard, Reactive magnetron sputtering of copper, silver, and gold, Thin Solid Films. 478 (2005) 196-205.
J.G. Liang, C. Wang, Z. Yao, M.Q. Liu, H.K. Kim, J.M. Oh, Preparation of ultrasensitive humidity-sensing by aerosol deposition, ACS Appl. Mater. Interfaces 10 (2018) 851-863.
J.G. Liang, E.S. Kim, C. Wang, M.Y. Cho, J.M. Oh, Thickness effects of aerosol deposited hygroscopic films on ultra-sensitive humidity sensors, Sens. Actuators B Chem. 265 (2018) 632-643.
J.H. Jung, B.D. Hahn, W.H. Yoon, D.S. Park, J.J. Choi, J.H. Ryu, J.W. Kim, C.W. Ahn, K.M. Song, Halogen plasma erosion resistance of rare earth oxide films deposited on plasma sprayed alumina coating by aerosol deposition, J. Eur. Ceram. Soc. 32 (2012) 2451-2457.
J.J. Van Den Broek, J.J.T.M. Donkers, R.A.F. Van Der Rijt, J.T.M. Janssen, Metal film precision resistors: resistive metal films and a new resistor concept, Philips J. Res. 51 (1998) 429-447.
J.M. Oh, S.M. Nam, Thickness limit of BaTiO3 thin film capacitors grown on SUS substrates using aerosol deposition method, Thin Solid Films 518 (2010) 6531-6536.
K. Suganuma, T. Okamoto, M. Koizljmi, M. Shimada, Effect of interlayers in ceramic-metal joints with thermal expansion mismatches, J. Am. Ceram. Soc. 67 (1984) (C-256 - C-257).
K.S. Shamala, L.C.S. Murthy, K. Narasimha Rao, Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method, Mater. Sci. Eng. B. 106 (2004) 269-274.
M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue, Nano-Micro Lett. 3 (2011) 236-241.
M. Gao, Z. Chen, H. Kang, R. Li, W. Wang, C. Zou, T. Wang, Effects of Nb addition on the microstructures and mechanical properties of a precipitation hardening Cu-9Ni-6Sn alloy, Mater. Sci. Eng. A. 715 (2018) 340-347.
M. Hrovat, D. Belavic, Z. Samardzija, Characterisation of thick film resistor series for strain sensors, J. Eur. Ceram. Soc. 21 (2001) 2001-2004.
M. Jonas, A. Peled, The equivalent temperature coefficient of resistance of thin film resistor-conductor structures, Thin Solid Films 90 (1982) 385-390.
M. Nakada, H. Tsuda, K. Ohashi, J. Akedo, Aerosol deposition on transparent electro-optic films for optical modulators, IEICE Trans. Electron (2007) 36-40 (E90-C).
M.I. Lerner, S.G. Psakhie, A.S. Lozhkomoev, A.F. Sharipova, A.V. Pervikov, I. Gotman, E.Y. Gutmanas, Fe-Cu nanocomposites by high pressure consolidation of powders prepared by electric explosion of wires, Adv. Eng. Mater. (2018).
N. von Moos, V.B. Koman, C. Santschi, O.J.F. Martin, L. Maurizi, A. Jayaprakash, P. Bowen, V.I. Slaveykova, Pro-oxidant effects of nano-TiO2 on Chlamydomonas reinhardtii during short-term exposure, RSC Adv. 6 (2016) 115271-115283.
N.M. Phuong, D.-J. Kim, B.-D. Kang, C.S. Kim, S.-G. Yoon, Effect of chromium concentration on the electrical properties of NiCr thin films resistor deposited at room temperature by magnetron cosputtering technique, J. Electrochem. Soc. 153 (2006) G27.
O. Kamigaito, What can be improved by nanometer composites? J. Jpn. Soc. Powder Powder Metall. 38 (1991) 315-321.
O.-Y. Kwon, H.-J. Na, H.-J. Kim, D.-W. Lee, S.-M. Nam, Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett. 7 (2012) 261.
S. Lin, B.S. Wang, J.C. Lin, Y.N. Huang, W.J. Lu, B.C. Zhao, P. Tong, W.H. Song, Y.P. Sun, Tunable room-temperature zero temperature coefficient of resistivity in antiperovskite compounds Ga1-xCFe3 and Ga1-yAlyCFe3, Appl. Phys. Lett. 101 (2012) 1-5.
S. Song, X. Ai, W. Gao, J. Zhao, Repetitious-hot-pressing technique in hot-pressing process, J. Mater. Sci. Technol. 19 (2003).
S.H. Cho, Y.J. Yoon, Multi-layer TiO2 films prepared by aerosol deposition method for dye-sensitized solar cells, Thin Solid Films. 547 (2013) 91-94.
S.M. Na, I.S. Park, S.Y. Park, G.H. Jeong, S.J. Suh, Electrical and structural properties of Ta-N thin film and Ta/Ta-N multilayer for embedded resistor, Thin Solid Films. 516 (2008) 5465-5469.
S.M. Rossnagel, T.S. Kuan, Alteration of Cu conductivity in the size effect regime, J, Vac. Sci. Technol. B Microelectron. Nanom. Struct. 22 (2004) 240.
T. Fujihara, M. Tsukamoto, N. Abe, S. Miyake, T. Ohji, J. Akedo, Hydroxyapatite film formed by particle beam irradiation, Vacuum 73 (2004) 629-633.
T. Manangan, S. Shawaphun, D. Sangsansiri, Nano-sized titanium dioxides as photocatalysts in degradation of polyethylene and polypropylene packagings, Sci. J. UBU 1 (2010) 14-20.
V. Timoshevskii, Y. Ke, H. Guo, D. Gall, The influence of surface roughness on electrical conductance of thin Cu films: an ab initio study, J. Appl. Phys. 103 (2008) 9-12.
Y. Imanaka, N. Hayashi, M. Takenouchi, J. Akedo, Aerosol deposition for post-LTCC, J. Eur. Ceram. Soc. 27 (2007) 2789-2795.
Y. Kwon, Trend and prospect for 3dimensional integrated-circuit semiconductor chip, Korean Chem. Eng. Res. 47 (2009) 1-10.
Y. Lin, X. Chen, Electron beam evaporation deposition, Adv. Nano Depos. Methods (2016) 305-309.
Y. Sun, C. Wang, L. Chu, Y. Wen, M. Nie, F. Liu, Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound, Scr. Mater. 62 (2010) 686-689.
Y.H. Kim, J.W. Lee, H.J. Kim, Y.H. Yun, S.M. Nam, Silver metallization for microwave device using aerosol deposition, Ceram. Int. 38 (2012) S201-S204.
Y.P. Timalsina, A. Horning, R.F. Spivey, K.M. Lewis, T.S. Kuan, G.C. Wang, T.M. Lu, Effects of nanoscale surface roughness on the resistivity of ultrathin epitaxial copper films, Nanotechnology 26 (2015) 75704.
Y.T. Kim, Achievement of zero temperature coefficient of resistance with RuOx thin film resistors, Appl. Phys. Lett. 70 (1997).
Z. Zhang, Y. Liu, G. Yao, G. Zu, Y. Hao, Synthesis and characterization of NiFe2O4 nanoparticles via solid-state reaction, Int. J. Appl. Ceram. Technol. 10 (2013) 142-149.

Also Published As

Publication number Publication date
KR102207355B1 (ko) 2021-01-22

Similar Documents

Publication Publication Date Title
Cho et al. Fabrication of TiO2/Cu hybrid composite films with near zero TCR and high adhesive strength via aerosol deposition
Su et al. Preparation of BaTiO 3/low melting glass core–shell nanoparticles for energy storage capacitor applications
Takeuchi et al. Preparation of dense BaTiO3 ceramics with submicrometer grains by spark plasma sintering
JP5180987B2 (ja) 高密度及びナノ結晶粒スピネル系負温度係数サーミスタ厚膜の製造方法
Fan et al. Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template
KR101621693B1 (ko) 밀도구배를 갖는 다공성 박막의 제조방법 및 이를 이용하는 다공성 박막 및 다공성 전극
Lepeshev et al. Synthesis of nanosized titanium oxide and nitride through vacuum arc plasma expansion technique
Sadl et al. Energy-storage-efficient 0.9 Pb (Mg1/3Nb2/3) O3–0.1 PbTiO3 thick films integrated directly onto stainless steel
Naoe et al. Microstructure and electron energy-loss spectroscopy analysis of interface between cu substrate and Al 2 O 3 film formed by aerosol deposition method
KR102207355B1 (ko) 에어로졸 증착을 통한 니어 제로 TCR 및 고 접합 강도를 갖는 TiO2/Cu 복합 합성 필름의 제조 방법
KR100941472B1 (ko) 에어로졸 증착법을 이용하여 제조된 치밀한 상온 전도성후막 및 이의 제조방법
Aymonier et al. Supercritical fluid technology of nanoparticle coating for new ceramic materials
Li et al. In-situ preparation of Ni@ ZrO2 nanocapsules powder by DC arc plasma for internal electrode of MLCC
Kim et al. Residual stress relief in Al2O3–Poly-tetra-fluoro-ethylene hybrid thick films for integrated substrates using aerosol deposition
Lee et al. Experimental and numerical study for Cu metal coatings at room temperature via powder spray process
Elissalde et al. Innovative architectures in ferroelectric multi-materials: Chemistry, interfaces and strain
Yang et al. Dielectric characteristics of a barium titanate film deposited by Nano Particle Deposition System (NPDS)
Kim et al. Suppression of interface roughness between BaTiO3 film and substrate by Si3N4 buffer layer regarding aerosol deposition process
KR101952504B1 (ko) 강유전체 세라믹 복합체의 제조방법
Wang et al. Room temperature fabrication of MIMCAPs via aerosol deposition
Du et al. Effect of polyvinylpyrrolidone on the formation of perovskite phase and rosette-like structure in sol-gel–derived PLZT films
KR20170044521A (ko) 기능성 코팅막 제조방법 및 기능성 코팅막
Solovyev et al. Structural features of the magnetron sputtered CuO/GDC anodes for solid oxide fuel cells
KR102305018B1 (ko) 분말 분사 공정을 통한 실온 Cu 금속 코팅에 관한 실험적 수치적 분석 방법
Wang et al. Structural Study of Titanium Oxide Films Synthesized by Ion Beam‐Assisted Deposition

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant