KR20200097262A - 무히터 중공 캐소드를 작동시키기 위한 장치 및 방법, 및 그러한 캐소드를 사용하는 전기 공간 추진 시스템 - Google Patents

무히터 중공 캐소드를 작동시키기 위한 장치 및 방법, 및 그러한 캐소드를 사용하는 전기 공간 추진 시스템 Download PDF

Info

Publication number
KR20200097262A
KR20200097262A KR1020207016539A KR20207016539A KR20200097262A KR 20200097262 A KR20200097262 A KR 20200097262A KR 1020207016539 A KR1020207016539 A KR 1020207016539A KR 20207016539 A KR20207016539 A KR 20207016539A KR 20200097262 A KR20200097262 A KR 20200097262A
Authority
KR
South Korea
Prior art keywords
emitter
keeper
voltage
assembly
current
Prior art date
Application number
KR1020207016539A
Other languages
English (en)
Other versions
KR102475954B1 (ko
Inventor
단 레브
데미티리 미키트척
알론 갈
Original Assignee
라파엘 어드벤스드 디펜스 시스템즈 리미티드.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 라파엘 어드벤스드 디펜스 시스템즈 리미티드. filed Critical 라파엘 어드벤스드 디펜스 시스템즈 리미티드.
Publication of KR20200097262A publication Critical patent/KR20200097262A/ko
Application granted granted Critical
Publication of KR102475954B1 publication Critical patent/KR102475954B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0068Electrostatic ion thrusters grid-less with an applied magnetic field with a central channel, e.g. end-Hall type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0025Neutralisers, i.e. means for keeping electrical neutrality
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)
  • Electron Beam Exposure (AREA)

Abstract

무히터 중공 캐소드는 전기 공간 추진 시스템에서 전자 방출 전류를 제공한다. 캐소드 장치의 기계적, 열적 및 전자기 설계가 제시되고, 캐소드의 신속한 점화 및 안정화를 위한 작동 방법이 제공된다. 캐소드 장치의 키퍼는 두께 변화를 가지며 캐소드 에미터 조립체로부터의 열 흐름을 감소시킨다. 에미터 조립체를 가열하는 방법은 에미터 조립체로부터 키퍼로 흐르는 전류가 미리 정해진 고정된 값으로 유지되도록 인가된 전압을 제어하는 단계를 포함한다. 이 방법에 의해, 전기 아크 및/또는 도펀트 재료의 고갈에 의해 에미터 조립체의 전자 방출 표면에 대한 손상이 방지된다.

Description

무히터 중공 캐소드를 작동시키기 위한 장치 및 방법, 및 그러한 캐소드를 사용하는 전기 공간 추진 시스템
본 발명은 전기 공간 추진 시스템(electric space propulsion systems)에 관한 것으로, 구체적으로는 이러한 시스템을 위한 무히터 중공 캐소드(이하 HHC(heaterless hollow cathode))의 구성 및 작동에 관한 것이다. 전기 공간 추진 시스템에 사용하기위한 HHC의 기술의 최근 개발은 이탈리아, 로마, SP2016_3125366, 2016년 5월 2-6일 스페이스 추진 2016 컨퍼런스에서, "Heaterless Hollow Cathode Technology - A Critical Review"라는 제목의 비특허 문헌에 설명되어 있으며, 그 전문이 본원에 참조로 포함된다.
HHC의 작동은(1) 중성 가스의 고전압 파괴를 통한 점화,(2) 글로우 방전(glow discharge) 및/또는 전기 아크에 의한 캐소드 가열 및(3) 지속적인 자체 지속 캐소드 방출의 3가지 페이즈로 이루어진다. 가스에서의 방출 현상의 확률적 물리적 성질은 3가지 작동 단계 중 어느 하나에서 HHC의 고장을 초래할 수 있다. 많은 학술적 연구가 HHC 작동 중에 관찰된 많은 실패 메커니즘을 식별하는 데 성공했다.
종래 기술에서, "Open-End Emitter-Orificed Keeper"로 알려진 구성을 갖는 HHC는 1984년 10월 2일자 "Hollow Cathode Apparatus"라는 제목의 Graeme Aston의 미국특허 제4,475,063호에 개시되어 있다. 이 구성은 실험적으로 테스트되었으며 다양한 오류 메커니즘이 관찰되었다.
예를 들어, 이온 충격(bombardment)에 의한 중공 전자 에미터의 침식(erosion)은 전체 HHC 수명을 감소시킬 수 있다. 일부의 경우에 있어서, 에미터(emitter)와 키퍼(keeper) 사이의 고전류 아크로 인해 에미터의 치명적인 파괴가 발생될 수 있다.
HHC 결함의 또 다른 원인은 가스 추진제(gas propellant)의 질량 흐름(mass flow)과 연결되어 있다. 에미터의 내경이 작으면 HHC는 막히기 쉽다. 에미터의 내경이 크면 가스 압력이 너무 낮아서 점화할 수 없다. 가스 추진제의 질량 흐름을 증가시킴으로써 가스 압력이 증가되면, 증가된 질량 흐름은 가스 추진제의 공급을 빠르게 고갈시키고 HHC 작동의 제3 페이즈 동안 플라즈마 불안정성을 야기할 수 있다. 질량 흐름을 증가시키는 대신, 낮은 가스 압력을 보상하기 위해 점화 전압, 즉 에너지가 증가되면, 에미터와 키퍼 사이의 고전압 아크에 의해 에미터가 손상될 위험이 증가된다.
또 다른 조기 고장의 원인은 작동의 세 번째 단계, 즉 연속적인 자체-유지 캐소드 방출 페이즈(self-sustained cathode emission phase)에서 발생한다. 이러한 고장은 과도하게 높은 작동 온도(예를 들어, 섭씨 2,500도 초과)로 인한 에미터의 열 스트레스 및 용융에 의한 것으로 생각된다. 이러한 고온은 순수 탄탈륨 또는 순수 텅스텐으로 제조된 것과 같은 높은 일함수(work function)(예를 들어, 4eV 초과)를 갖는 에미터로부터 열이온(thermionic) 방출을 달성하기 위해 종종 도달된다. 일 함수를 낮추기 위해, 에미터에는 때때로 바륨 산화물 또는 스칸듐 산화물과 같은 도펀트 재료가 함침된다. 그러나, 도핑된 에미터조차도 열 응력 및 용융으로 인해 조기에 고장나는 것으로 관찰되었다. 이는 높은 전자 표면 전류 밀도에서 에미터의 연장된 동작 후 도펀트 물질의 고갈로 인한 것일 수 있다고 생각된다. 일단 도펀트가 고갈되면, 에미터 일함수가 순수 금속의 수준으로 증가하고, 열 고장 위험과 함께 열 이온 방출을 달성하기 위해 과도하게 높은 온도가 다시 필요하게 된다.
본 발명은 전술한 문제를 해결하는 것을 목적으로 한다.
본 발명은 무히터 중공 캐소드를 작동시키기 위한 장치 및 방법이다.
본 발명의 일 실시예의 교시에 따르면, 무히터 중공 캐소드 장치가 제공되고, 장치는,
전자 에미터 및 에미터 홀더를 포함하는 에미터 조립체 - 상기 에미터 조립체는 에미터 오리피스를 통과하는 가스 유로(gas flow path)를 정의함 - ;
상기 에미터 조립체를 둘러싸는 키퍼(keeper) - 상기 키퍼는 오리피스를 구비함 - ;
상기 가스 유로를 통해 조절된 가스 흐름을 공급하기 위한 가스 흐름 조절기(regulator);
전력 공급원;
상기 전력 공급원, 상기 가스 흐름 조절기, 상기 키퍼 및 상기 에미터 조립체와 전기적으로 연관된 제어기를 포함하고, 상기 제어기는 순차적으로:
· 상기 에미터 조립체와 상기 키퍼 사이에 방전을 개시하기 위해, 가스가 상기 에미터 조립체와 상기 키퍼 사이의 부피로 공급되는 동안, 상기 에미터 조립체와 상기 키퍼 사이에 에미터 키퍼 전압을 인가하고;
· 상기 에미터 조립체와 상기 키퍼 사이에 흐르는 에미터-키퍼 전류의 값을 모니터링하고, 상기 에미터-키퍼 전류를 미리 결정된 전류 값으로 유지하도록 상기 에미터-키퍼 전압을 조정하고;
· 미리 결정된 최소 시간(time duration) 동안 미리 결정된 전압 임계치 아래로 유지되는 값으로 상기 에미터-키퍼 전압의 강하를 검출하기 위해 상기 에미터-키퍼 전압을 모니터링하고;
· 전류가 애노드에서 무히터 중공 캐소드로 흐르는 주 방전 회로를 작동 시키며;
· 상기 에미터-키퍼 전압을 0으로 설정하도록 구성된다.
장치의 특정 바람직한 구현의 일 특징에 따르면, 에미터 홀더는 전자 에미터를 캡슐화하는 에미터 홀더 넥을 포함한다.
장치의 특정 바람직한 구현의 추가 특징에 따르면, 키퍼 오리피스의 면적은 에미터 오리피스 면적의 5 % 내지 25 % 범위 내에 있다.
장치의 특정 바람직한 구현의 추가 특징에 따르면, 키퍼는 두께의 변화를 포함한다.
장치의 특정 바람직한 구현의 추가 특징에 따르면, 전자 에미터는 굴절 세라믹 물질 또는 산화물이 함침된 굴절 금속이다.
장치의 특정 바람직한 구현의 추가 특징에 따르면, 전자 에미터는 2.2 전자 볼트 미만의 일 함수를 갖는다.
장치의 특정 바람직한 구현의 다른 특징에 따르면, 제어기는 에미터-키퍼 전류의 급격한 급격한 증가를 식별함으로써 에미터 조립체와 키퍼 사이의 방전 개시를 검출한다.
장치의 특정 바람직한 구현의 추가 특징에 따르면, 미리 결정된 전류값은 100 내지 150 밀리 암페어의 범위에 있다.
장치의 특정 바람직한 구현의 추가 특징에 따르면, 미리 결정된 전압 임계 값은 50 내지 100 볼트의 범위에 있다.
장치의 특정 바람직한 구현의 다른 특징에 따르면, 미리 결정된 최소 시간 기간은 1 내지 3 초의 범위에 있다.
본 발명의 일 실시예의 교시에 따르면, 다음 단계를 포함하는 무히터 중공 캐소드의 작동 방법이 제공된다: 이 방법은,
·전력 공급원, 가스 흐름 조절기, 키퍼 및 에미터 조립체와 전기적으로 관련된 제어기를 제공하는 단계;
·상기 에미터 조립체와 상기 키퍼 사이에 방전을 개시하기 위해 상기 에미터 어셈블리와 상기 키퍼 사이에 에미터-키퍼 전압을 인가하는 단계;
·에미터-키퍼 전류를 미리 결정된 전류값으로 유지하도록 에미터-조립기 전류의 값을 모니터링하고, 상기 에미터 조립체와 상기 키퍼 사이에 흐르는 에미터-키퍼 전압을 조정하는 단계;
·미리결정된 최소 시간 동안 미리결정된 전압 임계값 미만으로 유지되는 값으로의 상기 에미터-키퍼 전압의 강하를 검출하기 위해 상기 에미터-키퍼 전압을 모니터링하는 단계;
·전류가 애노드로부터 무히터 중공 캐소드으로 흐르는 주 방전 회로를 작동시키는 단계; 및
·상기 에미터-키퍼 전압을 제로로 설정하는 단계를 포함한다.
본 방법의 특정 바람직한 구현의 일 특징에 따르면, 제어기는 에미터-키퍼 전류의 급격한 급격한 증가를 식별함으로써 에미터 조립체와 키퍼 사이의 방전 개시를 검출한다.
본 방법의 특정 바람직한 구현의 다른 특징에 따르면, 상기 미리 결정된 전류 값은 100 내지 150 밀리 암페어의 범위에 있다.
본 방법의 특정 바람직한 구현의 추가 특징에 따르면, 상기 미리 결정된 전압 임계 값은 50 내지 100 볼트의 범위에 있다.
본 방법의 특정 바람직한 구현의 추가 특징에 따르면, 상기 최소 지속 시간은 1 내지 3 초의 범위에 있다.
본 발명에 따르면 전술한 과제를 해결할 수 있다.
본 발명은 첨부 도면을 참조하여 단지 예로서 설명된다.
도 1은 본 발명의 일 실시예에 따른 예시적인 전기 공간 추진 시스템의 블록도;
도 2는 본 발명의 일 실시예에 따른 예시적인 HHC의 외부 사시도;
도 3은 도 2의 예시적인 HHC의 분해 사시도;
도 4는 도 2의 예시적인 HHC의 축 방향 단면도;
도 5는 도 2의 예시적인 HHC의 확대 축 방향 단면도; 및
도 6은 본 발명의 일 실시예에 따른 HHC의 예시적인 동작 방법의 블록도이다.
본 발명은 HHC 장치 및 작동 방법에 관한 것이다. 본 발명의 원리는 도면 및 첨부된 설명을 참조하여 보다 더 이해될 수 있다.
이제 도면을 참조하면, 도 1은 본 발명의 일 실시예에 따른 예시적인 전기 공간 추진 시스템(100)의 블록도이다. 기계적 지지부(120)는 일반적으로 쇄선으로 도시된 중심축에 대하여 원통형으로 대칭 형상을 가진다. 애노드 요소(140)는 전기 공간 추진 시스템(100)을 위한 포지티브 전기 단자 및 추진제 가스 분배기(distributor) 모두 이다. 애노드 요소(140)를 통해 흐르는 추진제 가스는 바람직하게는 크세논, 크립톤 또는 아르곤과 같은 고 분자 중량을 갖는 비 부식성이고 쉽게 이온화된 가스이다. HHC 가스 분배기(190)는 추진제 가스와 동일하거나 상이한 중성 가스를 HHC(200)에 공급한다. HHC 가스는 바람직하게는 크세논, 크립톤, 아르곤, 헬륨, 네온, 수소 또는 질소와 같이 비 부식성이며 쉽게 이온화된 가스이다.
전원 공급 장치(170)는 제어기(180)에 의해 요구되는 전기 전압 및 전류를 제공한다. 제어기(180)는 하나 이상의 프로세서 및 하나 이상의 데이터 저장 요소, 타이밍 메커니즘, 및 센서와 액추에이터에 대한 다수의 전기 인터페이스를 포함한다. 애노드 요소(140), HHC 가스 분배기(190) 및 HHC(200)와 관련된 전기 인터페이스는 각각 라인 182, 184, 186 및 188로 도 1에 개략적으로 도시되어 있다. 전기 인터페이스 182 및 184는 애노드 전압 및 추진제 가스의 질량 흐름을 각각 제어하기 위한 신호를 제공한다. 전기 인터페이스 186 및 188는 HHC 가스의 질량 흐름 및 HHC(200)에 의해 요구되는 전압을 각각 제어하기 위한 신호를 제공한다. 제어기(180)는 시스템(100) 및 HHC(200)를 동작시키는데 필요한 모든 단계를 수행하기 위해 전용 하드웨어 구현, 또는 범용 프로세서상에서 실행되는 소프트웨어, 또는 이들의 임의의 조합에 의해 구성되는 것이 바람직하다. 전원 공급 장치(170) 및/또는 제어기(180)는 전기 공간 추진 시스템(100)과 관련된 것들 이외에 다른 기능들을 수행하는 우주선 플랫폼(spacecraft platform)과 통합된 구성 요소들로서 또는 전용 구성 요소들로 구성될 수 있다.
시스템(100)의 작동 동안, 전자 스트림은 HHC(200)를 빠져 나가고 인가된 전기장에 응답하여 애노드 요소(140)를 향해 이동한다. 후자는 자극(magnetic poles)(160)에 의해 설정된 직교 자기장과 함께 순환 홀 전자 전류(circulating Hall electron current)를 생성한다. 후자는 애노드 요소(140)를 통해 흐르는 중성 추진제 가스 분자와 충돌하여 이를 이온화시킨다. 이온화된 추진제 가스 분자는 인가된 전기장에 의해 높은 속도로 가속되고 방출 채널(150)을 통과한다. 출구 시스템(100)에서, 이온화된 추진제 가스 분자는 HHC(200)에 의해 방출된 전자에 의해 중성화된다(neutralized).
시스템(100)은 홀 효과 스러스터(Hall effect thruster)로서 당업자에게 공지되어 있으며, HHC를 사용하는 전기 공간 추진 시스템의 하나의 바람직하지만 비 제한적인 예로서 여기에서 언급된다. 본 발명의 범위는 이러한 예에 한정되지 않으며, 본 발명에 따른 HHC 장치 및/또는 작동 방법을 이용하는 임의의 및 모든 유형의 전기 공간 추진 시스템을 이용하는 실시예를 포함한다.
HHC(200)의 예시적인 구현의 구조는 도 2 내지 도 5에 도시되어 있으며, 동일한 참조 번호가 전체에 걸쳐 사용된다. 도 2는 본 발명의 일 실시예에 따른 예시적인 HHC의 외부 사시도이다. HHC(200)는 기계적 지지부(120)에 부착된 HHC 브래킷(210)에 의해 기계적으로 지지된다. 중성 가스는 가스 커넥터(220)를 통해 HHC(200)로 유입된다. 절연 디스크(230,250)는 내부 요소를 위한 전기 절연을 제공한다. 원통형 칼라(collar)(270) 및 키퍼(310)는 전도성 재료로 만들어지고 공통 전위에 있다. 고정구(fixture)(290)는 키퍼(310)와 물리적으로 접촉하는 전기 접촉 링이다.
도 3은 예시적인 HHC(200)의 분해 사시도이다. 플랜지(240)는 가스 유동 튜브(260)와 일체로 형성되거나 견고하게 연결되며, 둘 다 바람직하게는 스테인레스 스틸로 만들어진다. 진공 시일(Vacuum seal )(280)은 키퍼(310) 내부의 압력을 키퍼(310) 외부의 압력으로부터 격리시킨다. 가스 압력 센서(미도시)는 키퍼(310) 내부의 가스 압력을 모니터링하는 것이 바람직하다. 에미터 베이스(330)는 전자 에미터(350)를 둘러싸는 에미터 홀더(340)에 연결된다. 부품 330, 340 및 350은 공통 전위이며, "에미터 조립체"로 집합적으로 언급된다.
도 4는 본 발명의 실시예에 따른 에미터 조립체의 세부사항을 도시한 HHC(200)의 확대 축방향 단면도이다. 쇄선은 에미터 어셈블리의 중심 축을 나타낸다. 에미터 베이스(330)와 에미터 홀더(340) 사이의 중첩 영역은 나사산, 납땜(brazed) 또는 용접 연결부와 같이 두 부분 사이에 닫혀진 전기적 및 열적 접촉을 제공하는 임의의 적합한 기계적 상호 연결부를 나타낸다. 라벨 320 및 370은 각각 키퍼 오리피스 및 에미터 오리피스를 나타낸다. 본 명세서 및 청구 범위에 사용 된 단어 "오리피스"는 바람직하게 원형인 재료 조성(material composition)을 갖지 않는 기하학적 개구를 나타낸다. 키퍼 오리피스(320)의 면적은 바람직하게는 에미터 오리피스(370)의 면적의 5% 내지 25%의 범위 내에 있다. 에미터 홀더 넥(360)의 형상은 전자 에미터(350)를 캡슐화하여 에미터 어셈블리 및 키퍼 사이의 초기 고전압 펄스를 흡수하도록 설계되고, 또한 에미터의 용접 또는 브레이징이 필요없는 간단한 에미터를 캐소드에 통합시키는 것을 허용한다.
HHC(200)의 열 특성 및 디자인은 바람직하게는 열 응력 또는 용융으로 인한 조기 고장을 회피하도록 구성된다. 키퍼(310)의 재료 조성은 바람직하게는 낮은 열 전도성(예를 들어, 500℃의 피크 온도에서 섭씨 온도 당 미터당 180와트 이하)을 갖는 내화성 금속(refractory metal)이다. 텅스텐, 몰리브덴 및 탄탈륨은 이러한 내화성 금속의 예이다. 고온에서 열 균열을 피하기 위해, 키퍼(310)는 브레이징된 구성요소로 구성되지 않아야 하며, 오히려 단일 기계식 구조이어야 한다. 키퍼 두께 변화(315)는 키퍼(310)를 통한 열 전도를 위해 단면적을 감소시킴으로써 에미 터 조립체로부터 멀어지는 열의 흐름을 감소시킨다. 에미터 베이스(330) 및 에미 터 홀더(340)의 재료 조성은 바람직하게는 내화성 금속이며, 키퍼(310)의 내화성 금속과 동일하거나 상이할 수도 있다. 열 팽창 계수는 열 응력을 최소화하기 위해 내화성 금속 사이에서 매칭되는 것이 바람직하다. 설명된 바와 같이 적절한 열 설계(재료 선택, 벽 두께 등)로, 본 발명의 HHC는 1500 시간 초과의 작동 동안 안정적인 전자 전류에서 연속적인 자체-유지 캐소드 방출을 제공하는 것으로 나타났다.
전자 에미터(350)는 바람직하게는 섭씨 1800도 미만의 열 방출에 대한 임계 온도 및 섭씨 2000도 초과의 용융점을 갖는 물질이다. 전형적으로, 이는 2.2 전자 볼트 미만의 일 함수를 갖는 에미터 재료로 달성될 수 있다. 그러한 재료의 하나는 내화성 세라믹 란타늄 헥사보라이드(ceramic Lanthanum Hexaboride)이고; 다른 하나는 바륨(Barium) 산화물 또는 스칸듐(Scandium ) 산화물과 같은 산화물 도펀트로 함침된 텅스텐이다.
도 6은 본 발명의 실시예의 교시에 따른, HHC의 예시적인 동작 방법에 대응하는 제어기(180)의 제어하에서 HHC의 동작을 도시한 블록도이다. 도 6에 따르면, HHC의 작동은 블록 610, 즉 가스 커넥터(220)를 통해 미리 결정된 질량 흐름 속도로 중성 가스를 주입하는 것으로 시작한다. 가스는 에미터 오리피스(370)를 통과하여 진공 볼륨(evacuated volume)으로 키퍼(310) 내부로 채운다. 평균값에서 안정화 될 때까지 바람직하게 제어기(180)는 가스 압력을 모니터링한다. 이러한 맥락에서 "안정화(stabilizing)"는 예를 들어 압력 변동이 평균값의 ± 1% 내에 있을 때와 같이, 임의의 적합한 기준에 의해 정의될 수 있다. 질량 흐름 및 안정적인 가스 압력의 전형적인 그러나 비제한적인 예시적인 값은 각각 초당 0.1 내지 1 밀리그램 및 2 내지 50 토르이다.
가스 압력이 안정화되기를 기다리면서 또는 바람직하게는 가스 압력이 이미 안정화 된 후, 도 6의 블록 620에 도시된 바와 같이, 제어기(180)는 키퍼(310)와 에미터 조립체 사이에 전압차를 인가하는데, 이는 Vke로 표시된다. 제어기(180)는 키퍼(310)와 에미터 조립체 사이에 흐르는 여기서 Ike로 표시되는 전류를 모니터링하면서 Vke의 값을 점차적으로 증가시킨다. "초기 방전 제어"로 지칭되는 이 프로세스는 도 6의 블록 630에 도시되어 있다. 이 프로세스는 블록 640에 도시된 바와 같이 플라즈마 고장의 시작을 나타내는 Ike의 급격한 증가(sudden sharp increase)가 있을 때 종료된다. Ike에서의 급격한 증가는 일반적으로 1 초 또는 그 이하 초 이내에 발생하는 0 암페어에서 100 밀리 암페어 이상으로 Ike 값이 점프하는 것이다. 플라즈마 파괴(breakdown)가 발생하는 Vke의 전형적인 값은 300 내지 1000 볼트의 범위 내에 있다.
플라즈마 파괴를 검출하는 짧은 시간 이내에서, 전형적으로 100 마이크로 초 이하로, 제어기(180)는 블록 650에 도시된 바와 같이 에미터-키퍼 전류 제어를 구현한다. 에미터-키퍼 전류 제어의 스위치는 전자 에미터(350)에서 과도하게 높은 값의 Ike 및 도펀트 재료의 고갈로 이어질 수 있는 Vke의 지속적인 램핑(ramping)을 방지하기 위해 신속하게 수행되는 것이 바람직한다. 제어기(180)는 Ike를 모니터링하고 인가된 전압 Vke을 조정하여 Ike를 바람직하게 100 내지 150 미리암페어의 범위 내에 있는 미리 결정된 전류값에 유지한다. 이 전류 레벨에서, 플라즈마 글로우 방전이 있으며, 이는 전자 에미터(350)를 열 방출에 필요한 온도 임계값까지 점차 가열한다. 이 단계 동안 Vke의 전형적인 값은 200 내지 300 볼트이다.
전자 에미터(350)의 가열은 갑작스러운 자기 전기 아크에 의해가 아니라 플라즈마 글로우 방전에 의해 점진적으로 달성되어야 한다는 것을 주목하는 것이 중요하다. 후자가 더 적은 시간을 요구하지만, 이는 전자 에미터(350)의 표면 상의 하나 이상의 지점에서 과열 및 용융에 의해 에미터 손상을 초래하여 분화 및 침식을 유발하여 전자 에미터(350)의 조기 고장을 초래하는 것으로 밝혀졌다.
도 6의 블록 660에서, 제어기(180)는 열이온 방출의 시작을 나타내는 급격한 전압 강하가 있을 때까지 Vke의 값을 계속 모니터링한다. 열이온 방출의 시작은 바람직하게는, 미리 정해진 전압 임계값 Vth 아래의 값으로 떨어지고, 최소 시간 Tth 동안 Vth 미만으로 유지되어야 한다는 전압 Vke에 대한 2가지 기준의 조합에 의해 식별된다. Vth의 전형적인 값은 100 볼트, 보다 바람직하게는 80 볼트, 가장 바람직하게는 50 볼트이다. Tth의 전형적인 값은 1 초, 보다 바람직하게는 2 초, 가장 바람직하게는 3 초이다.
열이온 방출이 달성되면, 제어기(180)는 블록 670에 지시된 바와 같이 주 방전 제어를 활성화시킨다. 제어기(180)는 방전 채널(150)을 통한 이온화된 가스의 흐름을 개시하기 위해 방전 전압을 인가한다. 수 초 후, 메인 방전 회로의 전류가 안정화되고, 제어기(180)는 Vke를 제로로 설정하고, HHC(200)는 도 6의 블록 680에 도시된 바와 같이, 제3 동작 모드, 즉 연속적인 자체-지속 캐소드 방출에서 계속 작동한다. 본 발명은 주 방전 전류가 200 밀리암페어를 초과하고, 특히 500 밀리암페어를 초과하는 애플리케이션에 전형적으로 요구되는 HHC 채용 열이온 방출에 특히 적용 가능하다. 자체-유지 캐소드 방출 동안 본 발명의 HHC에 대한 전형적인 동작 전류는 다양한 애플리케이션에서 약 1 암페어 이상일 수 있다.
전술한 설명은 단지 예시로서 의도된 것이며, 첨부된 청구 범위에 정의된 바와 같이 본 발명의 범위 내에서 많은 다른 실시예가 가능하다는 것이 이해될 것이다.

Claims (16)

  1. 무히터 중공 캐소드 장치(A heaterless hollow cathode apparatus)로서,
    (a) 전자 에미터 및 에미터 홀더를 포함하는 에미터 조립체 - 상기 에미터 조립체는 에미터 오리피스를 통과하는 가스 유로(gas flow path)를 정의함 - ;
    (b) 상기 에미터 조립체를 둘러싸는 키퍼(keeper) - 상기 키퍼는 오리피스를 구비함 - ;
    (c) 상기 가스 유로를 통해 조절된 가스 흐름을 공급하기 위한 가스 흐름 조절기(regulator);
    (d) 전력 공급원;
    (e) 상기 전력 공급원, 상기 가스 흐름 조절기, 상기 키퍼 및 상기 에미터 조립체와 전기적으로 연관된 제어기를 포함하고, 상기 제어기는 순차적으로:
    (i) 상기 에미터 조립체와 상기 키퍼 사이에 방전을 개시하기 위해, 가스가 상기 에미터 조립체와 상기 키퍼 사이의 부피로 공급되는 동안, 상기 에미터 조립체와 상기 키퍼 사이에 에미터 키퍼 전압을 인가하고;
    (ii) 상기 에미터 조립체와 상기 키퍼 사이에 흐르는 에미터-키퍼 전류의 값을 모니터링하고, 상기 에미터-키퍼 전류를 미리 결정된 전류 값으로 유지하도록 상기 에미터-키퍼 전압을 조정하고;
    (iii) 미리 결정된 최소 시간(time duration) 동안 미리 결정된 전압 임계치 아래로 유지되는 값으로 상기 에미터-키퍼 전압의 강하를 검출하기 위해 상기 에미터-키퍼 전압을 모니터링하고;
    (iv) 전류가 애노드에서 무히터 중공 캐소드로 흐르는 주 방전 회로를 작동 시키며;
    (v) 상기 에미터-키퍼 전압을 0으로 설정하도록 구성된 것
    을 특징으로 하는 장치.
  2. 제1항에 있어서,
    상기 에미터 홀더는 상기 전자 에미터를 캡슐화하는 에미터 홀더 넥을 포함하는 장치.
  3. 제1항에 있어서,
    상기 키퍼 오리피스의 면적은 상기 에미터 오리피스 면적의 5% 내지 25% 사이에 있는 장치.
  4. 제1항에 있어서,
    상기 키퍼는 두께의 변화를 포함하는 장치.
  5. 제1항에 있어서,
    상기 전자 에미터는 굴절(refractive) 세라믹 재료를 포함하는 장치.
  6. 제1항에 있어서,
    상기 전자 에미터는 산화물이 함침된 굴절 금속을 포함하는 장치.
  7. 제1항에 있어서,
    상기 전자 에미터는 2.2 전자 볼트 미만의 일 함수를 갖는 장치.
  8. 제1항에 있어서,
    상기 제어기는 상기 에미터-키퍼 전류의 급격한 급격한 증가를 식별함으로써 상기 에미터 조립체와 상기 키퍼 사이에서 상기 방전의 시작을 검출하는 장치.
  9. 제1항에 있어서,
    상기 미리결정된 전류값은 100 내지 150 밀리 암페어의 범위에 있는 장치.
  10. 제1항에 있어서,
    상기 미리결정된 전압 임계값은 50 내지 100 볼트의 범위에 있는 장치.
  11. 제1항에 있어서,
    상기 미리결정된 최소 시간은 1 내지 3 초의 범위내에 있는 장치.
  12. 무히터 중공 캐소드를 작동시키는 방법에 있어서,
    (i) 전력 공급원, 가스 흐름 조절기, 키퍼 및 에미터 조립체와 전기적으로 관련된 제어기를 제공하는 단계;
    (ii) 상기 에미터 조립체와 상기 키퍼 사이에 방전을 개시하기 위해 상기 에미터 어셈블리와 상기 키퍼 사이에 에미터-키퍼 전압을 인가하는 단계;
    (iii) 에미터-키퍼 전류를 미리 결정된 전류값으로 유지하도록 에미터-조립기 전류의 값을 모니터링하고, 상기 에미터 조립체와 상기 키퍼 사이에 흐르는 에미터-키퍼 전압을 조정하는 단계;
    (iv) 미리결정된 최소 시간 동안 미리결정된 전압 임계값 미만으로 유지되는 값으로의 상기 에미터-키퍼 전압의 강하를 검출하기 위해 상기 에미터-키퍼 전압을 모니터링하는 단계;
    (v) 전류가 애노드로부터 무히터 중공 캐소드으로 흐르는 주 방전 회로를 작동시키는 단계; 및
    (vi) 상기 에미터-키퍼 전압을 제로로 설정하는 단계
    를 포함하는 것을 특징으로 하는 방법.
  13. 제12항에 있어서,
    상기 제어기는 상기 에미터-키퍼 전류의 급격한 증가를 식별함으로써 상기 에미터 조립체와 상기 키퍼 사이에서 상기 방전의 개시를 검출하는 방법.
  14. 제12항에 있어서,
    상기 미리결정된 전류값은 100 내지 150 밀리암페어의 범위내에 있는 방법.
  15. 제12항에 있어서,
    상기 미리결정된 전압 임계값은 50 내지 100 볼트의 범위내에 있는 방법.
  16. 제12항에 있어서,
    상기 최소 지속 시간은 1초 내지 3 초의 범위내에 있는 방법.
KR1020207016539A 2017-12-12 2017-12-12 무히터 중공 캐소드를 작동시키기 위한 장치 및 방법, 및 그러한 캐소드를 사용하는 전기 공간 추진 시스템 KR102475954B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2017/051341 WO2019116361A1 (en) 2017-12-12 2017-12-12 Apparatus and method for operating a heaterless hollow cathode, and an electric space propulsion system employing such a cathode

Publications (2)

Publication Number Publication Date
KR20200097262A true KR20200097262A (ko) 2020-08-18
KR102475954B1 KR102475954B1 (ko) 2022-12-08

Family

ID=66820803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207016539A KR102475954B1 (ko) 2017-12-12 2017-12-12 무히터 중공 캐소드를 작동시키기 위한 장치 및 방법, 및 그러한 캐소드를 사용하는 전기 공간 추진 시스템

Country Status (7)

Country Link
US (1) US11473568B2 (ko)
EP (1) EP3724496A4 (ko)
JP (1) JP2021513719A (ko)
KR (1) KR102475954B1 (ko)
AU (1) AU2017442550A1 (ko)
SG (1) SG11202005136XA (ko)
WO (1) WO2019116361A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113530777B (zh) * 2021-06-17 2023-03-24 北京控制工程研究所 离子电推进系统栅极闪烁安全保护方法、装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231841A (ja) * 1987-03-18 1988-09-27 Mitsubishi Electric Corp イオン源用放電電源装置
JPS6476642A (en) * 1987-09-14 1989-03-22 Mitsubishi Electric Corp Hollow cathode
US20140354138A1 (en) * 2013-04-26 2014-12-04 Colorado State University Research Foundation 12CaO-7Al2O3 ELECTRIDE HOLLOW CATHODE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475063A (en) * 1981-06-22 1984-10-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hollow cathode apparatus
IT1246682B (it) * 1991-03-04 1994-11-24 Proel Tecnologie Spa Dispositivo a catodo cavo non riscaldato per la generazione dinamica di plasma
JP2000161202A (ja) * 1998-11-30 2000-06-13 Mitsubishi Electric Corp ホローカソード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231841A (ja) * 1987-03-18 1988-09-27 Mitsubishi Electric Corp イオン源用放電電源装置
JPS6476642A (en) * 1987-09-14 1989-03-22 Mitsubishi Electric Corp Hollow cathode
US20140354138A1 (en) * 2013-04-26 2014-12-04 Colorado State University Research Foundation 12CaO-7Al2O3 ELECTRIDE HOLLOW CATHODE

Also Published As

Publication number Publication date
WO2019116361A1 (en) 2019-06-20
KR102475954B1 (ko) 2022-12-08
SG11202005136XA (en) 2020-06-29
US20210071650A1 (en) 2021-03-11
US11473568B2 (en) 2022-10-18
AU2017442550A1 (en) 2020-06-11
EP3724496A4 (en) 2020-12-02
EP3724496A1 (en) 2020-10-21
JP2021513719A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US8735766B2 (en) Cathode assembly and method for pulsed plasma generation
US11530690B2 (en) Ignition process for narrow channel hall thruster
WO2019215335A1 (en) Hollow cathode apparatus
US7667379B2 (en) Industrial hollow cathode with radiation shield structure
US7728498B2 (en) Industrial hollow cathode
US6541915B2 (en) High pressure arc lamp assisted start up device and method
JPH05198386A (ja) プラズマの動的発生に対する非加熱型中空陰極を有する装置
JP6887251B2 (ja) 高エネルギー効率、高出力のプラズマトーチ
TWI286774B (en) Cathode assembly for indirectly heated cathode ion source
KR101585889B1 (ko) 고효율 할로우 음극과 이를 적용한 음극 시스템
KR102475954B1 (ko) 무히터 중공 캐소드를 작동시키기 위한 장치 및 방법, 및 그러한 캐소드를 사용하는 전기 공간 추진 시스템
EP2177093B1 (en) Cathode assembly and method for pulsed plasma generation
JP2004169606A (ja) ホローカソード
JP4425838B2 (ja) パルスプラズマ推進装置の点火部
JP4359597B2 (ja) 放電安定性に優れた中空カソード放電ガン
Payman et al. Development of a 50-A heaterless hollow cathode for electric thrusters
US20240014014A1 (en) High current heaterless hollow cathode
US11482395B2 (en) Heaterless hollow cathode
US6323586B1 (en) Closed drift hollow cathode
JP5321234B2 (ja) イオン源
JP4534078B2 (ja) アーク放電用陰極及びイオン源
KR20030084630A (ko) 이온원
Codron et al. Experimental studies on high current arc discharges for magnetoplasmadynamic thrusters
Kokal et al. Thermal analysis and testing of different designs of lanthanum hexaboride hollow cathodes
KR100624745B1 (ko) 방전 안정성이 우수한 중공 캐소드 방전건

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant